summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp878
1 files changed, 878 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
new file mode 100644
index 0000000..a6b3fc6
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
@@ -0,0 +1,878 @@
+//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file includes support code use by SelectionDAGBuilder when lowering a
+// statepoint sequence in SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#include "StatepointLowering.h"
+#include "SelectionDAGBuilder.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "statepoint-lowering"
+
+STATISTIC(NumSlotsAllocatedForStatepoints,
+ "Number of stack slots allocated for statepoints");
+STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
+STATISTIC(StatepointMaxSlotsRequired,
+ "Maximum number of stack slots required for a singe statepoint");
+
+static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
+ SelectionDAGBuilder &Builder, uint64_t Value) {
+ SDLoc L = Builder.getCurSDLoc();
+ Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
+ MVT::i64));
+ Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
+}
+
+void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
+ // Consistency check
+ assert(PendingGCRelocateCalls.empty() &&
+ "Trying to visit statepoint before finished processing previous one");
+ Locations.clear();
+ NextSlotToAllocate = 0;
+ // Need to resize this on each safepoint - we need the two to stay in
+ // sync and the clear patterns of a SelectionDAGBuilder have no relation
+ // to FunctionLoweringInfo.
+ AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
+ for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
+ AllocatedStackSlots[i] = false;
+ }
+}
+
+void StatepointLoweringState::clear() {
+ Locations.clear();
+ AllocatedStackSlots.clear();
+ assert(PendingGCRelocateCalls.empty() &&
+ "cleared before statepoint sequence completed");
+}
+
+SDValue
+StatepointLoweringState::allocateStackSlot(EVT ValueType,
+ SelectionDAGBuilder &Builder) {
+
+ NumSlotsAllocatedForStatepoints++;
+
+ // The basic scheme here is to first look for a previously created stack slot
+ // which is not in use (accounting for the fact arbitrary slots may already
+ // be reserved), or to create a new stack slot and use it.
+
+ // If this doesn't succeed in 40000 iterations, something is seriously wrong
+ for (int i = 0; i < 40000; i++) {
+ assert(Builder.FuncInfo.StatepointStackSlots.size() ==
+ AllocatedStackSlots.size() &&
+ "broken invariant");
+ const size_t NumSlots = AllocatedStackSlots.size();
+ assert(NextSlotToAllocate <= NumSlots && "broken invariant");
+
+ if (NextSlotToAllocate >= NumSlots) {
+ assert(NextSlotToAllocate == NumSlots);
+ // record stats
+ if (NumSlots + 1 > StatepointMaxSlotsRequired) {
+ StatepointMaxSlotsRequired = NumSlots + 1;
+ }
+
+ SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
+ const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ Builder.FuncInfo.StatepointStackSlots.push_back(FI);
+ AllocatedStackSlots.push_back(true);
+ return SpillSlot;
+ }
+ if (!AllocatedStackSlots[NextSlotToAllocate]) {
+ const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
+ AllocatedStackSlots[NextSlotToAllocate] = true;
+ return Builder.DAG.getFrameIndex(FI, ValueType);
+ }
+ // Note: We deliberately choose to advance this only on the failing path.
+ // Doing so on the suceeding path involes a bit of complexity that caused a
+ // minor bug previously. Unless performance shows this matters, please
+ // keep this code as simple as possible.
+ NextSlotToAllocate++;
+ }
+ llvm_unreachable("infinite loop?");
+}
+
+/// Utility function for reservePreviousStackSlotForValue. Tries to find
+/// stack slot index to which we have spilled value for previous statepoints.
+/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
+static Optional<int> findPreviousSpillSlot(const Value *Val,
+ SelectionDAGBuilder &Builder,
+ int LookUpDepth) {
+ // Can not look any futher - give up now
+ if (LookUpDepth <= 0)
+ return Optional<int>();
+
+ // Spill location is known for gc relocates
+ if (isGCRelocate(Val)) {
+ GCRelocateOperands RelocOps(cast<Instruction>(Val));
+
+ FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
+ Builder.FuncInfo.StatepointRelocatedValues[RelocOps.getStatepoint()];
+
+ auto It = SpillMap.find(RelocOps.getDerivedPtr());
+ if (It == SpillMap.end())
+ return Optional<int>();
+
+ return It->second;
+ }
+
+ // Look through bitcast instructions.
+ if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val)) {
+ return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
+ }
+
+ // Look through phi nodes
+ // All incoming values should have same known stack slot, otherwise result
+ // is unknown.
+ if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
+ Optional<int> MergedResult = None;
+
+ for (auto &IncomingValue : Phi->incoming_values()) {
+ Optional<int> SpillSlot =
+ findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
+ if (!SpillSlot.hasValue())
+ return Optional<int>();
+
+ if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
+ return Optional<int>();
+
+ MergedResult = SpillSlot;
+ }
+ return MergedResult;
+ }
+
+ // TODO: We can do better for PHI nodes. In cases like this:
+ // ptr = phi(relocated_pointer, not_relocated_pointer)
+ // statepoint(ptr)
+ // We will return that stack slot for ptr is unknown. And later we might
+ // assign different stack slots for ptr and relocated_pointer. This limits
+ // llvm's ability to remove redundant stores.
+ // Unfortunately it's hard to accomplish in current infrastructure.
+ // We use this function to eliminate spill store completely, while
+ // in example we still need to emit store, but instead of any location
+ // we need to use special "preferred" location.
+
+ // TODO: handle simple updates. If a value is modified and the original
+ // value is no longer live, it would be nice to put the modified value in the
+ // same slot. This allows folding of the memory accesses for some
+ // instructions types (like an increment).
+ // statepoint (i)
+ // i1 = i+1
+ // statepoint (i1)
+ // However we need to be careful for cases like this:
+ // statepoint(i)
+ // i1 = i+1
+ // statepoint(i, i1)
+ // Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
+ // put handling of simple modifications in this function like it's done
+ // for bitcasts we might end up reserving i's slot for 'i+1' because order in
+ // which we visit values is unspecified.
+
+ // Don't know any information about this instruction
+ return Optional<int>();
+}
+
+/// Try to find existing copies of the incoming values in stack slots used for
+/// statepoint spilling. If we can find a spill slot for the incoming value,
+/// mark that slot as allocated, and reuse the same slot for this safepoint.
+/// This helps to avoid series of loads and stores that only serve to resuffle
+/// values on the stack between calls.
+static void reservePreviousStackSlotForValue(const Value *IncomingValue,
+ SelectionDAGBuilder &Builder) {
+
+ SDValue Incoming = Builder.getValue(IncomingValue);
+
+ if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
+ // We won't need to spill this, so no need to check for previously
+ // allocated stack slots
+ return;
+ }
+
+ SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
+ if (OldLocation.getNode())
+ // duplicates in input
+ return;
+
+ const int LookUpDepth = 6;
+ Optional<int> Index =
+ findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
+ if (!Index.hasValue())
+ return;
+
+ auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
+ Builder.FuncInfo.StatepointStackSlots.end(), *Index);
+ assert(Itr != Builder.FuncInfo.StatepointStackSlots.end() &&
+ "value spilled to the unknown stack slot");
+
+ // This is one of our dedicated lowering slots
+ const int Offset =
+ std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
+ if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
+ // stack slot already assigned to someone else, can't use it!
+ // TODO: currently we reserve space for gc arguments after doing
+ // normal allocation for deopt arguments. We should reserve for
+ // _all_ deopt and gc arguments, then start allocating. This
+ // will prevent some moves being inserted when vm state changes,
+ // but gc state doesn't between two calls.
+ return;
+ }
+ // Reserve this stack slot
+ Builder.StatepointLowering.reserveStackSlot(Offset);
+
+ // Cache this slot so we find it when going through the normal
+ // assignment loop.
+ SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
+ Builder.StatepointLowering.setLocation(Incoming, Loc);
+}
+
+/// Remove any duplicate (as SDValues) from the derived pointer pairs. This
+/// is not required for correctness. It's purpose is to reduce the size of
+/// StackMap section. It has no effect on the number of spill slots required
+/// or the actual lowering.
+static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
+ SmallVectorImpl<const Value *> &Ptrs,
+ SmallVectorImpl<const Value *> &Relocs,
+ SelectionDAGBuilder &Builder) {
+
+ // This is horribly ineffecient, but I don't care right now
+ SmallSet<SDValue, 64> Seen;
+
+ SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
+ for (size_t i = 0; i < Ptrs.size(); i++) {
+ SDValue SD = Builder.getValue(Ptrs[i]);
+ // Only add non-duplicates
+ if (Seen.count(SD) == 0) {
+ NewBases.push_back(Bases[i]);
+ NewPtrs.push_back(Ptrs[i]);
+ NewRelocs.push_back(Relocs[i]);
+ }
+ Seen.insert(SD);
+ }
+ assert(Bases.size() >= NewBases.size());
+ assert(Ptrs.size() >= NewPtrs.size());
+ assert(Relocs.size() >= NewRelocs.size());
+ Bases = NewBases;
+ Ptrs = NewPtrs;
+ Relocs = NewRelocs;
+ assert(Ptrs.size() == Bases.size());
+ assert(Ptrs.size() == Relocs.size());
+}
+
+/// Extract call from statepoint, lower it and return pointer to the
+/// call node. Also update NodeMap so that getValue(statepoint) will
+/// reference lowered call result
+static SDNode *
+lowerCallFromStatepoint(ImmutableStatepoint ISP, MachineBasicBlock *LandingPad,
+ SelectionDAGBuilder &Builder,
+ SmallVectorImpl<SDValue> &PendingExports) {
+
+ ImmutableCallSite CS(ISP.getCallSite());
+
+ SDValue ActualCallee = Builder.getValue(ISP.getActualCallee());
+
+ assert(CS.getCallingConv() != CallingConv::AnyReg &&
+ "anyregcc is not supported on statepoints!");
+
+ Type *DefTy = ISP.getActualReturnType();
+ bool HasDef = !DefTy->isVoidTy();
+
+ SDValue ReturnValue, CallEndVal;
+ std::tie(ReturnValue, CallEndVal) = Builder.lowerCallOperands(
+ ISP.getCallSite(), ImmutableStatepoint::CallArgsBeginPos,
+ ISP.getNumCallArgs(), ActualCallee, DefTy, LandingPad,
+ false /* IsPatchPoint */);
+
+ SDNode *CallEnd = CallEndVal.getNode();
+
+ // Get a call instruction from the call sequence chain. Tail calls are not
+ // allowed. The following code is essentially reverse engineering X86's
+ // LowerCallTo.
+ //
+ // We are expecting DAG to have the following form:
+ //
+ // ch = eh_label (only in case of invoke statepoint)
+ // ch, glue = callseq_start ch
+ // ch, glue = X86::Call ch, glue
+ // ch, glue = callseq_end ch, glue
+ // get_return_value ch, glue
+ //
+ // get_return_value can either be a CopyFromReg to grab the return value from
+ // %RAX, or it can be a LOAD to load a value returned by reference via a stack
+ // slot.
+
+ if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg ||
+ CallEnd->getOpcode() == ISD::LOAD))
+ CallEnd = CallEnd->getOperand(0).getNode();
+
+ assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
+
+ if (HasDef) {
+ if (CS.isInvoke()) {
+ // Result value will be used in different basic block for invokes
+ // so we need to export it now. But statepoint call has a different type
+ // than the actuall call. It means that standart exporting mechanism will
+ // create register of the wrong type. So instead we need to create
+ // register with correct type and save value into it manually.
+ // TODO: To eliminate this problem we can remove gc.result intrinsics
+ // completelly and make statepoint call to return a tuple.
+ unsigned Reg = Builder.FuncInfo.CreateRegs(ISP.getActualReturnType());
+ RegsForValue RFV(*Builder.DAG.getContext(),
+ Builder.DAG.getTargetLoweringInfo(), Reg,
+ ISP.getActualReturnType());
+ SDValue Chain = Builder.DAG.getEntryNode();
+
+ RFV.getCopyToRegs(ReturnValue, Builder.DAG, Builder.getCurSDLoc(), Chain,
+ nullptr);
+ PendingExports.push_back(Chain);
+ Builder.FuncInfo.ValueMap[CS.getInstruction()] = Reg;
+ } else {
+ // The value of the statepoint itself will be the value of call itself.
+ // We'll replace the actually call node shortly. gc_result will grab
+ // this value.
+ Builder.setValue(CS.getInstruction(), ReturnValue);
+ }
+ } else {
+ // The token value is never used from here on, just generate a poison value
+ Builder.setValue(CS.getInstruction(),
+ Builder.DAG.getIntPtrConstant(-1, Builder.getCurSDLoc()));
+ }
+
+ return CallEnd->getOperand(0).getNode();
+}
+
+/// Callect all gc pointers coming into statepoint intrinsic, clean them up,
+/// and return two arrays:
+/// Bases - base pointers incoming to this statepoint
+/// Ptrs - derived pointers incoming to this statepoint
+/// Relocs - the gc_relocate corresponding to each base/ptr pair
+/// Elements of this arrays should be in one-to-one correspondence with each
+/// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
+static void getIncomingStatepointGCValues(
+ SmallVectorImpl<const Value *> &Bases, SmallVectorImpl<const Value *> &Ptrs,
+ SmallVectorImpl<const Value *> &Relocs, ImmutableStatepoint StatepointSite,
+ SelectionDAGBuilder &Builder) {
+ for (GCRelocateOperands relocateOpers : StatepointSite.getRelocates()) {
+ Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
+ Bases.push_back(relocateOpers.getBasePtr());
+ Ptrs.push_back(relocateOpers.getDerivedPtr());
+ }
+
+ // Remove any redundant llvm::Values which map to the same SDValue as another
+ // input. Also has the effect of removing duplicates in the original
+ // llvm::Value input list as well. This is a useful optimization for
+ // reducing the size of the StackMap section. It has no other impact.
+ removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
+
+ assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
+}
+
+/// Spill a value incoming to the statepoint. It might be either part of
+/// vmstate
+/// or gcstate. In both cases unconditionally spill it on the stack unless it
+/// is a null constant. Return pair with first element being frame index
+/// containing saved value and second element with outgoing chain from the
+/// emitted store
+static std::pair<SDValue, SDValue>
+spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
+ SelectionDAGBuilder &Builder) {
+ SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
+
+ // Emit new store if we didn't do it for this ptr before
+ if (!Loc.getNode()) {
+ Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
+ Builder);
+ assert(isa<FrameIndexSDNode>(Loc));
+ int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
+ // We use TargetFrameIndex so that isel will not select it into LEA
+ Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
+
+ // TODO: We can create TokenFactor node instead of
+ // chaining stores one after another, this may allow
+ // a bit more optimal scheduling for them
+ Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
+ MachinePointerInfo::getFixedStack(Index),
+ false, false, 0);
+
+ Builder.StatepointLowering.setLocation(Incoming, Loc);
+ }
+
+ assert(Loc.getNode());
+ return std::make_pair(Loc, Chain);
+}
+
+/// Lower a single value incoming to a statepoint node. This value can be
+/// either a deopt value or a gc value, the handling is the same. We special
+/// case constants and allocas, then fall back to spilling if required.
+static void lowerIncomingStatepointValue(SDValue Incoming,
+ SmallVectorImpl<SDValue> &Ops,
+ SelectionDAGBuilder &Builder) {
+ SDValue Chain = Builder.getRoot();
+
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
+ // If the original value was a constant, make sure it gets recorded as
+ // such in the stackmap. This is required so that the consumer can
+ // parse any internal format to the deopt state. It also handles null
+ // pointers and other constant pointers in GC states
+ pushStackMapConstant(Ops, Builder, C->getSExtValue());
+ } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
+ // This handles allocas as arguments to the statepoint (this is only
+ // really meaningful for a deopt value. For GC, we'd be trying to
+ // relocate the address of the alloca itself?)
+ Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
+ Incoming.getValueType()));
+ } else {
+ // Otherwise, locate a spill slot and explicitly spill it so it
+ // can be found by the runtime later. We currently do not support
+ // tracking values through callee saved registers to their eventual
+ // spill location. This would be a useful optimization, but would
+ // need to be optional since it requires a lot of complexity on the
+ // runtime side which not all would support.
+ std::pair<SDValue, SDValue> Res =
+ spillIncomingStatepointValue(Incoming, Chain, Builder);
+ Ops.push_back(Res.first);
+ Chain = Res.second;
+ }
+
+ Builder.DAG.setRoot(Chain);
+}
+
+/// Lower deopt state and gc pointer arguments of the statepoint. The actual
+/// lowering is described in lowerIncomingStatepointValue. This function is
+/// responsible for lowering everything in the right position and playing some
+/// tricks to avoid redundant stack manipulation where possible. On
+/// completion, 'Ops' will contain ready to use operands for machine code
+/// statepoint. The chain nodes will have already been created and the DAG root
+/// will be set to the last value spilled (if any were).
+static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
+ ImmutableStatepoint StatepointSite,
+ SelectionDAGBuilder &Builder) {
+
+ // Lower the deopt and gc arguments for this statepoint. Layout will
+ // be: deopt argument length, deopt arguments.., gc arguments...
+
+ SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
+ getIncomingStatepointGCValues(Bases, Ptrs, Relocations, StatepointSite,
+ Builder);
+
+#ifndef NDEBUG
+ // Check that each of the gc pointer and bases we've gotten out of the
+ // safepoint is something the strategy thinks might be a pointer into the GC
+ // heap. This is basically just here to help catch errors during statepoint
+ // insertion. TODO: This should actually be in the Verifier, but we can't get
+ // to the GCStrategy from there (yet).
+ GCStrategy &S = Builder.GFI->getStrategy();
+ for (const Value *V : Bases) {
+ auto Opt = S.isGCManagedPointer(V);
+ if (Opt.hasValue()) {
+ assert(Opt.getValue() &&
+ "non gc managed base pointer found in statepoint");
+ }
+ }
+ for (const Value *V : Ptrs) {
+ auto Opt = S.isGCManagedPointer(V);
+ if (Opt.hasValue()) {
+ assert(Opt.getValue() &&
+ "non gc managed derived pointer found in statepoint");
+ }
+ }
+ for (const Value *V : Relocations) {
+ auto Opt = S.isGCManagedPointer(V);
+ if (Opt.hasValue()) {
+ assert(Opt.getValue() && "non gc managed pointer relocated");
+ }
+ }
+#endif
+
+ // Before we actually start lowering (and allocating spill slots for values),
+ // reserve any stack slots which we judge to be profitable to reuse for a
+ // particular value. This is purely an optimization over the code below and
+ // doesn't change semantics at all. It is important for performance that we
+ // reserve slots for both deopt and gc values before lowering either.
+ for (const Value *V : StatepointSite.vm_state_args()) {
+ reservePreviousStackSlotForValue(V, Builder);
+ }
+ for (unsigned i = 0; i < Bases.size(); ++i) {
+ reservePreviousStackSlotForValue(Bases[i], Builder);
+ reservePreviousStackSlotForValue(Ptrs[i], Builder);
+ }
+
+ // First, prefix the list with the number of unique values to be
+ // lowered. Note that this is the number of *Values* not the
+ // number of SDValues required to lower them.
+ const int NumVMSArgs = StatepointSite.getNumTotalVMSArgs();
+ pushStackMapConstant(Ops, Builder, NumVMSArgs);
+
+ assert(NumVMSArgs == std::distance(StatepointSite.vm_state_begin(),
+ StatepointSite.vm_state_end()));
+
+ // The vm state arguments are lowered in an opaque manner. We do
+ // not know what type of values are contained within. We skip the
+ // first one since that happens to be the total number we lowered
+ // explicitly just above. We could have left it in the loop and
+ // not done it explicitly, but it's far easier to understand this
+ // way.
+ for (const Value *V : StatepointSite.vm_state_args()) {
+ SDValue Incoming = Builder.getValue(V);
+ lowerIncomingStatepointValue(Incoming, Ops, Builder);
+ }
+
+ // Finally, go ahead and lower all the gc arguments. There's no prefixed
+ // length for this one. After lowering, we'll have the base and pointer
+ // arrays interwoven with each (lowered) base pointer immediately followed by
+ // it's (lowered) derived pointer. i.e
+ // (base[0], ptr[0], base[1], ptr[1], ...)
+ for (unsigned i = 0; i < Bases.size(); ++i) {
+ const Value *Base = Bases[i];
+ lowerIncomingStatepointValue(Builder.getValue(Base), Ops, Builder);
+
+ const Value *Ptr = Ptrs[i];
+ lowerIncomingStatepointValue(Builder.getValue(Ptr), Ops, Builder);
+ }
+
+ // If there are any explicit spill slots passed to the statepoint, record
+ // them, but otherwise do not do anything special. These are user provided
+ // allocas and give control over placement to the consumer. In this case,
+ // it is the contents of the slot which may get updated, not the pointer to
+ // the alloca
+ for (Value *V : StatepointSite.gc_args()) {
+ SDValue Incoming = Builder.getValue(V);
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
+ // This handles allocas as arguments to the statepoint
+ Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
+ Incoming.getValueType()));
+ }
+ }
+
+ // Record computed locations for all lowered values.
+ // This can not be embedded in lowering loops as we need to record *all*
+ // values, while previous loops account only values with unique SDValues.
+ const Instruction *StatepointInstr =
+ StatepointSite.getCallSite().getInstruction();
+ FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
+ Builder.FuncInfo.StatepointRelocatedValues[StatepointInstr];
+
+ for (GCRelocateOperands RelocateOpers : StatepointSite.getRelocates()) {
+ const Value *V = RelocateOpers.getDerivedPtr();
+ SDValue SDV = Builder.getValue(V);
+ SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
+
+ if (Loc.getNode()) {
+ SpillMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
+ } else {
+ // Record value as visited, but not spilled. This is case for allocas
+ // and constants. For this values we can avoid emiting spill load while
+ // visiting corresponding gc_relocate.
+ // Actually we do not need to record them in this map at all.
+ // We do this only to check that we are not relocating any unvisited value.
+ SpillMap[V] = None;
+
+ // Default llvm mechanisms for exporting values which are used in
+ // different basic blocks does not work for gc relocates.
+ // Note that it would be incorrect to teach llvm that all relocates are
+ // uses of the corresponging values so that it would automatically
+ // export them. Relocates of the spilled values does not use original
+ // value.
+ if (StatepointSite.getCallSite().isInvoke())
+ Builder.ExportFromCurrentBlock(V);
+ }
+ }
+}
+
+void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
+ // Check some preconditions for sanity
+ assert(isStatepoint(&CI) &&
+ "function called must be the statepoint function");
+
+ LowerStatepoint(ImmutableStatepoint(&CI));
+}
+
+void SelectionDAGBuilder::LowerStatepoint(
+ ImmutableStatepoint ISP, MachineBasicBlock *LandingPad /*=nullptr*/) {
+ // The basic scheme here is that information about both the original call and
+ // the safepoint is encoded in the CallInst. We create a temporary call and
+ // lower it, then reverse engineer the calling sequence.
+
+ NumOfStatepoints++;
+ // Clear state
+ StatepointLowering.startNewStatepoint(*this);
+
+ ImmutableCallSite CS(ISP.getCallSite());
+
+#ifndef NDEBUG
+ // Consistency check. Don't do this for invokes. It would be too
+ // expensive to preserve this information across different basic blocks
+ if (!CS.isInvoke()) {
+ for (const User *U : CS->users()) {
+ const CallInst *Call = cast<CallInst>(U);
+ if (isGCRelocate(Call))
+ StatepointLowering.scheduleRelocCall(*Call);
+ }
+ }
+#endif
+
+#ifndef NDEBUG
+ // If this is a malformed statepoint, report it early to simplify debugging.
+ // This should catch any IR level mistake that's made when constructing or
+ // transforming statepoints.
+ ISP.verify();
+
+ // Check that the associated GCStrategy expects to encounter statepoints.
+ assert(GFI->getStrategy().useStatepoints() &&
+ "GCStrategy does not expect to encounter statepoints");
+#endif
+
+ // Lower statepoint vmstate and gcstate arguments
+ SmallVector<SDValue, 10> LoweredMetaArgs;
+ lowerStatepointMetaArgs(LoweredMetaArgs, ISP, *this);
+
+ // Get call node, we will replace it later with statepoint
+ SDNode *CallNode =
+ lowerCallFromStatepoint(ISP, LandingPad, *this, PendingExports);
+
+ // Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
+ // nodes with all the appropriate arguments and return values.
+
+ // Call Node: Chain, Target, {Args}, RegMask, [Glue]
+ SDValue Chain = CallNode->getOperand(0);
+
+ SDValue Glue;
+ bool CallHasIncomingGlue = CallNode->getGluedNode();
+ if (CallHasIncomingGlue) {
+ // Glue is always last operand
+ Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
+ }
+
+ // Build the GC_TRANSITION_START node if necessary.
+ //
+ // The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
+ // order in which they appear in the call to the statepoint intrinsic. If
+ // any of the operands is a pointer-typed, that operand is immediately
+ // followed by a SRCVALUE for the pointer that may be used during lowering
+ // (e.g. to form MachinePointerInfo values for loads/stores).
+ const bool IsGCTransition =
+ (ISP.getFlags() & (uint64_t)StatepointFlags::GCTransition) ==
+ (uint64_t)StatepointFlags::GCTransition;
+ if (IsGCTransition) {
+ SmallVector<SDValue, 8> TSOps;
+
+ // Add chain
+ TSOps.push_back(Chain);
+
+ // Add GC transition arguments
+ for (const Value *V : ISP.gc_transition_args()) {
+ TSOps.push_back(getValue(V));
+ if (V->getType()->isPointerTy())
+ TSOps.push_back(DAG.getSrcValue(V));
+ }
+
+ // Add glue if necessary
+ if (CallHasIncomingGlue)
+ TSOps.push_back(Glue);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ SDValue GCTransitionStart =
+ DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
+
+ Chain = GCTransitionStart.getValue(0);
+ Glue = GCTransitionStart.getValue(1);
+ }
+
+ // TODO: Currently, all of these operands are being marked as read/write in
+ // PrologEpilougeInserter.cpp, we should special case the VMState arguments
+ // and flags to be read-only.
+ SmallVector<SDValue, 40> Ops;
+
+ // Add the <id> and <numBytes> constants.
+ Ops.push_back(DAG.getTargetConstant(ISP.getID(), getCurSDLoc(), MVT::i64));
+ Ops.push_back(
+ DAG.getTargetConstant(ISP.getNumPatchBytes(), getCurSDLoc(), MVT::i32));
+
+ // Calculate and push starting position of vmstate arguments
+ // Get number of arguments incoming directly into call node
+ unsigned NumCallRegArgs =
+ CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
+ Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
+
+ // Add call target
+ SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
+ Ops.push_back(CallTarget);
+
+ // Add call arguments
+ // Get position of register mask in the call
+ SDNode::op_iterator RegMaskIt;
+ if (CallHasIncomingGlue)
+ RegMaskIt = CallNode->op_end() - 2;
+ else
+ RegMaskIt = CallNode->op_end() - 1;
+ Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
+
+ // Add a constant argument for the calling convention
+ pushStackMapConstant(Ops, *this, CS.getCallingConv());
+
+ // Add a constant argument for the flags
+ uint64_t Flags = ISP.getFlags();
+ assert(
+ ((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0)
+ && "unknown flag used");
+ pushStackMapConstant(Ops, *this, Flags);
+
+ // Insert all vmstate and gcstate arguments
+ Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
+
+ // Add register mask from call node
+ Ops.push_back(*RegMaskIt);
+
+ // Add chain
+ Ops.push_back(Chain);
+
+ // Same for the glue, but we add it only if original call had it
+ if (Glue.getNode())
+ Ops.push_back(Glue);
+
+ // Compute return values. Provide a glue output since we consume one as
+ // input. This allows someone else to chain off us as needed.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ SDNode *StatepointMCNode =
+ DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
+
+ SDNode *SinkNode = StatepointMCNode;
+
+ // Build the GC_TRANSITION_END node if necessary.
+ //
+ // See the comment above regarding GC_TRANSITION_START for the layout of
+ // the operands to the GC_TRANSITION_END node.
+ if (IsGCTransition) {
+ SmallVector<SDValue, 8> TEOps;
+
+ // Add chain
+ TEOps.push_back(SDValue(StatepointMCNode, 0));
+
+ // Add GC transition arguments
+ for (const Value *V : ISP.gc_transition_args()) {
+ TEOps.push_back(getValue(V));
+ if (V->getType()->isPointerTy())
+ TEOps.push_back(DAG.getSrcValue(V));
+ }
+
+ // Add glue
+ TEOps.push_back(SDValue(StatepointMCNode, 1));
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ SDValue GCTransitionStart =
+ DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
+
+ SinkNode = GCTransitionStart.getNode();
+ }
+
+ // Replace original call
+ DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
+ // Remove originall call node
+ DAG.DeleteNode(CallNode);
+
+ // DON'T set the root - under the assumption that it's already set past the
+ // inserted node we created.
+
+ // TODO: A better future implementation would be to emit a single variable
+ // argument, variable return value STATEPOINT node here and then hookup the
+ // return value of each gc.relocate to the respective output of the
+ // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
+ // to actually be possible today.
+}
+
+void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
+ // The result value of the gc_result is simply the result of the actual
+ // call. We've already emitted this, so just grab the value.
+ Instruction *I = cast<Instruction>(CI.getArgOperand(0));
+ assert(isStatepoint(I) && "first argument must be a statepoint token");
+
+ if (isa<InvokeInst>(I)) {
+ // For invokes we should have stored call result in a virtual register.
+ // We can not use default getValue() functionality to copy value from this
+ // register because statepoint and actuall call return types can be
+ // different, and getValue() will use CopyFromReg of the wrong type,
+ // which is always i32 in our case.
+ PointerType *CalleeType =
+ cast<PointerType>(ImmutableStatepoint(I).getActualCallee()->getType());
+ Type *RetTy =
+ cast<FunctionType>(CalleeType->getElementType())->getReturnType();
+ SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
+
+ assert(CopyFromReg.getNode());
+ setValue(&CI, CopyFromReg);
+ } else {
+ setValue(&CI, getValue(I));
+ }
+}
+
+void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
+ GCRelocateOperands RelocateOpers(&CI);
+
+#ifndef NDEBUG
+ // Consistency check
+ // We skip this check for invoke statepoints. It would be too expensive to
+ // preserve validation info through different basic blocks.
+ if (!RelocateOpers.isTiedToInvoke()) {
+ StatepointLowering.relocCallVisited(CI);
+ }
+#endif
+
+ const Value *DerivedPtr = RelocateOpers.getDerivedPtr();
+ SDValue SD = getValue(DerivedPtr);
+
+ FunctionLoweringInfo::StatepointSpilledValueMapTy &SpillMap =
+ FuncInfo.StatepointRelocatedValues[RelocateOpers.getStatepoint()];
+
+ // We should have recorded location for this pointer
+ assert(SpillMap.count(DerivedPtr) && "Relocating not lowered gc value");
+ Optional<int> DerivedPtrLocation = SpillMap[DerivedPtr];
+
+ // We didn't need to spill these special cases (constants and allocas).
+ // See the handling in spillIncomingValueForStatepoint for detail.
+ if (!DerivedPtrLocation) {
+ setValue(&CI, SD);
+ return;
+ }
+
+ SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
+ SD.getValueType());
+
+ // Be conservative: flush all pending loads
+ // TODO: Probably we can be less restrictive on this,
+ // it may allow more scheduling opprtunities
+ SDValue Chain = getRoot();
+
+ SDValue SpillLoad =
+ DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
+ MachinePointerInfo::getFixedStack(*DerivedPtrLocation),
+ false, false, false, 0);
+
+ // Again, be conservative, don't emit pending loads
+ DAG.setRoot(SpillLoad.getValue(1));
+
+ assert(SpillLoad.getNode());
+ setValue(&CI, SpillLoad);
+}
OpenPOWER on IntegriCloud