summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp2737
1 files changed, 2737 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
new file mode 100644
index 0000000..44a80d3
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp
@@ -0,0 +1,2737 @@
+//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the TargetLowering class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+using namespace llvm;
+
+namespace llvm {
+TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
+ bool isLocal = GV->hasLocalLinkage();
+ bool isDeclaration = GV->isDeclaration();
+ // FIXME: what should we do for protected and internal visibility?
+ // For variables, is internal different from hidden?
+ bool isHidden = GV->hasHiddenVisibility();
+
+ if (reloc == Reloc::PIC_) {
+ if (isLocal || isHidden)
+ return TLSModel::LocalDynamic;
+ else
+ return TLSModel::GeneralDynamic;
+ } else {
+ if (!isDeclaration || isHidden)
+ return TLSModel::LocalExec;
+ else
+ return TLSModel::InitialExec;
+ }
+}
+}
+
+/// InitLibcallNames - Set default libcall names.
+///
+static void InitLibcallNames(const char **Names) {
+ Names[RTLIB::SHL_I16] = "__ashlhi3";
+ Names[RTLIB::SHL_I32] = "__ashlsi3";
+ Names[RTLIB::SHL_I64] = "__ashldi3";
+ Names[RTLIB::SHL_I128] = "__ashlti3";
+ Names[RTLIB::SRL_I16] = "__lshrhi3";
+ Names[RTLIB::SRL_I32] = "__lshrsi3";
+ Names[RTLIB::SRL_I64] = "__lshrdi3";
+ Names[RTLIB::SRL_I128] = "__lshrti3";
+ Names[RTLIB::SRA_I16] = "__ashrhi3";
+ Names[RTLIB::SRA_I32] = "__ashrsi3";
+ Names[RTLIB::SRA_I64] = "__ashrdi3";
+ Names[RTLIB::SRA_I128] = "__ashrti3";
+ Names[RTLIB::MUL_I8] = "__mulqi3";
+ Names[RTLIB::MUL_I16] = "__mulhi3";
+ Names[RTLIB::MUL_I32] = "__mulsi3";
+ Names[RTLIB::MUL_I64] = "__muldi3";
+ Names[RTLIB::MUL_I128] = "__multi3";
+ Names[RTLIB::SDIV_I8] = "__divqi3";
+ Names[RTLIB::SDIV_I16] = "__divhi3";
+ Names[RTLIB::SDIV_I32] = "__divsi3";
+ Names[RTLIB::SDIV_I64] = "__divdi3";
+ Names[RTLIB::SDIV_I128] = "__divti3";
+ Names[RTLIB::UDIV_I8] = "__udivqi3";
+ Names[RTLIB::UDIV_I16] = "__udivhi3";
+ Names[RTLIB::UDIV_I32] = "__udivsi3";
+ Names[RTLIB::UDIV_I64] = "__udivdi3";
+ Names[RTLIB::UDIV_I128] = "__udivti3";
+ Names[RTLIB::SREM_I8] = "__modqi3";
+ Names[RTLIB::SREM_I16] = "__modhi3";
+ Names[RTLIB::SREM_I32] = "__modsi3";
+ Names[RTLIB::SREM_I64] = "__moddi3";
+ Names[RTLIB::SREM_I128] = "__modti3";
+ Names[RTLIB::UREM_I8] = "__umodqi3";
+ Names[RTLIB::UREM_I16] = "__umodhi3";
+ Names[RTLIB::UREM_I32] = "__umodsi3";
+ Names[RTLIB::UREM_I64] = "__umoddi3";
+ Names[RTLIB::UREM_I128] = "__umodti3";
+ Names[RTLIB::NEG_I32] = "__negsi2";
+ Names[RTLIB::NEG_I64] = "__negdi2";
+ Names[RTLIB::ADD_F32] = "__addsf3";
+ Names[RTLIB::ADD_F64] = "__adddf3";
+ Names[RTLIB::ADD_F80] = "__addxf3";
+ Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
+ Names[RTLIB::SUB_F32] = "__subsf3";
+ Names[RTLIB::SUB_F64] = "__subdf3";
+ Names[RTLIB::SUB_F80] = "__subxf3";
+ Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
+ Names[RTLIB::MUL_F32] = "__mulsf3";
+ Names[RTLIB::MUL_F64] = "__muldf3";
+ Names[RTLIB::MUL_F80] = "__mulxf3";
+ Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
+ Names[RTLIB::DIV_F32] = "__divsf3";
+ Names[RTLIB::DIV_F64] = "__divdf3";
+ Names[RTLIB::DIV_F80] = "__divxf3";
+ Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
+ Names[RTLIB::REM_F32] = "fmodf";
+ Names[RTLIB::REM_F64] = "fmod";
+ Names[RTLIB::REM_F80] = "fmodl";
+ Names[RTLIB::REM_PPCF128] = "fmodl";
+ Names[RTLIB::POWI_F32] = "__powisf2";
+ Names[RTLIB::POWI_F64] = "__powidf2";
+ Names[RTLIB::POWI_F80] = "__powixf2";
+ Names[RTLIB::POWI_PPCF128] = "__powitf2";
+ Names[RTLIB::SQRT_F32] = "sqrtf";
+ Names[RTLIB::SQRT_F64] = "sqrt";
+ Names[RTLIB::SQRT_F80] = "sqrtl";
+ Names[RTLIB::SQRT_PPCF128] = "sqrtl";
+ Names[RTLIB::LOG_F32] = "logf";
+ Names[RTLIB::LOG_F64] = "log";
+ Names[RTLIB::LOG_F80] = "logl";
+ Names[RTLIB::LOG_PPCF128] = "logl";
+ Names[RTLIB::LOG2_F32] = "log2f";
+ Names[RTLIB::LOG2_F64] = "log2";
+ Names[RTLIB::LOG2_F80] = "log2l";
+ Names[RTLIB::LOG2_PPCF128] = "log2l";
+ Names[RTLIB::LOG10_F32] = "log10f";
+ Names[RTLIB::LOG10_F64] = "log10";
+ Names[RTLIB::LOG10_F80] = "log10l";
+ Names[RTLIB::LOG10_PPCF128] = "log10l";
+ Names[RTLIB::EXP_F32] = "expf";
+ Names[RTLIB::EXP_F64] = "exp";
+ Names[RTLIB::EXP_F80] = "expl";
+ Names[RTLIB::EXP_PPCF128] = "expl";
+ Names[RTLIB::EXP2_F32] = "exp2f";
+ Names[RTLIB::EXP2_F64] = "exp2";
+ Names[RTLIB::EXP2_F80] = "exp2l";
+ Names[RTLIB::EXP2_PPCF128] = "exp2l";
+ Names[RTLIB::SIN_F32] = "sinf";
+ Names[RTLIB::SIN_F64] = "sin";
+ Names[RTLIB::SIN_F80] = "sinl";
+ Names[RTLIB::SIN_PPCF128] = "sinl";
+ Names[RTLIB::COS_F32] = "cosf";
+ Names[RTLIB::COS_F64] = "cos";
+ Names[RTLIB::COS_F80] = "cosl";
+ Names[RTLIB::COS_PPCF128] = "cosl";
+ Names[RTLIB::POW_F32] = "powf";
+ Names[RTLIB::POW_F64] = "pow";
+ Names[RTLIB::POW_F80] = "powl";
+ Names[RTLIB::POW_PPCF128] = "powl";
+ Names[RTLIB::CEIL_F32] = "ceilf";
+ Names[RTLIB::CEIL_F64] = "ceil";
+ Names[RTLIB::CEIL_F80] = "ceill";
+ Names[RTLIB::CEIL_PPCF128] = "ceill";
+ Names[RTLIB::TRUNC_F32] = "truncf";
+ Names[RTLIB::TRUNC_F64] = "trunc";
+ Names[RTLIB::TRUNC_F80] = "truncl";
+ Names[RTLIB::TRUNC_PPCF128] = "truncl";
+ Names[RTLIB::RINT_F32] = "rintf";
+ Names[RTLIB::RINT_F64] = "rint";
+ Names[RTLIB::RINT_F80] = "rintl";
+ Names[RTLIB::RINT_PPCF128] = "rintl";
+ Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
+ Names[RTLIB::NEARBYINT_F64] = "nearbyint";
+ Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
+ Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
+ Names[RTLIB::FLOOR_F32] = "floorf";
+ Names[RTLIB::FLOOR_F64] = "floor";
+ Names[RTLIB::FLOOR_F80] = "floorl";
+ Names[RTLIB::FLOOR_PPCF128] = "floorl";
+ Names[RTLIB::COPYSIGN_F32] = "copysignf";
+ Names[RTLIB::COPYSIGN_F64] = "copysign";
+ Names[RTLIB::COPYSIGN_F80] = "copysignl";
+ Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
+ Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
+ Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
+ Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
+ Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
+ Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
+ Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
+ Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
+ Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
+ Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
+ Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
+ Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
+ Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
+ Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
+ Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
+ Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
+ Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
+ Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
+ Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
+ Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
+ Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
+ Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
+ Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
+ Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
+ Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
+ Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
+ Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
+ Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
+ Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
+ Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
+ Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
+ Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
+ Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
+ Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
+ Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
+ Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
+ Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
+ Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
+ Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
+ Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
+ Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
+ Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
+ Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
+ Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
+ Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
+ Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
+ Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
+ Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
+ Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
+ Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
+ Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
+ Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
+ Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
+ Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
+ Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
+ Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
+ Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
+ Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
+ Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
+ Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
+ Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
+ Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
+ Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
+ Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
+ Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
+ Names[RTLIB::OEQ_F32] = "__eqsf2";
+ Names[RTLIB::OEQ_F64] = "__eqdf2";
+ Names[RTLIB::UNE_F32] = "__nesf2";
+ Names[RTLIB::UNE_F64] = "__nedf2";
+ Names[RTLIB::OGE_F32] = "__gesf2";
+ Names[RTLIB::OGE_F64] = "__gedf2";
+ Names[RTLIB::OLT_F32] = "__ltsf2";
+ Names[RTLIB::OLT_F64] = "__ltdf2";
+ Names[RTLIB::OLE_F32] = "__lesf2";
+ Names[RTLIB::OLE_F64] = "__ledf2";
+ Names[RTLIB::OGT_F32] = "__gtsf2";
+ Names[RTLIB::OGT_F64] = "__gtdf2";
+ Names[RTLIB::UO_F32] = "__unordsf2";
+ Names[RTLIB::UO_F64] = "__unorddf2";
+ Names[RTLIB::O_F32] = "__unordsf2";
+ Names[RTLIB::O_F64] = "__unorddf2";
+ Names[RTLIB::MEMCPY] = "memcpy";
+ Names[RTLIB::MEMMOVE] = "memmove";
+ Names[RTLIB::MEMSET] = "memset";
+ Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
+}
+
+/// InitLibcallCallingConvs - Set default libcall CallingConvs.
+///
+static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
+ for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
+ CCs[i] = CallingConv::C;
+ }
+}
+
+/// getFPEXT - Return the FPEXT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f32) {
+ if (RetVT == MVT::f64)
+ return FPEXT_F32_F64;
+ }
+
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPROUND - Return the FPROUND_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
+ if (RetVT == MVT::f32) {
+ if (OpVT == MVT::f64)
+ return FPROUND_F64_F32;
+ if (OpVT == MVT::f80)
+ return FPROUND_F80_F32;
+ if (OpVT == MVT::ppcf128)
+ return FPROUND_PPCF128_F32;
+ } else if (RetVT == MVT::f64) {
+ if (OpVT == MVT::f80)
+ return FPROUND_F80_F64;
+ if (OpVT == MVT::ppcf128)
+ return FPROUND_PPCF128_F64;
+ }
+
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f32) {
+ if (RetVT == MVT::i8)
+ return FPTOSINT_F32_I8;
+ if (RetVT == MVT::i16)
+ return FPTOSINT_F32_I16;
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F32_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F32_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F32_I128;
+ } else if (OpVT == MVT::f64) {
+ if (RetVT == MVT::i8)
+ return FPTOSINT_F64_I8;
+ if (RetVT == MVT::i16)
+ return FPTOSINT_F64_I16;
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F64_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F64_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F64_I128;
+ } else if (OpVT == MVT::f80) {
+ if (RetVT == MVT::i32)
+ return FPTOSINT_F80_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_F80_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_F80_I128;
+ } else if (OpVT == MVT::ppcf128) {
+ if (RetVT == MVT::i32)
+ return FPTOSINT_PPCF128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOSINT_PPCF128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOSINT_PPCF128_I128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::f32) {
+ if (RetVT == MVT::i8)
+ return FPTOUINT_F32_I8;
+ if (RetVT == MVT::i16)
+ return FPTOUINT_F32_I16;
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F32_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F32_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F32_I128;
+ } else if (OpVT == MVT::f64) {
+ if (RetVT == MVT::i8)
+ return FPTOUINT_F64_I8;
+ if (RetVT == MVT::i16)
+ return FPTOUINT_F64_I16;
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F64_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F64_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F64_I128;
+ } else if (OpVT == MVT::f80) {
+ if (RetVT == MVT::i32)
+ return FPTOUINT_F80_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_F80_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_F80_I128;
+ } else if (OpVT == MVT::ppcf128) {
+ if (RetVT == MVT::i32)
+ return FPTOUINT_PPCF128_I32;
+ if (RetVT == MVT::i64)
+ return FPTOUINT_PPCF128_I64;
+ if (RetVT == MVT::i128)
+ return FPTOUINT_PPCF128_I128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::i32) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I32_F32;
+ else if (RetVT == MVT::f64)
+ return SINTTOFP_I32_F64;
+ else if (RetVT == MVT::f80)
+ return SINTTOFP_I32_F80;
+ else if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I32_PPCF128;
+ } else if (OpVT == MVT::i64) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I64_F32;
+ else if (RetVT == MVT::f64)
+ return SINTTOFP_I64_F64;
+ else if (RetVT == MVT::f80)
+ return SINTTOFP_I64_F80;
+ else if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I64_PPCF128;
+ } else if (OpVT == MVT::i128) {
+ if (RetVT == MVT::f32)
+ return SINTTOFP_I128_F32;
+ else if (RetVT == MVT::f64)
+ return SINTTOFP_I128_F64;
+ else if (RetVT == MVT::f80)
+ return SINTTOFP_I128_F80;
+ else if (RetVT == MVT::ppcf128)
+ return SINTTOFP_I128_PPCF128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
+/// UNKNOWN_LIBCALL if there is none.
+RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
+ if (OpVT == MVT::i32) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I32_F32;
+ else if (RetVT == MVT::f64)
+ return UINTTOFP_I32_F64;
+ else if (RetVT == MVT::f80)
+ return UINTTOFP_I32_F80;
+ else if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I32_PPCF128;
+ } else if (OpVT == MVT::i64) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I64_F32;
+ else if (RetVT == MVT::f64)
+ return UINTTOFP_I64_F64;
+ else if (RetVT == MVT::f80)
+ return UINTTOFP_I64_F80;
+ else if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I64_PPCF128;
+ } else if (OpVT == MVT::i128) {
+ if (RetVT == MVT::f32)
+ return UINTTOFP_I128_F32;
+ else if (RetVT == MVT::f64)
+ return UINTTOFP_I128_F64;
+ else if (RetVT == MVT::f80)
+ return UINTTOFP_I128_F80;
+ else if (RetVT == MVT::ppcf128)
+ return UINTTOFP_I128_PPCF128;
+ }
+ return UNKNOWN_LIBCALL;
+}
+
+/// InitCmpLibcallCCs - Set default comparison libcall CC.
+///
+static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
+ memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
+ CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
+ CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
+ CCs[RTLIB::UNE_F32] = ISD::SETNE;
+ CCs[RTLIB::UNE_F64] = ISD::SETNE;
+ CCs[RTLIB::OGE_F32] = ISD::SETGE;
+ CCs[RTLIB::OGE_F64] = ISD::SETGE;
+ CCs[RTLIB::OLT_F32] = ISD::SETLT;
+ CCs[RTLIB::OLT_F64] = ISD::SETLT;
+ CCs[RTLIB::OLE_F32] = ISD::SETLE;
+ CCs[RTLIB::OLE_F64] = ISD::SETLE;
+ CCs[RTLIB::OGT_F32] = ISD::SETGT;
+ CCs[RTLIB::OGT_F64] = ISD::SETGT;
+ CCs[RTLIB::UO_F32] = ISD::SETNE;
+ CCs[RTLIB::UO_F64] = ISD::SETNE;
+ CCs[RTLIB::O_F32] = ISD::SETEQ;
+ CCs[RTLIB::O_F64] = ISD::SETEQ;
+}
+
+/// NOTE: The constructor takes ownership of TLOF.
+TargetLowering::TargetLowering(const TargetMachine &tm,
+ const TargetLoweringObjectFile *tlof)
+ : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
+ // All operations default to being supported.
+ memset(OpActions, 0, sizeof(OpActions));
+ memset(LoadExtActions, 0, sizeof(LoadExtActions));
+ memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
+ memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
+ memset(CondCodeActions, 0, sizeof(CondCodeActions));
+
+ // Set default actions for various operations.
+ for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
+ // Default all indexed load / store to expand.
+ for (unsigned IM = (unsigned)ISD::PRE_INC;
+ IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
+ setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
+ setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ // These operations default to expand.
+ setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ // Most targets ignore the @llvm.prefetch intrinsic.
+ setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
+
+ // ConstantFP nodes default to expand. Targets can either change this to
+ // Legal, in which case all fp constants are legal, or use isFPImmLegal()
+ // to optimize expansions for certain constants.
+ setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
+ setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
+
+ // These library functions default to expand.
+ setOperationAction(ISD::FLOG , MVT::f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG10,MVT::f64, Expand);
+ setOperationAction(ISD::FEXP , MVT::f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG , MVT::f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG10,MVT::f32, Expand);
+ setOperationAction(ISD::FEXP , MVT::f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f32, Expand);
+
+ // Default ISD::TRAP to expand (which turns it into abort).
+ setOperationAction(ISD::TRAP, MVT::Other, Expand);
+
+ IsLittleEndian = TD->isLittleEndian();
+ ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
+ memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
+ memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
+ maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
+ benefitFromCodePlacementOpt = false;
+ UseUnderscoreSetJmp = false;
+ UseUnderscoreLongJmp = false;
+ SelectIsExpensive = false;
+ IntDivIsCheap = false;
+ Pow2DivIsCheap = false;
+ StackPointerRegisterToSaveRestore = 0;
+ ExceptionPointerRegister = 0;
+ ExceptionSelectorRegister = 0;
+ BooleanContents = UndefinedBooleanContent;
+ SchedPreferenceInfo = Sched::Latency;
+ JumpBufSize = 0;
+ JumpBufAlignment = 0;
+ IfCvtBlockSizeLimit = 2;
+ IfCvtDupBlockSizeLimit = 0;
+ PrefLoopAlignment = 0;
+
+ InitLibcallNames(LibcallRoutineNames);
+ InitCmpLibcallCCs(CmpLibcallCCs);
+ InitLibcallCallingConvs(LibcallCallingConvs);
+}
+
+TargetLowering::~TargetLowering() {
+ delete &TLOF;
+}
+
+/// canOpTrap - Returns true if the operation can trap for the value type.
+/// VT must be a legal type.
+bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
+ assert(isTypeLegal(VT));
+ switch (Op) {
+ default:
+ return false;
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM:
+ return true;
+ }
+}
+
+
+static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
+ unsigned &NumIntermediates,
+ EVT &RegisterVT,
+ TargetLowering* TLI) {
+ // Figure out the right, legal destination reg to copy into.
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT EltTy = VT.getVectorElementType();
+
+ unsigned NumVectorRegs = 1;
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+ // could break down into LHS/RHS like LegalizeDAG does.
+ if (!isPowerOf2_32(NumElts)) {
+ NumVectorRegs = NumElts;
+ NumElts = 1;
+ }
+
+ // Divide the input until we get to a supported size. This will always
+ // end with a scalar if the target doesn't support vectors.
+ while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
+ NumElts >>= 1;
+ NumVectorRegs <<= 1;
+ }
+
+ NumIntermediates = NumVectorRegs;
+
+ MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
+ if (!TLI->isTypeLegal(NewVT))
+ NewVT = EltTy;
+ IntermediateVT = NewVT;
+
+ EVT DestVT = TLI->getRegisterType(NewVT);
+ RegisterVT = DestVT;
+ if (EVT(DestVT).bitsLT(NewVT)) {
+ // Value is expanded, e.g. i64 -> i16.
+ return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
+ } else {
+ // Otherwise, promotion or legal types use the same number of registers as
+ // the vector decimated to the appropriate level.
+ return NumVectorRegs;
+ }
+
+ return 1;
+}
+
+/// computeRegisterProperties - Once all of the register classes are added,
+/// this allows us to compute derived properties we expose.
+void TargetLowering::computeRegisterProperties() {
+ assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
+ "Too many value types for ValueTypeActions to hold!");
+
+ // Everything defaults to needing one register.
+ for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
+ NumRegistersForVT[i] = 1;
+ RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
+ }
+ // ...except isVoid, which doesn't need any registers.
+ NumRegistersForVT[MVT::isVoid] = 0;
+
+ // Find the largest integer register class.
+ unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
+ for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
+ assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
+
+ // Every integer value type larger than this largest register takes twice as
+ // many registers to represent as the previous ValueType.
+ for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
+ EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
+ if (!ExpandedVT.isInteger())
+ break;
+ NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
+ RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
+ TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
+ ValueTypeActions.setTypeAction(ExpandedVT, Expand);
+ }
+
+ // Inspect all of the ValueType's smaller than the largest integer
+ // register to see which ones need promotion.
+ unsigned LegalIntReg = LargestIntReg;
+ for (unsigned IntReg = LargestIntReg - 1;
+ IntReg >= (unsigned)MVT::i1; --IntReg) {
+ EVT IVT = (MVT::SimpleValueType)IntReg;
+ if (isTypeLegal(IVT)) {
+ LegalIntReg = IntReg;
+ } else {
+ RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
+ (MVT::SimpleValueType)LegalIntReg;
+ ValueTypeActions.setTypeAction(IVT, Promote);
+ }
+ }
+
+ // ppcf128 type is really two f64's.
+ if (!isTypeLegal(MVT::ppcf128)) {
+ NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
+ RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
+ TransformToType[MVT::ppcf128] = MVT::f64;
+ ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
+ }
+
+ // Decide how to handle f64. If the target does not have native f64 support,
+ // expand it to i64 and we will be generating soft float library calls.
+ if (!isTypeLegal(MVT::f64)) {
+ NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
+ RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
+ TransformToType[MVT::f64] = MVT::i64;
+ ValueTypeActions.setTypeAction(MVT::f64, Expand);
+ }
+
+ // Decide how to handle f32. If the target does not have native support for
+ // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
+ if (!isTypeLegal(MVT::f32)) {
+ if (isTypeLegal(MVT::f64)) {
+ NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
+ RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
+ TransformToType[MVT::f32] = MVT::f64;
+ ValueTypeActions.setTypeAction(MVT::f32, Promote);
+ } else {
+ NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
+ RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
+ TransformToType[MVT::f32] = MVT::i32;
+ ValueTypeActions.setTypeAction(MVT::f32, Expand);
+ }
+ }
+
+ // Loop over all of the vector value types to see which need transformations.
+ for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
+ i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+ if (!isTypeLegal(VT)) {
+ MVT IntermediateVT;
+ EVT RegisterVT;
+ unsigned NumIntermediates;
+ NumRegistersForVT[i] =
+ getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
+ RegisterVT, this);
+ RegisterTypeForVT[i] = RegisterVT;
+
+ // Determine if there is a legal wider type.
+ bool IsLegalWiderType = false;
+ EVT EltVT = VT.getVectorElementType();
+ unsigned NElts = VT.getVectorNumElements();
+ for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
+ EVT SVT = (MVT::SimpleValueType)nVT;
+ if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
+ SVT.getVectorNumElements() > NElts && NElts != 1) {
+ TransformToType[i] = SVT;
+ ValueTypeActions.setTypeAction(VT, Promote);
+ IsLegalWiderType = true;
+ break;
+ }
+ }
+ if (!IsLegalWiderType) {
+ EVT NVT = VT.getPow2VectorType();
+ if (NVT == VT) {
+ // Type is already a power of 2. The default action is to split.
+ TransformToType[i] = MVT::Other;
+ ValueTypeActions.setTypeAction(VT, Expand);
+ } else {
+ TransformToType[i] = NVT;
+ ValueTypeActions.setTypeAction(VT, Promote);
+ }
+ }
+ }
+ }
+}
+
+const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ return NULL;
+}
+
+
+MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
+ return PointerTy.SimpleTy;
+}
+
+MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
+ return MVT::i32; // return the default value
+}
+
+/// getVectorTypeBreakdown - Vector types are broken down into some number of
+/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
+/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
+/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
+///
+/// This method returns the number of registers needed, and the VT for each
+/// register. It also returns the VT and quantity of the intermediate values
+/// before they are promoted/expanded.
+///
+unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
+ EVT &IntermediateVT,
+ unsigned &NumIntermediates,
+ EVT &RegisterVT) const {
+ // Figure out the right, legal destination reg to copy into.
+ unsigned NumElts = VT.getVectorNumElements();
+ EVT EltTy = VT.getVectorElementType();
+
+ unsigned NumVectorRegs = 1;
+
+ // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
+ // could break down into LHS/RHS like LegalizeDAG does.
+ if (!isPowerOf2_32(NumElts)) {
+ NumVectorRegs = NumElts;
+ NumElts = 1;
+ }
+
+ // Divide the input until we get to a supported size. This will always
+ // end with a scalar if the target doesn't support vectors.
+ while (NumElts > 1 && !isTypeLegal(
+ EVT::getVectorVT(Context, EltTy, NumElts))) {
+ NumElts >>= 1;
+ NumVectorRegs <<= 1;
+ }
+
+ NumIntermediates = NumVectorRegs;
+
+ EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
+ if (!isTypeLegal(NewVT))
+ NewVT = EltTy;
+ IntermediateVT = NewVT;
+
+ EVT DestVT = getRegisterType(Context, NewVT);
+ RegisterVT = DestVT;
+ if (DestVT.bitsLT(NewVT)) {
+ // Value is expanded, e.g. i64 -> i16.
+ return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
+ } else {
+ // Otherwise, promotion or legal types use the same number of registers as
+ // the vector decimated to the appropriate level.
+ return NumVectorRegs;
+ }
+
+ return 1;
+}
+
+/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area. This is the actual
+/// alignment, not its logarithm.
+unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
+ return TD->getCallFrameTypeAlignment(Ty);
+}
+
+/// getJumpTableEncoding - Return the entry encoding for a jump table in the
+/// current function. The returned value is a member of the
+/// MachineJumpTableInfo::JTEntryKind enum.
+unsigned TargetLowering::getJumpTableEncoding() const {
+ // In non-pic modes, just use the address of a block.
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
+ return MachineJumpTableInfo::EK_BlockAddress;
+
+ // In PIC mode, if the target supports a GPRel32 directive, use it.
+ if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
+ return MachineJumpTableInfo::EK_GPRel32BlockAddress;
+
+ // Otherwise, use a label difference.
+ return MachineJumpTableInfo::EK_LabelDifference32;
+}
+
+SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ // If our PIC model is GP relative, use the global offset table as the base.
+ if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
+ return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
+ return Table;
+}
+
+/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
+/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
+/// MCExpr.
+const MCExpr *
+TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
+ unsigned JTI,MCContext &Ctx) const{
+ // The normal PIC reloc base is the label at the start of the jump table.
+ return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
+}
+
+bool
+TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // Assume that everything is safe in static mode.
+ if (getTargetMachine().getRelocationModel() == Reloc::Static)
+ return true;
+
+ // In dynamic-no-pic mode, assume that known defined values are safe.
+ if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
+ GA &&
+ !GA->getGlobal()->isDeclaration() &&
+ !GA->getGlobal()->isWeakForLinker())
+ return true;
+
+ // Otherwise assume nothing is safe.
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Optimization Methods
+//===----------------------------------------------------------------------===//
+
+/// ShrinkDemandedConstant - Check to see if the specified operand of the
+/// specified instruction is a constant integer. If so, check to see if there
+/// are any bits set in the constant that are not demanded. If so, shrink the
+/// constant and return true.
+bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
+ const APInt &Demanded) {
+ DebugLoc dl = Op.getDebugLoc();
+
+ // FIXME: ISD::SELECT, ISD::SELECT_CC
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::XOR:
+ case ISD::AND:
+ case ISD::OR: {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!C) return false;
+
+ if (Op.getOpcode() == ISD::XOR &&
+ (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
+ return false;
+
+ // if we can expand it to have all bits set, do it
+ if (C->getAPIntValue().intersects(~Demanded)) {
+ EVT VT = Op.getValueType();
+ SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
+ DAG.getConstant(Demanded &
+ C->getAPIntValue(),
+ VT));
+ return CombineTo(Op, New);
+ }
+
+ break;
+ }
+ }
+
+ return false;
+}
+
+/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
+/// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
+/// cast, but it could be generalized for targets with other types of
+/// implicit widening casts.
+bool
+TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
+ unsigned BitWidth,
+ const APInt &Demanded,
+ DebugLoc dl) {
+ assert(Op.getNumOperands() == 2 &&
+ "ShrinkDemandedOp only supports binary operators!");
+ assert(Op.getNode()->getNumValues() == 1 &&
+ "ShrinkDemandedOp only supports nodes with one result!");
+
+ // Don't do this if the node has another user, which may require the
+ // full value.
+ if (!Op.getNode()->hasOneUse())
+ return false;
+
+ // Search for the smallest integer type with free casts to and from
+ // Op's type. For expedience, just check power-of-2 integer types.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
+ if (!isPowerOf2_32(SmallVTBits))
+ SmallVTBits = NextPowerOf2(SmallVTBits);
+ for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
+ EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
+ if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
+ TLI.isZExtFree(SmallVT, Op.getValueType())) {
+ // We found a type with free casts.
+ SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
+ DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
+ Op.getNode()->getOperand(0)),
+ DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
+ Op.getNode()->getOperand(1)));
+ SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
+ return CombineTo(Op, Z);
+ }
+ }
+ return false;
+}
+
+/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
+/// DemandedMask bits of the result of Op are ever used downstream. If we can
+/// use this information to simplify Op, create a new simplified DAG node and
+/// return true, returning the original and new nodes in Old and New. Otherwise,
+/// analyze the expression and return a mask of KnownOne and KnownZero bits for
+/// the expression (used to simplify the caller). The KnownZero/One bits may
+/// only be accurate for those bits in the DemandedMask.
+bool TargetLowering::SimplifyDemandedBits(SDValue Op,
+ const APInt &DemandedMask,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ TargetLoweringOpt &TLO,
+ unsigned Depth) const {
+ unsigned BitWidth = DemandedMask.getBitWidth();
+ assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
+ "Mask size mismatches value type size!");
+ APInt NewMask = DemandedMask;
+ DebugLoc dl = Op.getDebugLoc();
+
+ // Don't know anything.
+ KnownZero = KnownOne = APInt(BitWidth, 0);
+
+ // Other users may use these bits.
+ if (!Op.getNode()->hasOneUse()) {
+ if (Depth != 0) {
+ // If not at the root, Just compute the KnownZero/KnownOne bits to
+ // simplify things downstream.
+ TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
+ return false;
+ }
+ // If this is the root being simplified, allow it to have multiple uses,
+ // just set the NewMask to all bits.
+ NewMask = APInt::getAllOnesValue(BitWidth);
+ } else if (DemandedMask == 0) {
+ // Not demanding any bits from Op.
+ if (Op.getOpcode() != ISD::UNDEF)
+ return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
+ return false;
+ } else if (Depth == 6) { // Limit search depth.
+ return false;
+ }
+
+ APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
+ switch (Op.getOpcode()) {
+ case ISD::Constant:
+ // We know all of the bits for a constant!
+ KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
+ KnownZero = ~KnownOne & NewMask;
+ return false; // Don't fall through, will infinitely loop.
+ case ISD::AND:
+ // If the RHS is a constant, check to see if the LHS would be zero without
+ // using the bits from the RHS. Below, we use knowledge about the RHS to
+ // simplify the LHS, here we're using information from the LHS to simplify
+ // the RHS.
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ APInt LHSZero, LHSOne;
+ TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
+ LHSZero, LHSOne, Depth+1);
+ // If the LHS already has zeros where RHSC does, this and is dead.
+ if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ // If any of the set bits in the RHS are known zero on the LHS, shrink
+ // the constant.
+ if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
+ return true;
+ }
+
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
+ KnownZero2, KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known one on one side, return the other.
+ // These bits cannot contribute to the result of the 'and'.
+ if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(1));
+ // If all of the demanded bits in the inputs are known zeros, return zero.
+ if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
+ // If the RHS is a constant, see if we can simplify it.
+ if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
+ return true;
+ // If the operation can be done in a smaller type, do so.
+ if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ return true;
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ KnownOne &= KnownOne2;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ KnownZero |= KnownZero2;
+ break;
+ case ISD::OR:
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
+ KnownZero2, KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'or'.
+ if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(1));
+ // If all of the potentially set bits on one side are known to be set on
+ // the other side, just use the 'other' side.
+ if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
+ return TLO.CombineTo(Op, Op.getOperand(1));
+ // If the RHS is a constant, see if we can simplify it.
+ if (TLO.ShrinkDemandedConstant(Op, NewMask))
+ return true;
+ // If the operation can be done in a smaller type, do so.
+ if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ return true;
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ KnownZero &= KnownZero2;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ KnownOne |= KnownOne2;
+ break;
+ case ISD::XOR:
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'xor'.
+ if ((KnownZero & NewMask) == NewMask)
+ return TLO.CombineTo(Op, Op.getOperand(0));
+ if ((KnownZero2 & NewMask) == NewMask)
+ return TLO.CombineTo(Op, Op.getOperand(1));
+ // If the operation can be done in a smaller type, do so.
+ if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ return true;
+
+ // If all of the unknown bits are known to be zero on one side or the other
+ // (but not both) turn this into an *inclusive* or.
+ // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+ if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
+ Op.getOperand(0),
+ Op.getOperand(1)));
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
+
+ // If all of the demanded bits on one side are known, and all of the set
+ // bits on that side are also known to be set on the other side, turn this
+ // into an AND, as we know the bits will be cleared.
+ // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
+ if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
+ if ((KnownOne & KnownOne2) == KnownOne) {
+ EVT VT = Op.getValueType();
+ SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
+ Op.getOperand(0), ANDC));
+ }
+ }
+
+ // If the RHS is a constant, see if we can simplify it.
+ // for XOR, we prefer to force bits to 1 if they will make a -1.
+ // if we can't force bits, try to shrink constant
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ APInt Expanded = C->getAPIntValue() | (~NewMask);
+ // if we can expand it to have all bits set, do it
+ if (Expanded.isAllOnesValue()) {
+ if (Expanded != C->getAPIntValue()) {
+ EVT VT = Op.getValueType();
+ SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
+ TLO.DAG.getConstant(Expanded, VT));
+ return TLO.CombineTo(Op, New);
+ }
+ // if it already has all the bits set, nothing to change
+ // but don't shrink either!
+ } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
+ return true;
+ }
+ }
+
+ KnownZero = KnownZeroOut;
+ KnownOne = KnownOneOut;
+ break;
+ case ISD::SELECT:
+ if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If the operands are constants, see if we can simplify them.
+ if (TLO.ShrinkDemandedConstant(Op, NewMask))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ break;
+ case ISD::SELECT_CC:
+ if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If the operands are constants, see if we can simplify them.
+ if (TLO.ShrinkDemandedConstant(Op, NewMask))
+ return true;
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ break;
+ case ISD::SHL:
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ unsigned ShAmt = SA->getZExtValue();
+ SDValue InOp = Op.getOperand(0);
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ break;
+
+ // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
+ // single shift. We can do this if the bottom bits (which are shifted
+ // out) are never demanded.
+ if (InOp.getOpcode() == ISD::SRL &&
+ isa<ConstantSDNode>(InOp.getOperand(1))) {
+ if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
+ unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
+ unsigned Opc = ISD::SHL;
+ int Diff = ShAmt-C1;
+ if (Diff < 0) {
+ Diff = -Diff;
+ Opc = ISD::SRL;
+ }
+
+ SDValue NewSA =
+ TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
+ EVT VT = Op.getValueType();
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
+ InOp.getOperand(0), NewSA));
+ }
+ }
+
+ if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ KnownZero <<= SA->getZExtValue();
+ KnownOne <<= SA->getZExtValue();
+ // low bits known zero.
+ KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
+ }
+ break;
+ case ISD::SRL:
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ EVT VT = Op.getValueType();
+ unsigned ShAmt = SA->getZExtValue();
+ unsigned VTSize = VT.getSizeInBits();
+ SDValue InOp = Op.getOperand(0);
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ break;
+
+ // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
+ // single shift. We can do this if the top bits (which are shifted out)
+ // are never demanded.
+ if (InOp.getOpcode() == ISD::SHL &&
+ isa<ConstantSDNode>(InOp.getOperand(1))) {
+ if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
+ unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
+ unsigned Opc = ISD::SRL;
+ int Diff = ShAmt-C1;
+ if (Diff < 0) {
+ Diff = -Diff;
+ Opc = ISD::SHL;
+ }
+
+ SDValue NewSA =
+ TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
+ InOp.getOperand(0), NewSA));
+ }
+ }
+
+ // Compute the new bits that are at the top now.
+ if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.lshr(ShAmt);
+ KnownOne = KnownOne.lshr(ShAmt);
+
+ APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
+ KnownZero |= HighBits; // High bits known zero.
+ }
+ break;
+ case ISD::SRA:
+ // If this is an arithmetic shift right and only the low-bit is set, we can
+ // always convert this into a logical shr, even if the shift amount is
+ // variable. The low bit of the shift cannot be an input sign bit unless
+ // the shift amount is >= the size of the datatype, which is undefined.
+ if (DemandedMask == 1)
+ return TLO.CombineTo(Op,
+ TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
+ Op.getOperand(0), Op.getOperand(1)));
+
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ EVT VT = Op.getValueType();
+ unsigned ShAmt = SA->getZExtValue();
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ break;
+
+ APInt InDemandedMask = (NewMask << ShAmt);
+
+ // If any of the demanded bits are produced by the sign extension, we also
+ // demand the input sign bit.
+ APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
+ if (HighBits.intersects(NewMask))
+ InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.lshr(ShAmt);
+ KnownOne = KnownOne.lshr(ShAmt);
+
+ // Handle the sign bit, adjusted to where it is now in the mask.
+ APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
+
+ // If the input sign bit is known to be zero, or if none of the top bits
+ // are demanded, turn this into an unsigned shift right.
+ if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
+ Op.getOperand(0),
+ Op.getOperand(1)));
+ } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
+ KnownOne |= HighBits;
+ }
+ }
+ break;
+ case ISD::SIGN_EXTEND_INREG: {
+ EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+
+ // Sign extension. Compute the demanded bits in the result that are not
+ // present in the input.
+ APInt NewBits =
+ APInt::getHighBitsSet(BitWidth,
+ BitWidth - EVT.getScalarType().getSizeInBits()) &
+ NewMask;
+
+ // If none of the extended bits are demanded, eliminate the sextinreg.
+ if (NewBits == 0)
+ return TLO.CombineTo(Op, Op.getOperand(0));
+
+ APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
+ InSignBit.zext(BitWidth);
+ APInt InputDemandedBits =
+ APInt::getLowBitsSet(BitWidth,
+ EVT.getScalarType().getSizeInBits()) &
+ NewMask;
+
+ // Since the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ InputDemandedBits |= InSignBit;
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+
+ // If the input sign bit is known zero, convert this into a zero extension.
+ if (KnownZero.intersects(InSignBit))
+ return TLO.CombineTo(Op,
+ TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
+
+ if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
+ KnownOne |= NewBits;
+ KnownZero &= ~NewBits;
+ } else { // Input sign bit unknown
+ KnownZero &= ~NewBits;
+ KnownOne &= ~NewBits;
+ }
+ break;
+ }
+ case ISD::ZERO_EXTEND: {
+ unsigned OperandBitWidth =
+ Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ APInt InMask = NewMask;
+ InMask.trunc(OperandBitWidth);
+
+ // If none of the top bits are demanded, convert this into an any_extend.
+ APInt NewBits =
+ APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
+ if (!NewBits.intersects(NewMask))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
+ Op.getValueType(),
+ Op.getOperand(0)));
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero.zext(BitWidth);
+ KnownOne.zext(BitWidth);
+ KnownZero |= NewBits;
+ break;
+ }
+ case ISD::SIGN_EXTEND: {
+ EVT InVT = Op.getOperand(0).getValueType();
+ unsigned InBits = InVT.getScalarType().getSizeInBits();
+ APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
+ APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
+ APInt NewBits = ~InMask & NewMask;
+
+ // If none of the top bits are demanded, convert this into an any_extend.
+ if (NewBits == 0)
+ return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
+ Op.getValueType(),
+ Op.getOperand(0)));
+
+ // Since some of the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ APInt InDemandedBits = InMask & NewMask;
+ InDemandedBits |= InSignBit;
+ InDemandedBits.trunc(InBits);
+
+ if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
+ KnownOne, TLO, Depth+1))
+ return true;
+ KnownZero.zext(BitWidth);
+ KnownOne.zext(BitWidth);
+
+ // If the sign bit is known zero, convert this to a zero extend.
+ if (KnownZero.intersects(InSignBit))
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
+ Op.getValueType(),
+ Op.getOperand(0)));
+
+ // If the sign bit is known one, the top bits match.
+ if (KnownOne.intersects(InSignBit)) {
+ KnownOne |= NewBits;
+ KnownZero &= ~NewBits;
+ } else { // Otherwise, top bits aren't known.
+ KnownOne &= ~NewBits;
+ KnownZero &= ~NewBits;
+ }
+ break;
+ }
+ case ISD::ANY_EXTEND: {
+ unsigned OperandBitWidth =
+ Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ APInt InMask = NewMask;
+ InMask.trunc(OperandBitWidth);
+ if (SimplifyDemandedBits(Op.getOperand(0), InMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero.zext(BitWidth);
+ KnownOne.zext(BitWidth);
+ break;
+ }
+ case ISD::TRUNCATE: {
+ // Simplify the input, using demanded bit information, and compute the known
+ // zero/one bits live out.
+ unsigned OperandBitWidth =
+ Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ APInt TruncMask = NewMask;
+ TruncMask.zext(OperandBitWidth);
+ if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ KnownZero.trunc(BitWidth);
+ KnownOne.trunc(BitWidth);
+
+ // If the input is only used by this truncate, see if we can shrink it based
+ // on the known demanded bits.
+ if (Op.getOperand(0).getNode()->hasOneUse()) {
+ SDValue In = Op.getOperand(0);
+ switch (In.getOpcode()) {
+ default: break;
+ case ISD::SRL:
+ // Shrink SRL by a constant if none of the high bits shifted in are
+ // demanded.
+ if (TLO.LegalTypes() &&
+ !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
+ // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
+ // undesirable.
+ break;
+ ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
+ if (!ShAmt)
+ break;
+ APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
+ OperandBitWidth - BitWidth);
+ HighBits = HighBits.lshr(ShAmt->getZExtValue());
+ HighBits.trunc(BitWidth);
+
+ if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
+ // None of the shifted in bits are needed. Add a truncate of the
+ // shift input, then shift it.
+ SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
+ Op.getValueType(),
+ In.getOperand(0));
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
+ Op.getValueType(),
+ NewTrunc,
+ In.getOperand(1)));
+ }
+ break;
+ }
+ }
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ break;
+ }
+ case ISD::AssertZext: {
+ EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ APInt InMask = APInt::getLowBitsSet(BitWidth,
+ VT.getSizeInBits());
+ if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
+ KnownZero, KnownOne, TLO, Depth+1))
+ return true;
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero |= ~InMask & NewMask;
+ break;
+ }
+ case ISD::BIT_CONVERT:
+#if 0
+ // If this is an FP->Int bitcast and if the sign bit is the only thing that
+ // is demanded, turn this into a FGETSIGN.
+ if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
+ MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
+ !MVT::isVector(Op.getOperand(0).getValueType())) {
+ // Only do this xform if FGETSIGN is valid or if before legalize.
+ if (!TLO.AfterLegalize ||
+ isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
+ // Make a FGETSIGN + SHL to move the sign bit into the appropriate
+ // place. We expect the SHL to be eliminated by other optimizations.
+ SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
+ Op.getOperand(0));
+ unsigned ShVal = Op.getValueType().getSizeInBits()-1;
+ SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
+ return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
+ Sign, ShAmt));
+ }
+ }
+#endif
+ break;
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::SUB: {
+ // Add, Sub, and Mul don't demand any bits in positions beyond that
+ // of the highest bit demanded of them.
+ APInt LoMask = APInt::getLowBitsSet(BitWidth,
+ BitWidth - NewMask.countLeadingZeros());
+ if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
+ KnownOne2, TLO, Depth+1))
+ return true;
+ // See if the operation should be performed at a smaller bit width.
+ if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
+ return true;
+ }
+ // FALL THROUGH
+ default:
+ // Just use ComputeMaskedBits to compute output bits.
+ TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
+ break;
+ }
+
+ // If we know the value of all of the demanded bits, return this as a
+ // constant.
+ if ((NewMask & (KnownZero|KnownOne)) == NewMask)
+ return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
+
+ return false;
+}
+
+/// computeMaskedBitsForTargetNode - Determine which of the bits specified
+/// in Mask are known to be either zero or one and return them in the
+/// KnownZero/KnownOne bitsets.
+void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
+ const APInt &Mask,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+ KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
+}
+
+/// ComputeNumSignBitsForTargetNode - This method can be implemented by
+/// targets that want to expose additional information about sign bits to the
+/// DAG Combiner.
+unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
+ unsigned Depth) const {
+ assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) &&
+ "Should use ComputeNumSignBits if you don't know whether Op"
+ " is a target node!");
+ return 1;
+}
+
+/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
+/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
+/// determine which bit is set.
+///
+static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
+ // A left-shift of a constant one will have exactly one bit set, because
+ // shifting the bit off the end is undefined.
+ if (Val.getOpcode() == ISD::SHL)
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
+ if (C->getAPIntValue() == 1)
+ return true;
+
+ // Similarly, a right-shift of a constant sign-bit will have exactly
+ // one bit set.
+ if (Val.getOpcode() == ISD::SRL)
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
+ if (C->getAPIntValue().isSignBit())
+ return true;
+
+ // More could be done here, though the above checks are enough
+ // to handle some common cases.
+
+ // Fall back to ComputeMaskedBits to catch other known cases.
+ EVT OpVT = Val.getValueType();
+ unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
+ APInt Mask = APInt::getAllOnesValue(BitWidth);
+ APInt KnownZero, KnownOne;
+ DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
+ return (KnownZero.countPopulation() == BitWidth - 1) &&
+ (KnownOne.countPopulation() == 1);
+}
+
+/// SimplifySetCC - Try to simplify a setcc built with the specified operands
+/// and cc. If it is unable to simplify it, return a null SDValue.
+SDValue
+TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
+ ISD::CondCode Cond, bool foldBooleans,
+ DAGCombinerInfo &DCI, DebugLoc dl) const {
+ SelectionDAG &DAG = DCI.DAG;
+ LLVMContext &Context = *DAG.getContext();
+
+ // These setcc operations always fold.
+ switch (Cond) {
+ default: break;
+ case ISD::SETFALSE:
+ case ISD::SETFALSE2: return DAG.getConstant(0, VT);
+ case ISD::SETTRUE:
+ case ISD::SETTRUE2: return DAG.getConstant(1, VT);
+ }
+
+ if (isa<ConstantSDNode>(N0.getNode())) {
+ // Ensure that the constant occurs on the RHS, and fold constant
+ // comparisons.
+ return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
+ }
+
+ if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
+ // equality comparison, then we're just comparing whether X itself is
+ // zero.
+ if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
+ N0.getOperand(0).getOpcode() == ISD::CTLZ &&
+ N0.getOperand(1).getOpcode() == ISD::Constant) {
+ const APInt &ShAmt
+ = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
+ if ((C1 == 0) == (Cond == ISD::SETEQ)) {
+ // (srl (ctlz x), 5) == 0 -> X != 0
+ // (srl (ctlz x), 5) != 1 -> X != 0
+ Cond = ISD::SETNE;
+ } else {
+ // (srl (ctlz x), 5) != 0 -> X == 0
+ // (srl (ctlz x), 5) == 1 -> X == 0
+ Cond = ISD::SETEQ;
+ }
+ SDValue Zero = DAG.getConstant(0, N0.getValueType());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
+ Zero, Cond);
+ }
+ }
+
+ // If the LHS is '(and load, const)', the RHS is 0,
+ // the test is for equality or unsigned, and all 1 bits of the const are
+ // in the same partial word, see if we can shorten the load.
+ if (DCI.isBeforeLegalize() &&
+ N0.getOpcode() == ISD::AND && C1 == 0 &&
+ N0.getNode()->hasOneUse() &&
+ isa<LoadSDNode>(N0.getOperand(0)) &&
+ N0.getOperand(0).getNode()->hasOneUse() &&
+ isa<ConstantSDNode>(N0.getOperand(1))) {
+ LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
+ APInt bestMask;
+ unsigned bestWidth = 0, bestOffset = 0;
+ if (!Lod->isVolatile() && Lod->isUnindexed()) {
+ unsigned origWidth = N0.getValueType().getSizeInBits();
+ unsigned maskWidth = origWidth;
+ // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
+ // 8 bits, but have to be careful...
+ if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
+ origWidth = Lod->getMemoryVT().getSizeInBits();
+ const APInt &Mask =
+ cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ for (unsigned width = origWidth / 2; width>=8; width /= 2) {
+ APInt newMask = APInt::getLowBitsSet(maskWidth, width);
+ for (unsigned offset=0; offset<origWidth/width; offset++) {
+ if ((newMask & Mask) == Mask) {
+ if (!TD->isLittleEndian())
+ bestOffset = (origWidth/width - offset - 1) * (width/8);
+ else
+ bestOffset = (uint64_t)offset * (width/8);
+ bestMask = Mask.lshr(offset * (width/8) * 8);
+ bestWidth = width;
+ break;
+ }
+ newMask = newMask << width;
+ }
+ }
+ }
+ if (bestWidth) {
+ EVT newVT = EVT::getIntegerVT(Context, bestWidth);
+ if (newVT.isRound()) {
+ EVT PtrType = Lod->getOperand(1).getValueType();
+ SDValue Ptr = Lod->getBasePtr();
+ if (bestOffset != 0)
+ Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
+ DAG.getConstant(bestOffset, PtrType));
+ unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
+ SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
+ Lod->getSrcValue(),
+ Lod->getSrcValueOffset() + bestOffset,
+ false, false, NewAlign);
+ return DAG.getSetCC(dl, VT,
+ DAG.getNode(ISD::AND, dl, newVT, NewLoad,
+ DAG.getConstant(bestMask.trunc(bestWidth),
+ newVT)),
+ DAG.getConstant(0LL, newVT), Cond);
+ }
+ }
+ }
+
+ // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
+ if (N0.getOpcode() == ISD::ZERO_EXTEND) {
+ unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
+
+ // If the comparison constant has bits in the upper part, the
+ // zero-extended value could never match.
+ if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
+ C1.getBitWidth() - InSize))) {
+ switch (Cond) {
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETEQ: return DAG.getConstant(0, VT);
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETNE: return DAG.getConstant(1, VT);
+ case ISD::SETGT:
+ case ISD::SETGE:
+ // True if the sign bit of C1 is set.
+ return DAG.getConstant(C1.isNegative(), VT);
+ case ISD::SETLT:
+ case ISD::SETLE:
+ // True if the sign bit of C1 isn't set.
+ return DAG.getConstant(C1.isNonNegative(), VT);
+ default:
+ break;
+ }
+ }
+
+ // Otherwise, we can perform the comparison with the low bits.
+ switch (Cond) {
+ case ISD::SETEQ:
+ case ISD::SETNE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ case ISD::SETULT:
+ case ISD::SETULE: {
+ EVT newVT = N0.getOperand(0).getValueType();
+ if (DCI.isBeforeLegalizeOps() ||
+ (isOperationLegal(ISD::SETCC, newVT) &&
+ getCondCodeAction(Cond, newVT)==Legal))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(APInt(C1).trunc(InSize), newVT),
+ Cond);
+ break;
+ }
+ default:
+ break; // todo, be more careful with signed comparisons
+ }
+ } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
+ unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
+ EVT ExtDstTy = N0.getValueType();
+ unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
+
+ // If the extended part has any inconsistent bits, it cannot ever
+ // compare equal. In other words, they have to be all ones or all
+ // zeros.
+ APInt ExtBits =
+ APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
+ if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
+ return DAG.getConstant(Cond == ISD::SETNE, VT);
+
+ SDValue ZextOp;
+ EVT Op0Ty = N0.getOperand(0).getValueType();
+ if (Op0Ty == ExtSrcTy) {
+ ZextOp = N0.getOperand(0);
+ } else {
+ APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
+ ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
+ DAG.getConstant(Imm, Op0Ty));
+ }
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(ZextOp.getNode());
+ // Otherwise, make this a use of a zext.
+ return DAG.getSetCC(dl, VT, ZextOp,
+ DAG.getConstant(C1 & APInt::getLowBitsSet(
+ ExtDstTyBits,
+ ExtSrcTyBits),
+ ExtDstTy),
+ Cond);
+ } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
+ (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
+ // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
+ if (N0.getOpcode() == ISD::SETCC &&
+ isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
+ bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
+ if (TrueWhenTrue)
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
+ // Invert the condition.
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+ CC = ISD::getSetCCInverse(CC,
+ N0.getOperand(0).getValueType().isInteger());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
+ }
+
+ if ((N0.getOpcode() == ISD::XOR ||
+ (N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR &&
+ N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
+ isa<ConstantSDNode>(N0.getOperand(1)) &&
+ cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
+ // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
+ // can only do this if the top bits are known zero.
+ unsigned BitWidth = N0.getValueSizeInBits();
+ if (DAG.MaskedValueIsZero(N0,
+ APInt::getHighBitsSet(BitWidth,
+ BitWidth-1))) {
+ // Okay, get the un-inverted input value.
+ SDValue Val;
+ if (N0.getOpcode() == ISD::XOR)
+ Val = N0.getOperand(0);
+ else {
+ assert(N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::XOR);
+ // ((X^1)&1)^1 -> X & 1
+ Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
+ N0.getOperand(0).getOperand(0),
+ N0.getOperand(1));
+ }
+
+ return DAG.getSetCC(dl, VT, Val, N1,
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ } else if (N1C->getAPIntValue() == 1 &&
+ (VT == MVT::i1 ||
+ getBooleanContents() == ZeroOrOneBooleanContent)) {
+ SDValue Op0 = N0;
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+
+ if ((Op0.getOpcode() == ISD::XOR) &&
+ Op0.getOperand(0).getOpcode() == ISD::SETCC &&
+ Op0.getOperand(1).getOpcode() == ISD::SETCC) {
+ // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
+ Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
+ return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
+ Cond);
+ } else if (Op0.getOpcode() == ISD::AND &&
+ isa<ConstantSDNode>(Op0.getOperand(1)) &&
+ cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
+ // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
+ if (Op0.getValueType().bitsGT(VT))
+ Op0 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
+ DAG.getConstant(1, VT));
+ else if (Op0.getValueType().bitsLT(VT))
+ Op0 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
+ DAG.getConstant(1, VT));
+
+ return DAG.getSetCC(dl, VT, Op0,
+ DAG.getConstant(0, Op0.getValueType()),
+ Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
+ }
+ }
+ }
+
+ APInt MinVal, MaxVal;
+ unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
+ if (ISD::isSignedIntSetCC(Cond)) {
+ MinVal = APInt::getSignedMinValue(OperandBitSize);
+ MaxVal = APInt::getSignedMaxValue(OperandBitSize);
+ } else {
+ MinVal = APInt::getMinValue(OperandBitSize);
+ MaxVal = APInt::getMaxValue(OperandBitSize);
+ }
+
+ // Canonicalize GE/LE comparisons to use GT/LT comparisons.
+ if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
+ if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
+ // X >= C0 --> X > (C0-1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C1-1, N1.getValueType()),
+ (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
+ }
+
+ if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
+ if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
+ // X <= C0 --> X < (C0+1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(C1+1, N1.getValueType()),
+ (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
+ }
+
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
+ return DAG.getConstant(0, VT); // X < MIN --> false
+ if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
+ return DAG.getConstant(1, VT); // X >= MIN --> true
+ if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
+ return DAG.getConstant(0, VT); // X > MAX --> false
+ if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
+ return DAG.getConstant(1, VT); // X <= MAX --> true
+
+ // Canonicalize setgt X, Min --> setne X, Min
+ if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+ // Canonicalize setlt X, Max --> setne X, Max
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
+
+ // If we have setult X, 1, turn it into seteq X, 0
+ if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MinVal, N0.getValueType()),
+ ISD::SETEQ);
+ // If we have setugt X, Max-1, turn it into seteq X, Max
+ else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(MaxVal, N0.getValueType()),
+ ISD::SETEQ);
+
+ // If we have "setcc X, C0", check to see if we can shrink the immediate
+ // by changing cc.
+
+ // SETUGT X, SINTMAX -> SETLT X, 0
+ if (Cond == ISD::SETUGT &&
+ C1 == APInt::getSignedMaxValue(OperandBitSize))
+ return DAG.getSetCC(dl, VT, N0,
+ DAG.getConstant(0, N1.getValueType()),
+ ISD::SETLT);
+
+ // SETULT X, SINTMIN -> SETGT X, -1
+ if (Cond == ISD::SETULT &&
+ C1 == APInt::getSignedMinValue(OperandBitSize)) {
+ SDValue ConstMinusOne =
+ DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
+ N1.getValueType());
+ return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
+ }
+
+ // Fold bit comparisons when we can.
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ (VT == N0.getValueType() ||
+ (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
+ N0.getOpcode() == ISD::AND)
+ if (ConstantSDNode *AndRHS =
+ dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ EVT ShiftTy = DCI.isBeforeLegalize() ?
+ getPointerTy() : getShiftAmountTy();
+ if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
+ // Perform the xform if the AND RHS is a single bit.
+ if (AndRHS->getAPIntValue().isPowerOf2()) {
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
+ DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
+ }
+ } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
+ // (X & 8) == 8 --> (X & 8) >> 3
+ // Perform the xform if C1 is a single bit.
+ if (C1.isPowerOf2()) {
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
+ DAG.getConstant(C1.logBase2(), ShiftTy)));
+ }
+ }
+ }
+ }
+
+ if (isa<ConstantFPSDNode>(N0.getNode())) {
+ // Constant fold or commute setcc.
+ SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
+ if (O.getNode()) return O;
+ } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
+ // If the RHS of an FP comparison is a constant, simplify it away in
+ // some cases.
+ if (CFP->getValueAPF().isNaN()) {
+ // If an operand is known to be a nan, we can fold it.
+ switch (ISD::getUnorderedFlavor(Cond)) {
+ default: llvm_unreachable("Unknown flavor!");
+ case 0: // Known false.
+ return DAG.getConstant(0, VT);
+ case 1: // Known true.
+ return DAG.getConstant(1, VT);
+ case 2: // Undefined.
+ return DAG.getUNDEF(VT);
+ }
+ }
+
+ // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
+ // constant if knowing that the operand is non-nan is enough. We prefer to
+ // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
+ // materialize 0.0.
+ if (Cond == ISD::SETO || Cond == ISD::SETUO)
+ return DAG.getSetCC(dl, VT, N0, N0, Cond);
+
+ // If the condition is not legal, see if we can find an equivalent one
+ // which is legal.
+ if (!isCondCodeLegal(Cond, N0.getValueType())) {
+ // If the comparison was an awkward floating-point == or != and one of
+ // the comparison operands is infinity or negative infinity, convert the
+ // condition to a less-awkward <= or >=.
+ if (CFP->getValueAPF().isInfinity()) {
+ if (CFP->getValueAPF().isNegative()) {
+ if (Cond == ISD::SETOEQ &&
+ isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
+ if (Cond == ISD::SETUEQ &&
+ isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
+ if (Cond == ISD::SETUNE &&
+ isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
+ if (Cond == ISD::SETONE &&
+ isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
+ } else {
+ if (Cond == ISD::SETOEQ &&
+ isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
+ if (Cond == ISD::SETUEQ &&
+ isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
+ if (Cond == ISD::SETUNE &&
+ isCondCodeLegal(ISD::SETULT, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
+ if (Cond == ISD::SETONE &&
+ isCondCodeLegal(ISD::SETULT, N0.getValueType()))
+ return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
+ }
+ }
+ }
+ }
+
+ if (N0 == N1) {
+ // We can always fold X == X for integer setcc's.
+ if (N0.getValueType().isInteger())
+ return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
+ unsigned UOF = ISD::getUnorderedFlavor(Cond);
+ if (UOF == 2) // FP operators that are undefined on NaNs.
+ return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
+ if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
+ return DAG.getConstant(UOF, VT);
+ // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
+ // if it is not already.
+ ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
+ if (NewCond != Cond)
+ return DAG.getSetCC(dl, VT, N0, N1, NewCond);
+ }
+
+ if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
+ N0.getValueType().isInteger()) {
+ if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
+ N0.getOpcode() == ISD::XOR) {
+ // Simplify (X+Y) == (X+Z) --> Y == Z
+ if (N0.getOpcode() == N1.getOpcode()) {
+ if (N0.getOperand(0) == N1.getOperand(0))
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
+ if (N0.getOperand(1) == N1.getOperand(1))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
+ if (DAG.isCommutativeBinOp(N0.getOpcode())) {
+ // If X op Y == Y op X, try other combinations.
+ if (N0.getOperand(0) == N1.getOperand(1))
+ return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
+ Cond);
+ if (N0.getOperand(1) == N1.getOperand(0))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
+ Cond);
+ }
+ }
+
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
+ if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ // Turn (X+C1) == C2 --> X == C2-C1
+ if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(RHSC->getAPIntValue()-
+ LHSR->getAPIntValue(),
+ N0.getValueType()), Cond);
+ }
+
+ // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
+ if (N0.getOpcode() == ISD::XOR)
+ // If we know that all of the inverted bits are zero, don't bother
+ // performing the inversion.
+ if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
+ return
+ DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(LHSR->getAPIntValue() ^
+ RHSC->getAPIntValue(),
+ N0.getValueType()),
+ Cond);
+ }
+
+ // Turn (C1-X) == C2 --> X == C1-C2
+ if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
+ if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
+ return
+ DAG.getSetCC(dl, VT, N0.getOperand(1),
+ DAG.getConstant(SUBC->getAPIntValue() -
+ RHSC->getAPIntValue(),
+ N0.getValueType()),
+ Cond);
+ }
+ }
+ }
+
+ // Simplify (X+Z) == X --> Z == 0
+ if (N0.getOperand(0) == N1)
+ return DAG.getSetCC(dl, VT, N0.getOperand(1),
+ DAG.getConstant(0, N0.getValueType()), Cond);
+ if (N0.getOperand(1) == N1) {
+ if (DAG.isCommutativeBinOp(N0.getOpcode()))
+ return DAG.getSetCC(dl, VT, N0.getOperand(0),
+ DAG.getConstant(0, N0.getValueType()), Cond);
+ else if (N0.getNode()->hasOneUse()) {
+ assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
+ // (Z-X) == X --> Z == X<<1
+ SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
+ N1,
+ DAG.getConstant(1, getShiftAmountTy()));
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(SH.getNode());
+ return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
+ }
+ }
+ }
+
+ if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
+ N1.getOpcode() == ISD::XOR) {
+ // Simplify X == (X+Z) --> Z == 0
+ if (N1.getOperand(0) == N0) {
+ return DAG.getSetCC(dl, VT, N1.getOperand(1),
+ DAG.getConstant(0, N1.getValueType()), Cond);
+ } else if (N1.getOperand(1) == N0) {
+ if (DAG.isCommutativeBinOp(N1.getOpcode())) {
+ return DAG.getSetCC(dl, VT, N1.getOperand(0),
+ DAG.getConstant(0, N1.getValueType()), Cond);
+ } else if (N1.getNode()->hasOneUse()) {
+ assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
+ // X == (Z-X) --> X<<1 == Z
+ SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
+ DAG.getConstant(1, getShiftAmountTy()));
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(SH.getNode());
+ return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
+ }
+ }
+ }
+
+ // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
+ // Note that where y is variable and is known to have at most
+ // one bit set (for example, if it is z&1) we cannot do this;
+ // the expressions are not equivalent when y==0.
+ if (N0.getOpcode() == ISD::AND)
+ if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
+ if (ValueHasExactlyOneBitSet(N1, DAG)) {
+ Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
+ SDValue Zero = DAG.getConstant(0, N1.getValueType());
+ return DAG.getSetCC(dl, VT, N0, Zero, Cond);
+ }
+ }
+ if (N1.getOpcode() == ISD::AND)
+ if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
+ if (ValueHasExactlyOneBitSet(N0, DAG)) {
+ Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
+ SDValue Zero = DAG.getConstant(0, N0.getValueType());
+ return DAG.getSetCC(dl, VT, N1, Zero, Cond);
+ }
+ }
+ }
+
+ // Fold away ALL boolean setcc's.
+ SDValue Temp;
+ if (N0.getValueType() == MVT::i1 && foldBooleans) {
+ switch (Cond) {
+ default: llvm_unreachable("Unknown integer setcc!");
+ case ISD::SETEQ: // X == Y -> ~(X^Y)
+ Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
+ N0 = DAG.getNOT(dl, Temp, MVT::i1);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETNE: // X != Y --> (X^Y)
+ N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
+ break;
+ case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
+ case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
+ Temp = DAG.getNOT(dl, N0, MVT::i1);
+ N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
+ case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
+ Temp = DAG.getNOT(dl, N1, MVT::i1);
+ N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
+ case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
+ Temp = DAG.getNOT(dl, N0, MVT::i1);
+ N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(Temp.getNode());
+ break;
+ case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
+ case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
+ Temp = DAG.getNOT(dl, N1, MVT::i1);
+ N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
+ break;
+ }
+ if (VT != MVT::i1) {
+ if (!DCI.isCalledByLegalizer())
+ DCI.AddToWorklist(N0.getNode());
+ // FIXME: If running after legalize, we probably can't do this.
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
+ }
+ return N0;
+ }
+
+ // Could not fold it.
+ return SDValue();
+}
+
+/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
+/// node is a GlobalAddress + offset.
+bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
+ int64_t &Offset) const {
+ if (isa<GlobalAddressSDNode>(N)) {
+ GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
+ GA = GASD->getGlobal();
+ Offset += GASD->getOffset();
+ return true;
+ }
+
+ if (N->getOpcode() == ISD::ADD) {
+ SDValue N1 = N->getOperand(0);
+ SDValue N2 = N->getOperand(1);
+ if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
+ ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
+ if (V) {
+ Offset += V->getSExtValue();
+ return true;
+ }
+ } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
+ ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
+ if (V) {
+ Offset += V->getSExtValue();
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+
+SDValue TargetLowering::
+PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
+ // Default implementation: no optimization.
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembler Implementation Methods
+//===----------------------------------------------------------------------===//
+
+
+TargetLowering::ConstraintType
+TargetLowering::getConstraintType(const std::string &Constraint) const {
+ // FIXME: lots more standard ones to handle.
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'r': return C_RegisterClass;
+ case 'm': // memory
+ case 'o': // offsetable
+ case 'V': // not offsetable
+ return C_Memory;
+ case 'i': // Simple Integer or Relocatable Constant
+ case 'n': // Simple Integer
+ case 's': // Relocatable Constant
+ case 'X': // Allow ANY value.
+ case 'I': // Target registers.
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'O':
+ case 'P':
+ return C_Other;
+ }
+ }
+
+ if (Constraint.size() > 1 && Constraint[0] == '{' &&
+ Constraint[Constraint.size()-1] == '}')
+ return C_Register;
+ return C_Unknown;
+}
+
+/// LowerXConstraint - try to replace an X constraint, which matches anything,
+/// with another that has more specific requirements based on the type of the
+/// corresponding operand.
+const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
+ if (ConstraintVT.isInteger())
+ return "r";
+ if (ConstraintVT.isFloatingPoint())
+ return "f"; // works for many targets
+ return 0;
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ char ConstraintLetter,
+ bool hasMemory,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const {
+ switch (ConstraintLetter) {
+ default: break;
+ case 'X': // Allows any operand; labels (basic block) use this.
+ if (Op.getOpcode() == ISD::BasicBlock) {
+ Ops.push_back(Op);
+ return;
+ }
+ // fall through
+ case 'i': // Simple Integer or Relocatable Constant
+ case 'n': // Simple Integer
+ case 's': { // Relocatable Constant
+ // These operands are interested in values of the form (GV+C), where C may
+ // be folded in as an offset of GV, or it may be explicitly added. Also, it
+ // is possible and fine if either GV or C are missing.
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
+
+ // If we have "(add GV, C)", pull out GV/C
+ if (Op.getOpcode() == ISD::ADD) {
+ C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
+ if (C == 0 || GA == 0) {
+ C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
+ GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
+ }
+ if (C == 0 || GA == 0)
+ C = 0, GA = 0;
+ }
+
+ // If we find a valid operand, map to the TargetXXX version so that the
+ // value itself doesn't get selected.
+ if (GA) { // Either &GV or &GV+C
+ if (ConstraintLetter != 'n') {
+ int64_t Offs = GA->getOffset();
+ if (C) Offs += C->getZExtValue();
+ Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
+ Op.getValueType(), Offs));
+ return;
+ }
+ }
+ if (C) { // just C, no GV.
+ // Simple constants are not allowed for 's'.
+ if (ConstraintLetter != 's') {
+ // gcc prints these as sign extended. Sign extend value to 64 bits
+ // now; without this it would get ZExt'd later in
+ // ScheduleDAGSDNodes::EmitNode, which is very generic.
+ Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
+ MVT::i64));
+ return;
+ }
+ }
+ break;
+ }
+ }
+}
+
+std::vector<unsigned> TargetLowering::
+getRegClassForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ return std::vector<unsigned>();
+}
+
+
+std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ if (Constraint[0] != '{')
+ return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
+ assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
+
+ // Remove the braces from around the name.
+ StringRef RegName(Constraint.data()+1, Constraint.size()-2);
+
+ // Figure out which register class contains this reg.
+ const TargetRegisterInfo *RI = TM.getRegisterInfo();
+ for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
+ E = RI->regclass_end(); RCI != E; ++RCI) {
+ const TargetRegisterClass *RC = *RCI;
+
+ // If none of the value types for this register class are valid, we
+ // can't use it. For example, 64-bit reg classes on 32-bit targets.
+ bool isLegal = false;
+ for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
+ I != E; ++I) {
+ if (isTypeLegal(*I)) {
+ isLegal = true;
+ break;
+ }
+ }
+
+ if (!isLegal) continue;
+
+ for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+ I != E; ++I) {
+ if (RegName.equals_lower(RI->getName(*I)))
+ return std::make_pair(*I, RC);
+ }
+ }
+
+ return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
+}
+
+//===----------------------------------------------------------------------===//
+// Constraint Selection.
+
+/// isMatchingInputConstraint - Return true of this is an input operand that is
+/// a matching constraint like "4".
+bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
+ assert(!ConstraintCode.empty() && "No known constraint!");
+ return isdigit(ConstraintCode[0]);
+}
+
+/// getMatchedOperand - If this is an input matching constraint, this method
+/// returns the output operand it matches.
+unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
+ assert(!ConstraintCode.empty() && "No known constraint!");
+ return atoi(ConstraintCode.c_str());
+}
+
+
+/// getConstraintGenerality - Return an integer indicating how general CT
+/// is.
+static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
+ switch (CT) {
+ default: llvm_unreachable("Unknown constraint type!");
+ case TargetLowering::C_Other:
+ case TargetLowering::C_Unknown:
+ return 0;
+ case TargetLowering::C_Register:
+ return 1;
+ case TargetLowering::C_RegisterClass:
+ return 2;
+ case TargetLowering::C_Memory:
+ return 3;
+ }
+}
+
+/// ChooseConstraint - If there are multiple different constraints that we
+/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
+/// This is somewhat tricky: constraints fall into four classes:
+/// Other -> immediates and magic values
+/// Register -> one specific register
+/// RegisterClass -> a group of regs
+/// Memory -> memory
+/// Ideally, we would pick the most specific constraint possible: if we have
+/// something that fits into a register, we would pick it. The problem here
+/// is that if we have something that could either be in a register or in
+/// memory that use of the register could cause selection of *other*
+/// operands to fail: they might only succeed if we pick memory. Because of
+/// this the heuristic we use is:
+///
+/// 1) If there is an 'other' constraint, and if the operand is valid for
+/// that constraint, use it. This makes us take advantage of 'i'
+/// constraints when available.
+/// 2) Otherwise, pick the most general constraint present. This prefers
+/// 'm' over 'r', for example.
+///
+static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
+ bool hasMemory, const TargetLowering &TLI,
+ SDValue Op, SelectionDAG *DAG) {
+ assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
+ unsigned BestIdx = 0;
+ TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
+ int BestGenerality = -1;
+
+ // Loop over the options, keeping track of the most general one.
+ for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
+ TargetLowering::ConstraintType CType =
+ TLI.getConstraintType(OpInfo.Codes[i]);
+
+ // If this is an 'other' constraint, see if the operand is valid for it.
+ // For example, on X86 we might have an 'rI' constraint. If the operand
+ // is an integer in the range [0..31] we want to use I (saving a load
+ // of a register), otherwise we must use 'r'.
+ if (CType == TargetLowering::C_Other && Op.getNode()) {
+ assert(OpInfo.Codes[i].size() == 1 &&
+ "Unhandled multi-letter 'other' constraint");
+ std::vector<SDValue> ResultOps;
+ TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
+ ResultOps, *DAG);
+ if (!ResultOps.empty()) {
+ BestType = CType;
+ BestIdx = i;
+ break;
+ }
+ }
+
+ // This constraint letter is more general than the previous one, use it.
+ int Generality = getConstraintGenerality(CType);
+ if (Generality > BestGenerality) {
+ BestType = CType;
+ BestIdx = i;
+ BestGenerality = Generality;
+ }
+ }
+
+ OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
+ OpInfo.ConstraintType = BestType;
+}
+
+/// ComputeConstraintToUse - Determines the constraint code and constraint
+/// type to use for the specific AsmOperandInfo, setting
+/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
+void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
+ SDValue Op,
+ bool hasMemory,
+ SelectionDAG *DAG) const {
+ assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
+
+ // Single-letter constraints ('r') are very common.
+ if (OpInfo.Codes.size() == 1) {
+ OpInfo.ConstraintCode = OpInfo.Codes[0];
+ OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
+ } else {
+ ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
+ }
+
+ // 'X' matches anything.
+ if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
+ // Labels and constants are handled elsewhere ('X' is the only thing
+ // that matches labels). For Functions, the type here is the type of
+ // the result, which is not what we want to look at; leave them alone.
+ Value *v = OpInfo.CallOperandVal;
+ if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
+ OpInfo.CallOperandVal = v;
+ return;
+ }
+
+ // Otherwise, try to resolve it to something we know about by looking at
+ // the actual operand type.
+ if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
+ OpInfo.ConstraintCode = Repl;
+ OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Loop Strength Reduction hooks
+//===----------------------------------------------------------------------===//
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ const Type *Ty) const {
+ // The default implementation of this implements a conservative RISCy, r+r and
+ // r+i addr mode.
+
+ // Allows a sign-extended 16-bit immediate field.
+ if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
+ return false;
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ // Only support r+r,
+ switch (AM.Scale) {
+ case 0: // "r+i" or just "i", depending on HasBaseReg.
+ break;
+ case 1:
+ if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
+ return false;
+ // Otherwise we have r+r or r+i.
+ break;
+ case 2:
+ if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
+ return false;
+ // Allow 2*r as r+r.
+ break;
+ }
+
+ return true;
+}
+
+/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number. See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
+ std::vector<SDNode*>* Created) const {
+ EVT VT = N->getValueType(0);
+ DebugLoc dl= N->getDebugLoc();
+
+ // Check to see if we can do this.
+ // FIXME: We should be more aggressive here.
+ if (!isTypeLegal(VT))
+ return SDValue();
+
+ APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
+ APInt::ms magics = d.magic();
+
+ // Multiply the numerator (operand 0) by the magic value
+ // FIXME: We should support doing a MUL in a wider type
+ SDValue Q;
+ if (isOperationLegalOrCustom(ISD::MULHS, VT))
+ Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
+ DAG.getConstant(magics.m, VT));
+ else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
+ Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
+ N->getOperand(0),
+ DAG.getConstant(magics.m, VT)).getNode(), 1);
+ else
+ return SDValue(); // No mulhs or equvialent
+ // If d > 0 and m < 0, add the numerator
+ if (d.isStrictlyPositive() && magics.m.isNegative()) {
+ Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
+ if (Created)
+ Created->push_back(Q.getNode());
+ }
+ // If d < 0 and m > 0, subtract the numerator.
+ if (d.isNegative() && magics.m.isStrictlyPositive()) {
+ Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
+ if (Created)
+ Created->push_back(Q.getNode());
+ }
+ // Shift right algebraic if shift value is nonzero
+ if (magics.s > 0) {
+ Q = DAG.getNode(ISD::SRA, dl, VT, Q,
+ DAG.getConstant(magics.s, getShiftAmountTy()));
+ if (Created)
+ Created->push_back(Q.getNode());
+ }
+ // Extract the sign bit and add it to the quotient
+ SDValue T =
+ DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
+ getShiftAmountTy()));
+ if (Created)
+ Created->push_back(T.getNode());
+ return DAG.getNode(ISD::ADD, dl, VT, Q, T);
+}
+
+/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number. See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
+ std::vector<SDNode*>* Created) const {
+ EVT VT = N->getValueType(0);
+ DebugLoc dl = N->getDebugLoc();
+
+ // Check to see if we can do this.
+ // FIXME: We should be more aggressive here.
+ if (!isTypeLegal(VT))
+ return SDValue();
+
+ // FIXME: We should use a narrower constant when the upper
+ // bits are known to be zero.
+ ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
+ APInt::mu magics = N1C->getAPIntValue().magicu();
+
+ // Multiply the numerator (operand 0) by the magic value
+ // FIXME: We should support doing a MUL in a wider type
+ SDValue Q;
+ if (isOperationLegalOrCustom(ISD::MULHU, VT))
+ Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
+ DAG.getConstant(magics.m, VT));
+ else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
+ Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
+ N->getOperand(0),
+ DAG.getConstant(magics.m, VT)).getNode(), 1);
+ else
+ return SDValue(); // No mulhu or equvialent
+ if (Created)
+ Created->push_back(Q.getNode());
+
+ if (magics.a == 0) {
+ assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
+ "We shouldn't generate an undefined shift!");
+ return DAG.getNode(ISD::SRL, dl, VT, Q,
+ DAG.getConstant(magics.s, getShiftAmountTy()));
+ } else {
+ SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
+ if (Created)
+ Created->push_back(NPQ.getNode());
+ NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
+ DAG.getConstant(1, getShiftAmountTy()));
+ if (Created)
+ Created->push_back(NPQ.getNode());
+ NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
+ if (Created)
+ Created->push_back(NPQ.getNode());
+ return DAG.getNode(ISD::SRL, dl, VT, NPQ,
+ DAG.getConstant(magics.s-1, getShiftAmountTy()));
+ }
+}
OpenPOWER on IntegriCloud