diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp | 2805 |
1 files changed, 2805 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp new file mode 100644 index 0000000..87bb296 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp @@ -0,0 +1,2805 @@ +//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the SelectionDAGISel class. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "isel" +#include "ScheduleDAGSDNodes.h" +#include "SelectionDAGBuilder.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/CodeGen/GCMetadata.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/ScheduleHazardRecognizer.h" +#include "llvm/CodeGen/SchedulerRegistry.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Timer.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/Statistic.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); +STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); +STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); +STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); +STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); + +static cl::opt<bool> +EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, + cl::desc("Enable verbose messages in the \"fast\" " + "instruction selector")); +static cl::opt<bool> +EnableFastISelAbort("fast-isel-abort", cl::Hidden, + cl::desc("Enable abort calls when \"fast\" instruction fails")); + +static cl::opt<bool> +UseMBPI("use-mbpi", + cl::desc("use Machine Branch Probability Info"), + cl::init(true), cl::Hidden); + +#ifndef NDEBUG +static cl::opt<bool> +ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, + cl::desc("Pop up a window to show dags before the first " + "dag combine pass")); +static cl::opt<bool> +ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, + cl::desc("Pop up a window to show dags before legalize types")); +static cl::opt<bool> +ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, + cl::desc("Pop up a window to show dags before legalize")); +static cl::opt<bool> +ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, + cl::desc("Pop up a window to show dags before the second " + "dag combine pass")); +static cl::opt<bool> +ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, + cl::desc("Pop up a window to show dags before the post legalize types" + " dag combine pass")); +static cl::opt<bool> +ViewISelDAGs("view-isel-dags", cl::Hidden, + cl::desc("Pop up a window to show isel dags as they are selected")); +static cl::opt<bool> +ViewSchedDAGs("view-sched-dags", cl::Hidden, + cl::desc("Pop up a window to show sched dags as they are processed")); +static cl::opt<bool> +ViewSUnitDAGs("view-sunit-dags", cl::Hidden, + cl::desc("Pop up a window to show SUnit dags after they are processed")); +#else +static const bool ViewDAGCombine1 = false, + ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, + ViewDAGCombine2 = false, + ViewDAGCombineLT = false, + ViewISelDAGs = false, ViewSchedDAGs = false, + ViewSUnitDAGs = false; +#endif + +//===---------------------------------------------------------------------===// +/// +/// RegisterScheduler class - Track the registration of instruction schedulers. +/// +//===---------------------------------------------------------------------===// +MachinePassRegistry RegisterScheduler::Registry; + +//===---------------------------------------------------------------------===// +/// +/// ISHeuristic command line option for instruction schedulers. +/// +//===---------------------------------------------------------------------===// +static cl::opt<RegisterScheduler::FunctionPassCtor, false, + RegisterPassParser<RegisterScheduler> > +ISHeuristic("pre-RA-sched", + cl::init(&createDefaultScheduler), + cl::desc("Instruction schedulers available (before register" + " allocation):")); + +static RegisterScheduler +defaultListDAGScheduler("default", "Best scheduler for the target", + createDefaultScheduler); + +namespace llvm { + //===--------------------------------------------------------------------===// + /// createDefaultScheduler - This creates an instruction scheduler appropriate + /// for the target. + ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, + CodeGenOpt::Level OptLevel) { + const TargetLowering &TLI = IS->getTargetLowering(); + + if (OptLevel == CodeGenOpt::None) + return createSourceListDAGScheduler(IS, OptLevel); + if (TLI.getSchedulingPreference() == Sched::Latency) + return createTDListDAGScheduler(IS, OptLevel); + if (TLI.getSchedulingPreference() == Sched::RegPressure) + return createBURRListDAGScheduler(IS, OptLevel); + if (TLI.getSchedulingPreference() == Sched::Hybrid) + return createHybridListDAGScheduler(IS, OptLevel); + assert(TLI.getSchedulingPreference() == Sched::ILP && + "Unknown sched type!"); + return createILPListDAGScheduler(IS, OptLevel); + } +} + +// EmitInstrWithCustomInserter - This method should be implemented by targets +// that mark instructions with the 'usesCustomInserter' flag. These +// instructions are special in various ways, which require special support to +// insert. The specified MachineInstr is created but not inserted into any +// basic blocks, and this method is called to expand it into a sequence of +// instructions, potentially also creating new basic blocks and control flow. +// When new basic blocks are inserted and the edges from MBB to its successors +// are modified, the method should insert pairs of <OldSucc, NewSucc> into the +// DenseMap. +MachineBasicBlock * +TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *MBB) const { +#ifndef NDEBUG + dbgs() << "If a target marks an instruction with " + "'usesCustomInserter', it must implement " + "TargetLowering::EmitInstrWithCustomInserter!"; +#endif + llvm_unreachable(0); + return 0; +} + +//===----------------------------------------------------------------------===// +// SelectionDAGISel code +//===----------------------------------------------------------------------===// + +SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, + CodeGenOpt::Level OL) : + MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()), + FuncInfo(new FunctionLoweringInfo(TLI)), + CurDAG(new SelectionDAG(tm)), + SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), + GFI(), + OptLevel(OL), + DAGSize(0) { + initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); + initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry()); + initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry()); + } + +SelectionDAGISel::~SelectionDAGISel() { + delete SDB; + delete CurDAG; + delete FuncInfo; +} + +void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<AliasAnalysis>(); + AU.addPreserved<AliasAnalysis>(); + AU.addRequired<GCModuleInfo>(); + AU.addPreserved<GCModuleInfo>(); + if (UseMBPI && OptLevel != CodeGenOpt::None) + AU.addRequired<BranchProbabilityInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that +/// may trap on it. In this case we have to split the edge so that the path +/// through the predecessor block that doesn't go to the phi block doesn't +/// execute the possibly trapping instruction. +/// +/// This is required for correctness, so it must be done at -O0. +/// +static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) { + // Loop for blocks with phi nodes. + for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { + PHINode *PN = dyn_cast<PHINode>(BB->begin()); + if (PN == 0) continue; + + ReprocessBlock: + // For each block with a PHI node, check to see if any of the input values + // are potentially trapping constant expressions. Constant expressions are + // the only potentially trapping value that can occur as the argument to a + // PHI. + for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I) + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); + if (CE == 0 || !CE->canTrap()) continue; + + // The only case we have to worry about is when the edge is critical. + // Since this block has a PHI Node, we assume it has multiple input + // edges: check to see if the pred has multiple successors. + BasicBlock *Pred = PN->getIncomingBlock(i); + if (Pred->getTerminator()->getNumSuccessors() == 1) + continue; + + // Okay, we have to split this edge. + SplitCriticalEdge(Pred->getTerminator(), + GetSuccessorNumber(Pred, BB), SDISel, true); + goto ReprocessBlock; + } + } +} + +bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { + // Do some sanity-checking on the command-line options. + assert((!EnableFastISelVerbose || EnableFastISel) && + "-fast-isel-verbose requires -fast-isel"); + assert((!EnableFastISelAbort || EnableFastISel) && + "-fast-isel-abort requires -fast-isel"); + + const Function &Fn = *mf.getFunction(); + const TargetInstrInfo &TII = *TM.getInstrInfo(); + const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); + + MF = &mf; + RegInfo = &MF->getRegInfo(); + AA = &getAnalysis<AliasAnalysis>(); + GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0; + + DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); + + SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this); + + CurDAG->init(*MF); + FuncInfo->set(Fn, *MF); + + if (UseMBPI && OptLevel != CodeGenOpt::None) + FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>(); + else + FuncInfo->BPI = 0; + + SDB->init(GFI, *AA); + + SelectAllBasicBlocks(Fn); + + // If the first basic block in the function has live ins that need to be + // copied into vregs, emit the copies into the top of the block before + // emitting the code for the block. + MachineBasicBlock *EntryMBB = MF->begin(); + RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII); + + DenseMap<unsigned, unsigned> LiveInMap; + if (!FuncInfo->ArgDbgValues.empty()) + for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), + E = RegInfo->livein_end(); LI != E; ++LI) + if (LI->second) + LiveInMap.insert(std::make_pair(LI->first, LI->second)); + + // Insert DBG_VALUE instructions for function arguments to the entry block. + for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { + MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; + unsigned Reg = MI->getOperand(0).getReg(); + if (TargetRegisterInfo::isPhysicalRegister(Reg)) + EntryMBB->insert(EntryMBB->begin(), MI); + else { + MachineInstr *Def = RegInfo->getVRegDef(Reg); + MachineBasicBlock::iterator InsertPos = Def; + // FIXME: VR def may not be in entry block. + Def->getParent()->insert(llvm::next(InsertPos), MI); + } + + // If Reg is live-in then update debug info to track its copy in a vreg. + DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); + if (LDI != LiveInMap.end()) { + MachineInstr *Def = RegInfo->getVRegDef(LDI->second); + MachineBasicBlock::iterator InsertPos = Def; + const MDNode *Variable = + MI->getOperand(MI->getNumOperands()-1).getMetadata(); + unsigned Offset = MI->getOperand(1).getImm(); + // Def is never a terminator here, so it is ok to increment InsertPos. + BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(), + TII.get(TargetOpcode::DBG_VALUE)) + .addReg(LDI->second, RegState::Debug) + .addImm(Offset).addMetadata(Variable); + + // If this vreg is directly copied into an exported register then + // that COPY instructions also need DBG_VALUE, if it is the only + // user of LDI->second. + MachineInstr *CopyUseMI = NULL; + for (MachineRegisterInfo::use_iterator + UI = RegInfo->use_begin(LDI->second); + MachineInstr *UseMI = UI.skipInstruction();) { + if (UseMI->isDebugValue()) continue; + if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { + CopyUseMI = UseMI; continue; + } + // Otherwise this is another use or second copy use. + CopyUseMI = NULL; break; + } + if (CopyUseMI) { + MachineInstr *NewMI = + BuildMI(*MF, CopyUseMI->getDebugLoc(), + TII.get(TargetOpcode::DBG_VALUE)) + .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug) + .addImm(Offset).addMetadata(Variable); + EntryMBB->insertAfter(CopyUseMI, NewMI); + } + } + } + + // Determine if there are any calls in this machine function. + MachineFrameInfo *MFI = MF->getFrameInfo(); + if (!MFI->hasCalls()) { + for (MachineFunction::const_iterator + I = MF->begin(), E = MF->end(); I != E; ++I) { + const MachineBasicBlock *MBB = I; + for (MachineBasicBlock::const_iterator + II = MBB->begin(), IE = MBB->end(); II != IE; ++II) { + const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode()); + + if ((MCID.isCall() && !MCID.isReturn()) || + II->isStackAligningInlineAsm()) { + MFI->setHasCalls(true); + goto done; + } + } + } + done:; + } + + // Determine if there is a call to setjmp in the machine function. + MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice()); + + // Replace forward-declared registers with the registers containing + // the desired value. + MachineRegisterInfo &MRI = MF->getRegInfo(); + for (DenseMap<unsigned, unsigned>::iterator + I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); + I != E; ++I) { + unsigned From = I->first; + unsigned To = I->second; + // If To is also scheduled to be replaced, find what its ultimate + // replacement is. + for (;;) { + DenseMap<unsigned, unsigned>::iterator J = + FuncInfo->RegFixups.find(To); + if (J == E) break; + To = J->second; + } + // Replace it. + MRI.replaceRegWith(From, To); + } + + // Release function-specific state. SDB and CurDAG are already cleared + // at this point. + FuncInfo->clear(); + + return true; +} + +void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, + BasicBlock::const_iterator End, + bool &HadTailCall) { + // Lower all of the non-terminator instructions. If a call is emitted + // as a tail call, cease emitting nodes for this block. Terminators + // are handled below. + for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) + SDB->visit(*I); + + // Make sure the root of the DAG is up-to-date. + CurDAG->setRoot(SDB->getControlRoot()); + HadTailCall = SDB->HasTailCall; + SDB->clear(); + + // Final step, emit the lowered DAG as machine code. + CodeGenAndEmitDAG(); +} + +void SelectionDAGISel::ComputeLiveOutVRegInfo() { + SmallPtrSet<SDNode*, 128> VisitedNodes; + SmallVector<SDNode*, 128> Worklist; + + Worklist.push_back(CurDAG->getRoot().getNode()); + + APInt Mask; + APInt KnownZero; + APInt KnownOne; + + do { + SDNode *N = Worklist.pop_back_val(); + + // If we've already seen this node, ignore it. + if (!VisitedNodes.insert(N)) + continue; + + // Otherwise, add all chain operands to the worklist. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (N->getOperand(i).getValueType() == MVT::Other) + Worklist.push_back(N->getOperand(i).getNode()); + + // If this is a CopyToReg with a vreg dest, process it. + if (N->getOpcode() != ISD::CopyToReg) + continue; + + unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(DestReg)) + continue; + + // Ignore non-scalar or non-integer values. + SDValue Src = N->getOperand(2); + EVT SrcVT = Src.getValueType(); + if (!SrcVT.isInteger() || SrcVT.isVector()) + continue; + + unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); + Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); + CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); + FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); + } while (!Worklist.empty()); +} + +void SelectionDAGISel::CodeGenAndEmitDAG() { + std::string GroupName; + if (TimePassesIsEnabled) + GroupName = "Instruction Selection and Scheduling"; + std::string BlockName; + int BlockNumber = -1; +#ifdef NDEBUG + if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || + ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || + ViewSUnitDAGs) +#endif + { + BlockNumber = FuncInfo->MBB->getNumber(); + BlockName = MF->getFunction()->getNameStr() + ":" + + FuncInfo->MBB->getBasicBlock()->getNameStr(); + } + DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber + << " '" << BlockName << "'\n"; CurDAG->dump()); + + if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); + + // Run the DAG combiner in pre-legalize mode. + { + NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); + CurDAG->Combine(Unrestricted, *AA, OptLevel); + } + + DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber + << " '" << BlockName << "'\n"; CurDAG->dump()); + + // Second step, hack on the DAG until it only uses operations and types that + // the target supports. + if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + + BlockName); + + bool Changed; + { + NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); + Changed = CurDAG->LegalizeTypes(); + } + + DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber + << " '" << BlockName << "'\n"; CurDAG->dump()); + + if (Changed) { + if (ViewDAGCombineLT) + CurDAG->viewGraph("dag-combine-lt input for " + BlockName); + + // Run the DAG combiner in post-type-legalize mode. + { + NamedRegionTimer T("DAG Combining after legalize types", GroupName, + TimePassesIsEnabled); + CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); + } + + DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber + << " '" << BlockName << "'\n"; CurDAG->dump()); + } + + { + NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); + Changed = CurDAG->LegalizeVectors(); + } + + if (Changed) { + { + NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); + CurDAG->LegalizeTypes(); + } + + if (ViewDAGCombineLT) + CurDAG->viewGraph("dag-combine-lv input for " + BlockName); + + // Run the DAG combiner in post-type-legalize mode. + { + NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, + TimePassesIsEnabled); + CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); + } + + DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#" + << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump()); + } + + if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); + + { + NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); + CurDAG->Legalize(); + } + + DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber + << " '" << BlockName << "'\n"; CurDAG->dump()); + + if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); + + // Run the DAG combiner in post-legalize mode. + { + NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); + CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); + } + + DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber + << " '" << BlockName << "'\n"; CurDAG->dump()); + + if (OptLevel != CodeGenOpt::None) + ComputeLiveOutVRegInfo(); + + if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); + + // Third, instruction select all of the operations to machine code, adding the + // code to the MachineBasicBlock. + { + NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); + DoInstructionSelection(); + } + + DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber + << " '" << BlockName << "'\n"; CurDAG->dump()); + + if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); + + // Schedule machine code. + ScheduleDAGSDNodes *Scheduler = CreateScheduler(); + { + NamedRegionTimer T("Instruction Scheduling", GroupName, + TimePassesIsEnabled); + Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt); + } + + if (ViewSUnitDAGs) Scheduler->viewGraph(); + + // Emit machine code to BB. This can change 'BB' to the last block being + // inserted into. + MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; + { + NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); + + LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(); + FuncInfo->InsertPt = Scheduler->InsertPos; + } + + // If the block was split, make sure we update any references that are used to + // update PHI nodes later on. + if (FirstMBB != LastMBB) + SDB->UpdateSplitBlock(FirstMBB, LastMBB); + + // Free the scheduler state. + { + NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, + TimePassesIsEnabled); + delete Scheduler; + } + + // Free the SelectionDAG state, now that we're finished with it. + CurDAG->clear(); +} + +void SelectionDAGISel::DoInstructionSelection() { + DEBUG(errs() << "===== Instruction selection begins: BB#" + << FuncInfo->MBB->getNumber() + << " '" << FuncInfo->MBB->getName() << "'\n"); + + PreprocessISelDAG(); + + // Select target instructions for the DAG. + { + // Number all nodes with a topological order and set DAGSize. + DAGSize = CurDAG->AssignTopologicalOrder(); + + // Create a dummy node (which is not added to allnodes), that adds + // a reference to the root node, preventing it from being deleted, + // and tracking any changes of the root. + HandleSDNode Dummy(CurDAG->getRoot()); + ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode()); + ++ISelPosition; + + // The AllNodes list is now topological-sorted. Visit the + // nodes by starting at the end of the list (the root of the + // graph) and preceding back toward the beginning (the entry + // node). + while (ISelPosition != CurDAG->allnodes_begin()) { + SDNode *Node = --ISelPosition; + // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, + // but there are currently some corner cases that it misses. Also, this + // makes it theoretically possible to disable the DAGCombiner. + if (Node->use_empty()) + continue; + + SDNode *ResNode = Select(Node); + + // FIXME: This is pretty gross. 'Select' should be changed to not return + // anything at all and this code should be nuked with a tactical strike. + + // If node should not be replaced, continue with the next one. + if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) + continue; + // Replace node. + if (ResNode) + ReplaceUses(Node, ResNode); + + // If after the replacement this node is not used any more, + // remove this dead node. + if (Node->use_empty()) { // Don't delete EntryToken, etc. + ISelUpdater ISU(ISelPosition); + CurDAG->RemoveDeadNode(Node, &ISU); + } + } + + CurDAG->setRoot(Dummy.getValue()); + } + + DEBUG(errs() << "===== Instruction selection ends:\n"); + + PostprocessISelDAG(); +} + +/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and +/// do other setup for EH landing-pad blocks. +void SelectionDAGISel::PrepareEHLandingPad() { + // Add a label to mark the beginning of the landing pad. Deletion of the + // landing pad can thus be detected via the MachineModuleInfo. + MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB); + + const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); + BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) + .addSym(Label); + + // Mark exception register as live in. + unsigned Reg = TLI.getExceptionAddressRegister(); + if (Reg) FuncInfo->MBB->addLiveIn(Reg); + + // Mark exception selector register as live in. + Reg = TLI.getExceptionSelectorRegister(); + if (Reg) FuncInfo->MBB->addLiveIn(Reg); + + // FIXME: Hack around an exception handling flaw (PR1508): the personality + // function and list of typeids logically belong to the invoke (or, if you + // like, the basic block containing the invoke), and need to be associated + // with it in the dwarf exception handling tables. Currently however the + // information is provided by an intrinsic (eh.selector) that can be moved + // to unexpected places by the optimizers: if the unwind edge is critical, + // then breaking it can result in the intrinsics being in the successor of + // the landing pad, not the landing pad itself. This results + // in exceptions not being caught because no typeids are associated with + // the invoke. This may not be the only way things can go wrong, but it + // is the only way we try to work around for the moment. + const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock(); + const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); + + if (Br && Br->isUnconditional()) { // Critical edge? + BasicBlock::const_iterator I, E; + for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) + if (isa<EHSelectorInst>(I)) + break; + + if (I == E) + // No catch info found - try to extract some from the successor. + CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo); + } +} + + + +/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified +/// load into the specified FoldInst. Note that we could have a sequence where +/// multiple LLVM IR instructions are folded into the same machineinstr. For +/// example we could have: +/// A: x = load i32 *P +/// B: y = icmp A, 42 +/// C: br y, ... +/// +/// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and +/// any other folded instructions) because it is between A and C. +/// +/// If we succeed in folding the load into the operation, return true. +/// +bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI, + const Instruction *FoldInst, + FastISel *FastIS) { + // We know that the load has a single use, but don't know what it is. If it + // isn't one of the folded instructions, then we can't succeed here. Handle + // this by scanning the single-use users of the load until we get to FoldInst. + unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. + + const Instruction *TheUser = LI->use_back(); + while (TheUser != FoldInst && // Scan up until we find FoldInst. + // Stay in the right block. + TheUser->getParent() == FoldInst->getParent() && + --MaxUsers) { // Don't scan too far. + // If there are multiple or no uses of this instruction, then bail out. + if (!TheUser->hasOneUse()) + return false; + + TheUser = TheUser->use_back(); + } + + // Don't try to fold volatile loads. Target has to deal with alignment + // constraints. + if (LI->isVolatile()) return false; + + // Figure out which vreg this is going into. If there is no assigned vreg yet + // then there actually was no reference to it. Perhaps the load is referenced + // by a dead instruction. + unsigned LoadReg = FastIS->getRegForValue(LI); + if (LoadReg == 0) + return false; + + // Check to see what the uses of this vreg are. If it has no uses, or more + // than one use (at the machine instr level) then we can't fold it. + MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg); + if (RI == RegInfo->reg_end()) + return false; + + // See if there is exactly one use of the vreg. If there are multiple uses, + // then the instruction got lowered to multiple machine instructions or the + // use of the loaded value ended up being multiple operands of the result, in + // either case, we can't fold this. + MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI; + if (PostRI != RegInfo->reg_end()) + return false; + + assert(RI.getOperand().isUse() && + "The only use of the vreg must be a use, we haven't emitted the def!"); + + MachineInstr *User = &*RI; + + // Set the insertion point properly. Folding the load can cause generation of + // other random instructions (like sign extends) for addressing modes, make + // sure they get inserted in a logical place before the new instruction. + FuncInfo->InsertPt = User; + FuncInfo->MBB = User->getParent(); + + // Ask the target to try folding the load. + return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI); +} + +/// isFoldedOrDeadInstruction - Return true if the specified instruction is +/// side-effect free and is either dead or folded into a generated instruction. +/// Return false if it needs to be emitted. +static bool isFoldedOrDeadInstruction(const Instruction *I, + FunctionLoweringInfo *FuncInfo) { + return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. + !isa<TerminatorInst>(I) && // Terminators aren't folded. + !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. + !FuncInfo->isExportedInst(I); // Exported instrs must be computed. +} + +void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { + // Initialize the Fast-ISel state, if needed. + FastISel *FastIS = 0; + if (EnableFastISel) + FastIS = TLI.createFastISel(*FuncInfo); + + // Iterate over all basic blocks in the function. + ReversePostOrderTraversal<const Function*> RPOT(&Fn); + for (ReversePostOrderTraversal<const Function*>::rpo_iterator + I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { + const BasicBlock *LLVMBB = *I; + + if (OptLevel != CodeGenOpt::None) { + bool AllPredsVisited = true; + for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); + PI != PE; ++PI) { + if (!FuncInfo->VisitedBBs.count(*PI)) { + AllPredsVisited = false; + break; + } + } + + if (AllPredsVisited) { + for (BasicBlock::const_iterator I = LLVMBB->begin(); + isa<PHINode>(I); ++I) + FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I)); + } else { + for (BasicBlock::const_iterator I = LLVMBB->begin(); + isa<PHINode>(I); ++I) + FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I)); + } + + FuncInfo->VisitedBBs.insert(LLVMBB); + } + + FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; + FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); + + BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); + BasicBlock::const_iterator const End = LLVMBB->end(); + BasicBlock::const_iterator BI = End; + + FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); + + // Setup an EH landing-pad block. + if (FuncInfo->MBB->isLandingPad()) + PrepareEHLandingPad(); + + // Lower any arguments needed in this block if this is the entry block. + if (LLVMBB == &Fn.getEntryBlock()) + LowerArguments(LLVMBB); + + // Before doing SelectionDAG ISel, see if FastISel has been requested. + if (FastIS) { + FastIS->startNewBlock(); + + // Emit code for any incoming arguments. This must happen before + // beginning FastISel on the entry block. + if (LLVMBB == &Fn.getEntryBlock()) { + CurDAG->setRoot(SDB->getControlRoot()); + SDB->clear(); + CodeGenAndEmitDAG(); + + // If we inserted any instructions at the beginning, make a note of + // where they are, so we can be sure to emit subsequent instructions + // after them. + if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) + FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt)); + else + FastIS->setLastLocalValue(0); + } + + // Do FastISel on as many instructions as possible. + for (; BI != Begin; --BI) { + const Instruction *Inst = llvm::prior(BI); + + // If we no longer require this instruction, skip it. + if (isFoldedOrDeadInstruction(Inst, FuncInfo)) + continue; + + // Bottom-up: reset the insert pos at the top, after any local-value + // instructions. + FastIS->recomputeInsertPt(); + + // Try to select the instruction with FastISel. + if (FastIS->SelectInstruction(Inst)) { + ++NumFastIselSuccess; + // If fast isel succeeded, skip over all the folded instructions, and + // then see if there is a load right before the selected instructions. + // Try to fold the load if so. + const Instruction *BeforeInst = Inst; + while (BeforeInst != Begin) { + BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst)); + if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) + break; + } + if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && + BeforeInst->hasOneUse() && + TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) + // If we succeeded, don't re-select the load. + BI = llvm::next(BasicBlock::const_iterator(BeforeInst)); + continue; + } + + // Then handle certain instructions as single-LLVM-Instruction blocks. + if (isa<CallInst>(Inst)) { + ++NumFastIselFailures; + if (EnableFastISelVerbose || EnableFastISelAbort) { + dbgs() << "FastISel missed call: "; + Inst->dump(); + } + + if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) { + unsigned &R = FuncInfo->ValueMap[Inst]; + if (!R) + R = FuncInfo->CreateRegs(Inst->getType()); + } + + bool HadTailCall = false; + SelectBasicBlock(Inst, BI, HadTailCall); + + // If the call was emitted as a tail call, we're done with the block. + if (HadTailCall) { + --BI; + break; + } + + continue; + } + + if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) { + // Don't abort, and use a different message for terminator misses. + ++NumFastIselFailures; + if (EnableFastISelVerbose || EnableFastISelAbort) { + dbgs() << "FastISel missed terminator: "; + Inst->dump(); + } + } else { + ++NumFastIselFailures; + if (EnableFastISelVerbose || EnableFastISelAbort) { + dbgs() << "FastISel miss: "; + Inst->dump(); + } + if (EnableFastISelAbort) + // The "fast" selector couldn't handle something and bailed. + // For the purpose of debugging, just abort. + llvm_unreachable("FastISel didn't select the entire block"); + } + break; + } + + FastIS->recomputeInsertPt(); + } + + if (Begin != BI) + ++NumDAGBlocks; + else + ++NumFastIselBlocks; + + if (Begin != BI) { + // Run SelectionDAG instruction selection on the remainder of the block + // not handled by FastISel. If FastISel is not run, this is the entire + // block. + bool HadTailCall; + SelectBasicBlock(Begin, BI, HadTailCall); + } + + FinishBasicBlock(); + FuncInfo->PHINodesToUpdate.clear(); + } + + delete FastIS; + SDB->clearDanglingDebugInfo(); +} + +void +SelectionDAGISel::FinishBasicBlock() { + + DEBUG(dbgs() << "Total amount of phi nodes to update: " + << FuncInfo->PHINodesToUpdate.size() << "\n"; + for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) + dbgs() << "Node " << i << " : (" + << FuncInfo->PHINodesToUpdate[i].first + << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); + + // Next, now that we know what the last MBB the LLVM BB expanded is, update + // PHI nodes in successors. + if (SDB->SwitchCases.empty() && + SDB->JTCases.empty() && + SDB->BitTestCases.empty()) { + for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { + MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; + assert(PHI->isPHI() && + "This is not a machine PHI node that we are updating!"); + if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) + continue; + PHI->addOperand( + MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); + PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); + } + return; + } + + for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { + // Lower header first, if it wasn't already lowered + if (!SDB->BitTestCases[i].Emitted) { + // Set the current basic block to the mbb we wish to insert the code into + FuncInfo->MBB = SDB->BitTestCases[i].Parent; + FuncInfo->InsertPt = FuncInfo->MBB->end(); + // Emit the code + SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); + CurDAG->setRoot(SDB->getRoot()); + SDB->clear(); + CodeGenAndEmitDAG(); + } + + for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { + // Set the current basic block to the mbb we wish to insert the code into + FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; + FuncInfo->InsertPt = FuncInfo->MBB->end(); + // Emit the code + if (j+1 != ej) + SDB->visitBitTestCase(SDB->BitTestCases[i], + SDB->BitTestCases[i].Cases[j+1].ThisBB, + SDB->BitTestCases[i].Reg, + SDB->BitTestCases[i].Cases[j], + FuncInfo->MBB); + else + SDB->visitBitTestCase(SDB->BitTestCases[i], + SDB->BitTestCases[i].Default, + SDB->BitTestCases[i].Reg, + SDB->BitTestCases[i].Cases[j], + FuncInfo->MBB); + + + CurDAG->setRoot(SDB->getRoot()); + SDB->clear(); + CodeGenAndEmitDAG(); + } + + // Update PHI Nodes + for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); + pi != pe; ++pi) { + MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; + MachineBasicBlock *PHIBB = PHI->getParent(); + assert(PHI->isPHI() && + "This is not a machine PHI node that we are updating!"); + // This is "default" BB. We have two jumps to it. From "header" BB and + // from last "case" BB. + if (PHIBB == SDB->BitTestCases[i].Default) { + PHI->addOperand(MachineOperand:: + CreateReg(FuncInfo->PHINodesToUpdate[pi].second, + false)); + PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); + PHI->addOperand(MachineOperand:: + CreateReg(FuncInfo->PHINodesToUpdate[pi].second, + false)); + PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. + back().ThisBB)); + } + // One of "cases" BB. + for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); + j != ej; ++j) { + MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; + if (cBB->isSuccessor(PHIBB)) { + PHI->addOperand(MachineOperand:: + CreateReg(FuncInfo->PHINodesToUpdate[pi].second, + false)); + PHI->addOperand(MachineOperand::CreateMBB(cBB)); + } + } + } + } + SDB->BitTestCases.clear(); + + // If the JumpTable record is filled in, then we need to emit a jump table. + // Updating the PHI nodes is tricky in this case, since we need to determine + // whether the PHI is a successor of the range check MBB or the jump table MBB + for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { + // Lower header first, if it wasn't already lowered + if (!SDB->JTCases[i].first.Emitted) { + // Set the current basic block to the mbb we wish to insert the code into + FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; + FuncInfo->InsertPt = FuncInfo->MBB->end(); + // Emit the code + SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, + FuncInfo->MBB); + CurDAG->setRoot(SDB->getRoot()); + SDB->clear(); + CodeGenAndEmitDAG(); + } + + // Set the current basic block to the mbb we wish to insert the code into + FuncInfo->MBB = SDB->JTCases[i].second.MBB; + FuncInfo->InsertPt = FuncInfo->MBB->end(); + // Emit the code + SDB->visitJumpTable(SDB->JTCases[i].second); + CurDAG->setRoot(SDB->getRoot()); + SDB->clear(); + CodeGenAndEmitDAG(); + + // Update PHI Nodes + for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); + pi != pe; ++pi) { + MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; + MachineBasicBlock *PHIBB = PHI->getParent(); + assert(PHI->isPHI() && + "This is not a machine PHI node that we are updating!"); + // "default" BB. We can go there only from header BB. + if (PHIBB == SDB->JTCases[i].second.Default) { + PHI->addOperand + (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, + false)); + PHI->addOperand + (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); + } + // JT BB. Just iterate over successors here + if (FuncInfo->MBB->isSuccessor(PHIBB)) { + PHI->addOperand + (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, + false)); + PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); + } + } + } + SDB->JTCases.clear(); + + // If the switch block involved a branch to one of the actual successors, we + // need to update PHI nodes in that block. + for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { + MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; + assert(PHI->isPHI() && + "This is not a machine PHI node that we are updating!"); + if (FuncInfo->MBB->isSuccessor(PHI->getParent())) { + PHI->addOperand( + MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); + PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); + } + } + + // If we generated any switch lowering information, build and codegen any + // additional DAGs necessary. + for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { + // Set the current basic block to the mbb we wish to insert the code into + FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; + FuncInfo->InsertPt = FuncInfo->MBB->end(); + + // Determine the unique successors. + SmallVector<MachineBasicBlock *, 2> Succs; + Succs.push_back(SDB->SwitchCases[i].TrueBB); + if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) + Succs.push_back(SDB->SwitchCases[i].FalseBB); + + // Emit the code. Note that this could result in FuncInfo->MBB being split. + SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); + CurDAG->setRoot(SDB->getRoot()); + SDB->clear(); + CodeGenAndEmitDAG(); + + // Remember the last block, now that any splitting is done, for use in + // populating PHI nodes in successors. + MachineBasicBlock *ThisBB = FuncInfo->MBB; + + // Handle any PHI nodes in successors of this chunk, as if we were coming + // from the original BB before switch expansion. Note that PHI nodes can + // occur multiple times in PHINodesToUpdate. We have to be very careful to + // handle them the right number of times. + for (unsigned i = 0, e = Succs.size(); i != e; ++i) { + FuncInfo->MBB = Succs[i]; + FuncInfo->InsertPt = FuncInfo->MBB->end(); + // FuncInfo->MBB may have been removed from the CFG if a branch was + // constant folded. + if (ThisBB->isSuccessor(FuncInfo->MBB)) { + for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin(); + Phi != FuncInfo->MBB->end() && Phi->isPHI(); + ++Phi) { + // This value for this PHI node is recorded in PHINodesToUpdate. + for (unsigned pn = 0; ; ++pn) { + assert(pn != FuncInfo->PHINodesToUpdate.size() && + "Didn't find PHI entry!"); + if (FuncInfo->PHINodesToUpdate[pn].first == Phi) { + Phi->addOperand(MachineOperand:: + CreateReg(FuncInfo->PHINodesToUpdate[pn].second, + false)); + Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); + break; + } + } + } + } + } + } + SDB->SwitchCases.clear(); +} + + +/// Create the scheduler. If a specific scheduler was specified +/// via the SchedulerRegistry, use it, otherwise select the +/// one preferred by the target. +/// +ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { + RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); + + if (!Ctor) { + Ctor = ISHeuristic; + RegisterScheduler::setDefault(Ctor); + } + + return Ctor(this, OptLevel); +} + +//===----------------------------------------------------------------------===// +// Helper functions used by the generated instruction selector. +//===----------------------------------------------------------------------===// +// Calls to these methods are generated by tblgen. + +/// CheckAndMask - The isel is trying to match something like (and X, 255). If +/// the dag combiner simplified the 255, we still want to match. RHS is the +/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value +/// specified in the .td file (e.g. 255). +bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, + int64_t DesiredMaskS) const { + const APInt &ActualMask = RHS->getAPIntValue(); + const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); + + // If the actual mask exactly matches, success! + if (ActualMask == DesiredMask) + return true; + + // If the actual AND mask is allowing unallowed bits, this doesn't match. + if (ActualMask.intersects(~DesiredMask)) + return false; + + // Otherwise, the DAG Combiner may have proven that the value coming in is + // either already zero or is not demanded. Check for known zero input bits. + APInt NeededMask = DesiredMask & ~ActualMask; + if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) + return true; + + // TODO: check to see if missing bits are just not demanded. + + // Otherwise, this pattern doesn't match. + return false; +} + +/// CheckOrMask - The isel is trying to match something like (or X, 255). If +/// the dag combiner simplified the 255, we still want to match. RHS is the +/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value +/// specified in the .td file (e.g. 255). +bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, + int64_t DesiredMaskS) const { + const APInt &ActualMask = RHS->getAPIntValue(); + const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); + + // If the actual mask exactly matches, success! + if (ActualMask == DesiredMask) + return true; + + // If the actual AND mask is allowing unallowed bits, this doesn't match. + if (ActualMask.intersects(~DesiredMask)) + return false; + + // Otherwise, the DAG Combiner may have proven that the value coming in is + // either already zero or is not demanded. Check for known zero input bits. + APInt NeededMask = DesiredMask & ~ActualMask; + + APInt KnownZero, KnownOne; + CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); + + // If all the missing bits in the or are already known to be set, match! + if ((NeededMask & KnownOne) == NeededMask) + return true; + + // TODO: check to see if missing bits are just not demanded. + + // Otherwise, this pattern doesn't match. + return false; +} + + +/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated +/// by tblgen. Others should not call it. +void SelectionDAGISel:: +SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { + std::vector<SDValue> InOps; + std::swap(InOps, Ops); + + Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 + Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 + Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc + Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) + + unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); + if (InOps[e-1].getValueType() == MVT::Glue) + --e; // Don't process a glue operand if it is here. + + while (i != e) { + unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); + if (!InlineAsm::isMemKind(Flags)) { + // Just skip over this operand, copying the operands verbatim. + Ops.insert(Ops.end(), InOps.begin()+i, + InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); + i += InlineAsm::getNumOperandRegisters(Flags) + 1; + } else { + assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && + "Memory operand with multiple values?"); + // Otherwise, this is a memory operand. Ask the target to select it. + std::vector<SDValue> SelOps; + if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) + report_fatal_error("Could not match memory address. Inline asm" + " failure!"); + + // Add this to the output node. + unsigned NewFlags = + InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); + Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); + Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); + i += 2; + } + } + + // Add the glue input back if present. + if (e != InOps.size()) + Ops.push_back(InOps.back()); +} + +/// findGlueUse - Return use of MVT::Glue value produced by the specified +/// SDNode. +/// +static SDNode *findGlueUse(SDNode *N) { + unsigned FlagResNo = N->getNumValues()-1; + for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { + SDUse &Use = I.getUse(); + if (Use.getResNo() == FlagResNo) + return Use.getUser(); + } + return NULL; +} + +/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". +/// This function recursively traverses up the operand chain, ignoring +/// certain nodes. +static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, + SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, + bool IgnoreChains) { + // The NodeID's are given uniques ID's where a node ID is guaranteed to be + // greater than all of its (recursive) operands. If we scan to a point where + // 'use' is smaller than the node we're scanning for, then we know we will + // never find it. + // + // The Use may be -1 (unassigned) if it is a newly allocated node. This can + // happen because we scan down to newly selected nodes in the case of glue + // uses. + if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) + return false; + + // Don't revisit nodes if we already scanned it and didn't fail, we know we + // won't fail if we scan it again. + if (!Visited.insert(Use)) + return false; + + for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { + // Ignore chain uses, they are validated by HandleMergeInputChains. + if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) + continue; + + SDNode *N = Use->getOperand(i).getNode(); + if (N == Def) { + if (Use == ImmedUse || Use == Root) + continue; // We are not looking for immediate use. + assert(N != Root); + return true; + } + + // Traverse up the operand chain. + if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) + return true; + } + return false; +} + +/// IsProfitableToFold - Returns true if it's profitable to fold the specific +/// operand node N of U during instruction selection that starts at Root. +bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, + SDNode *Root) const { + if (OptLevel == CodeGenOpt::None) return false; + return N.hasOneUse(); +} + +/// IsLegalToFold - Returns true if the specific operand node N of +/// U can be folded during instruction selection that starts at Root. +bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, + CodeGenOpt::Level OptLevel, + bool IgnoreChains) { + if (OptLevel == CodeGenOpt::None) return false; + + // If Root use can somehow reach N through a path that that doesn't contain + // U then folding N would create a cycle. e.g. In the following + // diagram, Root can reach N through X. If N is folded into into Root, then + // X is both a predecessor and a successor of U. + // + // [N*] // + // ^ ^ // + // / \ // + // [U*] [X]? // + // ^ ^ // + // \ / // + // \ / // + // [Root*] // + // + // * indicates nodes to be folded together. + // + // If Root produces glue, then it gets (even more) interesting. Since it + // will be "glued" together with its glue use in the scheduler, we need to + // check if it might reach N. + // + // [N*] // + // ^ ^ // + // / \ // + // [U*] [X]? // + // ^ ^ // + // \ \ // + // \ | // + // [Root*] | // + // ^ | // + // f | // + // | / // + // [Y] / // + // ^ / // + // f / // + // | / // + // [GU] // + // + // If GU (glue use) indirectly reaches N (the load), and Root folds N + // (call it Fold), then X is a predecessor of GU and a successor of + // Fold. But since Fold and GU are glued together, this will create + // a cycle in the scheduling graph. + + // If the node has glue, walk down the graph to the "lowest" node in the + // glueged set. + EVT VT = Root->getValueType(Root->getNumValues()-1); + while (VT == MVT::Glue) { + SDNode *GU = findGlueUse(Root); + if (GU == NULL) + break; + Root = GU; + VT = Root->getValueType(Root->getNumValues()-1); + + // If our query node has a glue result with a use, we've walked up it. If + // the user (which has already been selected) has a chain or indirectly uses + // the chain, our WalkChainUsers predicate will not consider it. Because of + // this, we cannot ignore chains in this predicate. + IgnoreChains = false; + } + + + SmallPtrSet<SDNode*, 16> Visited; + return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); +} + +SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { + std::vector<SDValue> Ops(N->op_begin(), N->op_end()); + SelectInlineAsmMemoryOperands(Ops); + + std::vector<EVT> VTs; + VTs.push_back(MVT::Other); + VTs.push_back(MVT::Glue); + SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), + VTs, &Ops[0], Ops.size()); + New->setNodeId(-1); + return New.getNode(); +} + +SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { + return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); +} + +/// GetVBR - decode a vbr encoding whose top bit is set. +LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t +GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { + assert(Val >= 128 && "Not a VBR"); + Val &= 127; // Remove first vbr bit. + + unsigned Shift = 7; + uint64_t NextBits; + do { + NextBits = MatcherTable[Idx++]; + Val |= (NextBits&127) << Shift; + Shift += 7; + } while (NextBits & 128); + + return Val; +} + + +/// UpdateChainsAndGlue - When a match is complete, this method updates uses of +/// interior glue and chain results to use the new glue and chain results. +void SelectionDAGISel:: +UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, + const SmallVectorImpl<SDNode*> &ChainNodesMatched, + SDValue InputGlue, + const SmallVectorImpl<SDNode*> &GlueResultNodesMatched, + bool isMorphNodeTo) { + SmallVector<SDNode*, 4> NowDeadNodes; + + ISelUpdater ISU(ISelPosition); + + // Now that all the normal results are replaced, we replace the chain and + // glue results if present. + if (!ChainNodesMatched.empty()) { + assert(InputChain.getNode() != 0 && + "Matched input chains but didn't produce a chain"); + // Loop over all of the nodes we matched that produced a chain result. + // Replace all the chain results with the final chain we ended up with. + for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { + SDNode *ChainNode = ChainNodesMatched[i]; + + // If this node was already deleted, don't look at it. + if (ChainNode->getOpcode() == ISD::DELETED_NODE) + continue; + + // Don't replace the results of the root node if we're doing a + // MorphNodeTo. + if (ChainNode == NodeToMatch && isMorphNodeTo) + continue; + + SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); + if (ChainVal.getValueType() == MVT::Glue) + ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); + assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); + CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU); + + // If the node became dead and we haven't already seen it, delete it. + if (ChainNode->use_empty() && + !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) + NowDeadNodes.push_back(ChainNode); + } + } + + // If the result produces glue, update any glue results in the matched + // pattern with the glue result. + if (InputGlue.getNode() != 0) { + // Handle any interior nodes explicitly marked. + for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { + SDNode *FRN = GlueResultNodesMatched[i]; + + // If this node was already deleted, don't look at it. + if (FRN->getOpcode() == ISD::DELETED_NODE) + continue; + + assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && + "Doesn't have a glue result"); + CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), + InputGlue, &ISU); + + // If the node became dead and we haven't already seen it, delete it. + if (FRN->use_empty() && + !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) + NowDeadNodes.push_back(FRN); + } + } + + if (!NowDeadNodes.empty()) + CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU); + + DEBUG(errs() << "ISEL: Match complete!\n"); +} + +enum ChainResult { + CR_Simple, + CR_InducesCycle, + CR_LeadsToInteriorNode +}; + +/// WalkChainUsers - Walk down the users of the specified chained node that is +/// part of the pattern we're matching, looking at all of the users we find. +/// This determines whether something is an interior node, whether we have a +/// non-pattern node in between two pattern nodes (which prevent folding because +/// it would induce a cycle) and whether we have a TokenFactor node sandwiched +/// between pattern nodes (in which case the TF becomes part of the pattern). +/// +/// The walk we do here is guaranteed to be small because we quickly get down to +/// already selected nodes "below" us. +static ChainResult +WalkChainUsers(SDNode *ChainedNode, + SmallVectorImpl<SDNode*> &ChainedNodesInPattern, + SmallVectorImpl<SDNode*> &InteriorChainedNodes) { + ChainResult Result = CR_Simple; + + for (SDNode::use_iterator UI = ChainedNode->use_begin(), + E = ChainedNode->use_end(); UI != E; ++UI) { + // Make sure the use is of the chain, not some other value we produce. + if (UI.getUse().getValueType() != MVT::Other) continue; + + SDNode *User = *UI; + + // If we see an already-selected machine node, then we've gone beyond the + // pattern that we're selecting down into the already selected chunk of the + // DAG. + if (User->isMachineOpcode() || + User->getOpcode() == ISD::HANDLENODE) // Root of the graph. + continue; + + if (User->getOpcode() == ISD::CopyToReg || + User->getOpcode() == ISD::CopyFromReg || + User->getOpcode() == ISD::INLINEASM || + User->getOpcode() == ISD::EH_LABEL) { + // If their node ID got reset to -1 then they've already been selected. + // Treat them like a MachineOpcode. + if (User->getNodeId() == -1) + continue; + } + + // If we have a TokenFactor, we handle it specially. + if (User->getOpcode() != ISD::TokenFactor) { + // If the node isn't a token factor and isn't part of our pattern, then it + // must be a random chained node in between two nodes we're selecting. + // This happens when we have something like: + // x = load ptr + // call + // y = x+4 + // store y -> ptr + // Because we structurally match the load/store as a read/modify/write, + // but the call is chained between them. We cannot fold in this case + // because it would induce a cycle in the graph. + if (!std::count(ChainedNodesInPattern.begin(), + ChainedNodesInPattern.end(), User)) + return CR_InducesCycle; + + // Otherwise we found a node that is part of our pattern. For example in: + // x = load ptr + // y = x+4 + // store y -> ptr + // This would happen when we're scanning down from the load and see the + // store as a user. Record that there is a use of ChainedNode that is + // part of the pattern and keep scanning uses. + Result = CR_LeadsToInteriorNode; + InteriorChainedNodes.push_back(User); + continue; + } + + // If we found a TokenFactor, there are two cases to consider: first if the + // TokenFactor is just hanging "below" the pattern we're matching (i.e. no + // uses of the TF are in our pattern) we just want to ignore it. Second, + // the TokenFactor can be sandwiched in between two chained nodes, like so: + // [Load chain] + // ^ + // | + // [Load] + // ^ ^ + // | \ DAG's like cheese + // / \ do you? + // / | + // [TokenFactor] [Op] + // ^ ^ + // | | + // \ / + // \ / + // [Store] + // + // In this case, the TokenFactor becomes part of our match and we rewrite it + // as a new TokenFactor. + // + // To distinguish these two cases, do a recursive walk down the uses. + switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { + case CR_Simple: + // If the uses of the TokenFactor are just already-selected nodes, ignore + // it, it is "below" our pattern. + continue; + case CR_InducesCycle: + // If the uses of the TokenFactor lead to nodes that are not part of our + // pattern that are not selected, folding would turn this into a cycle, + // bail out now. + return CR_InducesCycle; + case CR_LeadsToInteriorNode: + break; // Otherwise, keep processing. + } + + // Okay, we know we're in the interesting interior case. The TokenFactor + // is now going to be considered part of the pattern so that we rewrite its + // uses (it may have uses that are not part of the pattern) with the + // ultimate chain result of the generated code. We will also add its chain + // inputs as inputs to the ultimate TokenFactor we create. + Result = CR_LeadsToInteriorNode; + ChainedNodesInPattern.push_back(User); + InteriorChainedNodes.push_back(User); + continue; + } + + return Result; +} + +/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains +/// operation for when the pattern matched at least one node with a chains. The +/// input vector contains a list of all of the chained nodes that we match. We +/// must determine if this is a valid thing to cover (i.e. matching it won't +/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will +/// be used as the input node chain for the generated nodes. +static SDValue +HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, + SelectionDAG *CurDAG) { + // Walk all of the chained nodes we've matched, recursively scanning down the + // users of the chain result. This adds any TokenFactor nodes that are caught + // in between chained nodes to the chained and interior nodes list. + SmallVector<SDNode*, 3> InteriorChainedNodes; + for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { + if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, + InteriorChainedNodes) == CR_InducesCycle) + return SDValue(); // Would induce a cycle. + } + + // Okay, we have walked all the matched nodes and collected TokenFactor nodes + // that we are interested in. Form our input TokenFactor node. + SmallVector<SDValue, 3> InputChains; + for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { + // Add the input chain of this node to the InputChains list (which will be + // the operands of the generated TokenFactor) if it's not an interior node. + SDNode *N = ChainNodesMatched[i]; + if (N->getOpcode() != ISD::TokenFactor) { + if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) + continue; + + // Otherwise, add the input chain. + SDValue InChain = ChainNodesMatched[i]->getOperand(0); + assert(InChain.getValueType() == MVT::Other && "Not a chain"); + InputChains.push_back(InChain); + continue; + } + + // If we have a token factor, we want to add all inputs of the token factor + // that are not part of the pattern we're matching. + for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { + if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), + N->getOperand(op).getNode())) + InputChains.push_back(N->getOperand(op)); + } + } + + SDValue Res; + if (InputChains.size() == 1) + return InputChains[0]; + return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(), + MVT::Other, &InputChains[0], InputChains.size()); +} + +/// MorphNode - Handle morphing a node in place for the selector. +SDNode *SelectionDAGISel:: +MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, + const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { + // It is possible we're using MorphNodeTo to replace a node with no + // normal results with one that has a normal result (or we could be + // adding a chain) and the input could have glue and chains as well. + // In this case we need to shift the operands down. + // FIXME: This is a horrible hack and broken in obscure cases, no worse + // than the old isel though. + int OldGlueResultNo = -1, OldChainResultNo = -1; + + unsigned NTMNumResults = Node->getNumValues(); + if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { + OldGlueResultNo = NTMNumResults-1; + if (NTMNumResults != 1 && + Node->getValueType(NTMNumResults-2) == MVT::Other) + OldChainResultNo = NTMNumResults-2; + } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) + OldChainResultNo = NTMNumResults-1; + + // Call the underlying SelectionDAG routine to do the transmogrification. Note + // that this deletes operands of the old node that become dead. + SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); + + // MorphNodeTo can operate in two ways: if an existing node with the + // specified operands exists, it can just return it. Otherwise, it + // updates the node in place to have the requested operands. + if (Res == Node) { + // If we updated the node in place, reset the node ID. To the isel, + // this should be just like a newly allocated machine node. + Res->setNodeId(-1); + } + + unsigned ResNumResults = Res->getNumValues(); + // Move the glue if needed. + if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && + (unsigned)OldGlueResultNo != ResNumResults-1) + CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), + SDValue(Res, ResNumResults-1)); + + if ((EmitNodeInfo & OPFL_GlueOutput) != 0) + --ResNumResults; + + // Move the chain reference if needed. + if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && + (unsigned)OldChainResultNo != ResNumResults-1) + CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), + SDValue(Res, ResNumResults-1)); + + // Otherwise, no replacement happened because the node already exists. Replace + // Uses of the old node with the new one. + if (Res != Node) + CurDAG->ReplaceAllUsesWith(Node, Res); + + return Res; +} + +/// CheckPatternPredicate - Implements OP_CheckPatternPredicate. +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDValue N, + const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { + // Accept if it is exactly the same as a previously recorded node. + unsigned RecNo = MatcherTable[MatcherIndex++]; + assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); + return N == RecordedNodes[RecNo].first; +} + +/// CheckPatternPredicate - Implements OP_CheckPatternPredicate. +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SelectionDAGISel &SDISel) { + return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); +} + +/// CheckNodePredicate - Implements OP_CheckNodePredicate. +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SelectionDAGISel &SDISel, SDNode *N) { + return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); +} + +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDNode *N) { + uint16_t Opc = MatcherTable[MatcherIndex++]; + Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; + return N->getOpcode() == Opc; +} + +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDValue N, const TargetLowering &TLI) { + MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; + if (N.getValueType() == VT) return true; + + // Handle the case when VT is iPTR. + return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy(); +} + +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDValue N, const TargetLowering &TLI, + unsigned ChildNo) { + if (ChildNo >= N.getNumOperands()) + return false; // Match fails if out of range child #. + return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); +} + + +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDValue N) { + return cast<CondCodeSDNode>(N)->get() == + (ISD::CondCode)MatcherTable[MatcherIndex++]; +} + +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDValue N, const TargetLowering &TLI) { + MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; + if (cast<VTSDNode>(N)->getVT() == VT) + return true; + + // Handle the case when VT is iPTR. + return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy(); +} + +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDValue N) { + int64_t Val = MatcherTable[MatcherIndex++]; + if (Val & 128) + Val = GetVBR(Val, MatcherTable, MatcherIndex); + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); + return C != 0 && C->getSExtValue() == Val; +} + +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDValue N, SelectionDAGISel &SDISel) { + int64_t Val = MatcherTable[MatcherIndex++]; + if (Val & 128) + Val = GetVBR(Val, MatcherTable, MatcherIndex); + + if (N->getOpcode() != ISD::AND) return false; + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); + return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); +} + +LLVM_ATTRIBUTE_ALWAYS_INLINE static bool +CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, + SDValue N, SelectionDAGISel &SDISel) { + int64_t Val = MatcherTable[MatcherIndex++]; + if (Val & 128) + Val = GetVBR(Val, MatcherTable, MatcherIndex); + + if (N->getOpcode() != ISD::OR) return false; + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); + return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); +} + +/// IsPredicateKnownToFail - If we know how and can do so without pushing a +/// scope, evaluate the current node. If the current predicate is known to +/// fail, set Result=true and return anything. If the current predicate is +/// known to pass, set Result=false and return the MatcherIndex to continue +/// with. If the current predicate is unknown, set Result=false and return the +/// MatcherIndex to continue with. +static unsigned IsPredicateKnownToFail(const unsigned char *Table, + unsigned Index, SDValue N, + bool &Result, SelectionDAGISel &SDISel, + SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) { + switch (Table[Index++]) { + default: + Result = false; + return Index-1; // Could not evaluate this predicate. + case SelectionDAGISel::OPC_CheckSame: + Result = !::CheckSame(Table, Index, N, RecordedNodes); + return Index; + case SelectionDAGISel::OPC_CheckPatternPredicate: + Result = !::CheckPatternPredicate(Table, Index, SDISel); + return Index; + case SelectionDAGISel::OPC_CheckPredicate: + Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); + return Index; + case SelectionDAGISel::OPC_CheckOpcode: + Result = !::CheckOpcode(Table, Index, N.getNode()); + return Index; + case SelectionDAGISel::OPC_CheckType: + Result = !::CheckType(Table, Index, N, SDISel.TLI); + return Index; + case SelectionDAGISel::OPC_CheckChild0Type: + case SelectionDAGISel::OPC_CheckChild1Type: + case SelectionDAGISel::OPC_CheckChild2Type: + case SelectionDAGISel::OPC_CheckChild3Type: + case SelectionDAGISel::OPC_CheckChild4Type: + case SelectionDAGISel::OPC_CheckChild5Type: + case SelectionDAGISel::OPC_CheckChild6Type: + case SelectionDAGISel::OPC_CheckChild7Type: + Result = !::CheckChildType(Table, Index, N, SDISel.TLI, + Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); + return Index; + case SelectionDAGISel::OPC_CheckCondCode: + Result = !::CheckCondCode(Table, Index, N); + return Index; + case SelectionDAGISel::OPC_CheckValueType: + Result = !::CheckValueType(Table, Index, N, SDISel.TLI); + return Index; + case SelectionDAGISel::OPC_CheckInteger: + Result = !::CheckInteger(Table, Index, N); + return Index; + case SelectionDAGISel::OPC_CheckAndImm: + Result = !::CheckAndImm(Table, Index, N, SDISel); + return Index; + case SelectionDAGISel::OPC_CheckOrImm: + Result = !::CheckOrImm(Table, Index, N, SDISel); + return Index; + } +} + +namespace { + +struct MatchScope { + /// FailIndex - If this match fails, this is the index to continue with. + unsigned FailIndex; + + /// NodeStack - The node stack when the scope was formed. + SmallVector<SDValue, 4> NodeStack; + + /// NumRecordedNodes - The number of recorded nodes when the scope was formed. + unsigned NumRecordedNodes; + + /// NumMatchedMemRefs - The number of matched memref entries. + unsigned NumMatchedMemRefs; + + /// InputChain/InputGlue - The current chain/glue + SDValue InputChain, InputGlue; + + /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. + bool HasChainNodesMatched, HasGlueResultNodesMatched; +}; + +} + +SDNode *SelectionDAGISel:: +SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, + unsigned TableSize) { + // FIXME: Should these even be selected? Handle these cases in the caller? + switch (NodeToMatch->getOpcode()) { + default: + break; + case ISD::EntryToken: // These nodes remain the same. + case ISD::BasicBlock: + case ISD::Register: + //case ISD::VALUETYPE: + //case ISD::CONDCODE: + case ISD::HANDLENODE: + case ISD::MDNODE_SDNODE: + case ISD::TargetConstant: + case ISD::TargetConstantFP: + case ISD::TargetConstantPool: + case ISD::TargetFrameIndex: + case ISD::TargetExternalSymbol: + case ISD::TargetBlockAddress: + case ISD::TargetJumpTable: + case ISD::TargetGlobalTLSAddress: + case ISD::TargetGlobalAddress: + case ISD::TokenFactor: + case ISD::CopyFromReg: + case ISD::CopyToReg: + case ISD::EH_LABEL: + NodeToMatch->setNodeId(-1); // Mark selected. + return 0; + case ISD::AssertSext: + case ISD::AssertZext: + CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), + NodeToMatch->getOperand(0)); + return 0; + case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); + case ISD::UNDEF: return Select_UNDEF(NodeToMatch); + } + + assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); + + // Set up the node stack with NodeToMatch as the only node on the stack. + SmallVector<SDValue, 8> NodeStack; + SDValue N = SDValue(NodeToMatch, 0); + NodeStack.push_back(N); + + // MatchScopes - Scopes used when matching, if a match failure happens, this + // indicates where to continue checking. + SmallVector<MatchScope, 8> MatchScopes; + + // RecordedNodes - This is the set of nodes that have been recorded by the + // state machine. The second value is the parent of the node, or null if the + // root is recorded. + SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; + + // MatchedMemRefs - This is the set of MemRef's we've seen in the input + // pattern. + SmallVector<MachineMemOperand*, 2> MatchedMemRefs; + + // These are the current input chain and glue for use when generating nodes. + // Various Emit operations change these. For example, emitting a copytoreg + // uses and updates these. + SDValue InputChain, InputGlue; + + // ChainNodesMatched - If a pattern matches nodes that have input/output + // chains, the OPC_EmitMergeInputChains operation is emitted which indicates + // which ones they are. The result is captured into this list so that we can + // update the chain results when the pattern is complete. + SmallVector<SDNode*, 3> ChainNodesMatched; + SmallVector<SDNode*, 3> GlueResultNodesMatched; + + DEBUG(errs() << "ISEL: Starting pattern match on root node: "; + NodeToMatch->dump(CurDAG); + errs() << '\n'); + + // Determine where to start the interpreter. Normally we start at opcode #0, + // but if the state machine starts with an OPC_SwitchOpcode, then we + // accelerate the first lookup (which is guaranteed to be hot) with the + // OpcodeOffset table. + unsigned MatcherIndex = 0; + + if (!OpcodeOffset.empty()) { + // Already computed the OpcodeOffset table, just index into it. + if (N.getOpcode() < OpcodeOffset.size()) + MatcherIndex = OpcodeOffset[N.getOpcode()]; + DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n"); + + } else if (MatcherTable[0] == OPC_SwitchOpcode) { + // Otherwise, the table isn't computed, but the state machine does start + // with an OPC_SwitchOpcode instruction. Populate the table now, since this + // is the first time we're selecting an instruction. + unsigned Idx = 1; + while (1) { + // Get the size of this case. + unsigned CaseSize = MatcherTable[Idx++]; + if (CaseSize & 128) + CaseSize = GetVBR(CaseSize, MatcherTable, Idx); + if (CaseSize == 0) break; + + // Get the opcode, add the index to the table. + uint16_t Opc = MatcherTable[Idx++]; + Opc |= (unsigned short)MatcherTable[Idx++] << 8; + if (Opc >= OpcodeOffset.size()) + OpcodeOffset.resize((Opc+1)*2); + OpcodeOffset[Opc] = Idx; + Idx += CaseSize; + } + + // Okay, do the lookup for the first opcode. + if (N.getOpcode() < OpcodeOffset.size()) + MatcherIndex = OpcodeOffset[N.getOpcode()]; + } + + while (1) { + assert(MatcherIndex < TableSize && "Invalid index"); +#ifndef NDEBUG + unsigned CurrentOpcodeIndex = MatcherIndex; +#endif + BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; + switch (Opcode) { + case OPC_Scope: { + // Okay, the semantics of this operation are that we should push a scope + // then evaluate the first child. However, pushing a scope only to have + // the first check fail (which then pops it) is inefficient. If we can + // determine immediately that the first check (or first several) will + // immediately fail, don't even bother pushing a scope for them. + unsigned FailIndex; + + while (1) { + unsigned NumToSkip = MatcherTable[MatcherIndex++]; + if (NumToSkip & 128) + NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); + // Found the end of the scope with no match. + if (NumToSkip == 0) { + FailIndex = 0; + break; + } + + FailIndex = MatcherIndex+NumToSkip; + + unsigned MatcherIndexOfPredicate = MatcherIndex; + (void)MatcherIndexOfPredicate; // silence warning. + + // If we can't evaluate this predicate without pushing a scope (e.g. if + // it is a 'MoveParent') or if the predicate succeeds on this node, we + // push the scope and evaluate the full predicate chain. + bool Result; + MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, + Result, *this, RecordedNodes); + if (!Result) + break; + + DEBUG(errs() << " Skipped scope entry (due to false predicate) at " + << "index " << MatcherIndexOfPredicate + << ", continuing at " << FailIndex << "\n"); + ++NumDAGIselRetries; + + // Otherwise, we know that this case of the Scope is guaranteed to fail, + // move to the next case. + MatcherIndex = FailIndex; + } + + // If the whole scope failed to match, bail. + if (FailIndex == 0) break; + + // Push a MatchScope which indicates where to go if the first child fails + // to match. + MatchScope NewEntry; + NewEntry.FailIndex = FailIndex; + NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); + NewEntry.NumRecordedNodes = RecordedNodes.size(); + NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); + NewEntry.InputChain = InputChain; + NewEntry.InputGlue = InputGlue; + NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); + NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); + MatchScopes.push_back(NewEntry); + continue; + } + case OPC_RecordNode: { + // Remember this node, it may end up being an operand in the pattern. + SDNode *Parent = 0; + if (NodeStack.size() > 1) + Parent = NodeStack[NodeStack.size()-2].getNode(); + RecordedNodes.push_back(std::make_pair(N, Parent)); + continue; + } + + case OPC_RecordChild0: case OPC_RecordChild1: + case OPC_RecordChild2: case OPC_RecordChild3: + case OPC_RecordChild4: case OPC_RecordChild5: + case OPC_RecordChild6: case OPC_RecordChild7: { + unsigned ChildNo = Opcode-OPC_RecordChild0; + if (ChildNo >= N.getNumOperands()) + break; // Match fails if out of range child #. + + RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), + N.getNode())); + continue; + } + case OPC_RecordMemRef: + MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); + continue; + + case OPC_CaptureGlueInput: + // If the current node has an input glue, capture it in InputGlue. + if (N->getNumOperands() != 0 && + N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) + InputGlue = N->getOperand(N->getNumOperands()-1); + continue; + + case OPC_MoveChild: { + unsigned ChildNo = MatcherTable[MatcherIndex++]; + if (ChildNo >= N.getNumOperands()) + break; // Match fails if out of range child #. + N = N.getOperand(ChildNo); + NodeStack.push_back(N); + continue; + } + + case OPC_MoveParent: + // Pop the current node off the NodeStack. + NodeStack.pop_back(); + assert(!NodeStack.empty() && "Node stack imbalance!"); + N = NodeStack.back(); + continue; + + case OPC_CheckSame: + if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; + continue; + case OPC_CheckPatternPredicate: + if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; + continue; + case OPC_CheckPredicate: + if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, + N.getNode())) + break; + continue; + case OPC_CheckComplexPat: { + unsigned CPNum = MatcherTable[MatcherIndex++]; + unsigned RecNo = MatcherTable[MatcherIndex++]; + assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); + if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, + RecordedNodes[RecNo].first, CPNum, + RecordedNodes)) + break; + continue; + } + case OPC_CheckOpcode: + if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; + continue; + + case OPC_CheckType: + if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break; + continue; + + case OPC_SwitchOpcode: { + unsigned CurNodeOpcode = N.getOpcode(); + unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; + unsigned CaseSize; + while (1) { + // Get the size of this case. + CaseSize = MatcherTable[MatcherIndex++]; + if (CaseSize & 128) + CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); + if (CaseSize == 0) break; + + uint16_t Opc = MatcherTable[MatcherIndex++]; + Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; + + // If the opcode matches, then we will execute this case. + if (CurNodeOpcode == Opc) + break; + + // Otherwise, skip over this case. + MatcherIndex += CaseSize; + } + + // If no cases matched, bail out. + if (CaseSize == 0) break; + + // Otherwise, execute the case we found. + DEBUG(errs() << " OpcodeSwitch from " << SwitchStart + << " to " << MatcherIndex << "\n"); + continue; + } + + case OPC_SwitchType: { + MVT CurNodeVT = N.getValueType().getSimpleVT(); + unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; + unsigned CaseSize; + while (1) { + // Get the size of this case. + CaseSize = MatcherTable[MatcherIndex++]; + if (CaseSize & 128) + CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); + if (CaseSize == 0) break; + + MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; + if (CaseVT == MVT::iPTR) + CaseVT = TLI.getPointerTy(); + + // If the VT matches, then we will execute this case. + if (CurNodeVT == CaseVT) + break; + + // Otherwise, skip over this case. + MatcherIndex += CaseSize; + } + + // If no cases matched, bail out. + if (CaseSize == 0) break; + + // Otherwise, execute the case we found. + DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() + << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); + continue; + } + case OPC_CheckChild0Type: case OPC_CheckChild1Type: + case OPC_CheckChild2Type: case OPC_CheckChild3Type: + case OPC_CheckChild4Type: case OPC_CheckChild5Type: + case OPC_CheckChild6Type: case OPC_CheckChild7Type: + if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, + Opcode-OPC_CheckChild0Type)) + break; + continue; + case OPC_CheckCondCode: + if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; + continue; + case OPC_CheckValueType: + if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break; + continue; + case OPC_CheckInteger: + if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; + continue; + case OPC_CheckAndImm: + if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; + continue; + case OPC_CheckOrImm: + if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; + continue; + + case OPC_CheckFoldableChainNode: { + assert(NodeStack.size() != 1 && "No parent node"); + // Verify that all intermediate nodes between the root and this one have + // a single use. + bool HasMultipleUses = false; + for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) + if (!NodeStack[i].hasOneUse()) { + HasMultipleUses = true; + break; + } + if (HasMultipleUses) break; + + // Check to see that the target thinks this is profitable to fold and that + // we can fold it without inducing cycles in the graph. + if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), + NodeToMatch) || + !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), + NodeToMatch, OptLevel, + true/*We validate our own chains*/)) + break; + + continue; + } + case OPC_EmitInteger: { + MVT::SimpleValueType VT = + (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; + int64_t Val = MatcherTable[MatcherIndex++]; + if (Val & 128) + Val = GetVBR(Val, MatcherTable, MatcherIndex); + RecordedNodes.push_back(std::pair<SDValue, SDNode*>( + CurDAG->getTargetConstant(Val, VT), (SDNode*)0)); + continue; + } + case OPC_EmitRegister: { + MVT::SimpleValueType VT = + (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; + unsigned RegNo = MatcherTable[MatcherIndex++]; + RecordedNodes.push_back(std::pair<SDValue, SDNode*>( + CurDAG->getRegister(RegNo, VT), (SDNode*)0)); + continue; + } + case OPC_EmitRegister2: { + // For targets w/ more than 256 register names, the register enum + // values are stored in two bytes in the matcher table (just like + // opcodes). + MVT::SimpleValueType VT = + (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; + unsigned RegNo = MatcherTable[MatcherIndex++]; + RegNo |= MatcherTable[MatcherIndex++] << 8; + RecordedNodes.push_back(std::pair<SDValue, SDNode*>( + CurDAG->getRegister(RegNo, VT), (SDNode*)0)); + continue; + } + + case OPC_EmitConvertToTarget: { + // Convert from IMM/FPIMM to target version. + unsigned RecNo = MatcherTable[MatcherIndex++]; + assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); + SDValue Imm = RecordedNodes[RecNo].first; + + if (Imm->getOpcode() == ISD::Constant) { + int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue(); + Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); + } else if (Imm->getOpcode() == ISD::ConstantFP) { + const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); + Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); + } + + RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); + continue; + } + + case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 + case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 + // These are space-optimized forms of OPC_EmitMergeInputChains. + assert(InputChain.getNode() == 0 && + "EmitMergeInputChains should be the first chain producing node"); + assert(ChainNodesMatched.empty() && + "Should only have one EmitMergeInputChains per match"); + + // Read all of the chained nodes. + unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; + assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); + ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); + + // FIXME: What if other value results of the node have uses not matched + // by this pattern? + if (ChainNodesMatched.back() != NodeToMatch && + !RecordedNodes[RecNo].first.hasOneUse()) { + ChainNodesMatched.clear(); + break; + } + + // Merge the input chains if they are not intra-pattern references. + InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); + + if (InputChain.getNode() == 0) + break; // Failed to merge. + continue; + } + + case OPC_EmitMergeInputChains: { + assert(InputChain.getNode() == 0 && + "EmitMergeInputChains should be the first chain producing node"); + // This node gets a list of nodes we matched in the input that have + // chains. We want to token factor all of the input chains to these nodes + // together. However, if any of the input chains is actually one of the + // nodes matched in this pattern, then we have an intra-match reference. + // Ignore these because the newly token factored chain should not refer to + // the old nodes. + unsigned NumChains = MatcherTable[MatcherIndex++]; + assert(NumChains != 0 && "Can't TF zero chains"); + + assert(ChainNodesMatched.empty() && + "Should only have one EmitMergeInputChains per match"); + + // Read all of the chained nodes. + for (unsigned i = 0; i != NumChains; ++i) { + unsigned RecNo = MatcherTable[MatcherIndex++]; + assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); + ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); + + // FIXME: What if other value results of the node have uses not matched + // by this pattern? + if (ChainNodesMatched.back() != NodeToMatch && + !RecordedNodes[RecNo].first.hasOneUse()) { + ChainNodesMatched.clear(); + break; + } + } + + // If the inner loop broke out, the match fails. + if (ChainNodesMatched.empty()) + break; + + // Merge the input chains if they are not intra-pattern references. + InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); + + if (InputChain.getNode() == 0) + break; // Failed to merge. + + continue; + } + + case OPC_EmitCopyToReg: { + unsigned RecNo = MatcherTable[MatcherIndex++]; + assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); + unsigned DestPhysReg = MatcherTable[MatcherIndex++]; + + if (InputChain.getNode() == 0) + InputChain = CurDAG->getEntryNode(); + + InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), + DestPhysReg, RecordedNodes[RecNo].first, + InputGlue); + + InputGlue = InputChain.getValue(1); + continue; + } + + case OPC_EmitNodeXForm: { + unsigned XFormNo = MatcherTable[MatcherIndex++]; + unsigned RecNo = MatcherTable[MatcherIndex++]; + assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); + SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); + RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0)); + continue; + } + + case OPC_EmitNode: + case OPC_MorphNodeTo: { + uint16_t TargetOpc = MatcherTable[MatcherIndex++]; + TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; + unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; + // Get the result VT list. + unsigned NumVTs = MatcherTable[MatcherIndex++]; + SmallVector<EVT, 4> VTs; + for (unsigned i = 0; i != NumVTs; ++i) { + MVT::SimpleValueType VT = + (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; + if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; + VTs.push_back(VT); + } + + if (EmitNodeInfo & OPFL_Chain) + VTs.push_back(MVT::Other); + if (EmitNodeInfo & OPFL_GlueOutput) + VTs.push_back(MVT::Glue); + + // This is hot code, so optimize the two most common cases of 1 and 2 + // results. + SDVTList VTList; + if (VTs.size() == 1) + VTList = CurDAG->getVTList(VTs[0]); + else if (VTs.size() == 2) + VTList = CurDAG->getVTList(VTs[0], VTs[1]); + else + VTList = CurDAG->getVTList(VTs.data(), VTs.size()); + + // Get the operand list. + unsigned NumOps = MatcherTable[MatcherIndex++]; + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0; i != NumOps; ++i) { + unsigned RecNo = MatcherTable[MatcherIndex++]; + if (RecNo & 128) + RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); + + assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); + Ops.push_back(RecordedNodes[RecNo].first); + } + + // If there are variadic operands to add, handle them now. + if (EmitNodeInfo & OPFL_VariadicInfo) { + // Determine the start index to copy from. + unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); + FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; + assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && + "Invalid variadic node"); + // Copy all of the variadic operands, not including a potential glue + // input. + for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); + i != e; ++i) { + SDValue V = NodeToMatch->getOperand(i); + if (V.getValueType() == MVT::Glue) break; + Ops.push_back(V); + } + } + + // If this has chain/glue inputs, add them. + if (EmitNodeInfo & OPFL_Chain) + Ops.push_back(InputChain); + if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0) + Ops.push_back(InputGlue); + + // Create the node. + SDNode *Res = 0; + if (Opcode != OPC_MorphNodeTo) { + // If this is a normal EmitNode command, just create the new node and + // add the results to the RecordedNodes list. + Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), + VTList, Ops.data(), Ops.size()); + + // Add all the non-glue/non-chain results to the RecordedNodes list. + for (unsigned i = 0, e = VTs.size(); i != e; ++i) { + if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; + RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), + (SDNode*) 0)); + } + + } else { + Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), + EmitNodeInfo); + } + + // If the node had chain/glue results, update our notion of the current + // chain and glue. + if (EmitNodeInfo & OPFL_GlueOutput) { + InputGlue = SDValue(Res, VTs.size()-1); + if (EmitNodeInfo & OPFL_Chain) + InputChain = SDValue(Res, VTs.size()-2); + } else if (EmitNodeInfo & OPFL_Chain) + InputChain = SDValue(Res, VTs.size()-1); + + // If the OPFL_MemRefs glue is set on this node, slap all of the + // accumulated memrefs onto it. + // + // FIXME: This is vastly incorrect for patterns with multiple outputs + // instructions that access memory and for ComplexPatterns that match + // loads. + if (EmitNodeInfo & OPFL_MemRefs) { + // Only attach load or store memory operands if the generated + // instruction may load or store. + const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc); + bool mayLoad = MCID.mayLoad(); + bool mayStore = MCID.mayStore(); + + unsigned NumMemRefs = 0; + for (SmallVector<MachineMemOperand*, 2>::const_iterator I = + MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { + if ((*I)->isLoad()) { + if (mayLoad) + ++NumMemRefs; + } else if ((*I)->isStore()) { + if (mayStore) + ++NumMemRefs; + } else { + ++NumMemRefs; + } + } + + MachineSDNode::mmo_iterator MemRefs = + MF->allocateMemRefsArray(NumMemRefs); + + MachineSDNode::mmo_iterator MemRefsPos = MemRefs; + for (SmallVector<MachineMemOperand*, 2>::const_iterator I = + MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) { + if ((*I)->isLoad()) { + if (mayLoad) + *MemRefsPos++ = *I; + } else if ((*I)->isStore()) { + if (mayStore) + *MemRefsPos++ = *I; + } else { + *MemRefsPos++ = *I; + } + } + + cast<MachineSDNode>(Res) + ->setMemRefs(MemRefs, MemRefs + NumMemRefs); + } + + DEBUG(errs() << " " + << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") + << " node: "; Res->dump(CurDAG); errs() << "\n"); + + // If this was a MorphNodeTo then we're completely done! + if (Opcode == OPC_MorphNodeTo) { + // Update chain and glue uses. + UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, + InputGlue, GlueResultNodesMatched, true); + return Res; + } + + continue; + } + + case OPC_MarkGlueResults: { + unsigned NumNodes = MatcherTable[MatcherIndex++]; + + // Read and remember all the glue-result nodes. + for (unsigned i = 0; i != NumNodes; ++i) { + unsigned RecNo = MatcherTable[MatcherIndex++]; + if (RecNo & 128) + RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); + + assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); + GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); + } + continue; + } + + case OPC_CompleteMatch: { + // The match has been completed, and any new nodes (if any) have been + // created. Patch up references to the matched dag to use the newly + // created nodes. + unsigned NumResults = MatcherTable[MatcherIndex++]; + + for (unsigned i = 0; i != NumResults; ++i) { + unsigned ResSlot = MatcherTable[MatcherIndex++]; + if (ResSlot & 128) + ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); + + assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); + SDValue Res = RecordedNodes[ResSlot].first; + + assert(i < NodeToMatch->getNumValues() && + NodeToMatch->getValueType(i) != MVT::Other && + NodeToMatch->getValueType(i) != MVT::Glue && + "Invalid number of results to complete!"); + assert((NodeToMatch->getValueType(i) == Res.getValueType() || + NodeToMatch->getValueType(i) == MVT::iPTR || + Res.getValueType() == MVT::iPTR || + NodeToMatch->getValueType(i).getSizeInBits() == + Res.getValueType().getSizeInBits()) && + "invalid replacement"); + CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); + } + + // If the root node defines glue, add it to the glue nodes to update list. + if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) + GlueResultNodesMatched.push_back(NodeToMatch); + + // Update chain and glue uses. + UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, + InputGlue, GlueResultNodesMatched, false); + + assert(NodeToMatch->use_empty() && + "Didn't replace all uses of the node?"); + + // FIXME: We just return here, which interacts correctly with SelectRoot + // above. We should fix this to not return an SDNode* anymore. + return 0; + } + } + + // If the code reached this point, then the match failed. See if there is + // another child to try in the current 'Scope', otherwise pop it until we + // find a case to check. + DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); + ++NumDAGIselRetries; + while (1) { + if (MatchScopes.empty()) { + CannotYetSelect(NodeToMatch); + return 0; + } + + // Restore the interpreter state back to the point where the scope was + // formed. + MatchScope &LastScope = MatchScopes.back(); + RecordedNodes.resize(LastScope.NumRecordedNodes); + NodeStack.clear(); + NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); + N = NodeStack.back(); + + if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) + MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); + MatcherIndex = LastScope.FailIndex; + + DEBUG(errs() << " Continuing at " << MatcherIndex << "\n"); + + InputChain = LastScope.InputChain; + InputGlue = LastScope.InputGlue; + if (!LastScope.HasChainNodesMatched) + ChainNodesMatched.clear(); + if (!LastScope.HasGlueResultNodesMatched) + GlueResultNodesMatched.clear(); + + // Check to see what the offset is at the new MatcherIndex. If it is zero + // we have reached the end of this scope, otherwise we have another child + // in the current scope to try. + unsigned NumToSkip = MatcherTable[MatcherIndex++]; + if (NumToSkip & 128) + NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); + + // If we have another child in this scope to match, update FailIndex and + // try it. + if (NumToSkip != 0) { + LastScope.FailIndex = MatcherIndex+NumToSkip; + break; + } + + // End of this scope, pop it and try the next child in the containing + // scope. + MatchScopes.pop_back(); + } + } +} + + + +void SelectionDAGISel::CannotYetSelect(SDNode *N) { + std::string msg; + raw_string_ostream Msg(msg); + Msg << "Cannot select: "; + + if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && + N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && + N->getOpcode() != ISD::INTRINSIC_VOID) { + N->printrFull(Msg, CurDAG); + } else { + bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; + unsigned iid = + cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); + if (iid < Intrinsic::num_intrinsics) + Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); + else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) + Msg << "target intrinsic %" << TII->getName(iid); + else + Msg << "unknown intrinsic #" << iid; + } + report_fatal_error(Msg.str()); +} + +char SelectionDAGISel::ID = 0; |