diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ShadowStackGC.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/ShadowStackGC.cpp | 452 |
1 files changed, 452 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ShadowStackGC.cpp b/contrib/llvm/lib/CodeGen/ShadowStackGC.cpp new file mode 100644 index 0000000..10f64c7 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/ShadowStackGC.cpp @@ -0,0 +1,452 @@ +//===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements lowering for the llvm.gc* intrinsics for targets that do +// not natively support them (which includes the C backend). Note that the code +// generated is not quite as efficient as algorithms which generate stack maps +// to identify roots. +// +// This pass implements the code transformation described in this paper: +// "Accurate Garbage Collection in an Uncooperative Environment" +// Fergus Henderson, ISMM, 2002 +// +// In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with +// ShadowStackGC. +// +// In order to support this particular transformation, all stack roots are +// coallocated in the stack. This allows a fully target-independent stack map +// while introducing only minor runtime overhead. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "shadowstackgc" +#include "llvm/CodeGen/GCs.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/CallSite.h" + +using namespace llvm; + +namespace { + + class ShadowStackGC : public GCStrategy { + /// RootChain - This is the global linked-list that contains the chain of GC + /// roots. + GlobalVariable *Head; + + /// StackEntryTy - Abstract type of a link in the shadow stack. + /// + StructType *StackEntryTy; + StructType *FrameMapTy; + + /// Roots - GC roots in the current function. Each is a pair of the + /// intrinsic call and its corresponding alloca. + std::vector<std::pair<CallInst*,AllocaInst*> > Roots; + + public: + ShadowStackGC(); + + bool initializeCustomLowering(Module &M); + bool performCustomLowering(Function &F); + + private: + bool IsNullValue(Value *V); + Constant *GetFrameMap(Function &F); + Type* GetConcreteStackEntryType(Function &F); + void CollectRoots(Function &F); + static GetElementPtrInst *CreateGEP(LLVMContext &Context, + IRBuilder<> &B, Value *BasePtr, + int Idx1, const char *Name); + static GetElementPtrInst *CreateGEP(LLVMContext &Context, + IRBuilder<> &B, Value *BasePtr, + int Idx1, int Idx2, const char *Name); + }; + +} + +static GCRegistry::Add<ShadowStackGC> +X("shadow-stack", "Very portable GC for uncooperative code generators"); + +namespace { + /// EscapeEnumerator - This is a little algorithm to find all escape points + /// from a function so that "finally"-style code can be inserted. In addition + /// to finding the existing return and unwind instructions, it also (if + /// necessary) transforms any call instructions into invokes and sends them to + /// a landing pad. + /// + /// It's wrapped up in a state machine using the same transform C# uses for + /// 'yield return' enumerators, This transform allows it to be non-allocating. + class EscapeEnumerator { + Function &F; + const char *CleanupBBName; + + // State. + int State; + Function::iterator StateBB, StateE; + IRBuilder<> Builder; + + public: + EscapeEnumerator(Function &F, const char *N = "cleanup") + : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {} + + IRBuilder<> *Next() { + switch (State) { + default: + return 0; + + case 0: + StateBB = F.begin(); + StateE = F.end(); + State = 1; + + case 1: + // Find all 'return', 'resume', and 'unwind' instructions. + while (StateBB != StateE) { + BasicBlock *CurBB = StateBB++; + + // Branches and invokes do not escape, only unwind, resume, and return + // do. + TerminatorInst *TI = CurBB->getTerminator(); + if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI)) + continue; + + Builder.SetInsertPoint(TI->getParent(), TI); + return &Builder; + } + + State = 2; + + // Find all 'call' instructions. + SmallVector<Instruction*,16> Calls; + for (Function::iterator BB = F.begin(), + E = F.end(); BB != E; ++BB) + for (BasicBlock::iterator II = BB->begin(), + EE = BB->end(); II != EE; ++II) + if (CallInst *CI = dyn_cast<CallInst>(II)) + if (!CI->getCalledFunction() || + !CI->getCalledFunction()->getIntrinsicID()) + Calls.push_back(CI); + + if (Calls.empty()) + return 0; + + // Create a cleanup block. + LLVMContext &C = F.getContext(); + BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F); + Type *ExnTy = StructType::get(Type::getInt8PtrTy(C), + Type::getInt32Ty(C), NULL); + Constant *PersFn = + F.getParent()-> + getOrInsertFunction("__gcc_personality_v0", + FunctionType::get(Type::getInt32Ty(C), true)); + LandingPadInst *LPad = LandingPadInst::Create(ExnTy, PersFn, 1, + "cleanup.lpad", + CleanupBB); + LPad->setCleanup(true); + ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB); + + // Transform the 'call' instructions into 'invoke's branching to the + // cleanup block. Go in reverse order to make prettier BB names. + SmallVector<Value*,16> Args; + for (unsigned I = Calls.size(); I != 0; ) { + CallInst *CI = cast<CallInst>(Calls[--I]); + + // Split the basic block containing the function call. + BasicBlock *CallBB = CI->getParent(); + BasicBlock *NewBB = + CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont"); + + // Remove the unconditional branch inserted at the end of CallBB. + CallBB->getInstList().pop_back(); + NewBB->getInstList().remove(CI); + + // Create a new invoke instruction. + Args.clear(); + CallSite CS(CI); + Args.append(CS.arg_begin(), CS.arg_end()); + + InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), + NewBB, CleanupBB, + Args, CI->getName(), CallBB); + II->setCallingConv(CI->getCallingConv()); + II->setAttributes(CI->getAttributes()); + CI->replaceAllUsesWith(II); + delete CI; + } + + Builder.SetInsertPoint(RI->getParent(), RI); + return &Builder; + } + } + }; +} + +// ----------------------------------------------------------------------------- + +void llvm::linkShadowStackGC() { } + +ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) { + InitRoots = true; + CustomRoots = true; +} + +Constant *ShadowStackGC::GetFrameMap(Function &F) { + // doInitialization creates the abstract type of this value. + Type *VoidPtr = Type::getInt8PtrTy(F.getContext()); + + // Truncate the ShadowStackDescriptor if some metadata is null. + unsigned NumMeta = 0; + SmallVector<Constant*, 16> Metadata; + for (unsigned I = 0; I != Roots.size(); ++I) { + Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1)); + if (!C->isNullValue()) + NumMeta = I + 1; + Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr)); + } + Metadata.resize(NumMeta); + + Type *Int32Ty = Type::getInt32Ty(F.getContext()); + + Constant *BaseElts[] = { + ConstantInt::get(Int32Ty, Roots.size(), false), + ConstantInt::get(Int32Ty, NumMeta, false), + }; + + Constant *DescriptorElts[] = { + ConstantStruct::get(FrameMapTy, BaseElts), + ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata) + }; + + Type *EltTys[] = { DescriptorElts[0]->getType(),DescriptorElts[1]->getType()}; + StructType *STy = StructType::create(EltTys, "gc_map."+utostr(NumMeta)); + + Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts); + + // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems + // that, short of multithreaded LLVM, it should be safe; all that is + // necessary is that a simple Module::iterator loop not be invalidated. + // Appending to the GlobalVariable list is safe in that sense. + // + // All of the output passes emit globals last. The ExecutionEngine + // explicitly supports adding globals to the module after + // initialization. + // + // Still, if it isn't deemed acceptable, then this transformation needs + // to be a ModulePass (which means it cannot be in the 'llc' pipeline + // (which uses a FunctionPassManager (which segfaults (not asserts) if + // provided a ModulePass))). + Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true, + GlobalVariable::InternalLinkage, + FrameMap, "__gc_" + F.getName()); + + Constant *GEPIndices[2] = { + ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), + ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) + }; + return ConstantExpr::getGetElementPtr(GV, GEPIndices); +} + +Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) { + // doInitialization creates the generic version of this type. + std::vector<Type*> EltTys; + EltTys.push_back(StackEntryTy); + for (size_t I = 0; I != Roots.size(); I++) + EltTys.push_back(Roots[I].second->getAllocatedType()); + + return StructType::create(EltTys, "gc_stackentry."+F.getName().str()); +} + +/// doInitialization - If this module uses the GC intrinsics, find them now. If +/// not, exit fast. +bool ShadowStackGC::initializeCustomLowering(Module &M) { + // struct FrameMap { + // int32_t NumRoots; // Number of roots in stack frame. + // int32_t NumMeta; // Number of metadata descriptors. May be < NumRoots. + // void *Meta[]; // May be absent for roots without metadata. + // }; + std::vector<Type*> EltTys; + // 32 bits is ok up to a 32GB stack frame. :) + EltTys.push_back(Type::getInt32Ty(M.getContext())); + // Specifies length of variable length array. + EltTys.push_back(Type::getInt32Ty(M.getContext())); + FrameMapTy = StructType::create(EltTys, "gc_map"); + PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy); + + // struct StackEntry { + // ShadowStackEntry *Next; // Caller's stack entry. + // FrameMap *Map; // Pointer to constant FrameMap. + // void *Roots[]; // Stack roots (in-place array, so we pretend). + // }; + + StackEntryTy = StructType::create(M.getContext(), "gc_stackentry"); + + EltTys.clear(); + EltTys.push_back(PointerType::getUnqual(StackEntryTy)); + EltTys.push_back(FrameMapPtrTy); + StackEntryTy->setBody(EltTys); + PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy); + + // Get the root chain if it already exists. + Head = M.getGlobalVariable("llvm_gc_root_chain"); + if (!Head) { + // If the root chain does not exist, insert a new one with linkonce + // linkage! + Head = new GlobalVariable(M, StackEntryPtrTy, false, + GlobalValue::LinkOnceAnyLinkage, + Constant::getNullValue(StackEntryPtrTy), + "llvm_gc_root_chain"); + } else if (Head->hasExternalLinkage() && Head->isDeclaration()) { + Head->setInitializer(Constant::getNullValue(StackEntryPtrTy)); + Head->setLinkage(GlobalValue::LinkOnceAnyLinkage); + } + + return true; +} + +bool ShadowStackGC::IsNullValue(Value *V) { + if (Constant *C = dyn_cast<Constant>(V)) + return C->isNullValue(); + return false; +} + +void ShadowStackGC::CollectRoots(Function &F) { + // FIXME: Account for original alignment. Could fragment the root array. + // Approach 1: Null initialize empty slots at runtime. Yuck. + // Approach 2: Emit a map of the array instead of just a count. + + assert(Roots.empty() && "Not cleaned up?"); + + SmallVector<std::pair<CallInst*, AllocaInst*>, 16> MetaRoots; + + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) + if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++)) + if (Function *F = CI->getCalledFunction()) + if (F->getIntrinsicID() == Intrinsic::gcroot) { + std::pair<CallInst*, AllocaInst*> Pair = std::make_pair( + CI, cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts())); + if (IsNullValue(CI->getArgOperand(1))) + Roots.push_back(Pair); + else + MetaRoots.push_back(Pair); + } + + // Number roots with metadata (usually empty) at the beginning, so that the + // FrameMap::Meta array can be elided. + Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end()); +} + +GetElementPtrInst * +ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr, + int Idx, int Idx2, const char *Name) { + Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0), + ConstantInt::get(Type::getInt32Ty(Context), Idx), + ConstantInt::get(Type::getInt32Ty(Context), Idx2) }; + Value* Val = B.CreateGEP(BasePtr, Indices, Name); + + assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); + + return dyn_cast<GetElementPtrInst>(Val); +} + +GetElementPtrInst * +ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr, + int Idx, const char *Name) { + Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0), + ConstantInt::get(Type::getInt32Ty(Context), Idx) }; + Value *Val = B.CreateGEP(BasePtr, Indices, Name); + + assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); + + return dyn_cast<GetElementPtrInst>(Val); +} + +/// runOnFunction - Insert code to maintain the shadow stack. +bool ShadowStackGC::performCustomLowering(Function &F) { + LLVMContext &Context = F.getContext(); + + // Find calls to llvm.gcroot. + CollectRoots(F); + + // If there are no roots in this function, then there is no need to add a + // stack map entry for it. + if (Roots.empty()) + return false; + + // Build the constant map and figure the type of the shadow stack entry. + Value *FrameMap = GetFrameMap(F); + Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F); + + // Build the shadow stack entry at the very start of the function. + BasicBlock::iterator IP = F.getEntryBlock().begin(); + IRBuilder<> AtEntry(IP->getParent(), IP); + + Instruction *StackEntry = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0, + "gc_frame"); + + while (isa<AllocaInst>(IP)) ++IP; + AtEntry.SetInsertPoint(IP->getParent(), IP); + + // Initialize the map pointer and load the current head of the shadow stack. + Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead"); + Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, StackEntry, + 0,1,"gc_frame.map"); + AtEntry.CreateStore(FrameMap, EntryMapPtr); + + // After all the allocas... + for (unsigned I = 0, E = Roots.size(); I != E; ++I) { + // For each root, find the corresponding slot in the aggregate... + Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root"); + + // And use it in lieu of the alloca. + AllocaInst *OriginalAlloca = Roots[I].second; + SlotPtr->takeName(OriginalAlloca); + OriginalAlloca->replaceAllUsesWith(SlotPtr); + } + + // Move past the original stores inserted by GCStrategy::InitRoots. This isn't + // really necessary (the collector would never see the intermediate state at + // runtime), but it's nicer not to push the half-initialized entry onto the + // shadow stack. + while (isa<StoreInst>(IP)) ++IP; + AtEntry.SetInsertPoint(IP->getParent(), IP); + + // Push the entry onto the shadow stack. + Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, + StackEntry,0,0,"gc_frame.next"); + Instruction *NewHeadVal = CreateGEP(Context, AtEntry, + StackEntry, 0, "gc_newhead"); + AtEntry.CreateStore(CurrentHead, EntryNextPtr); + AtEntry.CreateStore(NewHeadVal, Head); + + // For each instruction that escapes... + EscapeEnumerator EE(F, "gc_cleanup"); + while (IRBuilder<> *AtExit = EE.Next()) { + // Pop the entry from the shadow stack. Don't reuse CurrentHead from + // AtEntry, since that would make the value live for the entire function. + Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0, + "gc_frame.next"); + Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead"); + AtExit->CreateStore(SavedHead, Head); + } + + // Delete the original allocas (which are no longer used) and the intrinsic + // calls (which are no longer valid). Doing this last avoids invalidating + // iterators. + for (unsigned I = 0, E = Roots.size(); I != E; ++I) { + Roots[I].first->eraseFromParent(); + Roots[I].second->eraseFromParent(); + } + + Roots.clear(); + return true; +} |