summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp669
1 files changed, 476 insertions, 193 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
index b74f600..691390e 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -28,6 +28,7 @@
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
+#include <cctype>
using namespace llvm;
namespace llvm {
@@ -530,7 +531,7 @@ TargetLowering::TargetLowering(const TargetMachine &tm,
setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
}
-
+
// These operations default to expand.
setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
@@ -538,8 +539,8 @@ TargetLowering::TargetLowering(const TargetMachine &tm,
// Most targets ignore the @llvm.prefetch intrinsic.
setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
-
- // ConstantFP nodes default to expand. Targets can either change this to
+
+ // ConstantFP nodes default to expand. Targets can either change this to
// Legal, in which case all fp constants are legal, or use isFPImmLegal()
// to optimize expansions for certain constants.
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
@@ -560,18 +561,21 @@ TargetLowering::TargetLowering(const TargetMachine &tm,
// Default ISD::TRAP to expand (which turns it into abort).
setOperationAction(ISD::TRAP, MVT::Other, Expand);
-
+
IsLittleEndian = TD->isLittleEndian();
ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
+ maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
+ = maxStoresPerMemmoveOptSize = 4;
benefitFromCodePlacementOpt = false;
UseUnderscoreSetJmp = false;
UseUnderscoreLongJmp = false;
SelectIsExpensive = false;
IntDivIsCheap = false;
Pow2DivIsCheap = false;
+ JumpIsExpensive = false;
StackPointerRegisterToSaveRestore = 0;
ExceptionPointerRegister = 0;
ExceptionSelectorRegister = 0;
@@ -617,16 +621,16 @@ static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
// Figure out the right, legal destination reg to copy into.
unsigned NumElts = VT.getVectorNumElements();
MVT EltTy = VT.getVectorElementType();
-
+
unsigned NumVectorRegs = 1;
-
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
// could break down into LHS/RHS like LegalizeDAG does.
if (!isPowerOf2_32(NumElts)) {
NumVectorRegs = NumElts;
NumElts = 1;
}
-
+
// Divide the input until we get to a supported size. This will always
// end with a scalar if the target doesn't support vectors.
while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
@@ -635,7 +639,7 @@ static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
}
NumIntermediates = NumVectorRegs;
-
+
MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
if (!TLI->isTypeLegal(NewVT))
NewVT = EltTy;
@@ -645,7 +649,7 @@ static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
RegisterVT = DestVT;
if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
-
+
// Otherwise, promotion or legal types use the same number of registers as
// the vector decimated to the appropriate level.
return NumVectorRegs;
@@ -750,7 +754,7 @@ void TargetLowering::computeRegisterProperties() {
RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
TransformToType[MVT::ppcf128] = MVT::f64;
ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
- }
+ }
// Decide how to handle f64. If the target does not have native f64 support,
// expand it to i64 and we will be generating soft float library calls.
@@ -776,13 +780,13 @@ void TargetLowering::computeRegisterProperties() {
ValueTypeActions.setTypeAction(MVT::f32, Expand);
}
}
-
+
// Loop over all of the vector value types to see which need transformations.
for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
MVT VT = (MVT::SimpleValueType)i;
if (isTypeLegal(VT)) continue;
-
+
// Determine if there is a legal wider type. If so, we should promote to
// that wider vector type.
EVT EltVT = VT.getVectorElementType();
@@ -792,8 +796,8 @@ void TargetLowering::computeRegisterProperties() {
for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
EVT SVT = (MVT::SimpleValueType)nVT;
if (SVT.getVectorElementType() == EltVT &&
- SVT.getVectorNumElements() > NElts &&
- isTypeSynthesizable(SVT)) {
+ SVT.getVectorNumElements() > NElts &&
+ isTypeLegal(SVT)) {
TransformToType[i] = SVT;
RegisterTypeForVT[i] = SVT;
NumRegistersForVT[i] = 1;
@@ -804,7 +808,7 @@ void TargetLowering::computeRegisterProperties() {
}
if (IsLegalWiderType) continue;
}
-
+
MVT IntermediateVT;
EVT RegisterVT;
unsigned NumIntermediates;
@@ -812,7 +816,7 @@ void TargetLowering::computeRegisterProperties() {
getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
RegisterVT, this);
RegisterTypeForVT[i] = RegisterVT;
-
+
EVT NVT = VT.getPow2VectorType();
if (NVT == VT) {
// Type is already a power of 2. The default action is to split.
@@ -865,7 +869,7 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
unsigned &NumIntermediates,
EVT &RegisterVT) const {
unsigned NumElts = VT.getVectorNumElements();
-
+
// If there is a wider vector type with the same element type as this one,
// we should widen to that legal vector type. This handles things like
// <2 x float> -> <4 x float>.
@@ -877,19 +881,19 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
return 1;
}
}
-
+
// Figure out the right, legal destination reg to copy into.
EVT EltTy = VT.getVectorElementType();
-
+
unsigned NumVectorRegs = 1;
-
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
// could break down into LHS/RHS like LegalizeDAG does.
if (!isPowerOf2_32(NumElts)) {
NumVectorRegs = NumElts;
NumElts = 1;
}
-
+
// Divide the input until we get to a supported size. This will always
// end with a scalar if the target doesn't support vectors.
while (NumElts > 1 && !isTypeLegal(
@@ -899,7 +903,7 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
}
NumIntermediates = NumVectorRegs;
-
+
EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
if (!isTypeLegal(NewVT))
NewVT = EltTy;
@@ -909,13 +913,13 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
RegisterVT = DestVT;
if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
-
+
// Otherwise, promotion or legal types use the same number of registers as
// the vector decimated to the appropriate level.
return NumVectorRegs;
}
-/// Get the EVTs and ArgFlags collections that represent the legalized return
+/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function. This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
/// TODO: Move this out of TargetLowering.cpp.
@@ -988,11 +992,11 @@ unsigned TargetLowering::getJumpTableEncoding() const {
// In non-pic modes, just use the address of a block.
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
return MachineJumpTableInfo::EK_BlockAddress;
-
+
// In PIC mode, if the target supports a GPRel32 directive, use it.
if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
return MachineJumpTableInfo::EK_GPRel32BlockAddress;
-
+
// Otherwise, use a label difference.
return MachineJumpTableInfo::EK_LabelDifference32;
}
@@ -1036,11 +1040,11 @@ TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// Optimization Methods
//===----------------------------------------------------------------------===//
-/// ShrinkDemandedConstant - Check to see if the specified operand of the
+/// ShrinkDemandedConstant - Check to see if the specified operand of the
/// specified instruction is a constant integer. If so, check to see if there
/// are any bits set in the constant that are not demanded. If so, shrink the
/// constant and return true.
-bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
+bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
const APInt &Demanded) {
DebugLoc dl = Op.getDebugLoc();
@@ -1062,7 +1066,7 @@ bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
EVT VT = Op.getValueType();
SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
DAG.getConstant(Demanded &
- C->getAPIntValue(),
+ C->getAPIntValue(),
VT));
return CombineTo(Op, New);
}
@@ -1139,9 +1143,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
KnownZero = KnownOne = APInt(BitWidth, 0);
// Other users may use these bits.
- if (!Op.getNode()->hasOneUse()) {
+ if (!Op.getNode()->hasOneUse()) {
if (Depth != 0) {
- // If not at the root, Just compute the KnownZero/KnownOne bits to
+ // If not at the root, Just compute the KnownZero/KnownOne bits to
// simplify things downstream.
TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
return false;
@@ -1149,7 +1153,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// If this is the root being simplified, allow it to have multiple uses,
// just set the NewMask to all bits.
NewMask = APInt::getAllOnesValue(BitWidth);
- } else if (DemandedMask == 0) {
+ } else if (DemandedMask == 0) {
// Not demanding any bits from Op.
if (Op.getOpcode() != ISD::UNDEF)
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
@@ -1172,8 +1176,9 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// the RHS.
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
APInt LHSZero, LHSOne;
+ // Do not increment Depth here; that can cause an infinite loop.
TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
- LHSZero, LHSOne, Depth+1);
+ LHSZero, LHSOne, Depth);
// If the LHS already has zeros where RHSC does, this and is dead.
if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
return TLO.CombineTo(Op, Op.getOperand(0));
@@ -1182,16 +1187,16 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
return true;
}
-
+
if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
KnownZero2, KnownOne2, TLO, Depth+1))
return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known one on one side, return the other.
// These bits cannot contribute to the result of the 'and'.
if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
@@ -1214,15 +1219,15 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
KnownZero |= KnownZero2;
break;
case ISD::OR:
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
KnownZero2, KnownOne2, TLO, Depth+1))
return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'or'.
if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
@@ -1248,15 +1253,15 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
KnownOne |= KnownOne2;
break;
case ISD::XOR:
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
// If all of the demanded bits are known zero on one side, return the other.
// These bits cannot contribute to the result of the 'xor'.
if ((KnownZero & NewMask) == NewMask)
@@ -1274,12 +1279,12 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
Op.getOperand(0),
Op.getOperand(1)));
-
+
// Output known-0 bits are known if clear or set in both the LHS & RHS.
KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
-
+
// If all of the demanded bits on one side are known, and all of the set
// bits on that side are also known to be set on the other side, turn this
// into an AND, as we know the bits will be cleared.
@@ -1288,11 +1293,11 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if ((KnownOne & KnownOne2) == KnownOne) {
EVT VT = Op.getValueType();
SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
Op.getOperand(0), ANDC));
}
}
-
+
// If the RHS is a constant, see if we can simplify it.
// for XOR, we prefer to force bits to 1 if they will make a -1.
// if we can't force bits, try to shrink constant
@@ -1317,37 +1322,37 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
KnownOne = KnownOneOut;
break;
case ISD::SELECT:
- if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
+ if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
// If the operands are constants, see if we can simplify them.
if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true;
-
+
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
case ISD::SELECT_CC:
- if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
+ if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
KnownOne, TLO, Depth+1))
return true;
if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
KnownOne2, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
// If the operands are constants, see if we can simplify them.
if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true;
-
+
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
@@ -1373,16 +1378,16 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (Diff < 0) {
Diff = -Diff;
Opc = ISD::SRL;
- }
-
- SDValue NewSA =
+ }
+
+ SDValue NewSA =
TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
EVT VT = Op.getValueType();
return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
InOp.getOperand(0), NewSA));
}
- }
-
+ }
+
if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
KnownZero, KnownOne, TLO, Depth+1))
return true;
@@ -1421,7 +1426,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
unsigned ShAmt = SA->getZExtValue();
unsigned VTSize = VT.getSizeInBits();
SDValue InOp = Op.getOperand(0);
-
+
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
break;
@@ -1438,20 +1443,20 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (Diff < 0) {
Diff = -Diff;
Opc = ISD::SHL;
- }
-
+ }
+
SDValue NewSA =
TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
InOp.getOperand(0), NewSA));
}
- }
-
+ }
+
// Compute the new bits that are at the top now.
if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
KnownZero, KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.lshr(ShAmt);
KnownOne = KnownOne.lshr(ShAmt);
@@ -1472,7 +1477,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
EVT VT = Op.getValueType();
unsigned ShAmt = SA->getZExtValue();
-
+
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
break;
@@ -1484,21 +1489,21 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
if (HighBits.intersects(NewMask))
InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
-
+
if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.lshr(ShAmt);
KnownOne = KnownOne.lshr(ShAmt);
-
+
// Handle the sign bit, adjusted to where it is now in the mask.
APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
-
+
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
Op.getOperand(0),
Op.getOperand(1)));
} else if (KnownOne.intersects(SignBit)) { // New bits are known one.
@@ -1509,23 +1514,23 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- // Sign extension. Compute the demanded bits in the result that are not
+ // Sign extension. Compute the demanded bits in the result that are not
// present in the input.
APInt NewBits =
APInt::getHighBitsSet(BitWidth,
BitWidth - EVT.getScalarType().getSizeInBits());
-
+
// If none of the extended bits are demanded, eliminate the sextinreg.
if ((NewBits & NewMask) == 0)
return TLO.CombineTo(Op, Op.getOperand(0));
- APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
- InSignBit.zext(BitWidth);
+ APInt InSignBit =
+ APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
APInt InputDemandedBits =
APInt::getLowBitsSet(BitWidth,
EVT.getScalarType().getSizeInBits()) &
NewMask;
-
+
// Since the sign extended bits are demanded, we know that the sign
// bit is demanded.
InputDemandedBits |= InSignBit;
@@ -1533,16 +1538,16 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
KnownZero, KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
-
+
// If the input sign bit is known zero, convert this into a zero extension.
if (KnownZero.intersects(InSignBit))
- return TLO.CombineTo(Op,
+ return TLO.CombineTo(Op,
TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
-
+
if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
@@ -1555,23 +1560,22 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
case ISD::ZERO_EXTEND: {
unsigned OperandBitWidth =
Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
- APInt InMask = NewMask;
- InMask.trunc(OperandBitWidth);
-
+ APInt InMask = NewMask.trunc(OperandBitWidth);
+
// If none of the top bits are demanded, convert this into an any_extend.
APInt NewBits =
APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
if (!NewBits.intersects(NewMask))
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
- Op.getValueType(),
+ Op.getValueType(),
Op.getOperand(0)));
-
+
if (SimplifyDemandedBits(Op.getOperand(0), InMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
KnownZero |= NewBits;
break;
}
@@ -1581,31 +1585,31 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
APInt NewBits = ~InMask & NewMask;
-
+
// If none of the top bits are demanded, convert this into an any_extend.
if (NewBits == 0)
return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
Op.getValueType(),
Op.getOperand(0)));
-
+
// Since some of the sign extended bits are demanded, we know that the sign
// bit is demanded.
APInt InDemandedBits = InMask & NewMask;
InDemandedBits |= InSignBit;
- InDemandedBits.trunc(InBits);
-
- if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
+ InDemandedBits = InDemandedBits.trunc(InBits);
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
KnownOne, TLO, Depth+1))
return true;
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
-
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+
// If the sign bit is known zero, convert this to a zero extend.
if (KnownZero.intersects(InSignBit))
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
- Op.getValueType(),
+ Op.getValueType(),
Op.getOperand(0)));
-
+
// If the sign bit is known one, the top bits match.
if (KnownOne.intersects(InSignBit)) {
KnownOne |= NewBits;
@@ -1619,14 +1623,13 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
case ISD::ANY_EXTEND: {
unsigned OperandBitWidth =
Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
- APInt InMask = NewMask;
- InMask.trunc(OperandBitWidth);
+ APInt InMask = NewMask.trunc(OperandBitWidth);
if (SimplifyDemandedBits(Op.getOperand(0), InMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
break;
}
case ISD::TRUNCATE: {
@@ -1634,14 +1637,13 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// zero/one bits live out.
unsigned OperandBitWidth =
Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
- APInt TruncMask = NewMask;
- TruncMask.zext(OperandBitWidth);
+ APInt TruncMask = NewMask.zext(OperandBitWidth);
if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
- KnownZero.trunc(BitWidth);
- KnownOne.trunc(BitWidth);
-
+ KnownZero = KnownZero.trunc(BitWidth);
+ KnownOne = KnownOne.trunc(BitWidth);
+
// If the input is only used by this truncate, see if we can shrink it based
// on the known demanded bits.
if (Op.getOperand(0).getNode()->hasOneUse()) {
@@ -1661,25 +1663,24 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
break;
APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
OperandBitWidth - BitWidth);
- HighBits = HighBits.lshr(ShAmt->getZExtValue());
- HighBits.trunc(BitWidth);
+ HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
// None of the shifted in bits are needed. Add a truncate of the
// shift input, then shift it.
SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
- Op.getValueType(),
+ Op.getValueType(),
In.getOperand(0));
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
Op.getValueType(),
- NewTrunc,
+ NewTrunc,
In.getOperand(1)));
}
break;
}
}
-
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
break;
}
case ISD::AssertZext: {
@@ -1689,7 +1690,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
KnownZero, KnownOne, TLO, Depth+1))
return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth,
@@ -1697,7 +1698,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
KnownZero |= ~InMask & NewMask;
break;
}
- case ISD::BIT_CONVERT:
+ case ISD::BITCAST:
#if 0
// If this is an FP->Int bitcast and if the sign bit is the only thing that
// is demanded, turn this into a FGETSIGN.
@@ -1709,7 +1710,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
// Make a FGETSIGN + SHL to move the sign bit into the appropriate
// place. We expect the SHL to be eliminated by other optimizations.
- SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
+ SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
Op.getOperand(0));
unsigned ShVal = Op.getValueType().getSizeInBits()-1;
SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
@@ -1742,21 +1743,21 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
break;
}
-
+
// If we know the value of all of the demanded bits, return this as a
// constant.
if ((NewMask & (KnownZero|KnownOne)) == NewMask)
return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
-
+
return false;
}
-/// computeMaskedBitsForTargetNode - Determine which of the bits specified
-/// in Mask are known to be either zero or one and return them in the
+/// computeMaskedBitsForTargetNode - Determine which of the bits specified
+/// in Mask are known to be either zero or one and return them in the
/// KnownZero/KnownOne bitsets.
-void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
+void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
const APInt &Mask,
- APInt &KnownZero,
+ APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
@@ -1817,7 +1818,7 @@ static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
(KnownOne.countPopulation() == 1);
}
-/// SimplifySetCC - Try to simplify a setcc built with the specified operands
+/// SimplifySetCC - Try to simplify a setcc built with the specified operands
/// and cc. If it is unable to simplify it, return a null SDValue.
SDValue
TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
@@ -1869,6 +1870,30 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
}
}
+ SDValue CTPOP = N0;
+ // Look through truncs that don't change the value of a ctpop.
+ if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
+ CTPOP = N0.getOperand(0);
+
+ if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
+ (N0 == CTPOP || N0.getValueType().getSizeInBits() >
+ Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
+ EVT CTVT = CTPOP.getValueType();
+ SDValue CTOp = CTPOP.getOperand(0);
+
+ // (ctpop x) u< 2 -> (x & x-1) == 0
+ // (ctpop x) u> 1 -> (x & x-1) != 0
+ if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
+ DAG.getConstant(1, CTVT));
+ SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
+ ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
+ return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
+ }
+
+ // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
+ }
+
// If the LHS is '(and load, const)', the RHS is 0,
// the test is for equality or unsigned, and all 1 bits of the const are
// in the same partial word, see if we can shorten the load.
@@ -1884,7 +1909,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (!Lod->isVolatile() && Lod->isUnindexed()) {
unsigned origWidth = N0.getValueType().getSizeInBits();
unsigned maskWidth = origWidth;
- // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
+ // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
// 8 bits, but have to be careful...
if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
origWidth = Lod->getMemoryVT().getSizeInBits();
@@ -1916,10 +1941,9 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
DAG.getConstant(bestOffset, PtrType));
unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
- Lod->getSrcValue(),
- Lod->getSrcValueOffset() + bestOffset,
+ Lod->getPointerInfo().getWithOffset(bestOffset),
false, false, NewAlign);
- return DAG.getSetCC(dl, VT,
+ return DAG.getSetCC(dl, VT,
DAG.getNode(ISD::AND, dl, newVT, NewLoad,
DAG.getConstant(bestMask.trunc(bestWidth),
newVT)),
@@ -1969,7 +1993,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
(isOperationLegal(ISD::SETCC, newVT) &&
getCondCodeAction(Cond, newVT)==Legal))
return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(APInt(C1).trunc(InSize), newVT),
+ DAG.getConstant(C1.trunc(InSize), newVT),
Cond);
break;
}
@@ -1987,7 +2011,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
// the sign extension, it is impossible for both sides to be equal.
if (C1.getMinSignedBits() > ExtSrcTyBits)
return DAG.getConstant(Cond == ISD::SETNE, VT);
-
+
SDValue ZextOp;
EVT Op0Ty = N0.getOperand(0).getValueType();
if (Op0Ty == ExtSrcTy) {
@@ -2000,10 +2024,10 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(ZextOp.getNode());
// Otherwise, make this a use of a zext.
- return DAG.getSetCC(dl, VT, ZextOp,
+ return DAG.getSetCC(dl, VT, ZextOp,
DAG.getConstant(C1 & APInt::getLowBitsSet(
ExtDstTyBits,
- ExtSrcTyBits),
+ ExtSrcTyBits),
ExtDstTy),
Cond);
} else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
@@ -2013,16 +2037,16 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
if (TrueWhenTrue)
- return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
// Invert the condition.
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- CC = ISD::getSetCCInverse(CC,
+ CC = ISD::getSetCCInverse(CC,
N0.getOperand(0).getValueType().isInteger());
return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
}
if ((N0.getOpcode() == ISD::XOR ||
- (N0.getOpcode() == ISD::AND &&
+ (N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR &&
N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
@@ -2038,7 +2062,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (N0.getOpcode() == ISD::XOR)
Val = N0.getOperand(0);
else {
- assert(N0.getOpcode() == ISD::AND &&
+ assert(N0.getOpcode() == ISD::AND &&
N0.getOperand(0).getOpcode() == ISD::XOR);
// ((X^1)&1)^1 -> X & 1
Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
@@ -2082,7 +2106,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
}
}
}
-
+
APInt MinVal, MaxVal;
unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
if (ISD::isSignedIntSetCC(Cond)) {
@@ -2097,7 +2121,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
// X >= C0 --> X > (C0-1)
- return DAG.getSetCC(dl, VT, N0,
+ return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(C1-1, N1.getValueType()),
(Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
}
@@ -2105,7 +2129,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
// X <= C0 --> X < (C0+1)
- return DAG.getSetCC(dl, VT, N0,
+ return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(C1+1, N1.getValueType()),
(Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
}
@@ -2128,12 +2152,12 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
// If we have setult X, 1, turn it into seteq X, 0
if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MinVal, N0.getValueType()),
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MinVal, N0.getValueType()),
ISD::SETEQ);
// If we have setugt X, Max-1, turn it into seteq X, Max
else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
- return DAG.getSetCC(dl, VT, N0,
+ return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(MaxVal, N0.getValueType()),
ISD::SETEQ);
@@ -2141,9 +2165,9 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
// by changing cc.
// SETUGT X, SINTMAX -> SETLT X, 0
- if (Cond == ISD::SETUGT &&
+ if (Cond == ISD::SETUGT &&
C1 == APInt::getSignedMaxValue(OperandBitSize))
- return DAG.getSetCC(dl, VT, N0,
+ return DAG.getSetCC(dl, VT, N0,
DAG.getConstant(0, N1.getValueType()),
ISD::SETLT);
@@ -2203,7 +2227,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
return DAG.getUNDEF(VT);
}
}
-
+
// Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
// constant if knowing that the operand is non-nan is enough. We prefer to
// have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
@@ -2278,14 +2302,14 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
if (DAG.isCommutativeBinOp(N0.getOpcode())) {
// If X op Y == Y op X, try other combinations.
if (N0.getOperand(0) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
Cond);
if (N0.getOperand(1) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
Cond);
}
}
-
+
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
// Turn (X+C1) == C2 --> X == C2-C1
@@ -2295,7 +2319,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
LHSR->getAPIntValue(),
N0.getValueType()), Cond);
}
-
+
// Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
if (N0.getOpcode() == ISD::XOR)
// If we know that all of the inverted bits are zero, don't bother
@@ -2308,7 +2332,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
N0.getValueType()),
Cond);
}
-
+
// Turn (C1-X) == C2 --> X == C1-C2
if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
@@ -2319,7 +2343,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
N0.getValueType()),
Cond);
}
- }
+ }
}
// Simplify (X+Z) == X --> Z == 0
@@ -2334,7 +2358,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
// (Z-X) == X --> Z == X<<1
SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
- N1,
+ N1,
DAG.getConstant(1, getShiftAmountTy()));
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(SH.getNode());
@@ -2356,7 +2380,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
} else if (N1.getNode()->hasOneUse()) {
assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
// X == (Z-X) --> X<<1 == Z
- SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
+ SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
DAG.getConstant(1, getShiftAmountTy()));
if (!DCI.isCalledByLegalizer())
DCI.AddToWorklist(SH.getNode());
@@ -2443,7 +2467,7 @@ TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
/// node is a GlobalAddress + offset.
-bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
+bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
int64_t &Offset) const {
if (isa<GlobalAddressSDNode>(N)) {
GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
@@ -2469,6 +2493,7 @@ bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
}
}
}
+
return false;
}
@@ -2497,7 +2522,10 @@ TargetLowering::getConstraintType(const std::string &Constraint) const {
return C_Memory;
case 'i': // Simple Integer or Relocatable Constant
case 'n': // Simple Integer
+ case 'E': // Floating Point Constant
+ case 'F': // Floating Point Constant
case 's': // Relocatable Constant
+ case 'p': // Address.
case 'X': // Allow ANY value.
case 'I': // Target registers.
case 'J':
@@ -2507,11 +2535,13 @@ TargetLowering::getConstraintType(const std::string &Constraint) const {
case 'N':
case 'O':
case 'P':
+ case '<':
+ case '>':
return C_Other;
}
}
-
- if (Constraint.size() > 1 && Constraint[0] == '{' &&
+
+ if (Constraint.size() > 1 && Constraint[0] == '{' &&
Constraint[Constraint.size()-1] == '}')
return C_Register;
return C_Unknown;
@@ -2550,7 +2580,7 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
// is possible and fine if either GV or C are missing.
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
-
+
// If we have "(add GV, C)", pull out GV/C
if (Op.getOpcode() == ISD::ADD) {
C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
@@ -2562,14 +2592,14 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
if (C == 0 || GA == 0)
C = 0, GA = 0;
}
-
+
// If we find a valid operand, map to the TargetXXX version so that the
// value itself doesn't get selected.
if (GA) { // Either &GV or &GV+C
if (ConstraintLetter != 'n') {
int64_t Offs = GA->getOffset();
if (C) Offs += C->getZExtValue();
- Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
+ Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
C ? C->getDebugLoc() : DebugLoc(),
Op.getValueType(), Offs));
return;
@@ -2613,8 +2643,8 @@ getRegForInlineAsmConstraint(const std::string &Constraint,
for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
E = RI->regclass_end(); RCI != E; ++RCI) {
const TargetRegisterClass *RC = *RCI;
-
- // If none of the value types for this register class are valid, we
+
+ // If none of the value types for this register class are valid, we
// can't use it. For example, 64-bit reg classes on 32-bit targets.
bool isLegal = false;
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
@@ -2624,16 +2654,16 @@ getRegForInlineAsmConstraint(const std::string &Constraint,
break;
}
}
-
+
if (!isLegal) continue;
-
- for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+
+ for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I) {
if (RegName.equals_lower(RI->getName(*I)))
return std::make_pair(*I, RC);
}
}
-
+
return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
}
@@ -2655,6 +2685,186 @@ unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
}
+/// ParseConstraints - Split up the constraint string from the inline
+/// assembly value into the specific constraints and their prefixes,
+/// and also tie in the associated operand values.
+/// If this returns an empty vector, and if the constraint string itself
+/// isn't empty, there was an error parsing.
+TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
+ ImmutableCallSite CS) const {
+ /// ConstraintOperands - Information about all of the constraints.
+ AsmOperandInfoVector ConstraintOperands;
+ const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+ unsigned maCount = 0; // Largest number of multiple alternative constraints.
+
+ // Do a prepass over the constraints, canonicalizing them, and building up the
+ // ConstraintOperands list.
+ InlineAsm::ConstraintInfoVector
+ ConstraintInfos = IA->ParseConstraints();
+
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ unsigned ResNo = 0; // ResNo - The result number of the next output.
+
+ for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+ ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
+ AsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ // Update multiple alternative constraint count.
+ if (OpInfo.multipleAlternatives.size() > maCount)
+ maCount = OpInfo.multipleAlternatives.size();
+
+ OpInfo.ConstraintVT = MVT::Other;
+
+ // Compute the value type for each operand.
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ // Indirect outputs just consume an argument.
+ if (OpInfo.isIndirect) {
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ }
+
+ // The return value of the call is this value. As such, there is no
+ // corresponding argument.
+ assert(!CS.getType()->isVoidTy() &&
+ "Bad inline asm!");
+ if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
+ OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
+ } else {
+ assert(ResNo == 0 && "Asm only has one result!");
+ OpInfo.ConstraintVT = getValueType(CS.getType());
+ }
+ ++ResNo;
+ break;
+ case InlineAsm::isInput:
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ case InlineAsm::isClobber:
+ // Nothing to do.
+ break;
+ }
+
+ if (OpInfo.CallOperandVal) {
+ const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
+ if (OpInfo.isIndirect) {
+ const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
+ if (!PtrTy)
+ report_fatal_error("Indirect operand for inline asm not a pointer!");
+ OpTy = PtrTy->getElementType();
+ }
+ // If OpTy is not a single value, it may be a struct/union that we
+ // can tile with integers.
+ if (!OpTy->isSingleValueType() && OpTy->isSized()) {
+ unsigned BitSize = TD->getTypeSizeInBits(OpTy);
+ switch (BitSize) {
+ default: break;
+ case 1:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ case 128:
+ OpInfo.ConstraintVT =
+ EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
+ break;
+ }
+ } else if (dyn_cast<PointerType>(OpTy)) {
+ OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
+ } else {
+ OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
+ }
+ }
+ }
+
+ // If we have multiple alternative constraints, select the best alternative.
+ if (ConstraintInfos.size()) {
+ if (maCount) {
+ unsigned bestMAIndex = 0;
+ int bestWeight = -1;
+ // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
+ int weight = -1;
+ unsigned maIndex;
+ // Compute the sums of the weights for each alternative, keeping track
+ // of the best (highest weight) one so far.
+ for (maIndex = 0; maIndex < maCount; ++maIndex) {
+ int weightSum = 0;
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
+ if (OpInfo.Type == InlineAsm::isClobber)
+ continue;
+
+ // If this is an output operand with a matching input operand,
+ // look up the matching input. If their types mismatch, e.g. one
+ // is an integer, the other is floating point, or their sizes are
+ // different, flag it as an maCantMatch.
+ if (OpInfo.hasMatchingInput()) {
+ AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (OpInfo.ConstraintVT.getSizeInBits() !=
+ Input.ConstraintVT.getSizeInBits())) {
+ weightSum = -1; // Can't match.
+ break;
+ }
+ }
+ }
+ weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
+ if (weight == -1) {
+ weightSum = -1;
+ break;
+ }
+ weightSum += weight;
+ }
+ // Update best.
+ if (weightSum > bestWeight) {
+ bestWeight = weightSum;
+ bestMAIndex = maIndex;
+ }
+ }
+
+ // Now select chosen alternative in each constraint.
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
+ if (cInfo.Type == InlineAsm::isClobber)
+ continue;
+ cInfo.selectAlternative(bestMAIndex);
+ }
+ }
+ }
+
+ // Check and hook up tied operands, choose constraint code to use.
+ for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
+ cIndex != eIndex; ++cIndex) {
+ AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
+
+ // If this is an output operand with a matching input operand, look up the
+ // matching input. If their types mismatch, e.g. one is an integer, the
+ // other is floating point, or their sizes are different, flag it as an
+ // error.
+ if (OpInfo.hasMatchingInput()) {
+ AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (OpInfo.ConstraintVT.getSizeInBits() !=
+ Input.ConstraintVT.getSizeInBits())) {
+ report_fatal_error("Unsupported asm: input constraint"
+ " with a matching output constraint of"
+ " incompatible type!");
+ }
+ }
+
+ }
+ }
+
+ return ConstraintOperands;
+}
+
+
/// getConstraintGenerality - Return an integer indicating how general CT
/// is.
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
@@ -2672,6 +2882,79 @@ static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
}
}
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ TargetLowering::getMultipleConstraintMatchWeight(
+ AsmOperandInfo &info, int maIndex) const {
+ InlineAsm::ConstraintCodeVector *rCodes;
+ if (maIndex >= (int)info.multipleAlternatives.size())
+ rCodes = &info.Codes;
+ else
+ rCodes = &info.multipleAlternatives[maIndex].Codes;
+ ConstraintWeight BestWeight = CW_Invalid;
+
+ // Loop over the options, keeping track of the most general one.
+ for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
+ ConstraintWeight weight =
+ getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
+ if (weight > BestWeight)
+ BestWeight = weight;
+ }
+
+ return BestWeight;
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (CallOperandVal == NULL)
+ return CW_Default;
+ // Look at the constraint type.
+ switch (*constraint) {
+ case 'i': // immediate integer.
+ case 'n': // immediate integer with a known value.
+ if (isa<ConstantInt>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 's': // non-explicit intregal immediate.
+ if (isa<GlobalValue>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case 'E': // immediate float if host format.
+ case 'F': // immediate float.
+ if (isa<ConstantFP>(CallOperandVal))
+ weight = CW_Constant;
+ break;
+ case '<': // memory operand with autodecrement.
+ case '>': // memory operand with autoincrement.
+ case 'm': // memory operand.
+ case 'o': // offsettable memory operand
+ case 'V': // non-offsettable memory operand
+ weight = CW_Memory;
+ break;
+ case 'r': // general register.
+ case 'g': // general register, memory operand or immediate integer.
+ // note: Clang converts "g" to "imr".
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_Register;
+ break;
+ case 'X': // any operand.
+ default:
+ weight = CW_Default;
+ break;
+ }
+ return weight;
+}
+
/// ChooseConstraint - If there are multiple different constraints that we
/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
/// This is somewhat tricky: constraints fall into four classes:
@@ -2721,12 +3004,12 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
break;
}
}
-
+
// Things with matching constraints can only be registers, per gcc
// documentation. This mainly affects "g" constraints.
if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
continue;
-
+
// This constraint letter is more general than the previous one, use it.
int Generality = getConstraintGenerality(CType);
if (Generality > BestGenerality) {
@@ -2735,7 +3018,7 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
BestGenerality = Generality;
}
}
-
+
OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
OpInfo.ConstraintType = BestType;
}
@@ -2744,10 +3027,10 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
/// type to use for the specific AsmOperandInfo, setting
/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
- SDValue Op,
+ SDValue Op,
SelectionDAG *DAG) const {
assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
-
+
// Single-letter constraints ('r') are very common.
if (OpInfo.Codes.size() == 1) {
OpInfo.ConstraintCode = OpInfo.Codes[0];
@@ -2755,7 +3038,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
} else {
ChooseConstraint(OpInfo, *this, Op, DAG);
}
-
+
// 'X' matches anything.
if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
// Labels and constants are handled elsewhere ('X' is the only thing
@@ -2766,7 +3049,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
OpInfo.CallOperandVal = v;
return;
}
-
+
// Otherwise, try to resolve it to something we know about by looking at
// the actual operand type.
if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
@@ -2782,7 +3065,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
-bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
+bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
const Type *Ty) const {
// The default implementation of this implements a conservative RISCy, r+r and
// r+i addr mode.
@@ -2790,12 +3073,12 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
// Allows a sign-extended 16-bit immediate field.
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
return false;
-
+
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
-
- // Only support r+r,
+
+ // Only support r+r,
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
@@ -2810,7 +3093,7 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
// Allow 2*r as r+r.
break;
}
-
+
return true;
}
@@ -2818,19 +3101,19 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
/// return a DAG expression to select that will generate the same value by
/// multiplying by a magic number. See:
/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
+SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
std::vector<SDNode*>* Created) const {
EVT VT = N->getValueType(0);
DebugLoc dl= N->getDebugLoc();
-
+
// Check to see if we can do this.
// FIXME: We should be more aggressive here.
if (!isTypeLegal(VT))
return SDValue();
-
+
APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
APInt::ms magics = d.magic();
-
+
// Multiply the numerator (operand 0) by the magic value
// FIXME: We should support doing a MUL in a wider type
SDValue Q;
@@ -2844,7 +3127,7 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
else
return SDValue(); // No mulhs or equvialent
// If d > 0 and m < 0, add the numerator
- if (d.isStrictlyPositive() && magics.m.isNegative()) {
+ if (d.isStrictlyPositive() && magics.m.isNegative()) {
Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
if (Created)
Created->push_back(Q.getNode());
@@ -2857,7 +3140,7 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
}
// Shift right algebraic if shift value is nonzero
if (magics.s > 0) {
- Q = DAG.getNode(ISD::SRA, dl, VT, Q,
+ Q = DAG.getNode(ISD::SRA, dl, VT, Q,
DAG.getConstant(magics.s, getShiftAmountTy()));
if (Created)
Created->push_back(Q.getNode());
@@ -2908,20 +3191,20 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
if (magics.a == 0) {
assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
"We shouldn't generate an undefined shift!");
- return DAG.getNode(ISD::SRL, dl, VT, Q,
+ return DAG.getNode(ISD::SRL, dl, VT, Q,
DAG.getConstant(magics.s, getShiftAmountTy()));
} else {
SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
if (Created)
Created->push_back(NPQ.getNode());
- NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
+ NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
DAG.getConstant(1, getShiftAmountTy()));
if (Created)
Created->push_back(NPQ.getNode());
NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
if (Created)
Created->push_back(NPQ.getNode());
- return DAG.getNode(ISD::SRL, dl, VT, NPQ,
+ return DAG.getNode(ISD::SRL, dl, VT, NPQ,
DAG.getConstant(magics.s-1, getShiftAmountTy()));
}
}
OpenPOWER on IntegriCloud