summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp2805
1 files changed, 2805 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
new file mode 100644
index 0000000..87bb296
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -0,0 +1,2805 @@
+//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the SelectionDAGISel class.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "isel"
+#include "ScheduleDAGSDNodes.h"
+#include "SelectionDAGBuilder.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
+STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
+STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
+STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
+STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
+
+static cl::opt<bool>
+EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
+ cl::desc("Enable verbose messages in the \"fast\" "
+ "instruction selector"));
+static cl::opt<bool>
+EnableFastISelAbort("fast-isel-abort", cl::Hidden,
+ cl::desc("Enable abort calls when \"fast\" instruction fails"));
+
+static cl::opt<bool>
+UseMBPI("use-mbpi",
+ cl::desc("use Machine Branch Probability Info"),
+ cl::init(true), cl::Hidden);
+
+#ifndef NDEBUG
+static cl::opt<bool>
+ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before the first "
+ "dag combine pass"));
+static cl::opt<bool>
+ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before legalize types"));
+static cl::opt<bool>
+ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before legalize"));
+static cl::opt<bool>
+ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before the second "
+ "dag combine pass"));
+static cl::opt<bool>
+ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before the post legalize types"
+ " dag combine pass"));
+static cl::opt<bool>
+ViewISelDAGs("view-isel-dags", cl::Hidden,
+ cl::desc("Pop up a window to show isel dags as they are selected"));
+static cl::opt<bool>
+ViewSchedDAGs("view-sched-dags", cl::Hidden,
+ cl::desc("Pop up a window to show sched dags as they are processed"));
+static cl::opt<bool>
+ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
+ cl::desc("Pop up a window to show SUnit dags after they are processed"));
+#else
+static const bool ViewDAGCombine1 = false,
+ ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
+ ViewDAGCombine2 = false,
+ ViewDAGCombineLT = false,
+ ViewISelDAGs = false, ViewSchedDAGs = false,
+ ViewSUnitDAGs = false;
+#endif
+
+//===---------------------------------------------------------------------===//
+///
+/// RegisterScheduler class - Track the registration of instruction schedulers.
+///
+//===---------------------------------------------------------------------===//
+MachinePassRegistry RegisterScheduler::Registry;
+
+//===---------------------------------------------------------------------===//
+///
+/// ISHeuristic command line option for instruction schedulers.
+///
+//===---------------------------------------------------------------------===//
+static cl::opt<RegisterScheduler::FunctionPassCtor, false,
+ RegisterPassParser<RegisterScheduler> >
+ISHeuristic("pre-RA-sched",
+ cl::init(&createDefaultScheduler),
+ cl::desc("Instruction schedulers available (before register"
+ " allocation):"));
+
+static RegisterScheduler
+defaultListDAGScheduler("default", "Best scheduler for the target",
+ createDefaultScheduler);
+
+namespace llvm {
+ //===--------------------------------------------------------------------===//
+ /// createDefaultScheduler - This creates an instruction scheduler appropriate
+ /// for the target.
+ ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
+ CodeGenOpt::Level OptLevel) {
+ const TargetLowering &TLI = IS->getTargetLowering();
+
+ if (OptLevel == CodeGenOpt::None)
+ return createSourceListDAGScheduler(IS, OptLevel);
+ if (TLI.getSchedulingPreference() == Sched::Latency)
+ return createTDListDAGScheduler(IS, OptLevel);
+ if (TLI.getSchedulingPreference() == Sched::RegPressure)
+ return createBURRListDAGScheduler(IS, OptLevel);
+ if (TLI.getSchedulingPreference() == Sched::Hybrid)
+ return createHybridListDAGScheduler(IS, OptLevel);
+ assert(TLI.getSchedulingPreference() == Sched::ILP &&
+ "Unknown sched type!");
+ return createILPListDAGScheduler(IS, OptLevel);
+ }
+}
+
+// EmitInstrWithCustomInserter - This method should be implemented by targets
+// that mark instructions with the 'usesCustomInserter' flag. These
+// instructions are special in various ways, which require special support to
+// insert. The specified MachineInstr is created but not inserted into any
+// basic blocks, and this method is called to expand it into a sequence of
+// instructions, potentially also creating new basic blocks and control flow.
+// When new basic blocks are inserted and the edges from MBB to its successors
+// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
+// DenseMap.
+MachineBasicBlock *
+TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+#ifndef NDEBUG
+ dbgs() << "If a target marks an instruction with "
+ "'usesCustomInserter', it must implement "
+ "TargetLowering::EmitInstrWithCustomInserter!";
+#endif
+ llvm_unreachable(0);
+ return 0;
+}
+
+//===----------------------------------------------------------------------===//
+// SelectionDAGISel code
+//===----------------------------------------------------------------------===//
+
+SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
+ CodeGenOpt::Level OL) :
+ MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
+ FuncInfo(new FunctionLoweringInfo(TLI)),
+ CurDAG(new SelectionDAG(tm)),
+ SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
+ GFI(),
+ OptLevel(OL),
+ DAGSize(0) {
+ initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
+ initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
+ initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
+ }
+
+SelectionDAGISel::~SelectionDAGISel() {
+ delete SDB;
+ delete CurDAG;
+ delete FuncInfo;
+}
+
+void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addRequired<GCModuleInfo>();
+ AU.addPreserved<GCModuleInfo>();
+ if (UseMBPI && OptLevel != CodeGenOpt::None)
+ AU.addRequired<BranchProbabilityInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
+/// may trap on it. In this case we have to split the edge so that the path
+/// through the predecessor block that doesn't go to the phi block doesn't
+/// execute the possibly trapping instruction.
+///
+/// This is required for correctness, so it must be done at -O0.
+///
+static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
+ // Loop for blocks with phi nodes.
+ for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
+ PHINode *PN = dyn_cast<PHINode>(BB->begin());
+ if (PN == 0) continue;
+
+ ReprocessBlock:
+ // For each block with a PHI node, check to see if any of the input values
+ // are potentially trapping constant expressions. Constant expressions are
+ // the only potentially trapping value that can occur as the argument to a
+ // PHI.
+ for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
+ if (CE == 0 || !CE->canTrap()) continue;
+
+ // The only case we have to worry about is when the edge is critical.
+ // Since this block has a PHI Node, we assume it has multiple input
+ // edges: check to see if the pred has multiple successors.
+ BasicBlock *Pred = PN->getIncomingBlock(i);
+ if (Pred->getTerminator()->getNumSuccessors() == 1)
+ continue;
+
+ // Okay, we have to split this edge.
+ SplitCriticalEdge(Pred->getTerminator(),
+ GetSuccessorNumber(Pred, BB), SDISel, true);
+ goto ReprocessBlock;
+ }
+ }
+}
+
+bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
+ // Do some sanity-checking on the command-line options.
+ assert((!EnableFastISelVerbose || EnableFastISel) &&
+ "-fast-isel-verbose requires -fast-isel");
+ assert((!EnableFastISelAbort || EnableFastISel) &&
+ "-fast-isel-abort requires -fast-isel");
+
+ const Function &Fn = *mf.getFunction();
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+
+ MF = &mf;
+ RegInfo = &MF->getRegInfo();
+ AA = &getAnalysis<AliasAnalysis>();
+ GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
+
+ DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
+
+ SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
+
+ CurDAG->init(*MF);
+ FuncInfo->set(Fn, *MF);
+
+ if (UseMBPI && OptLevel != CodeGenOpt::None)
+ FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
+ else
+ FuncInfo->BPI = 0;
+
+ SDB->init(GFI, *AA);
+
+ SelectAllBasicBlocks(Fn);
+
+ // If the first basic block in the function has live ins that need to be
+ // copied into vregs, emit the copies into the top of the block before
+ // emitting the code for the block.
+ MachineBasicBlock *EntryMBB = MF->begin();
+ RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
+
+ DenseMap<unsigned, unsigned> LiveInMap;
+ if (!FuncInfo->ArgDbgValues.empty())
+ for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
+ E = RegInfo->livein_end(); LI != E; ++LI)
+ if (LI->second)
+ LiveInMap.insert(std::make_pair(LI->first, LI->second));
+
+ // Insert DBG_VALUE instructions for function arguments to the entry block.
+ for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
+ MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
+ unsigned Reg = MI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ EntryMBB->insert(EntryMBB->begin(), MI);
+ else {
+ MachineInstr *Def = RegInfo->getVRegDef(Reg);
+ MachineBasicBlock::iterator InsertPos = Def;
+ // FIXME: VR def may not be in entry block.
+ Def->getParent()->insert(llvm::next(InsertPos), MI);
+ }
+
+ // If Reg is live-in then update debug info to track its copy in a vreg.
+ DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
+ if (LDI != LiveInMap.end()) {
+ MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
+ MachineBasicBlock::iterator InsertPos = Def;
+ const MDNode *Variable =
+ MI->getOperand(MI->getNumOperands()-1).getMetadata();
+ unsigned Offset = MI->getOperand(1).getImm();
+ // Def is never a terminator here, so it is ok to increment InsertPos.
+ BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
+ TII.get(TargetOpcode::DBG_VALUE))
+ .addReg(LDI->second, RegState::Debug)
+ .addImm(Offset).addMetadata(Variable);
+
+ // If this vreg is directly copied into an exported register then
+ // that COPY instructions also need DBG_VALUE, if it is the only
+ // user of LDI->second.
+ MachineInstr *CopyUseMI = NULL;
+ for (MachineRegisterInfo::use_iterator
+ UI = RegInfo->use_begin(LDI->second);
+ MachineInstr *UseMI = UI.skipInstruction();) {
+ if (UseMI->isDebugValue()) continue;
+ if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
+ CopyUseMI = UseMI; continue;
+ }
+ // Otherwise this is another use or second copy use.
+ CopyUseMI = NULL; break;
+ }
+ if (CopyUseMI) {
+ MachineInstr *NewMI =
+ BuildMI(*MF, CopyUseMI->getDebugLoc(),
+ TII.get(TargetOpcode::DBG_VALUE))
+ .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
+ .addImm(Offset).addMetadata(Variable);
+ EntryMBB->insertAfter(CopyUseMI, NewMI);
+ }
+ }
+ }
+
+ // Determine if there are any calls in this machine function.
+ MachineFrameInfo *MFI = MF->getFrameInfo();
+ if (!MFI->hasCalls()) {
+ for (MachineFunction::const_iterator
+ I = MF->begin(), E = MF->end(); I != E; ++I) {
+ const MachineBasicBlock *MBB = I;
+ for (MachineBasicBlock::const_iterator
+ II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
+ const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
+
+ if ((MCID.isCall() && !MCID.isReturn()) ||
+ II->isStackAligningInlineAsm()) {
+ MFI->setHasCalls(true);
+ goto done;
+ }
+ }
+ }
+ done:;
+ }
+
+ // Determine if there is a call to setjmp in the machine function.
+ MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
+
+ // Replace forward-declared registers with the registers containing
+ // the desired value.
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ for (DenseMap<unsigned, unsigned>::iterator
+ I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
+ I != E; ++I) {
+ unsigned From = I->first;
+ unsigned To = I->second;
+ // If To is also scheduled to be replaced, find what its ultimate
+ // replacement is.
+ for (;;) {
+ DenseMap<unsigned, unsigned>::iterator J =
+ FuncInfo->RegFixups.find(To);
+ if (J == E) break;
+ To = J->second;
+ }
+ // Replace it.
+ MRI.replaceRegWith(From, To);
+ }
+
+ // Release function-specific state. SDB and CurDAG are already cleared
+ // at this point.
+ FuncInfo->clear();
+
+ return true;
+}
+
+void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
+ BasicBlock::const_iterator End,
+ bool &HadTailCall) {
+ // Lower all of the non-terminator instructions. If a call is emitted
+ // as a tail call, cease emitting nodes for this block. Terminators
+ // are handled below.
+ for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
+ SDB->visit(*I);
+
+ // Make sure the root of the DAG is up-to-date.
+ CurDAG->setRoot(SDB->getControlRoot());
+ HadTailCall = SDB->HasTailCall;
+ SDB->clear();
+
+ // Final step, emit the lowered DAG as machine code.
+ CodeGenAndEmitDAG();
+}
+
+void SelectionDAGISel::ComputeLiveOutVRegInfo() {
+ SmallPtrSet<SDNode*, 128> VisitedNodes;
+ SmallVector<SDNode*, 128> Worklist;
+
+ Worklist.push_back(CurDAG->getRoot().getNode());
+
+ APInt Mask;
+ APInt KnownZero;
+ APInt KnownOne;
+
+ do {
+ SDNode *N = Worklist.pop_back_val();
+
+ // If we've already seen this node, ignore it.
+ if (!VisitedNodes.insert(N))
+ continue;
+
+ // Otherwise, add all chain operands to the worklist.
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (N->getOperand(i).getValueType() == MVT::Other)
+ Worklist.push_back(N->getOperand(i).getNode());
+
+ // If this is a CopyToReg with a vreg dest, process it.
+ if (N->getOpcode() != ISD::CopyToReg)
+ continue;
+
+ unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(DestReg))
+ continue;
+
+ // Ignore non-scalar or non-integer values.
+ SDValue Src = N->getOperand(2);
+ EVT SrcVT = Src.getValueType();
+ if (!SrcVT.isInteger() || SrcVT.isVector())
+ continue;
+
+ unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
+ Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
+ CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
+ FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
+ } while (!Worklist.empty());
+}
+
+void SelectionDAGISel::CodeGenAndEmitDAG() {
+ std::string GroupName;
+ if (TimePassesIsEnabled)
+ GroupName = "Instruction Selection and Scheduling";
+ std::string BlockName;
+ int BlockNumber = -1;
+#ifdef NDEBUG
+ if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
+ ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
+ ViewSUnitDAGs)
+#endif
+ {
+ BlockNumber = FuncInfo->MBB->getNumber();
+ BlockName = MF->getFunction()->getNameStr() + ":" +
+ FuncInfo->MBB->getBasicBlock()->getNameStr();
+ }
+ DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
+ << " '" << BlockName << "'\n"; CurDAG->dump());
+
+ if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
+
+ // Run the DAG combiner in pre-legalize mode.
+ {
+ NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
+ CurDAG->Combine(Unrestricted, *AA, OptLevel);
+ }
+
+ DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
+ << " '" << BlockName << "'\n"; CurDAG->dump());
+
+ // Second step, hack on the DAG until it only uses operations and types that
+ // the target supports.
+ if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
+ BlockName);
+
+ bool Changed;
+ {
+ NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
+ Changed = CurDAG->LegalizeTypes();
+ }
+
+ DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
+ << " '" << BlockName << "'\n"; CurDAG->dump());
+
+ if (Changed) {
+ if (ViewDAGCombineLT)
+ CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
+
+ // Run the DAG combiner in post-type-legalize mode.
+ {
+ NamedRegionTimer T("DAG Combining after legalize types", GroupName,
+ TimePassesIsEnabled);
+ CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
+ }
+
+ DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
+ << " '" << BlockName << "'\n"; CurDAG->dump());
+ }
+
+ {
+ NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
+ Changed = CurDAG->LegalizeVectors();
+ }
+
+ if (Changed) {
+ {
+ NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
+ CurDAG->LegalizeTypes();
+ }
+
+ if (ViewDAGCombineLT)
+ CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
+
+ // Run the DAG combiner in post-type-legalize mode.
+ {
+ NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
+ TimePassesIsEnabled);
+ CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
+ }
+
+ DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
+ << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
+ }
+
+ if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
+
+ {
+ NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
+ CurDAG->Legalize();
+ }
+
+ DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
+ << " '" << BlockName << "'\n"; CurDAG->dump());
+
+ if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
+
+ // Run the DAG combiner in post-legalize mode.
+ {
+ NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
+ CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
+ }
+
+ DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
+ << " '" << BlockName << "'\n"; CurDAG->dump());
+
+ if (OptLevel != CodeGenOpt::None)
+ ComputeLiveOutVRegInfo();
+
+ if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
+
+ // Third, instruction select all of the operations to machine code, adding the
+ // code to the MachineBasicBlock.
+ {
+ NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
+ DoInstructionSelection();
+ }
+
+ DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
+ << " '" << BlockName << "'\n"; CurDAG->dump());
+
+ if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
+
+ // Schedule machine code.
+ ScheduleDAGSDNodes *Scheduler = CreateScheduler();
+ {
+ NamedRegionTimer T("Instruction Scheduling", GroupName,
+ TimePassesIsEnabled);
+ Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
+ }
+
+ if (ViewSUnitDAGs) Scheduler->viewGraph();
+
+ // Emit machine code to BB. This can change 'BB' to the last block being
+ // inserted into.
+ MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
+ {
+ NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
+
+ LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
+ FuncInfo->InsertPt = Scheduler->InsertPos;
+ }
+
+ // If the block was split, make sure we update any references that are used to
+ // update PHI nodes later on.
+ if (FirstMBB != LastMBB)
+ SDB->UpdateSplitBlock(FirstMBB, LastMBB);
+
+ // Free the scheduler state.
+ {
+ NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
+ TimePassesIsEnabled);
+ delete Scheduler;
+ }
+
+ // Free the SelectionDAG state, now that we're finished with it.
+ CurDAG->clear();
+}
+
+void SelectionDAGISel::DoInstructionSelection() {
+ DEBUG(errs() << "===== Instruction selection begins: BB#"
+ << FuncInfo->MBB->getNumber()
+ << " '" << FuncInfo->MBB->getName() << "'\n");
+
+ PreprocessISelDAG();
+
+ // Select target instructions for the DAG.
+ {
+ // Number all nodes with a topological order and set DAGSize.
+ DAGSize = CurDAG->AssignTopologicalOrder();
+
+ // Create a dummy node (which is not added to allnodes), that adds
+ // a reference to the root node, preventing it from being deleted,
+ // and tracking any changes of the root.
+ HandleSDNode Dummy(CurDAG->getRoot());
+ ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
+ ++ISelPosition;
+
+ // The AllNodes list is now topological-sorted. Visit the
+ // nodes by starting at the end of the list (the root of the
+ // graph) and preceding back toward the beginning (the entry
+ // node).
+ while (ISelPosition != CurDAG->allnodes_begin()) {
+ SDNode *Node = --ISelPosition;
+ // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
+ // but there are currently some corner cases that it misses. Also, this
+ // makes it theoretically possible to disable the DAGCombiner.
+ if (Node->use_empty())
+ continue;
+
+ SDNode *ResNode = Select(Node);
+
+ // FIXME: This is pretty gross. 'Select' should be changed to not return
+ // anything at all and this code should be nuked with a tactical strike.
+
+ // If node should not be replaced, continue with the next one.
+ if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
+ continue;
+ // Replace node.
+ if (ResNode)
+ ReplaceUses(Node, ResNode);
+
+ // If after the replacement this node is not used any more,
+ // remove this dead node.
+ if (Node->use_empty()) { // Don't delete EntryToken, etc.
+ ISelUpdater ISU(ISelPosition);
+ CurDAG->RemoveDeadNode(Node, &ISU);
+ }
+ }
+
+ CurDAG->setRoot(Dummy.getValue());
+ }
+
+ DEBUG(errs() << "===== Instruction selection ends:\n");
+
+ PostprocessISelDAG();
+}
+
+/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
+/// do other setup for EH landing-pad blocks.
+void SelectionDAGISel::PrepareEHLandingPad() {
+ // Add a label to mark the beginning of the landing pad. Deletion of the
+ // landing pad can thus be detected via the MachineModuleInfo.
+ MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
+
+ const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
+ BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
+ .addSym(Label);
+
+ // Mark exception register as live in.
+ unsigned Reg = TLI.getExceptionAddressRegister();
+ if (Reg) FuncInfo->MBB->addLiveIn(Reg);
+
+ // Mark exception selector register as live in.
+ Reg = TLI.getExceptionSelectorRegister();
+ if (Reg) FuncInfo->MBB->addLiveIn(Reg);
+
+ // FIXME: Hack around an exception handling flaw (PR1508): the personality
+ // function and list of typeids logically belong to the invoke (or, if you
+ // like, the basic block containing the invoke), and need to be associated
+ // with it in the dwarf exception handling tables. Currently however the
+ // information is provided by an intrinsic (eh.selector) that can be moved
+ // to unexpected places by the optimizers: if the unwind edge is critical,
+ // then breaking it can result in the intrinsics being in the successor of
+ // the landing pad, not the landing pad itself. This results
+ // in exceptions not being caught because no typeids are associated with
+ // the invoke. This may not be the only way things can go wrong, but it
+ // is the only way we try to work around for the moment.
+ const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
+ const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
+
+ if (Br && Br->isUnconditional()) { // Critical edge?
+ BasicBlock::const_iterator I, E;
+ for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
+ if (isa<EHSelectorInst>(I))
+ break;
+
+ if (I == E)
+ // No catch info found - try to extract some from the successor.
+ CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
+ }
+}
+
+
+
+/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
+/// load into the specified FoldInst. Note that we could have a sequence where
+/// multiple LLVM IR instructions are folded into the same machineinstr. For
+/// example we could have:
+/// A: x = load i32 *P
+/// B: y = icmp A, 42
+/// C: br y, ...
+///
+/// In this scenario, LI is "A", and FoldInst is "C". We know about "B" (and
+/// any other folded instructions) because it is between A and C.
+///
+/// If we succeed in folding the load into the operation, return true.
+///
+bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
+ const Instruction *FoldInst,
+ FastISel *FastIS) {
+ // We know that the load has a single use, but don't know what it is. If it
+ // isn't one of the folded instructions, then we can't succeed here. Handle
+ // this by scanning the single-use users of the load until we get to FoldInst.
+ unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
+
+ const Instruction *TheUser = LI->use_back();
+ while (TheUser != FoldInst && // Scan up until we find FoldInst.
+ // Stay in the right block.
+ TheUser->getParent() == FoldInst->getParent() &&
+ --MaxUsers) { // Don't scan too far.
+ // If there are multiple or no uses of this instruction, then bail out.
+ if (!TheUser->hasOneUse())
+ return false;
+
+ TheUser = TheUser->use_back();
+ }
+
+ // Don't try to fold volatile loads. Target has to deal with alignment
+ // constraints.
+ if (LI->isVolatile()) return false;
+
+ // Figure out which vreg this is going into. If there is no assigned vreg yet
+ // then there actually was no reference to it. Perhaps the load is referenced
+ // by a dead instruction.
+ unsigned LoadReg = FastIS->getRegForValue(LI);
+ if (LoadReg == 0)
+ return false;
+
+ // Check to see what the uses of this vreg are. If it has no uses, or more
+ // than one use (at the machine instr level) then we can't fold it.
+ MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
+ if (RI == RegInfo->reg_end())
+ return false;
+
+ // See if there is exactly one use of the vreg. If there are multiple uses,
+ // then the instruction got lowered to multiple machine instructions or the
+ // use of the loaded value ended up being multiple operands of the result, in
+ // either case, we can't fold this.
+ MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
+ if (PostRI != RegInfo->reg_end())
+ return false;
+
+ assert(RI.getOperand().isUse() &&
+ "The only use of the vreg must be a use, we haven't emitted the def!");
+
+ MachineInstr *User = &*RI;
+
+ // Set the insertion point properly. Folding the load can cause generation of
+ // other random instructions (like sign extends) for addressing modes, make
+ // sure they get inserted in a logical place before the new instruction.
+ FuncInfo->InsertPt = User;
+ FuncInfo->MBB = User->getParent();
+
+ // Ask the target to try folding the load.
+ return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
+}
+
+/// isFoldedOrDeadInstruction - Return true if the specified instruction is
+/// side-effect free and is either dead or folded into a generated instruction.
+/// Return false if it needs to be emitted.
+static bool isFoldedOrDeadInstruction(const Instruction *I,
+ FunctionLoweringInfo *FuncInfo) {
+ return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
+ !isa<TerminatorInst>(I) && // Terminators aren't folded.
+ !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
+ !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
+}
+
+void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
+ // Initialize the Fast-ISel state, if needed.
+ FastISel *FastIS = 0;
+ if (EnableFastISel)
+ FastIS = TLI.createFastISel(*FuncInfo);
+
+ // Iterate over all basic blocks in the function.
+ ReversePostOrderTraversal<const Function*> RPOT(&Fn);
+ for (ReversePostOrderTraversal<const Function*>::rpo_iterator
+ I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
+ const BasicBlock *LLVMBB = *I;
+
+ if (OptLevel != CodeGenOpt::None) {
+ bool AllPredsVisited = true;
+ for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
+ PI != PE; ++PI) {
+ if (!FuncInfo->VisitedBBs.count(*PI)) {
+ AllPredsVisited = false;
+ break;
+ }
+ }
+
+ if (AllPredsVisited) {
+ for (BasicBlock::const_iterator I = LLVMBB->begin();
+ isa<PHINode>(I); ++I)
+ FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
+ } else {
+ for (BasicBlock::const_iterator I = LLVMBB->begin();
+ isa<PHINode>(I); ++I)
+ FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
+ }
+
+ FuncInfo->VisitedBBs.insert(LLVMBB);
+ }
+
+ FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
+ FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
+
+ BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
+ BasicBlock::const_iterator const End = LLVMBB->end();
+ BasicBlock::const_iterator BI = End;
+
+ FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
+
+ // Setup an EH landing-pad block.
+ if (FuncInfo->MBB->isLandingPad())
+ PrepareEHLandingPad();
+
+ // Lower any arguments needed in this block if this is the entry block.
+ if (LLVMBB == &Fn.getEntryBlock())
+ LowerArguments(LLVMBB);
+
+ // Before doing SelectionDAG ISel, see if FastISel has been requested.
+ if (FastIS) {
+ FastIS->startNewBlock();
+
+ // Emit code for any incoming arguments. This must happen before
+ // beginning FastISel on the entry block.
+ if (LLVMBB == &Fn.getEntryBlock()) {
+ CurDAG->setRoot(SDB->getControlRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // If we inserted any instructions at the beginning, make a note of
+ // where they are, so we can be sure to emit subsequent instructions
+ // after them.
+ if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
+ FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
+ else
+ FastIS->setLastLocalValue(0);
+ }
+
+ // Do FastISel on as many instructions as possible.
+ for (; BI != Begin; --BI) {
+ const Instruction *Inst = llvm::prior(BI);
+
+ // If we no longer require this instruction, skip it.
+ if (isFoldedOrDeadInstruction(Inst, FuncInfo))
+ continue;
+
+ // Bottom-up: reset the insert pos at the top, after any local-value
+ // instructions.
+ FastIS->recomputeInsertPt();
+
+ // Try to select the instruction with FastISel.
+ if (FastIS->SelectInstruction(Inst)) {
+ ++NumFastIselSuccess;
+ // If fast isel succeeded, skip over all the folded instructions, and
+ // then see if there is a load right before the selected instructions.
+ // Try to fold the load if so.
+ const Instruction *BeforeInst = Inst;
+ while (BeforeInst != Begin) {
+ BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
+ if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
+ break;
+ }
+ if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
+ BeforeInst->hasOneUse() &&
+ TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
+ // If we succeeded, don't re-select the load.
+ BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
+ continue;
+ }
+
+ // Then handle certain instructions as single-LLVM-Instruction blocks.
+ if (isa<CallInst>(Inst)) {
+ ++NumFastIselFailures;
+ if (EnableFastISelVerbose || EnableFastISelAbort) {
+ dbgs() << "FastISel missed call: ";
+ Inst->dump();
+ }
+
+ if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
+ unsigned &R = FuncInfo->ValueMap[Inst];
+ if (!R)
+ R = FuncInfo->CreateRegs(Inst->getType());
+ }
+
+ bool HadTailCall = false;
+ SelectBasicBlock(Inst, BI, HadTailCall);
+
+ // If the call was emitted as a tail call, we're done with the block.
+ if (HadTailCall) {
+ --BI;
+ break;
+ }
+
+ continue;
+ }
+
+ if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
+ // Don't abort, and use a different message for terminator misses.
+ ++NumFastIselFailures;
+ if (EnableFastISelVerbose || EnableFastISelAbort) {
+ dbgs() << "FastISel missed terminator: ";
+ Inst->dump();
+ }
+ } else {
+ ++NumFastIselFailures;
+ if (EnableFastISelVerbose || EnableFastISelAbort) {
+ dbgs() << "FastISel miss: ";
+ Inst->dump();
+ }
+ if (EnableFastISelAbort)
+ // The "fast" selector couldn't handle something and bailed.
+ // For the purpose of debugging, just abort.
+ llvm_unreachable("FastISel didn't select the entire block");
+ }
+ break;
+ }
+
+ FastIS->recomputeInsertPt();
+ }
+
+ if (Begin != BI)
+ ++NumDAGBlocks;
+ else
+ ++NumFastIselBlocks;
+
+ if (Begin != BI) {
+ // Run SelectionDAG instruction selection on the remainder of the block
+ // not handled by FastISel. If FastISel is not run, this is the entire
+ // block.
+ bool HadTailCall;
+ SelectBasicBlock(Begin, BI, HadTailCall);
+ }
+
+ FinishBasicBlock();
+ FuncInfo->PHINodesToUpdate.clear();
+ }
+
+ delete FastIS;
+ SDB->clearDanglingDebugInfo();
+}
+
+void
+SelectionDAGISel::FinishBasicBlock() {
+
+ DEBUG(dbgs() << "Total amount of phi nodes to update: "
+ << FuncInfo->PHINodesToUpdate.size() << "\n";
+ for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
+ dbgs() << "Node " << i << " : ("
+ << FuncInfo->PHINodesToUpdate[i].first
+ << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
+
+ // Next, now that we know what the last MBB the LLVM BB expanded is, update
+ // PHI nodes in successors.
+ if (SDB->SwitchCases.empty() &&
+ SDB->JTCases.empty() &&
+ SDB->BitTestCases.empty()) {
+ for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
+ MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
+ assert(PHI->isPHI() &&
+ "This is not a machine PHI node that we are updating!");
+ if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
+ continue;
+ PHI->addOperand(
+ MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
+ PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
+ }
+ return;
+ }
+
+ for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
+ // Lower header first, if it wasn't already lowered
+ if (!SDB->BitTestCases[i].Emitted) {
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = SDB->BitTestCases[i].Parent;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // Emit the code
+ SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+ }
+
+ for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // Emit the code
+ if (j+1 != ej)
+ SDB->visitBitTestCase(SDB->BitTestCases[i],
+ SDB->BitTestCases[i].Cases[j+1].ThisBB,
+ SDB->BitTestCases[i].Reg,
+ SDB->BitTestCases[i].Cases[j],
+ FuncInfo->MBB);
+ else
+ SDB->visitBitTestCase(SDB->BitTestCases[i],
+ SDB->BitTestCases[i].Default,
+ SDB->BitTestCases[i].Reg,
+ SDB->BitTestCases[i].Cases[j],
+ FuncInfo->MBB);
+
+
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+ }
+
+ // Update PHI Nodes
+ for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
+ pi != pe; ++pi) {
+ MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
+ MachineBasicBlock *PHIBB = PHI->getParent();
+ assert(PHI->isPHI() &&
+ "This is not a machine PHI node that we are updating!");
+ // This is "default" BB. We have two jumps to it. From "header" BB and
+ // from last "case" BB.
+ if (PHIBB == SDB->BitTestCases[i].Default) {
+ PHI->addOperand(MachineOperand::
+ CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
+ false));
+ PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
+ PHI->addOperand(MachineOperand::
+ CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
+ false));
+ PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
+ back().ThisBB));
+ }
+ // One of "cases" BB.
+ for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
+ j != ej; ++j) {
+ MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
+ if (cBB->isSuccessor(PHIBB)) {
+ PHI->addOperand(MachineOperand::
+ CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
+ false));
+ PHI->addOperand(MachineOperand::CreateMBB(cBB));
+ }
+ }
+ }
+ }
+ SDB->BitTestCases.clear();
+
+ // If the JumpTable record is filled in, then we need to emit a jump table.
+ // Updating the PHI nodes is tricky in this case, since we need to determine
+ // whether the PHI is a successor of the range check MBB or the jump table MBB
+ for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
+ // Lower header first, if it wasn't already lowered
+ if (!SDB->JTCases[i].first.Emitted) {
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // Emit the code
+ SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
+ FuncInfo->MBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+ }
+
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = SDB->JTCases[i].second.MBB;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // Emit the code
+ SDB->visitJumpTable(SDB->JTCases[i].second);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // Update PHI Nodes
+ for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
+ pi != pe; ++pi) {
+ MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
+ MachineBasicBlock *PHIBB = PHI->getParent();
+ assert(PHI->isPHI() &&
+ "This is not a machine PHI node that we are updating!");
+ // "default" BB. We can go there only from header BB.
+ if (PHIBB == SDB->JTCases[i].second.Default) {
+ PHI->addOperand
+ (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
+ false));
+ PHI->addOperand
+ (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
+ }
+ // JT BB. Just iterate over successors here
+ if (FuncInfo->MBB->isSuccessor(PHIBB)) {
+ PHI->addOperand
+ (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
+ false));
+ PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
+ }
+ }
+ }
+ SDB->JTCases.clear();
+
+ // If the switch block involved a branch to one of the actual successors, we
+ // need to update PHI nodes in that block.
+ for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
+ MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
+ assert(PHI->isPHI() &&
+ "This is not a machine PHI node that we are updating!");
+ if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
+ PHI->addOperand(
+ MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
+ PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
+ }
+ }
+
+ // If we generated any switch lowering information, build and codegen any
+ // additional DAGs necessary.
+ for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+
+ // Determine the unique successors.
+ SmallVector<MachineBasicBlock *, 2> Succs;
+ Succs.push_back(SDB->SwitchCases[i].TrueBB);
+ if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
+ Succs.push_back(SDB->SwitchCases[i].FalseBB);
+
+ // Emit the code. Note that this could result in FuncInfo->MBB being split.
+ SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // Remember the last block, now that any splitting is done, for use in
+ // populating PHI nodes in successors.
+ MachineBasicBlock *ThisBB = FuncInfo->MBB;
+
+ // Handle any PHI nodes in successors of this chunk, as if we were coming
+ // from the original BB before switch expansion. Note that PHI nodes can
+ // occur multiple times in PHINodesToUpdate. We have to be very careful to
+ // handle them the right number of times.
+ for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
+ FuncInfo->MBB = Succs[i];
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // FuncInfo->MBB may have been removed from the CFG if a branch was
+ // constant folded.
+ if (ThisBB->isSuccessor(FuncInfo->MBB)) {
+ for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
+ Phi != FuncInfo->MBB->end() && Phi->isPHI();
+ ++Phi) {
+ // This value for this PHI node is recorded in PHINodesToUpdate.
+ for (unsigned pn = 0; ; ++pn) {
+ assert(pn != FuncInfo->PHINodesToUpdate.size() &&
+ "Didn't find PHI entry!");
+ if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
+ Phi->addOperand(MachineOperand::
+ CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
+ false));
+ Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ SDB->SwitchCases.clear();
+}
+
+
+/// Create the scheduler. If a specific scheduler was specified
+/// via the SchedulerRegistry, use it, otherwise select the
+/// one preferred by the target.
+///
+ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
+ RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
+
+ if (!Ctor) {
+ Ctor = ISHeuristic;
+ RegisterScheduler::setDefault(Ctor);
+ }
+
+ return Ctor(this, OptLevel);
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions used by the generated instruction selector.
+//===----------------------------------------------------------------------===//
+// Calls to these methods are generated by tblgen.
+
+/// CheckAndMask - The isel is trying to match something like (and X, 255). If
+/// the dag combiner simplified the 255, we still want to match. RHS is the
+/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
+/// specified in the .td file (e.g. 255).
+bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
+ int64_t DesiredMaskS) const {
+ const APInt &ActualMask = RHS->getAPIntValue();
+ const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
+
+ // If the actual mask exactly matches, success!
+ if (ActualMask == DesiredMask)
+ return true;
+
+ // If the actual AND mask is allowing unallowed bits, this doesn't match.
+ if (ActualMask.intersects(~DesiredMask))
+ return false;
+
+ // Otherwise, the DAG Combiner may have proven that the value coming in is
+ // either already zero or is not demanded. Check for known zero input bits.
+ APInt NeededMask = DesiredMask & ~ActualMask;
+ if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
+ return true;
+
+ // TODO: check to see if missing bits are just not demanded.
+
+ // Otherwise, this pattern doesn't match.
+ return false;
+}
+
+/// CheckOrMask - The isel is trying to match something like (or X, 255). If
+/// the dag combiner simplified the 255, we still want to match. RHS is the
+/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
+/// specified in the .td file (e.g. 255).
+bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
+ int64_t DesiredMaskS) const {
+ const APInt &ActualMask = RHS->getAPIntValue();
+ const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
+
+ // If the actual mask exactly matches, success!
+ if (ActualMask == DesiredMask)
+ return true;
+
+ // If the actual AND mask is allowing unallowed bits, this doesn't match.
+ if (ActualMask.intersects(~DesiredMask))
+ return false;
+
+ // Otherwise, the DAG Combiner may have proven that the value coming in is
+ // either already zero or is not demanded. Check for known zero input bits.
+ APInt NeededMask = DesiredMask & ~ActualMask;
+
+ APInt KnownZero, KnownOne;
+ CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
+
+ // If all the missing bits in the or are already known to be set, match!
+ if ((NeededMask & KnownOne) == NeededMask)
+ return true;
+
+ // TODO: check to see if missing bits are just not demanded.
+
+ // Otherwise, this pattern doesn't match.
+ return false;
+}
+
+
+/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
+/// by tblgen. Others should not call it.
+void SelectionDAGISel::
+SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
+ std::vector<SDValue> InOps;
+ std::swap(InOps, Ops);
+
+ Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
+ Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
+ Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
+ Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
+
+ unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
+ if (InOps[e-1].getValueType() == MVT::Glue)
+ --e; // Don't process a glue operand if it is here.
+
+ while (i != e) {
+ unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
+ if (!InlineAsm::isMemKind(Flags)) {
+ // Just skip over this operand, copying the operands verbatim.
+ Ops.insert(Ops.end(), InOps.begin()+i,
+ InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
+ i += InlineAsm::getNumOperandRegisters(Flags) + 1;
+ } else {
+ assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
+ "Memory operand with multiple values?");
+ // Otherwise, this is a memory operand. Ask the target to select it.
+ std::vector<SDValue> SelOps;
+ if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
+ report_fatal_error("Could not match memory address. Inline asm"
+ " failure!");
+
+ // Add this to the output node.
+ unsigned NewFlags =
+ InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
+ Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
+ Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
+ i += 2;
+ }
+ }
+
+ // Add the glue input back if present.
+ if (e != InOps.size())
+ Ops.push_back(InOps.back());
+}
+
+/// findGlueUse - Return use of MVT::Glue value produced by the specified
+/// SDNode.
+///
+static SDNode *findGlueUse(SDNode *N) {
+ unsigned FlagResNo = N->getNumValues()-1;
+ for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
+ SDUse &Use = I.getUse();
+ if (Use.getResNo() == FlagResNo)
+ return Use.getUser();
+ }
+ return NULL;
+}
+
+/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
+/// This function recursively traverses up the operand chain, ignoring
+/// certain nodes.
+static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
+ SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
+ bool IgnoreChains) {
+ // The NodeID's are given uniques ID's where a node ID is guaranteed to be
+ // greater than all of its (recursive) operands. If we scan to a point where
+ // 'use' is smaller than the node we're scanning for, then we know we will
+ // never find it.
+ //
+ // The Use may be -1 (unassigned) if it is a newly allocated node. This can
+ // happen because we scan down to newly selected nodes in the case of glue
+ // uses.
+ if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
+ return false;
+
+ // Don't revisit nodes if we already scanned it and didn't fail, we know we
+ // won't fail if we scan it again.
+ if (!Visited.insert(Use))
+ return false;
+
+ for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
+ // Ignore chain uses, they are validated by HandleMergeInputChains.
+ if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
+ continue;
+
+ SDNode *N = Use->getOperand(i).getNode();
+ if (N == Def) {
+ if (Use == ImmedUse || Use == Root)
+ continue; // We are not looking for immediate use.
+ assert(N != Root);
+ return true;
+ }
+
+ // Traverse up the operand chain.
+ if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
+ return true;
+ }
+ return false;
+}
+
+/// IsProfitableToFold - Returns true if it's profitable to fold the specific
+/// operand node N of U during instruction selection that starts at Root.
+bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
+ SDNode *Root) const {
+ if (OptLevel == CodeGenOpt::None) return false;
+ return N.hasOneUse();
+}
+
+/// IsLegalToFold - Returns true if the specific operand node N of
+/// U can be folded during instruction selection that starts at Root.
+bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
+ CodeGenOpt::Level OptLevel,
+ bool IgnoreChains) {
+ if (OptLevel == CodeGenOpt::None) return false;
+
+ // If Root use can somehow reach N through a path that that doesn't contain
+ // U then folding N would create a cycle. e.g. In the following
+ // diagram, Root can reach N through X. If N is folded into into Root, then
+ // X is both a predecessor and a successor of U.
+ //
+ // [N*] //
+ // ^ ^ //
+ // / \ //
+ // [U*] [X]? //
+ // ^ ^ //
+ // \ / //
+ // \ / //
+ // [Root*] //
+ //
+ // * indicates nodes to be folded together.
+ //
+ // If Root produces glue, then it gets (even more) interesting. Since it
+ // will be "glued" together with its glue use in the scheduler, we need to
+ // check if it might reach N.
+ //
+ // [N*] //
+ // ^ ^ //
+ // / \ //
+ // [U*] [X]? //
+ // ^ ^ //
+ // \ \ //
+ // \ | //
+ // [Root*] | //
+ // ^ | //
+ // f | //
+ // | / //
+ // [Y] / //
+ // ^ / //
+ // f / //
+ // | / //
+ // [GU] //
+ //
+ // If GU (glue use) indirectly reaches N (the load), and Root folds N
+ // (call it Fold), then X is a predecessor of GU and a successor of
+ // Fold. But since Fold and GU are glued together, this will create
+ // a cycle in the scheduling graph.
+
+ // If the node has glue, walk down the graph to the "lowest" node in the
+ // glueged set.
+ EVT VT = Root->getValueType(Root->getNumValues()-1);
+ while (VT == MVT::Glue) {
+ SDNode *GU = findGlueUse(Root);
+ if (GU == NULL)
+ break;
+ Root = GU;
+ VT = Root->getValueType(Root->getNumValues()-1);
+
+ // If our query node has a glue result with a use, we've walked up it. If
+ // the user (which has already been selected) has a chain or indirectly uses
+ // the chain, our WalkChainUsers predicate will not consider it. Because of
+ // this, we cannot ignore chains in this predicate.
+ IgnoreChains = false;
+ }
+
+
+ SmallPtrSet<SDNode*, 16> Visited;
+ return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
+}
+
+SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
+ std::vector<SDValue> Ops(N->op_begin(), N->op_end());
+ SelectInlineAsmMemoryOperands(Ops);
+
+ std::vector<EVT> VTs;
+ VTs.push_back(MVT::Other);
+ VTs.push_back(MVT::Glue);
+ SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
+ VTs, &Ops[0], Ops.size());
+ New->setNodeId(-1);
+ return New.getNode();
+}
+
+SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
+ return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
+}
+
+/// GetVBR - decode a vbr encoding whose top bit is set.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
+GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
+ assert(Val >= 128 && "Not a VBR");
+ Val &= 127; // Remove first vbr bit.
+
+ unsigned Shift = 7;
+ uint64_t NextBits;
+ do {
+ NextBits = MatcherTable[Idx++];
+ Val |= (NextBits&127) << Shift;
+ Shift += 7;
+ } while (NextBits & 128);
+
+ return Val;
+}
+
+
+/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
+/// interior glue and chain results to use the new glue and chain results.
+void SelectionDAGISel::
+UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
+ const SmallVectorImpl<SDNode*> &ChainNodesMatched,
+ SDValue InputGlue,
+ const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
+ bool isMorphNodeTo) {
+ SmallVector<SDNode*, 4> NowDeadNodes;
+
+ ISelUpdater ISU(ISelPosition);
+
+ // Now that all the normal results are replaced, we replace the chain and
+ // glue results if present.
+ if (!ChainNodesMatched.empty()) {
+ assert(InputChain.getNode() != 0 &&
+ "Matched input chains but didn't produce a chain");
+ // Loop over all of the nodes we matched that produced a chain result.
+ // Replace all the chain results with the final chain we ended up with.
+ for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
+ SDNode *ChainNode = ChainNodesMatched[i];
+
+ // If this node was already deleted, don't look at it.
+ if (ChainNode->getOpcode() == ISD::DELETED_NODE)
+ continue;
+
+ // Don't replace the results of the root node if we're doing a
+ // MorphNodeTo.
+ if (ChainNode == NodeToMatch && isMorphNodeTo)
+ continue;
+
+ SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
+ if (ChainVal.getValueType() == MVT::Glue)
+ ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
+ assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
+ CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
+
+ // If the node became dead and we haven't already seen it, delete it.
+ if (ChainNode->use_empty() &&
+ !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
+ NowDeadNodes.push_back(ChainNode);
+ }
+ }
+
+ // If the result produces glue, update any glue results in the matched
+ // pattern with the glue result.
+ if (InputGlue.getNode() != 0) {
+ // Handle any interior nodes explicitly marked.
+ for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
+ SDNode *FRN = GlueResultNodesMatched[i];
+
+ // If this node was already deleted, don't look at it.
+ if (FRN->getOpcode() == ISD::DELETED_NODE)
+ continue;
+
+ assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
+ "Doesn't have a glue result");
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
+ InputGlue, &ISU);
+
+ // If the node became dead and we haven't already seen it, delete it.
+ if (FRN->use_empty() &&
+ !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
+ NowDeadNodes.push_back(FRN);
+ }
+ }
+
+ if (!NowDeadNodes.empty())
+ CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
+
+ DEBUG(errs() << "ISEL: Match complete!\n");
+}
+
+enum ChainResult {
+ CR_Simple,
+ CR_InducesCycle,
+ CR_LeadsToInteriorNode
+};
+
+/// WalkChainUsers - Walk down the users of the specified chained node that is
+/// part of the pattern we're matching, looking at all of the users we find.
+/// This determines whether something is an interior node, whether we have a
+/// non-pattern node in between two pattern nodes (which prevent folding because
+/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
+/// between pattern nodes (in which case the TF becomes part of the pattern).
+///
+/// The walk we do here is guaranteed to be small because we quickly get down to
+/// already selected nodes "below" us.
+static ChainResult
+WalkChainUsers(SDNode *ChainedNode,
+ SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
+ SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
+ ChainResult Result = CR_Simple;
+
+ for (SDNode::use_iterator UI = ChainedNode->use_begin(),
+ E = ChainedNode->use_end(); UI != E; ++UI) {
+ // Make sure the use is of the chain, not some other value we produce.
+ if (UI.getUse().getValueType() != MVT::Other) continue;
+
+ SDNode *User = *UI;
+
+ // If we see an already-selected machine node, then we've gone beyond the
+ // pattern that we're selecting down into the already selected chunk of the
+ // DAG.
+ if (User->isMachineOpcode() ||
+ User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
+ continue;
+
+ if (User->getOpcode() == ISD::CopyToReg ||
+ User->getOpcode() == ISD::CopyFromReg ||
+ User->getOpcode() == ISD::INLINEASM ||
+ User->getOpcode() == ISD::EH_LABEL) {
+ // If their node ID got reset to -1 then they've already been selected.
+ // Treat them like a MachineOpcode.
+ if (User->getNodeId() == -1)
+ continue;
+ }
+
+ // If we have a TokenFactor, we handle it specially.
+ if (User->getOpcode() != ISD::TokenFactor) {
+ // If the node isn't a token factor and isn't part of our pattern, then it
+ // must be a random chained node in between two nodes we're selecting.
+ // This happens when we have something like:
+ // x = load ptr
+ // call
+ // y = x+4
+ // store y -> ptr
+ // Because we structurally match the load/store as a read/modify/write,
+ // but the call is chained between them. We cannot fold in this case
+ // because it would induce a cycle in the graph.
+ if (!std::count(ChainedNodesInPattern.begin(),
+ ChainedNodesInPattern.end(), User))
+ return CR_InducesCycle;
+
+ // Otherwise we found a node that is part of our pattern. For example in:
+ // x = load ptr
+ // y = x+4
+ // store y -> ptr
+ // This would happen when we're scanning down from the load and see the
+ // store as a user. Record that there is a use of ChainedNode that is
+ // part of the pattern and keep scanning uses.
+ Result = CR_LeadsToInteriorNode;
+ InteriorChainedNodes.push_back(User);
+ continue;
+ }
+
+ // If we found a TokenFactor, there are two cases to consider: first if the
+ // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
+ // uses of the TF are in our pattern) we just want to ignore it. Second,
+ // the TokenFactor can be sandwiched in between two chained nodes, like so:
+ // [Load chain]
+ // ^
+ // |
+ // [Load]
+ // ^ ^
+ // | \ DAG's like cheese
+ // / \ do you?
+ // / |
+ // [TokenFactor] [Op]
+ // ^ ^
+ // | |
+ // \ /
+ // \ /
+ // [Store]
+ //
+ // In this case, the TokenFactor becomes part of our match and we rewrite it
+ // as a new TokenFactor.
+ //
+ // To distinguish these two cases, do a recursive walk down the uses.
+ switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
+ case CR_Simple:
+ // If the uses of the TokenFactor are just already-selected nodes, ignore
+ // it, it is "below" our pattern.
+ continue;
+ case CR_InducesCycle:
+ // If the uses of the TokenFactor lead to nodes that are not part of our
+ // pattern that are not selected, folding would turn this into a cycle,
+ // bail out now.
+ return CR_InducesCycle;
+ case CR_LeadsToInteriorNode:
+ break; // Otherwise, keep processing.
+ }
+
+ // Okay, we know we're in the interesting interior case. The TokenFactor
+ // is now going to be considered part of the pattern so that we rewrite its
+ // uses (it may have uses that are not part of the pattern) with the
+ // ultimate chain result of the generated code. We will also add its chain
+ // inputs as inputs to the ultimate TokenFactor we create.
+ Result = CR_LeadsToInteriorNode;
+ ChainedNodesInPattern.push_back(User);
+ InteriorChainedNodes.push_back(User);
+ continue;
+ }
+
+ return Result;
+}
+
+/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
+/// operation for when the pattern matched at least one node with a chains. The
+/// input vector contains a list of all of the chained nodes that we match. We
+/// must determine if this is a valid thing to cover (i.e. matching it won't
+/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
+/// be used as the input node chain for the generated nodes.
+static SDValue
+HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
+ SelectionDAG *CurDAG) {
+ // Walk all of the chained nodes we've matched, recursively scanning down the
+ // users of the chain result. This adds any TokenFactor nodes that are caught
+ // in between chained nodes to the chained and interior nodes list.
+ SmallVector<SDNode*, 3> InteriorChainedNodes;
+ for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
+ if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
+ InteriorChainedNodes) == CR_InducesCycle)
+ return SDValue(); // Would induce a cycle.
+ }
+
+ // Okay, we have walked all the matched nodes and collected TokenFactor nodes
+ // that we are interested in. Form our input TokenFactor node.
+ SmallVector<SDValue, 3> InputChains;
+ for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
+ // Add the input chain of this node to the InputChains list (which will be
+ // the operands of the generated TokenFactor) if it's not an interior node.
+ SDNode *N = ChainNodesMatched[i];
+ if (N->getOpcode() != ISD::TokenFactor) {
+ if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
+ continue;
+
+ // Otherwise, add the input chain.
+ SDValue InChain = ChainNodesMatched[i]->getOperand(0);
+ assert(InChain.getValueType() == MVT::Other && "Not a chain");
+ InputChains.push_back(InChain);
+ continue;
+ }
+
+ // If we have a token factor, we want to add all inputs of the token factor
+ // that are not part of the pattern we're matching.
+ for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
+ if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
+ N->getOperand(op).getNode()))
+ InputChains.push_back(N->getOperand(op));
+ }
+ }
+
+ SDValue Res;
+ if (InputChains.size() == 1)
+ return InputChains[0];
+ return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
+ MVT::Other, &InputChains[0], InputChains.size());
+}
+
+/// MorphNode - Handle morphing a node in place for the selector.
+SDNode *SelectionDAGISel::
+MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
+ const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
+ // It is possible we're using MorphNodeTo to replace a node with no
+ // normal results with one that has a normal result (or we could be
+ // adding a chain) and the input could have glue and chains as well.
+ // In this case we need to shift the operands down.
+ // FIXME: This is a horrible hack and broken in obscure cases, no worse
+ // than the old isel though.
+ int OldGlueResultNo = -1, OldChainResultNo = -1;
+
+ unsigned NTMNumResults = Node->getNumValues();
+ if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
+ OldGlueResultNo = NTMNumResults-1;
+ if (NTMNumResults != 1 &&
+ Node->getValueType(NTMNumResults-2) == MVT::Other)
+ OldChainResultNo = NTMNumResults-2;
+ } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
+ OldChainResultNo = NTMNumResults-1;
+
+ // Call the underlying SelectionDAG routine to do the transmogrification. Note
+ // that this deletes operands of the old node that become dead.
+ SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
+
+ // MorphNodeTo can operate in two ways: if an existing node with the
+ // specified operands exists, it can just return it. Otherwise, it
+ // updates the node in place to have the requested operands.
+ if (Res == Node) {
+ // If we updated the node in place, reset the node ID. To the isel,
+ // this should be just like a newly allocated machine node.
+ Res->setNodeId(-1);
+ }
+
+ unsigned ResNumResults = Res->getNumValues();
+ // Move the glue if needed.
+ if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
+ (unsigned)OldGlueResultNo != ResNumResults-1)
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
+ SDValue(Res, ResNumResults-1));
+
+ if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
+ --ResNumResults;
+
+ // Move the chain reference if needed.
+ if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
+ (unsigned)OldChainResultNo != ResNumResults-1)
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
+ SDValue(Res, ResNumResults-1));
+
+ // Otherwise, no replacement happened because the node already exists. Replace
+ // Uses of the old node with the new one.
+ if (Res != Node)
+ CurDAG->ReplaceAllUsesWith(Node, Res);
+
+ return Res;
+}
+
+/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N,
+ const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
+ // Accept if it is exactly the same as a previously recorded node.
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ return N == RecordedNodes[RecNo].first;
+}
+
+/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SelectionDAGISel &SDISel) {
+ return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
+}
+
+/// CheckNodePredicate - Implements OP_CheckNodePredicate.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SelectionDAGISel &SDISel, SDNode *N) {
+ return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDNode *N) {
+ uint16_t Opc = MatcherTable[MatcherIndex++];
+ Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
+ return N->getOpcode() == Opc;
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, const TargetLowering &TLI) {
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ if (N.getValueType() == VT) return true;
+
+ // Handle the case when VT is iPTR.
+ return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, const TargetLowering &TLI,
+ unsigned ChildNo) {
+ if (ChildNo >= N.getNumOperands())
+ return false; // Match fails if out of range child #.
+ return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
+}
+
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N) {
+ return cast<CondCodeSDNode>(N)->get() ==
+ (ISD::CondCode)MatcherTable[MatcherIndex++];
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, const TargetLowering &TLI) {
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ if (cast<VTSDNode>(N)->getVT() == VT)
+ return true;
+
+ // Handle the case when VT is iPTR.
+ return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N) {
+ int64_t Val = MatcherTable[MatcherIndex++];
+ if (Val & 128)
+ Val = GetVBR(Val, MatcherTable, MatcherIndex);
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
+ return C != 0 && C->getSExtValue() == Val;
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, SelectionDAGISel &SDISel) {
+ int64_t Val = MatcherTable[MatcherIndex++];
+ if (Val & 128)
+ Val = GetVBR(Val, MatcherTable, MatcherIndex);
+
+ if (N->getOpcode() != ISD::AND) return false;
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
+CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, SelectionDAGISel &SDISel) {
+ int64_t Val = MatcherTable[MatcherIndex++];
+ if (Val & 128)
+ Val = GetVBR(Val, MatcherTable, MatcherIndex);
+
+ if (N->getOpcode() != ISD::OR) return false;
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
+}
+
+/// IsPredicateKnownToFail - If we know how and can do so without pushing a
+/// scope, evaluate the current node. If the current predicate is known to
+/// fail, set Result=true and return anything. If the current predicate is
+/// known to pass, set Result=false and return the MatcherIndex to continue
+/// with. If the current predicate is unknown, set Result=false and return the
+/// MatcherIndex to continue with.
+static unsigned IsPredicateKnownToFail(const unsigned char *Table,
+ unsigned Index, SDValue N,
+ bool &Result, SelectionDAGISel &SDISel,
+ SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
+ switch (Table[Index++]) {
+ default:
+ Result = false;
+ return Index-1; // Could not evaluate this predicate.
+ case SelectionDAGISel::OPC_CheckSame:
+ Result = !::CheckSame(Table, Index, N, RecordedNodes);
+ return Index;
+ case SelectionDAGISel::OPC_CheckPatternPredicate:
+ Result = !::CheckPatternPredicate(Table, Index, SDISel);
+ return Index;
+ case SelectionDAGISel::OPC_CheckPredicate:
+ Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
+ return Index;
+ case SelectionDAGISel::OPC_CheckOpcode:
+ Result = !::CheckOpcode(Table, Index, N.getNode());
+ return Index;
+ case SelectionDAGISel::OPC_CheckType:
+ Result = !::CheckType(Table, Index, N, SDISel.TLI);
+ return Index;
+ case SelectionDAGISel::OPC_CheckChild0Type:
+ case SelectionDAGISel::OPC_CheckChild1Type:
+ case SelectionDAGISel::OPC_CheckChild2Type:
+ case SelectionDAGISel::OPC_CheckChild3Type:
+ case SelectionDAGISel::OPC_CheckChild4Type:
+ case SelectionDAGISel::OPC_CheckChild5Type:
+ case SelectionDAGISel::OPC_CheckChild6Type:
+ case SelectionDAGISel::OPC_CheckChild7Type:
+ Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
+ Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
+ return Index;
+ case SelectionDAGISel::OPC_CheckCondCode:
+ Result = !::CheckCondCode(Table, Index, N);
+ return Index;
+ case SelectionDAGISel::OPC_CheckValueType:
+ Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
+ return Index;
+ case SelectionDAGISel::OPC_CheckInteger:
+ Result = !::CheckInteger(Table, Index, N);
+ return Index;
+ case SelectionDAGISel::OPC_CheckAndImm:
+ Result = !::CheckAndImm(Table, Index, N, SDISel);
+ return Index;
+ case SelectionDAGISel::OPC_CheckOrImm:
+ Result = !::CheckOrImm(Table, Index, N, SDISel);
+ return Index;
+ }
+}
+
+namespace {
+
+struct MatchScope {
+ /// FailIndex - If this match fails, this is the index to continue with.
+ unsigned FailIndex;
+
+ /// NodeStack - The node stack when the scope was formed.
+ SmallVector<SDValue, 4> NodeStack;
+
+ /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
+ unsigned NumRecordedNodes;
+
+ /// NumMatchedMemRefs - The number of matched memref entries.
+ unsigned NumMatchedMemRefs;
+
+ /// InputChain/InputGlue - The current chain/glue
+ SDValue InputChain, InputGlue;
+
+ /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
+ bool HasChainNodesMatched, HasGlueResultNodesMatched;
+};
+
+}
+
+SDNode *SelectionDAGISel::
+SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
+ unsigned TableSize) {
+ // FIXME: Should these even be selected? Handle these cases in the caller?
+ switch (NodeToMatch->getOpcode()) {
+ default:
+ break;
+ case ISD::EntryToken: // These nodes remain the same.
+ case ISD::BasicBlock:
+ case ISD::Register:
+ //case ISD::VALUETYPE:
+ //case ISD::CONDCODE:
+ case ISD::HANDLENODE:
+ case ISD::MDNODE_SDNODE:
+ case ISD::TargetConstant:
+ case ISD::TargetConstantFP:
+ case ISD::TargetConstantPool:
+ case ISD::TargetFrameIndex:
+ case ISD::TargetExternalSymbol:
+ case ISD::TargetBlockAddress:
+ case ISD::TargetJumpTable:
+ case ISD::TargetGlobalTLSAddress:
+ case ISD::TargetGlobalAddress:
+ case ISD::TokenFactor:
+ case ISD::CopyFromReg:
+ case ISD::CopyToReg:
+ case ISD::EH_LABEL:
+ NodeToMatch->setNodeId(-1); // Mark selected.
+ return 0;
+ case ISD::AssertSext:
+ case ISD::AssertZext:
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
+ NodeToMatch->getOperand(0));
+ return 0;
+ case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
+ case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
+ }
+
+ assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
+
+ // Set up the node stack with NodeToMatch as the only node on the stack.
+ SmallVector<SDValue, 8> NodeStack;
+ SDValue N = SDValue(NodeToMatch, 0);
+ NodeStack.push_back(N);
+
+ // MatchScopes - Scopes used when matching, if a match failure happens, this
+ // indicates where to continue checking.
+ SmallVector<MatchScope, 8> MatchScopes;
+
+ // RecordedNodes - This is the set of nodes that have been recorded by the
+ // state machine. The second value is the parent of the node, or null if the
+ // root is recorded.
+ SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
+
+ // MatchedMemRefs - This is the set of MemRef's we've seen in the input
+ // pattern.
+ SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
+
+ // These are the current input chain and glue for use when generating nodes.
+ // Various Emit operations change these. For example, emitting a copytoreg
+ // uses and updates these.
+ SDValue InputChain, InputGlue;
+
+ // ChainNodesMatched - If a pattern matches nodes that have input/output
+ // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
+ // which ones they are. The result is captured into this list so that we can
+ // update the chain results when the pattern is complete.
+ SmallVector<SDNode*, 3> ChainNodesMatched;
+ SmallVector<SDNode*, 3> GlueResultNodesMatched;
+
+ DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
+ NodeToMatch->dump(CurDAG);
+ errs() << '\n');
+
+ // Determine where to start the interpreter. Normally we start at opcode #0,
+ // but if the state machine starts with an OPC_SwitchOpcode, then we
+ // accelerate the first lookup (which is guaranteed to be hot) with the
+ // OpcodeOffset table.
+ unsigned MatcherIndex = 0;
+
+ if (!OpcodeOffset.empty()) {
+ // Already computed the OpcodeOffset table, just index into it.
+ if (N.getOpcode() < OpcodeOffset.size())
+ MatcherIndex = OpcodeOffset[N.getOpcode()];
+ DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n");
+
+ } else if (MatcherTable[0] == OPC_SwitchOpcode) {
+ // Otherwise, the table isn't computed, but the state machine does start
+ // with an OPC_SwitchOpcode instruction. Populate the table now, since this
+ // is the first time we're selecting an instruction.
+ unsigned Idx = 1;
+ while (1) {
+ // Get the size of this case.
+ unsigned CaseSize = MatcherTable[Idx++];
+ if (CaseSize & 128)
+ CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
+ if (CaseSize == 0) break;
+
+ // Get the opcode, add the index to the table.
+ uint16_t Opc = MatcherTable[Idx++];
+ Opc |= (unsigned short)MatcherTable[Idx++] << 8;
+ if (Opc >= OpcodeOffset.size())
+ OpcodeOffset.resize((Opc+1)*2);
+ OpcodeOffset[Opc] = Idx;
+ Idx += CaseSize;
+ }
+
+ // Okay, do the lookup for the first opcode.
+ if (N.getOpcode() < OpcodeOffset.size())
+ MatcherIndex = OpcodeOffset[N.getOpcode()];
+ }
+
+ while (1) {
+ assert(MatcherIndex < TableSize && "Invalid index");
+#ifndef NDEBUG
+ unsigned CurrentOpcodeIndex = MatcherIndex;
+#endif
+ BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
+ switch (Opcode) {
+ case OPC_Scope: {
+ // Okay, the semantics of this operation are that we should push a scope
+ // then evaluate the first child. However, pushing a scope only to have
+ // the first check fail (which then pops it) is inefficient. If we can
+ // determine immediately that the first check (or first several) will
+ // immediately fail, don't even bother pushing a scope for them.
+ unsigned FailIndex;
+
+ while (1) {
+ unsigned NumToSkip = MatcherTable[MatcherIndex++];
+ if (NumToSkip & 128)
+ NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
+ // Found the end of the scope with no match.
+ if (NumToSkip == 0) {
+ FailIndex = 0;
+ break;
+ }
+
+ FailIndex = MatcherIndex+NumToSkip;
+
+ unsigned MatcherIndexOfPredicate = MatcherIndex;
+ (void)MatcherIndexOfPredicate; // silence warning.
+
+ // If we can't evaluate this predicate without pushing a scope (e.g. if
+ // it is a 'MoveParent') or if the predicate succeeds on this node, we
+ // push the scope and evaluate the full predicate chain.
+ bool Result;
+ MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
+ Result, *this, RecordedNodes);
+ if (!Result)
+ break;
+
+ DEBUG(errs() << " Skipped scope entry (due to false predicate) at "
+ << "index " << MatcherIndexOfPredicate
+ << ", continuing at " << FailIndex << "\n");
+ ++NumDAGIselRetries;
+
+ // Otherwise, we know that this case of the Scope is guaranteed to fail,
+ // move to the next case.
+ MatcherIndex = FailIndex;
+ }
+
+ // If the whole scope failed to match, bail.
+ if (FailIndex == 0) break;
+
+ // Push a MatchScope which indicates where to go if the first child fails
+ // to match.
+ MatchScope NewEntry;
+ NewEntry.FailIndex = FailIndex;
+ NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
+ NewEntry.NumRecordedNodes = RecordedNodes.size();
+ NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
+ NewEntry.InputChain = InputChain;
+ NewEntry.InputGlue = InputGlue;
+ NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
+ NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
+ MatchScopes.push_back(NewEntry);
+ continue;
+ }
+ case OPC_RecordNode: {
+ // Remember this node, it may end up being an operand in the pattern.
+ SDNode *Parent = 0;
+ if (NodeStack.size() > 1)
+ Parent = NodeStack[NodeStack.size()-2].getNode();
+ RecordedNodes.push_back(std::make_pair(N, Parent));
+ continue;
+ }
+
+ case OPC_RecordChild0: case OPC_RecordChild1:
+ case OPC_RecordChild2: case OPC_RecordChild3:
+ case OPC_RecordChild4: case OPC_RecordChild5:
+ case OPC_RecordChild6: case OPC_RecordChild7: {
+ unsigned ChildNo = Opcode-OPC_RecordChild0;
+ if (ChildNo >= N.getNumOperands())
+ break; // Match fails if out of range child #.
+
+ RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
+ N.getNode()));
+ continue;
+ }
+ case OPC_RecordMemRef:
+ MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
+ continue;
+
+ case OPC_CaptureGlueInput:
+ // If the current node has an input glue, capture it in InputGlue.
+ if (N->getNumOperands() != 0 &&
+ N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
+ InputGlue = N->getOperand(N->getNumOperands()-1);
+ continue;
+
+ case OPC_MoveChild: {
+ unsigned ChildNo = MatcherTable[MatcherIndex++];
+ if (ChildNo >= N.getNumOperands())
+ break; // Match fails if out of range child #.
+ N = N.getOperand(ChildNo);
+ NodeStack.push_back(N);
+ continue;
+ }
+
+ case OPC_MoveParent:
+ // Pop the current node off the NodeStack.
+ NodeStack.pop_back();
+ assert(!NodeStack.empty() && "Node stack imbalance!");
+ N = NodeStack.back();
+ continue;
+
+ case OPC_CheckSame:
+ if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
+ continue;
+ case OPC_CheckPatternPredicate:
+ if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
+ continue;
+ case OPC_CheckPredicate:
+ if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
+ N.getNode()))
+ break;
+ continue;
+ case OPC_CheckComplexPat: {
+ unsigned CPNum = MatcherTable[MatcherIndex++];
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
+ if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
+ RecordedNodes[RecNo].first, CPNum,
+ RecordedNodes))
+ break;
+ continue;
+ }
+ case OPC_CheckOpcode:
+ if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
+ continue;
+
+ case OPC_CheckType:
+ if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
+ continue;
+
+ case OPC_SwitchOpcode: {
+ unsigned CurNodeOpcode = N.getOpcode();
+ unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
+ unsigned CaseSize;
+ while (1) {
+ // Get the size of this case.
+ CaseSize = MatcherTable[MatcherIndex++];
+ if (CaseSize & 128)
+ CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
+ if (CaseSize == 0) break;
+
+ uint16_t Opc = MatcherTable[MatcherIndex++];
+ Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
+
+ // If the opcode matches, then we will execute this case.
+ if (CurNodeOpcode == Opc)
+ break;
+
+ // Otherwise, skip over this case.
+ MatcherIndex += CaseSize;
+ }
+
+ // If no cases matched, bail out.
+ if (CaseSize == 0) break;
+
+ // Otherwise, execute the case we found.
+ DEBUG(errs() << " OpcodeSwitch from " << SwitchStart
+ << " to " << MatcherIndex << "\n");
+ continue;
+ }
+
+ case OPC_SwitchType: {
+ MVT CurNodeVT = N.getValueType().getSimpleVT();
+ unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
+ unsigned CaseSize;
+ while (1) {
+ // Get the size of this case.
+ CaseSize = MatcherTable[MatcherIndex++];
+ if (CaseSize & 128)
+ CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
+ if (CaseSize == 0) break;
+
+ MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ if (CaseVT == MVT::iPTR)
+ CaseVT = TLI.getPointerTy();
+
+ // If the VT matches, then we will execute this case.
+ if (CurNodeVT == CaseVT)
+ break;
+
+ // Otherwise, skip over this case.
+ MatcherIndex += CaseSize;
+ }
+
+ // If no cases matched, bail out.
+ if (CaseSize == 0) break;
+
+ // Otherwise, execute the case we found.
+ DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
+ << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
+ continue;
+ }
+ case OPC_CheckChild0Type: case OPC_CheckChild1Type:
+ case OPC_CheckChild2Type: case OPC_CheckChild3Type:
+ case OPC_CheckChild4Type: case OPC_CheckChild5Type:
+ case OPC_CheckChild6Type: case OPC_CheckChild7Type:
+ if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
+ Opcode-OPC_CheckChild0Type))
+ break;
+ continue;
+ case OPC_CheckCondCode:
+ if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
+ continue;
+ case OPC_CheckValueType:
+ if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
+ continue;
+ case OPC_CheckInteger:
+ if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
+ continue;
+ case OPC_CheckAndImm:
+ if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
+ continue;
+ case OPC_CheckOrImm:
+ if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
+ continue;
+
+ case OPC_CheckFoldableChainNode: {
+ assert(NodeStack.size() != 1 && "No parent node");
+ // Verify that all intermediate nodes between the root and this one have
+ // a single use.
+ bool HasMultipleUses = false;
+ for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
+ if (!NodeStack[i].hasOneUse()) {
+ HasMultipleUses = true;
+ break;
+ }
+ if (HasMultipleUses) break;
+
+ // Check to see that the target thinks this is profitable to fold and that
+ // we can fold it without inducing cycles in the graph.
+ if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
+ NodeToMatch) ||
+ !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
+ NodeToMatch, OptLevel,
+ true/*We validate our own chains*/))
+ break;
+
+ continue;
+ }
+ case OPC_EmitInteger: {
+ MVT::SimpleValueType VT =
+ (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ int64_t Val = MatcherTable[MatcherIndex++];
+ if (Val & 128)
+ Val = GetVBR(Val, MatcherTable, MatcherIndex);
+ RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
+ CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
+ continue;
+ }
+ case OPC_EmitRegister: {
+ MVT::SimpleValueType VT =
+ (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ unsigned RegNo = MatcherTable[MatcherIndex++];
+ RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
+ CurDAG->getRegister(RegNo, VT), (SDNode*)0));
+ continue;
+ }
+ case OPC_EmitRegister2: {
+ // For targets w/ more than 256 register names, the register enum
+ // values are stored in two bytes in the matcher table (just like
+ // opcodes).
+ MVT::SimpleValueType VT =
+ (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ unsigned RegNo = MatcherTable[MatcherIndex++];
+ RegNo |= MatcherTable[MatcherIndex++] << 8;
+ RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
+ CurDAG->getRegister(RegNo, VT), (SDNode*)0));
+ continue;
+ }
+
+ case OPC_EmitConvertToTarget: {
+ // Convert from IMM/FPIMM to target version.
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ SDValue Imm = RecordedNodes[RecNo].first;
+
+ if (Imm->getOpcode() == ISD::Constant) {
+ int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
+ Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
+ } else if (Imm->getOpcode() == ISD::ConstantFP) {
+ const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
+ Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
+ }
+
+ RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
+ continue;
+ }
+
+ case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
+ case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
+ // These are space-optimized forms of OPC_EmitMergeInputChains.
+ assert(InputChain.getNode() == 0 &&
+ "EmitMergeInputChains should be the first chain producing node");
+ assert(ChainNodesMatched.empty() &&
+ "Should only have one EmitMergeInputChains per match");
+
+ // Read all of the chained nodes.
+ unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
+
+ // FIXME: What if other value results of the node have uses not matched
+ // by this pattern?
+ if (ChainNodesMatched.back() != NodeToMatch &&
+ !RecordedNodes[RecNo].first.hasOneUse()) {
+ ChainNodesMatched.clear();
+ break;
+ }
+
+ // Merge the input chains if they are not intra-pattern references.
+ InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
+
+ if (InputChain.getNode() == 0)
+ break; // Failed to merge.
+ continue;
+ }
+
+ case OPC_EmitMergeInputChains: {
+ assert(InputChain.getNode() == 0 &&
+ "EmitMergeInputChains should be the first chain producing node");
+ // This node gets a list of nodes we matched in the input that have
+ // chains. We want to token factor all of the input chains to these nodes
+ // together. However, if any of the input chains is actually one of the
+ // nodes matched in this pattern, then we have an intra-match reference.
+ // Ignore these because the newly token factored chain should not refer to
+ // the old nodes.
+ unsigned NumChains = MatcherTable[MatcherIndex++];
+ assert(NumChains != 0 && "Can't TF zero chains");
+
+ assert(ChainNodesMatched.empty() &&
+ "Should only have one EmitMergeInputChains per match");
+
+ // Read all of the chained nodes.
+ for (unsigned i = 0; i != NumChains; ++i) {
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
+
+ // FIXME: What if other value results of the node have uses not matched
+ // by this pattern?
+ if (ChainNodesMatched.back() != NodeToMatch &&
+ !RecordedNodes[RecNo].first.hasOneUse()) {
+ ChainNodesMatched.clear();
+ break;
+ }
+ }
+
+ // If the inner loop broke out, the match fails.
+ if (ChainNodesMatched.empty())
+ break;
+
+ // Merge the input chains if they are not intra-pattern references.
+ InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
+
+ if (InputChain.getNode() == 0)
+ break; // Failed to merge.
+
+ continue;
+ }
+
+ case OPC_EmitCopyToReg: {
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ unsigned DestPhysReg = MatcherTable[MatcherIndex++];
+
+ if (InputChain.getNode() == 0)
+ InputChain = CurDAG->getEntryNode();
+
+ InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
+ DestPhysReg, RecordedNodes[RecNo].first,
+ InputGlue);
+
+ InputGlue = InputChain.getValue(1);
+ continue;
+ }
+
+ case OPC_EmitNodeXForm: {
+ unsigned XFormNo = MatcherTable[MatcherIndex++];
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
+ RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
+ continue;
+ }
+
+ case OPC_EmitNode:
+ case OPC_MorphNodeTo: {
+ uint16_t TargetOpc = MatcherTable[MatcherIndex++];
+ TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
+ unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
+ // Get the result VT list.
+ unsigned NumVTs = MatcherTable[MatcherIndex++];
+ SmallVector<EVT, 4> VTs;
+ for (unsigned i = 0; i != NumVTs; ++i) {
+ MVT::SimpleValueType VT =
+ (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
+ VTs.push_back(VT);
+ }
+
+ if (EmitNodeInfo & OPFL_Chain)
+ VTs.push_back(MVT::Other);
+ if (EmitNodeInfo & OPFL_GlueOutput)
+ VTs.push_back(MVT::Glue);
+
+ // This is hot code, so optimize the two most common cases of 1 and 2
+ // results.
+ SDVTList VTList;
+ if (VTs.size() == 1)
+ VTList = CurDAG->getVTList(VTs[0]);
+ else if (VTs.size() == 2)
+ VTList = CurDAG->getVTList(VTs[0], VTs[1]);
+ else
+ VTList = CurDAG->getVTList(VTs.data(), VTs.size());
+
+ // Get the operand list.
+ unsigned NumOps = MatcherTable[MatcherIndex++];
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ if (RecNo & 128)
+ RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
+
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
+ Ops.push_back(RecordedNodes[RecNo].first);
+ }
+
+ // If there are variadic operands to add, handle them now.
+ if (EmitNodeInfo & OPFL_VariadicInfo) {
+ // Determine the start index to copy from.
+ unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
+ FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
+ assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
+ "Invalid variadic node");
+ // Copy all of the variadic operands, not including a potential glue
+ // input.
+ for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
+ i != e; ++i) {
+ SDValue V = NodeToMatch->getOperand(i);
+ if (V.getValueType() == MVT::Glue) break;
+ Ops.push_back(V);
+ }
+ }
+
+ // If this has chain/glue inputs, add them.
+ if (EmitNodeInfo & OPFL_Chain)
+ Ops.push_back(InputChain);
+ if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
+ Ops.push_back(InputGlue);
+
+ // Create the node.
+ SDNode *Res = 0;
+ if (Opcode != OPC_MorphNodeTo) {
+ // If this is a normal EmitNode command, just create the new node and
+ // add the results to the RecordedNodes list.
+ Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
+ VTList, Ops.data(), Ops.size());
+
+ // Add all the non-glue/non-chain results to the RecordedNodes list.
+ for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
+ if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
+ RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
+ (SDNode*) 0));
+ }
+
+ } else {
+ Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
+ EmitNodeInfo);
+ }
+
+ // If the node had chain/glue results, update our notion of the current
+ // chain and glue.
+ if (EmitNodeInfo & OPFL_GlueOutput) {
+ InputGlue = SDValue(Res, VTs.size()-1);
+ if (EmitNodeInfo & OPFL_Chain)
+ InputChain = SDValue(Res, VTs.size()-2);
+ } else if (EmitNodeInfo & OPFL_Chain)
+ InputChain = SDValue(Res, VTs.size()-1);
+
+ // If the OPFL_MemRefs glue is set on this node, slap all of the
+ // accumulated memrefs onto it.
+ //
+ // FIXME: This is vastly incorrect for patterns with multiple outputs
+ // instructions that access memory and for ComplexPatterns that match
+ // loads.
+ if (EmitNodeInfo & OPFL_MemRefs) {
+ // Only attach load or store memory operands if the generated
+ // instruction may load or store.
+ const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
+ bool mayLoad = MCID.mayLoad();
+ bool mayStore = MCID.mayStore();
+
+ unsigned NumMemRefs = 0;
+ for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
+ MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
+ if ((*I)->isLoad()) {
+ if (mayLoad)
+ ++NumMemRefs;
+ } else if ((*I)->isStore()) {
+ if (mayStore)
+ ++NumMemRefs;
+ } else {
+ ++NumMemRefs;
+ }
+ }
+
+ MachineSDNode::mmo_iterator MemRefs =
+ MF->allocateMemRefsArray(NumMemRefs);
+
+ MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
+ for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
+ MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
+ if ((*I)->isLoad()) {
+ if (mayLoad)
+ *MemRefsPos++ = *I;
+ } else if ((*I)->isStore()) {
+ if (mayStore)
+ *MemRefsPos++ = *I;
+ } else {
+ *MemRefsPos++ = *I;
+ }
+ }
+
+ cast<MachineSDNode>(Res)
+ ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
+ }
+
+ DEBUG(errs() << " "
+ << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
+ << " node: "; Res->dump(CurDAG); errs() << "\n");
+
+ // If this was a MorphNodeTo then we're completely done!
+ if (Opcode == OPC_MorphNodeTo) {
+ // Update chain and glue uses.
+ UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
+ InputGlue, GlueResultNodesMatched, true);
+ return Res;
+ }
+
+ continue;
+ }
+
+ case OPC_MarkGlueResults: {
+ unsigned NumNodes = MatcherTable[MatcherIndex++];
+
+ // Read and remember all the glue-result nodes.
+ for (unsigned i = 0; i != NumNodes; ++i) {
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ if (RecNo & 128)
+ RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
+
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
+ }
+ continue;
+ }
+
+ case OPC_CompleteMatch: {
+ // The match has been completed, and any new nodes (if any) have been
+ // created. Patch up references to the matched dag to use the newly
+ // created nodes.
+ unsigned NumResults = MatcherTable[MatcherIndex++];
+
+ for (unsigned i = 0; i != NumResults; ++i) {
+ unsigned ResSlot = MatcherTable[MatcherIndex++];
+ if (ResSlot & 128)
+ ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
+
+ assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
+ SDValue Res = RecordedNodes[ResSlot].first;
+
+ assert(i < NodeToMatch->getNumValues() &&
+ NodeToMatch->getValueType(i) != MVT::Other &&
+ NodeToMatch->getValueType(i) != MVT::Glue &&
+ "Invalid number of results to complete!");
+ assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
+ NodeToMatch->getValueType(i) == MVT::iPTR ||
+ Res.getValueType() == MVT::iPTR ||
+ NodeToMatch->getValueType(i).getSizeInBits() ==
+ Res.getValueType().getSizeInBits()) &&
+ "invalid replacement");
+ CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
+ }
+
+ // If the root node defines glue, add it to the glue nodes to update list.
+ if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
+ GlueResultNodesMatched.push_back(NodeToMatch);
+
+ // Update chain and glue uses.
+ UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
+ InputGlue, GlueResultNodesMatched, false);
+
+ assert(NodeToMatch->use_empty() &&
+ "Didn't replace all uses of the node?");
+
+ // FIXME: We just return here, which interacts correctly with SelectRoot
+ // above. We should fix this to not return an SDNode* anymore.
+ return 0;
+ }
+ }
+
+ // If the code reached this point, then the match failed. See if there is
+ // another child to try in the current 'Scope', otherwise pop it until we
+ // find a case to check.
+ DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
+ ++NumDAGIselRetries;
+ while (1) {
+ if (MatchScopes.empty()) {
+ CannotYetSelect(NodeToMatch);
+ return 0;
+ }
+
+ // Restore the interpreter state back to the point where the scope was
+ // formed.
+ MatchScope &LastScope = MatchScopes.back();
+ RecordedNodes.resize(LastScope.NumRecordedNodes);
+ NodeStack.clear();
+ NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
+ N = NodeStack.back();
+
+ if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
+ MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
+ MatcherIndex = LastScope.FailIndex;
+
+ DEBUG(errs() << " Continuing at " << MatcherIndex << "\n");
+
+ InputChain = LastScope.InputChain;
+ InputGlue = LastScope.InputGlue;
+ if (!LastScope.HasChainNodesMatched)
+ ChainNodesMatched.clear();
+ if (!LastScope.HasGlueResultNodesMatched)
+ GlueResultNodesMatched.clear();
+
+ // Check to see what the offset is at the new MatcherIndex. If it is zero
+ // we have reached the end of this scope, otherwise we have another child
+ // in the current scope to try.
+ unsigned NumToSkip = MatcherTable[MatcherIndex++];
+ if (NumToSkip & 128)
+ NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
+
+ // If we have another child in this scope to match, update FailIndex and
+ // try it.
+ if (NumToSkip != 0) {
+ LastScope.FailIndex = MatcherIndex+NumToSkip;
+ break;
+ }
+
+ // End of this scope, pop it and try the next child in the containing
+ // scope.
+ MatchScopes.pop_back();
+ }
+ }
+}
+
+
+
+void SelectionDAGISel::CannotYetSelect(SDNode *N) {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Cannot select: ";
+
+ if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
+ N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
+ N->getOpcode() != ISD::INTRINSIC_VOID) {
+ N->printrFull(Msg, CurDAG);
+ } else {
+ bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
+ unsigned iid =
+ cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
+ if (iid < Intrinsic::num_intrinsics)
+ Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
+ else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
+ Msg << "target intrinsic %" << TII->getName(iid);
+ else
+ Msg << "unknown intrinsic #" << iid;
+ }
+ report_fatal_error(Msg.str());
+}
+
+char SelectionDAGISel::ID = 0;
OpenPOWER on IntegriCloud