summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp3039
1 files changed, 1619 insertions, 1420 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
index fe9e442..8ba957d 100644
--- a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -20,8 +20,8 @@
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
@@ -34,6 +34,7 @@
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
@@ -57,7 +58,6 @@
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
-#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
@@ -161,7 +161,7 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
- DAG.getConstant(Lo.getValueType().getSizeInBits(),
+ DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
TLI.getPointerTy()));
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
@@ -208,7 +208,7 @@ static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
// FP_ROUND's are always exact here.
if (ValueVT.bitsLT(Val.getValueType()))
return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
- DAG.getTargetConstant(1, TLI.getPointerTy()));
+ DAG.getTargetConstant(1, DL, TLI.getPointerTy()));
return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
}
@@ -301,7 +301,7 @@ static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
"Cannot narrow, it would be a lossy transformation");
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
- DAG.getConstant(0, TLI.getVectorIdxTy()));
+ DAG.getConstant(0, DL, TLI.getVectorIdxTy()));
}
// Vector/Vector bitcast.
@@ -425,7 +425,7 @@ static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
unsigned RoundBits = RoundParts * PartBits;
unsigned OddParts = NumParts - RoundParts;
SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
- DAG.getIntPtrConstant(RoundBits));
+ DAG.getIntPtrConstant(RoundBits, DL));
getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
if (TLI.isBigEndian())
@@ -452,9 +452,9 @@ static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
SDValue &Part1 = Parts[i+StepSize/2];
Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(1));
+ ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(0));
+ ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
if (ThisBits == PartBits && ThisVT != PartVT) {
Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
@@ -493,7 +493,7 @@ static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
SmallVector<SDValue, 16> Ops;
for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- ElementVT, Val, DAG.getConstant(i,
+ ElementVT, Val, DAG.getConstant(i, DL,
TLI.getVectorIdxTy())));
for (unsigned i = ValueVT.getVectorNumElements(),
@@ -520,7 +520,8 @@ static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
assert(ValueVT.getVectorNumElements() == 1 &&
"Only trivial vector-to-scalar conversions should get here!");
Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
+ PartVT, Val,
+ DAG.getConstant(0, DL, TLI.getVectorIdxTy()));
bool Smaller = ValueVT.bitsLE(PartVT);
Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
@@ -550,12 +551,12 @@ static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
if (IntermediateVT.isVector())
Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
IntermediateVT, Val,
- DAG.getConstant(i * (NumElements / NumIntermediates),
+ DAG.getConstant(i * (NumElements / NumIntermediates), DL,
TLI.getVectorIdxTy()));
else
Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
IntermediateVT, Val,
- DAG.getConstant(i, TLI.getVectorIdxTy()));
+ DAG.getConstant(i, DL, TLI.getVectorIdxTy()));
}
// Split the intermediate operands into legal parts.
@@ -576,93 +577,25 @@ static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
}
}
-namespace {
- /// RegsForValue - This struct represents the registers (physical or virtual)
- /// that a particular set of values is assigned, and the type information
- /// about the value. The most common situation is to represent one value at a
- /// time, but struct or array values are handled element-wise as multiple
- /// values. The splitting of aggregates is performed recursively, so that we
- /// never have aggregate-typed registers. The values at this point do not
- /// necessarily have legal types, so each value may require one or more
- /// registers of some legal type.
- ///
- struct RegsForValue {
- /// ValueVTs - The value types of the values, which may not be legal, and
- /// may need be promoted or synthesized from one or more registers.
- ///
- SmallVector<EVT, 4> ValueVTs;
+RegsForValue::RegsForValue() {}
- /// RegVTs - The value types of the registers. This is the same size as
- /// ValueVTs and it records, for each value, what the type of the assigned
- /// register or registers are. (Individual values are never synthesized
- /// from more than one type of register.)
- ///
- /// With virtual registers, the contents of RegVTs is redundant with TLI's
- /// getRegisterType member function, however when with physical registers
- /// it is necessary to have a separate record of the types.
- ///
- SmallVector<MVT, 4> RegVTs;
-
- /// Regs - This list holds the registers assigned to the values.
- /// Each legal or promoted value requires one register, and each
- /// expanded value requires multiple registers.
- ///
- SmallVector<unsigned, 4> Regs;
-
- RegsForValue() {}
-
- RegsForValue(const SmallVector<unsigned, 4> &regs,
- MVT regvt, EVT valuevt)
- : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
-
- RegsForValue(LLVMContext &Context, const TargetLowering &tli,
- unsigned Reg, Type *Ty) {
- ComputeValueVTs(tli, Ty, ValueVTs);
-
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
- MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i)
- Regs.push_back(Reg + i);
- RegVTs.push_back(RegisterVT);
- Reg += NumRegs;
- }
- }
+RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
+ EVT valuevt)
+ : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
- /// append - Add the specified values to this one.
- void append(const RegsForValue &RHS) {
- ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
- RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
- Regs.append(RHS.Regs.begin(), RHS.Regs.end());
- }
+RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &tli,
+ unsigned Reg, Type *Ty) {
+ ComputeValueVTs(tli, Ty, ValueVTs);
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVTs value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
- SDLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V = nullptr) const;
-
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void
- getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
- SDValue *Flag, const Value *V,
- ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
-
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker, matching input operand index
- /// (if applicable), and includes the number of values added into it.
- void AddInlineAsmOperands(unsigned Kind,
- bool HasMatching, unsigned MatchingIdx,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const;
- };
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
+ MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
+ for (unsigned i = 0; i != NumRegs; ++i)
+ Regs.push_back(Reg + i);
+ RegVTs.push_back(RegisterVT);
+ Reg += NumRegs;
+ }
}
/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
@@ -721,7 +654,7 @@ SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
// The current value is a zero.
// Explicitly express that as it would be easier for
// optimizations to kick in.
- Parts[i] = DAG.getConstant(0, RegisterVT);
+ Parts[i] = DAG.getConstant(0, dl, RegisterVT);
continue;
}
@@ -823,7 +756,7 @@ void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
/// operand list. This adds the code marker and includes the number of
/// values added into it.
void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
- unsigned MatchingIdx,
+ unsigned MatchingIdx, SDLoc dl,
SelectionDAG &DAG,
std::vector<SDValue> &Ops) const {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
@@ -843,7 +776,7 @@ void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
}
- SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
+ SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
Ops.push_back(Res);
unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
@@ -869,7 +802,7 @@ void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
AA = &aa;
GFI = gfi;
LibInfo = li;
- DL = DAG.getSubtarget().getDataLayout();
+ DL = DAG.getTarget().getDataLayout();
Context = DAG.getContext();
LPadToCallSiteMap.clear();
}
@@ -997,14 +930,16 @@ void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
const DbgValueInst *DI = DDI.getDI();
DebugLoc dl = DDI.getdl();
unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
- MDNode *Variable = DI->getVariable();
- MDNode *Expr = DI->getExpression();
+ DILocalVariable *Variable = DI->getVariable();
+ DIExpression *Expr = DI->getExpression();
+ assert(Variable->isValidLocationForIntrinsic(dl) &&
+ "Expected inlined-at fields to agree");
uint64_t Offset = DI->getOffset();
// A dbg.value for an alloca is always indirect.
bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
SDDbgValue *SDV;
if (Val.getNode()) {
- if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect,
+ if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect,
Val)) {
SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
IsIndirect, Offset, dl, DbgSDNodeOrder);
@@ -1016,6 +951,24 @@ void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
}
}
+/// getCopyFromRegs - If there was virtual register allocated for the value V
+/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
+SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
+ DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
+ SDValue Result;
+
+ if (It != FuncInfo.ValueMap.end()) {
+ unsigned InReg = It->second;
+ RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
+ Ty);
+ SDValue Chain = DAG.getEntryNode();
+ Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
+ resolveDanglingDebugInfo(V, Result);
+ }
+
+ return Result;
+}
+
/// getValue - Return an SDValue for the given Value.
SDValue SelectionDAGBuilder::getValue(const Value *V) {
// If we already have an SDValue for this value, use it. It's important
@@ -1026,15 +979,9 @@ SDValue SelectionDAGBuilder::getValue(const Value *V) {
// If there's a virtual register allocated and initialized for this
// value, use it.
- DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
- if (It != FuncInfo.ValueMap.end()) {
- unsigned InReg = It->second;
- RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
- V->getType());
- SDValue Chain = DAG.getEntryNode();
- N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
- resolveDanglingDebugInfo(V, N);
- return N;
+ SDValue copyFromReg = getCopyFromRegs(V, V->getType());
+ if (copyFromReg.getNode()) {
+ return copyFromReg;
}
// Otherwise create a new SDValue and remember it.
@@ -1044,12 +991,27 @@ SDValue SelectionDAGBuilder::getValue(const Value *V) {
return Val;
}
+// Return true if SDValue exists for the given Value
+bool SelectionDAGBuilder::findValue(const Value *V) const {
+ return (NodeMap.find(V) != NodeMap.end()) ||
+ (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
+}
+
/// getNonRegisterValue - Return an SDValue for the given Value, but
/// don't look in FuncInfo.ValueMap for a virtual register.
SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
// If we already have an SDValue for this value, use it.
SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
+ if (N.getNode()) {
+ if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
+ // Remove the debug location from the node as the node is about to be used
+ // in a location which may differ from the original debug location. This
+ // is relevant to Constant and ConstantFP nodes because they can appear
+ // as constant expressions inside PHI nodes.
+ N->setDebugLoc(DebugLoc());
+ }
+ return N;
+ }
// Otherwise create a new SDValue and remember it.
SDValue Val = getValueImpl(V);
@@ -1067,18 +1029,18 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
EVT VT = TLI.getValueType(V->getType(), true);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return DAG.getConstant(*CI, VT);
+ return DAG.getConstant(*CI, getCurSDLoc(), VT);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
if (isa<ConstantPointerNull>(C)) {
unsigned AS = V->getType()->getPointerAddressSpace();
- return DAG.getConstant(0, TLI.getPointerTy(AS));
+ return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS));
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return DAG.getConstantFP(*CFP, VT);
+ return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
return DAG.getUNDEF(VT);
@@ -1138,9 +1100,9 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
if (isa<UndefValue>(C))
Constants[i] = DAG.getUNDEF(EltVT);
else if (EltVT.isFloatingPoint())
- Constants[i] = DAG.getConstantFP(0, EltVT);
+ Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
else
- Constants[i] = DAG.getConstant(0, EltVT);
+ Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
}
return DAG.getMergeValues(Constants, getCurSDLoc());
@@ -1164,9 +1126,9 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
SDValue Op;
if (EltVT.isFloatingPoint())
- Op = DAG.getConstantFP(0, EltVT);
+ Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
else
- Op = DAG.getConstant(0, EltVT);
+ Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
Ops.assign(NumElements, Op);
}
@@ -1223,7 +1185,8 @@ void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
for (unsigned i = 0; i != NumValues; ++i) {
SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
RetPtr.getValueType(), RetPtr,
- DAG.getIntPtrConstant(Offsets[i]));
+ DAG.getIntPtrConstant(Offsets[i],
+ getCurSDLoc()));
Chains[i] =
DAG.getStore(Chain, getCurSDLoc(),
SDValue(RetOp.getNode(), RetOp.getResNo() + i),
@@ -1573,19 +1536,13 @@ void SelectionDAGBuilder::visitBr(const BranchInst &I) {
// Update machine-CFG edges.
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = nullptr;
- MachineFunction::iterator BBI = BrMBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
if (I.isUnconditional()) {
// Update machine-CFG edges.
BrMBB->addSuccessor(Succ0MBB);
// If this is not a fall-through branch or optimizations are switched off,
// emit the branch.
- if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
+ if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
MVT::Other, getControlRoot(),
DAG.getBasicBlock(Succ0MBB)));
@@ -1674,7 +1631,7 @@ void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
Cond = CondLHS;
else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
CB.CC == ISD::SETEQ) {
- SDValue True = DAG.getConstant(1, CondLHS.getValueType());
+ SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
} else
Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
@@ -1682,19 +1639,19 @@ void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
- const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
+ const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
SDValue CmpOp = getValue(CB.CmpMHS);
EVT VT = CmpOp.getValueType();
if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
- Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
+ Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
ISD::SETLE);
} else {
SDValue SUB = DAG.getNode(ISD::SUB, dl,
- VT, CmpOp, DAG.getConstant(Low, VT));
+ VT, CmpOp, DAG.getConstant(Low, dl, VT));
Cond = DAG.getSetCC(dl, MVT::i1, SUB,
- DAG.getConstant(High-Low, VT), ISD::SETULE);
+ DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
}
}
@@ -1705,18 +1662,11 @@ void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
if (CB.TrueBB != CB.FalseBB)
addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = nullptr;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
// If the lhs block is the next block, invert the condition so that we can
// fall through to the lhs instead of the rhs block.
- if (CB.TrueBB == NextBlock) {
+ if (CB.TrueBB == NextBlock(SwitchBB)) {
std::swap(CB.TrueBB, CB.FalseBB);
- SDValue True = DAG.getConstant(1, Cond.getValueType());
+ SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
}
@@ -1752,13 +1702,15 @@ void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
JumpTableHeader &JTH,
MachineBasicBlock *SwitchBB) {
+ SDLoc dl = getCurSDLoc();
+
// Subtract the lowest switch case value from the value being switched on and
// conditional branch to default mbb if the result is greater than the
// difference between smallest and largest cases.
SDValue SwitchOp = getValue(JTH.SValue);
EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
- DAG.getConstant(JTH.First, VT));
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
+ DAG.getConstant(JTH.First, dl, VT));
// The SDNode we just created, which holds the value being switched on minus
// the smallest case value, needs to be copied to a virtual register so it
@@ -1766,10 +1718,10 @@ void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
// This value may be smaller or larger than the target's pointer type, and
// therefore require extension or truncating.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
+ SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy());
unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
+ SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
JumpTableReg, SwitchOp);
JT.Reg = JumpTableReg;
@@ -1777,24 +1729,18 @@ void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
// for the switch statement if the value being switched on exceeds the largest
// case in the switch.
SDValue CMP =
- DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT);
+ DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
+ Sub.getValueType()),
+ Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT),
+ ISD::SETUGT);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = nullptr;
- MachineFunction::iterator BBI = SwitchBB;
-
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
MVT::Other, CopyTo, CMP,
DAG.getBasicBlock(JT.Default));
- if (JT.MBB != NextBlock)
- BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
+ // Avoid emitting unnecessary branches to the next block.
+ if (JT.MBB != NextBlock(SwitchBB))
+ BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
DAG.getBasicBlock(JT.MBB));
DAG.setRoot(BrCond);
@@ -1824,6 +1770,7 @@ void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
SDValue Guard;
+ SDLoc dl = getCurSDLoc();
// If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
// guard value from the virtual register holding the value. Otherwise, emit a
@@ -1831,34 +1778,34 @@ void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
unsigned GuardReg = SPD.getGuardReg();
if (GuardReg && TLI.useLoadStackGuardNode())
- Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg,
+ Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
PtrTy);
else
- Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
+ Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
GuardPtr, MachinePointerInfo(IRGuard, 0),
true, false, false, Align);
- SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
+ SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
StackSlotPtr,
MachinePointerInfo::getFixedStack(FI),
true, false, false, Align);
// Perform the comparison via a subtract/getsetcc.
EVT VT = Guard.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
SDValue Cmp =
- DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
+ DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
Sub.getValueType()),
- Sub, DAG.getConstant(0, VT), ISD::SETNE);
+ Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
// If the sub is not 0, then we know the guard/stackslot do not equal, so
// branch to failure MBB.
- SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
MVT::Other, StackSlot.getOperand(0),
Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
// Otherwise branch to success MBB.
- SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
+ SDValue Br = DAG.getNode(ISD::BR, dl,
MVT::Other, BrCond,
DAG.getBasicBlock(SPD.getSuccessMBB()));
@@ -1886,18 +1833,20 @@ SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
/// suitable for "bit tests"
void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
MachineBasicBlock *SwitchBB) {
+ SDLoc dl = getCurSDLoc();
+
// Subtract the minimum value
SDValue SwitchOp = getValue(B.SValue);
EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
- DAG.getConstant(B.First, VT));
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
+ DAG.getConstant(B.First, dl, VT));
// Check range
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue RangeCmp =
- DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
- Sub.getValueType()),
- Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT);
+ DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(),
+ Sub.getValueType()),
+ Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
// Determine the type of the test operands.
bool UsePtrType = false;
@@ -1914,32 +1863,25 @@ void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
}
if (UsePtrType) {
VT = TLI.getPointerTy();
- Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
+ Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
}
B.RegVT = VT.getSimpleVT();
B.Reg = FuncInfo.CreateReg(B.RegVT);
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
- B.Reg, Sub);
-
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = nullptr;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
+ SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
MachineBasicBlock* MBB = B.Cases[0].ThisBB;
addSuccessorWithWeight(SwitchBB, B.Default);
addSuccessorWithWeight(SwitchBB, MBB);
- SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
MVT::Other, CopyTo, RangeCmp,
DAG.getBasicBlock(B.Default));
- if (MBB != NextBlock)
- BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
+ // Avoid emitting unnecessary branches to the next block.
+ if (MBB != NextBlock(SwitchBB))
+ BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
DAG.getBasicBlock(MBB));
DAG.setRoot(BrRange);
@@ -1952,34 +1894,33 @@ void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
unsigned Reg,
BitTestCase &B,
MachineBasicBlock *SwitchBB) {
+ SDLoc dl = getCurSDLoc();
MVT VT = BB.RegVT;
- SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
- Reg, VT);
+ SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
SDValue Cmp;
- unsigned PopCount = CountPopulation_64(B.Mask);
+ unsigned PopCount = countPopulation(B.Mask);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (PopCount == 1) {
// Testing for a single bit; just compare the shift count with what it
// would need to be to shift a 1 bit in that position.
Cmp = DAG.getSetCC(
- getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
- DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ);
+ dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
+ DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ);
} else if (PopCount == BB.Range) {
// There is only one zero bit in the range, test for it directly.
Cmp = DAG.getSetCC(
- getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
- DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE);
+ dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
+ DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE);
} else {
// Make desired shift
- SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
- DAG.getConstant(1, VT), ShiftOp);
+ SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
+ DAG.getConstant(1, dl, VT), ShiftOp);
// Emit bit tests and jumps
- SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
- VT, SwitchVal, DAG.getConstant(B.Mask, VT));
- Cmp = DAG.getSetCC(getCurSDLoc(),
- TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
- DAG.getConstant(0, VT), ISD::SETNE);
+ SDValue AndOp = DAG.getNode(ISD::AND, dl,
+ VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
+ Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
+ DAG.getConstant(0, dl, VT), ISD::SETNE);
}
// The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
@@ -1987,19 +1928,13 @@ void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
// The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
- SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
+ SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
MVT::Other, getControlRoot(),
Cmp, DAG.getBasicBlock(B.TargetBB));
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = nullptr;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- if (NextMBB != NextBlock)
- BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
+ // Avoid emitting unnecessary branches to the next block.
+ if (NextMBB != NextBlock(SwitchBB))
+ BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
DAG.getBasicBlock(NextMBB));
DAG.setRoot(BrAnd);
@@ -2027,13 +1962,20 @@ void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
case Intrinsic::experimental_patchpoint_i64:
visitPatchpoint(&I, LandingPad);
break;
+ case Intrinsic::experimental_gc_statepoint:
+ LowerStatepoint(ImmutableStatepoint(&I), LandingPad);
+ break;
}
} else
LowerCallTo(&I, getValue(Callee), false, LandingPad);
// If the value of the invoke is used outside of its defining block, make it
// available as a virtual register.
- CopyToExportRegsIfNeeded(&I);
+ // We already took care of the exported value for the statepoint instruction
+ // during call to the LowerStatepoint.
+ if (!isStatepoint(I)) {
+ CopyToExportRegsIfNeeded(&I);
+ }
// Update successor info
addSuccessorWithWeight(InvokeMBB, Return);
@@ -2065,622 +2007,86 @@ void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
return;
SmallVector<EVT, 2> ValueVTs;
+ SDLoc dl = getCurSDLoc();
ComputeValueVTs(TLI, LP.getType(), ValueVTs);
assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
// Get the two live-in registers as SDValues. The physregs have already been
// copied into virtual registers.
SDValue Ops[2];
- Ops[0] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
- FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
- getCurSDLoc(), ValueVTs[0]);
+ if (FuncInfo.ExceptionPointerVirtReg) {
+ Ops[0] = DAG.getZExtOrTrunc(
+ DAG.getCopyFromReg(DAG.getEntryNode(), dl,
+ FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
+ dl, ValueVTs[0]);
+ } else {
+ Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy());
+ }
Ops[1] = DAG.getZExtOrTrunc(
- DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
+ DAG.getCopyFromReg(DAG.getEntryNode(), dl,
FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
- getCurSDLoc(), ValueVTs[1]);
+ dl, ValueVTs[1]);
// Merge into one.
- SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
+ SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
DAG.getVTList(ValueVTs), Ops);
setValue(&LP, Res);
}
-/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
-/// small case ranges).
-bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock *Default,
- MachineBasicBlock *SwitchBB) {
- // Size is the number of Cases represented by this range.
- size_t Size = CR.Range.second - CR.Range.first;
- if (Size > 3)
- return false;
-
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
-
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = nullptr;
- MachineFunction::iterator BBI = CR.CaseBB;
-
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
-
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- // If any two of the cases has the same destination, and if one value
- // is the same as the other, but has one bit unset that the other has set,
- // use bit manipulation to do two compares at once. For example:
- // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
- // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
- // TODO: Handle cases where CR.CaseBB != SwitchBB.
- if (Size == 2 && CR.CaseBB == SwitchBB) {
- Case &Small = *CR.Range.first;
- Case &Big = *(CR.Range.second-1);
-
- if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
- const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
- const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
-
- // Check that there is only one bit different.
- if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
- (SmallValue | BigValue) == BigValue) {
- // Isolate the common bit.
- APInt CommonBit = BigValue & ~SmallValue;
- assert((SmallValue | CommonBit) == BigValue &&
- CommonBit.countPopulation() == 1 && "Not a common bit?");
-
- SDValue CondLHS = getValue(SV);
- EVT VT = CondLHS.getValueType();
- SDLoc DL = getCurSDLoc();
-
- SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
- DAG.getConstant(CommonBit, VT));
- SDValue Cond = DAG.getSetCC(DL, MVT::i1,
- Or, DAG.getConstant(BigValue, VT),
- ISD::SETEQ);
-
- // Update successor info.
- // Both Small and Big will jump to Small.BB, so we sum up the weights.
- addSuccessorWithWeight(SwitchBB, Small.BB,
- Small.ExtraWeight + Big.ExtraWeight);
- addSuccessorWithWeight(SwitchBB, Default,
- // The default destination is the first successor in IR.
- BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
-
- // Insert the true branch.
- SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
- getControlRoot(), Cond,
- DAG.getBasicBlock(Small.BB));
-
- // Insert the false branch.
- BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
- DAG.getBasicBlock(Default));
-
- DAG.setRoot(BrCond);
- return true;
- }
- }
- }
-
- // Order cases by weight so the most likely case will be checked first.
- uint32_t UnhandledWeights = 0;
- if (BPI) {
- for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
- uint32_t IWeight = I->ExtraWeight;
- UnhandledWeights += IWeight;
- for (CaseItr J = CR.Range.first; J < I; ++J) {
- uint32_t JWeight = J->ExtraWeight;
- if (IWeight > JWeight)
- std::swap(*I, *J);
- }
- }
- }
- // Rearrange the case blocks so that the last one falls through if possible.
- Case &BackCase = *(CR.Range.second-1);
- if (Size > 1 &&
- NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
- // The last case block won't fall through into 'NextBlock' if we emit the
- // branches in this order. See if rearranging a case value would help.
- // We start at the bottom as it's the case with the least weight.
- for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
- if (I->BB == NextBlock) {
- std::swap(*I, BackCase);
- break;
- }
- }
-
- // Create a CaseBlock record representing a conditional branch to
- // the Case's target mbb if the value being switched on SV is equal
- // to C.
- MachineBasicBlock *CurBlock = CR.CaseBB;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- MachineBasicBlock *FallThrough;
- if (I != E-1) {
- FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
- CurMF->insert(BBI, FallThrough);
-
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- } else {
- // If the last case doesn't match, go to the default block.
- FallThrough = Default;
- }
-
- const Value *RHS, *LHS, *MHS;
- ISD::CondCode CC;
- if (I->High == I->Low) {
- // This is just small small case range :) containing exactly 1 case
- CC = ISD::SETEQ;
- LHS = SV; RHS = I->High; MHS = nullptr;
- } else {
- CC = ISD::SETLE;
- LHS = I->Low; MHS = SV; RHS = I->High;
- }
-
- // The false weight should be sum of all un-handled cases.
- UnhandledWeights -= I->ExtraWeight;
- CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
- /* me */ CurBlock,
- /* trueweight */ I->ExtraWeight,
- /* falseweight */ UnhandledWeights);
-
- // If emitting the first comparison, just call visitSwitchCase to emit the
- // code into the current block. Otherwise, push the CaseBlock onto the
- // vector to be later processed by SDISel, and insert the node's MBB
- // before the next MBB.
- if (CurBlock == SwitchBB)
- visitSwitchCase(CB, SwitchBB);
- else
- SwitchCases.push_back(CB);
-
- CurBlock = FallThrough;
- }
-
- return true;
-}
-
-static inline bool areJTsAllowed(const TargetLowering &TLI) {
- return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
-}
-
-static APInt ComputeRange(const APInt &First, const APInt &Last) {
- uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
- APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
- return (LastExt - FirstExt + 1ULL);
-}
-
-/// handleJTSwitchCase - Emit jumptable for current switch case range
-bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
- CaseRecVector &WorkList,
- const Value *SV,
- MachineBasicBlock *Default,
- MachineBasicBlock *SwitchBB) {
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
-
- const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
-
- APInt TSize(First.getBitWidth(), 0);
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
- TSize += I->size();
+unsigned
+SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV,
+ MachineBasicBlock *LPadBB) {
+ SDValue Chain = getControlRoot();
+ SDLoc dl = getCurSDLoc();
+ // Get the typeid that we will dispatch on later.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
- return false;
-
- APInt Range = ComputeRange(First, Last);
- // The density is TSize / Range. Require at least 40%.
- // It should not be possible for IntTSize to saturate for sane code, but make
- // sure we handle Range saturation correctly.
- uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
- uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
- if (IntTSize * 10 < IntRange * 4)
- return false;
-
- DEBUG(dbgs() << "Lowering jump table\n"
- << "First entry: " << First << ". Last entry: " << Last << '\n'
- << "Range: " << Range << ". Size: " << TSize << ".\n\n");
-
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
-
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
+ const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy());
+ unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
+ unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV);
+ SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy());
+ Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel);
+
+ // Branch to the main landing pad block.
+ MachineBasicBlock *ClauseMBB = FuncInfo.MBB;
+ ClauseMBB->addSuccessor(LPadBB);
+ DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain,
+ DAG.getBasicBlock(LPadBB)));
+ return VReg;
+}
+
+void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
+#ifndef NDEBUG
+ for (const CaseCluster &CC : Clusters)
+ assert(CC.Low == CC.High && "Input clusters must be single-case");
+#endif
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
-
- // Create a new basic block to hold the code for loading the address
- // of the jump table, and jumping to it. Update successor information;
- // we will either branch to the default case for the switch, or the jump
- // table.
- MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, JumpTableBB);
-
- addSuccessorWithWeight(CR.CaseBB, Default);
- addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
-
- // Build a vector of destination BBs, corresponding to each target
- // of the jump table. If the value of the jump table slot corresponds to
- // a case statement, push the case's BB onto the vector, otherwise, push
- // the default BB.
- std::vector<MachineBasicBlock*> DestBBs;
- APInt TEI = First;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
- const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
- const APInt &High = cast<ConstantInt>(I->High)->getValue();
-
- if (Low.sle(TEI) && TEI.sle(High)) {
- DestBBs.push_back(I->BB);
- if (TEI==High)
- ++I;
+ std::sort(Clusters.begin(), Clusters.end(),
+ [](const CaseCluster &a, const CaseCluster &b) {
+ return a.Low->getValue().slt(b.Low->getValue());
+ });
+
+ // Merge adjacent clusters with the same destination.
+ const unsigned N = Clusters.size();
+ unsigned DstIndex = 0;
+ for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
+ CaseCluster &CC = Clusters[SrcIndex];
+ const ConstantInt *CaseVal = CC.Low;
+ MachineBasicBlock *Succ = CC.MBB;
+
+ if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
+ (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
+ // If this case has the same successor and is a neighbour, merge it into
+ // the previous cluster.
+ Clusters[DstIndex - 1].High = CaseVal;
+ Clusters[DstIndex - 1].Weight += CC.Weight;
+ assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!");
} else {
- DestBBs.push_back(Default);
- }
- }
-
- // Calculate weight for each unique destination in CR.
- DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
- if (FuncInfo.BPI)
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
- DestWeights.find(I->BB);
- if (Itr != DestWeights.end())
- Itr->second += I->ExtraWeight;
- else
- DestWeights[I->BB] = I->ExtraWeight;
- }
-
- // Update successor info. Add one edge to each unique successor.
- BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
- for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
- E = DestBBs.end(); I != E; ++I) {
- if (!SuccsHandled[(*I)->getNumber()]) {
- SuccsHandled[(*I)->getNumber()] = true;
- DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
- DestWeights.find(*I);
- addSuccessorWithWeight(JumpTableBB, *I,
- Itr != DestWeights.end() ? Itr->second : 0);
- }
- }
-
- // Create a jump table index for this jump table.
- unsigned JTEncoding = TLI.getJumpTableEncoding();
- unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
- ->createJumpTableIndex(DestBBs);
-
- // Set the jump table information so that we can codegen it as a second
- // MachineBasicBlock
- JumpTable JT(-1U, JTI, JumpTableBB, Default);
- JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
- if (CR.CaseBB == SwitchBB)
- visitJumpTableHeader(JT, JTH, SwitchBB);
-
- JTCases.push_back(JumpTableBlock(JTH, JT));
- return true;
-}
-
-/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
-/// 2 subtrees.
-bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock* SwitchBB) {
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
-
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
-
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
-
- // Size is the number of Cases represented by this range.
- unsigned Size = CR.Range.second - CR.Range.first;
-
- const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
- double FMetric = 0;
- CaseItr Pivot = CR.Range.first + Size/2;
-
- // Select optimal pivot, maximizing sum density of LHS and RHS. This will
- // (heuristically) allow us to emit JumpTable's later.
- APInt TSize(First.getBitWidth(), 0);
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I)
- TSize += I->size();
-
- APInt LSize = FrontCase.size();
- APInt RSize = TSize-LSize;
- DEBUG(dbgs() << "Selecting best pivot: \n"
- << "First: " << First << ", Last: " << Last <<'\n'
- << "LSize: " << LSize << ", RSize: " << RSize << '\n');
- for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
- J!=E; ++I, ++J) {
- const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
- const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
- APInt Range = ComputeRange(LEnd, RBegin);
- assert((Range - 2ULL).isNonNegative() &&
- "Invalid case distance");
- // Use volatile double here to avoid excess precision issues on some hosts,
- // e.g. that use 80-bit X87 registers.
- volatile double LDensity =
- (double)LSize.roundToDouble() /
- (LEnd - First + 1ULL).roundToDouble();
- volatile double RDensity =
- (double)RSize.roundToDouble() /
- (Last - RBegin + 1ULL).roundToDouble();
- volatile double Metric = Range.logBase2()*(LDensity+RDensity);
- // Should always split in some non-trivial place
- DEBUG(dbgs() <<"=>Step\n"
- << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
- << "LDensity: " << LDensity
- << ", RDensity: " << RDensity << '\n'
- << "Metric: " << Metric << '\n');
- if (FMetric < Metric) {
- Pivot = J;
- FMetric = Metric;
- DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
- }
-
- LSize += J->size();
- RSize -= J->size();
- }
-
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (areJTsAllowed(TLI)) {
- // If our case is dense we *really* should handle it earlier!
- assert((FMetric > 0) && "Should handle dense range earlier!");
- } else {
- Pivot = CR.Range.first + Size/2;
- }
-
- CaseRange LHSR(CR.Range.first, Pivot);
- CaseRange RHSR(Pivot, CR.Range.second);
- const Constant *C = Pivot->Low;
- MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
-
- // We know that we branch to the LHS if the Value being switched on is
- // less than the Pivot value, C. We use this to optimize our binary
- // tree a bit, by recognizing that if SV is greater than or equal to the
- // LHS's Case Value, and that Case Value is exactly one less than the
- // Pivot's Value, then we can branch directly to the LHS's Target,
- // rather than creating a leaf node for it.
- if ((LHSR.second - LHSR.first) == 1 &&
- LHSR.first->High == CR.GE &&
- cast<ConstantInt>(C)->getValue() ==
- (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
- TrueBB = LHSR.first->BB;
- } else {
- TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, TrueBB);
- WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
-
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
-
- // Similar to the optimization above, if the Value being switched on is
- // known to be less than the Constant CR.LT, and the current Case Value
- // is CR.LT - 1, then we can branch directly to the target block for
- // the current Case Value, rather than emitting a RHS leaf node for it.
- if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
- cast<ConstantInt>(RHSR.first->Low)->getValue() ==
- (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
- FalseBB = RHSR.first->BB;
- } else {
- FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, FalseBB);
- WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
-
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
-
- // Create a CaseBlock record representing a conditional branch to
- // the LHS node if the value being switched on SV is less than C.
- // Otherwise, branch to LHS.
- CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
-
- if (CR.CaseBB == SwitchBB)
- visitSwitchCase(CB, SwitchBB);
- else
- SwitchCases.push_back(CB);
-
- return true;
-}
-
-/// handleBitTestsSwitchCase - if current case range has few destination and
-/// range span less, than machine word bitwidth, encode case range into series
-/// of masks and emit bit tests with these masks.
-bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock* Default,
- MachineBasicBlock* SwitchBB) {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- EVT PTy = TLI.getPointerTy();
- unsigned IntPtrBits = PTy.getSizeInBits();
-
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
-
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
-
- // If target does not have legal shift left, do not emit bit tests at all.
- if (!TLI.isOperationLegal(ISD::SHL, PTy))
- return false;
-
- size_t numCmps = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- // Single case counts one, case range - two.
- numCmps += (I->Low == I->High ? 1 : 2);
- }
-
- // Count unique destinations
- SmallSet<MachineBasicBlock*, 4> Dests;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- Dests.insert(I->BB);
- if (Dests.size() > 3)
- // Don't bother the code below, if there are too much unique destinations
- return false;
- }
- DEBUG(dbgs() << "Total number of unique destinations: "
- << Dests.size() << '\n'
- << "Total number of comparisons: " << numCmps << '\n');
-
- // Compute span of values.
- const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
- APInt cmpRange = maxValue - minValue;
-
- DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
- << "Low bound: " << minValue << '\n'
- << "High bound: " << maxValue << '\n');
-
- if (cmpRange.uge(IntPtrBits) ||
- (!(Dests.size() == 1 && numCmps >= 3) &&
- !(Dests.size() == 2 && numCmps >= 5) &&
- !(Dests.size() >= 3 && numCmps >= 6)))
- return false;
-
- DEBUG(dbgs() << "Emitting bit tests\n");
- APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
-
- // Optimize the case where all the case values fit in a
- // word without having to subtract minValue. In this case,
- // we can optimize away the subtraction.
- if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
- cmpRange = maxValue;
- } else {
- lowBound = minValue;
- }
-
- CaseBitsVector CasesBits;
- unsigned i, count = 0;
-
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- MachineBasicBlock* Dest = I->BB;
- for (i = 0; i < count; ++i)
- if (Dest == CasesBits[i].BB)
- break;
-
- if (i == count) {
- assert((count < 3) && "Too much destinations to test!");
- CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
- count++;
- }
-
- const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
- const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
-
- uint64_t lo = (lowValue - lowBound).getZExtValue();
- uint64_t hi = (highValue - lowBound).getZExtValue();
- CasesBits[i].ExtraWeight += I->ExtraWeight;
-
- for (uint64_t j = lo; j <= hi; j++) {
- CasesBits[i].Mask |= 1ULL << j;
- CasesBits[i].Bits++;
+ std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
+ sizeof(Clusters[SrcIndex]));
}
-
}
- std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
-
- BitTestInfo BTC;
-
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
-
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
-
- DEBUG(dbgs() << "Cases:\n");
- for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
- DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
- << ", Bits: " << CasesBits[i].Bits
- << ", BB: " << CasesBits[i].BB << '\n');
-
- MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, CaseBB);
- BTC.push_back(BitTestCase(CasesBits[i].Mask,
- CaseBB,
- CasesBits[i].BB, CasesBits[i].ExtraWeight));
-
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
-
- BitTestBlock BTB(lowBound, cmpRange, SV,
- -1U, MVT::Other, (CR.CaseBB == SwitchBB),
- CR.CaseBB, Default, std::move(BTC));
-
- if (CR.CaseBB == SwitchBB)
- visitBitTestHeader(BTB, SwitchBB);
-
- BitTestCases.push_back(std::move(BTB));
-
- return true;
-}
-
-/// Clusterify - Transform simple list of Cases into list of CaseRange's
-void SelectionDAGBuilder::Clusterify(CaseVector& Cases,
- const SwitchInst& SI) {
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- // Start with "simple" cases.
- for (SwitchInst::ConstCaseIt i : SI.cases()) {
- const BasicBlock *SuccBB = i.getCaseSuccessor();
- MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
-
- uint32_t ExtraWeight =
- BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
-
- Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
- SMBB, ExtraWeight));
- }
- std::sort(Cases.begin(), Cases.end(), CaseCmp());
-
- // Merge case into clusters
- if (Cases.size() >= 2)
- // Must recompute end() each iteration because it may be
- // invalidated by erase if we hold on to it
- for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
- J != Cases.end(); ) {
- const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
- const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
- MachineBasicBlock* nextBB = J->BB;
- MachineBasicBlock* currentBB = I->BB;
-
- // If the two neighboring cases go to the same destination, merge them
- // into a single case.
- if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
- I->High = J->High;
- I->ExtraWeight += J->ExtraWeight;
- J = Cases.erase(J);
- } else {
- I = J++;
- }
- }
-
- DEBUG({
- size_t numCmps = 0;
- for (auto &I : Cases)
- // A range counts double, since it requires two compares.
- numCmps += I.Low != I.High ? 2 : 1;
-
- dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total compares: " << numCmps << '\n';
- });
+ Clusters.resize(DstIndex);
}
void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
@@ -2696,96 +2102,6 @@ void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
BitTestCases[i].Parent = Last;
}
-void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
- MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
-
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = nullptr;
- if (SwitchMBB + 1 != FuncInfo.MF->end())
- NextBlock = SwitchMBB + 1;
-
-
- // Create a vector of Cases, sorted so that we can efficiently create a binary
- // search tree from them.
- CaseVector Cases;
- Clusterify(Cases, SI);
-
- // Get the default destination MBB.
- MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
-
- if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) &&
- !Cases.empty()) {
- // Replace an unreachable default destination with the most popular case
- // destination.
- DenseMap<const BasicBlock *, unsigned> Popularity;
- unsigned MaxPop = 0;
- const BasicBlock *MaxBB = nullptr;
- for (auto I : SI.cases()) {
- const BasicBlock *BB = I.getCaseSuccessor();
- if (++Popularity[BB] > MaxPop) {
- MaxPop = Popularity[BB];
- MaxBB = BB;
- }
- }
-
- // Set new default.
- assert(MaxPop > 0);
- assert(MaxBB);
- Default = FuncInfo.MBBMap[MaxBB];
-
- // Remove cases that were pointing to the destination that is now the default.
- Cases.erase(std::remove_if(Cases.begin(), Cases.end(),
- [&](const Case &C) { return C.BB == Default; }),
- Cases.end());
- }
-
- // If there is only the default destination, go there directly.
- if (Cases.empty()) {
- // Update machine-CFG edges.
- SwitchMBB->addSuccessor(Default);
-
- // If this is not a fall-through branch, emit the branch.
- if (Default != NextBlock) {
- DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
- getControlRoot(), DAG.getBasicBlock(Default)));
- }
- return;
- }
-
- // Get the Value to be switched on.
- const Value *SV = SI.getCondition();
-
- // Push the initial CaseRec onto the worklist
- CaseRecVector WorkList;
- WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
- CaseRange(Cases.begin(),Cases.end())));
-
- while (!WorkList.empty()) {
- // Grab a record representing a case range to process off the worklist
- CaseRec CR = WorkList.back();
- WorkList.pop_back();
-
- if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
- continue;
-
- // If the range has few cases (two or less) emit a series of specific
- // tests.
- if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
- continue;
-
- // If the switch has more than N blocks, and is at least 40% dense, and the
- // target supports indirect branches, then emit a jump table rather than
- // lowering the switch to a binary tree of conditional branches.
- // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
- if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
- continue;
-
- // Emit binary tree. We need to pick a pivot, and push left and right ranges
- // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
- handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB);
- }
-}
-
void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
@@ -2950,19 +2266,51 @@ void SelectionDAGBuilder::visitSelect(const User &I) {
SmallVector<SDValue, 4> Values(NumValues);
SDValue Cond = getValue(I.getOperand(0));
- SDValue TrueVal = getValue(I.getOperand(1));
- SDValue FalseVal = getValue(I.getOperand(2));
+ SDValue LHSVal = getValue(I.getOperand(1));
+ SDValue RHSVal = getValue(I.getOperand(2));
+ auto BaseOps = {Cond};
ISD::NodeType OpCode = Cond.getValueType().isVector() ?
ISD::VSELECT : ISD::SELECT;
- for (unsigned i = 0; i != NumValues; ++i)
+ // Min/max matching is only viable if all output VTs are the same.
+ if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
+ Value *LHS, *RHS;
+ SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
+ ISD::NodeType Opc = ISD::DELETED_NODE;
+ switch (SPF) {
+ case SPF_UMAX: Opc = ISD::UMAX; break;
+ case SPF_UMIN: Opc = ISD::UMIN; break;
+ case SPF_SMAX: Opc = ISD::SMAX; break;
+ case SPF_SMIN: Opc = ISD::SMIN; break;
+ default: break;
+ }
+
+ EVT VT = ValueVTs[0];
+ LLVMContext &Ctx = *DAG.getContext();
+ auto &TLI = DAG.getTargetLoweringInfo();
+ while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector)
+ VT = TLI.getTypeToTransformTo(Ctx, VT);
+
+ if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) &&
+ // If the underlying comparison instruction is used by any other instruction,
+ // the consumed instructions won't be destroyed, so it is not profitable
+ // to convert to a min/max.
+ cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
+ OpCode = Opc;
+ LHSVal = getValue(LHS);
+ RHSVal = getValue(RHS);
+ BaseOps = {};
+ }
+ }
+
+ for (unsigned i = 0; i != NumValues; ++i) {
+ SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
+ Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
+ Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
- TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
- Cond,
- SDValue(TrueVal.getNode(),
- TrueVal.getResNo() + i),
- SDValue(FalseVal.getNode(),
- FalseVal.getResNo() + i));
+ LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
+ Ops);
+ }
setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
DAG.getVTList(ValueVTs), Values));
@@ -2994,10 +2342,11 @@ void SelectionDAGBuilder::visitSExt(const User &I) {
void SelectionDAGBuilder::visitFPTrunc(const User &I) {
// FPTrunc is never a no-op cast, no need to check
SDValue N = getValue(I.getOperand(0));
+ SDLoc dl = getCurSDLoc();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N,
- DAG.getTargetConstant(0, TLI.getPointerTy())));
+ setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
+ DAG.getTargetConstant(0, dl, TLI.getPointerTy())));
}
void SelectionDAGBuilder::visitFPExt(const User &I) {
@@ -3053,19 +2402,20 @@ void SelectionDAGBuilder::visitIntToPtr(const User &I) {
void SelectionDAGBuilder::visitBitCast(const User &I) {
SDValue N = getValue(I.getOperand(0));
+ SDLoc dl = getCurSDLoc();
EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
// BitCast assures us that source and destination are the same size so this is
// either a BITCAST or a no-op.
if (DestVT != N.getValueType())
- setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
+ setValue(&I, DAG.getNode(ISD::BITCAST, dl,
DestVT, N)); // convert types.
// Check if the original LLVM IR Operand was a ConstantInt, because getValue()
// might fold any kind of constant expression to an integer constant and that
// is not what we are looking for. Only regcognize a bitcast of a genuine
// constant integer as an opaque constant.
else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
- setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
+ setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
/*isOpaque*/true));
else
setValue(&I, N); // noop cast.
@@ -3243,10 +2593,12 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
SDValue &Src = Input == 0 ? Src1 : Src2;
if (RangeUse[Input] == 0)
Src = DAG.getUNDEF(VT);
- else
+ else {
+ SDLoc dl = getCurSDLoc();
Src = DAG.getNode(
- ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src,
- DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy()));
+ ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
+ DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy()));
+ }
}
// Calculate new mask.
@@ -3273,6 +2625,7 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
// to insert and build vector.
EVT EltVT = VT.getVectorElementType();
EVT IdxVT = TLI.getVectorIdxTy();
+ SDLoc dl = getCurSDLoc();
SmallVector<SDValue,8> Ops;
for (unsigned i = 0; i != MaskNumElts; ++i) {
int Idx = Mask[i];
@@ -3284,14 +2637,14 @@ void SelectionDAGBuilder::visitShuffleVector(const User &I) {
SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
- Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
- EltVT, Src, DAG.getConstant(Idx, IdxVT));
+ Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
}
Ops.push_back(Res);
}
- setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
+ setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
}
void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
@@ -3383,6 +2736,7 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
Type *Ty = Op0->getType()->getScalarType();
unsigned AS = Ty->getPointerAddressSpace();
SDValue N = getValue(Op0);
+ SDLoc dl = getCurSDLoc();
for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
OI != E; ++OI) {
@@ -3392,8 +2746,8 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
if (Field) {
// N = N + Offset
uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
- N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
- DAG.getConstant(Offset, N.getValueType()));
+ N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
+ DAG.getConstant(Offset, dl, N.getValueType()));
}
Ty = StTy->getElementType(Field);
@@ -3408,8 +2762,8 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
if (CI->isZero())
continue;
APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
- SDValue OffsVal = DAG.getConstant(Offs, PtrTy);
- N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, OffsVal);
+ SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy);
+ N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal);
continue;
}
@@ -3418,24 +2772,24 @@ void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
// If the index is smaller or larger than intptr_t, truncate or extend
// it.
- IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
+ IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
// If this is a multiply by a power of two, turn it into a shl
// immediately. This is a very common case.
if (ElementSize != 1) {
if (ElementSize.isPowerOf2()) {
unsigned Amt = ElementSize.logBase2();
- IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
+ IdxN = DAG.getNode(ISD::SHL, dl,
N.getValueType(), IdxN,
- DAG.getConstant(Amt, IdxN.getValueType()));
+ DAG.getConstant(Amt, dl, IdxN.getValueType()));
} else {
- SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
- IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
+ SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
+ IdxN = DAG.getNode(ISD::MUL, dl,
N.getValueType(), IdxN, Scale);
}
}
- N = DAG.getNode(ISD::ADD, getCurSDLoc(),
+ N = DAG.getNode(ISD::ADD, dl,
N.getValueType(), N, IdxN);
}
}
@@ -3449,6 +2803,7 @@ void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
if (FuncInfo.StaticAllocaMap.count(&I))
return; // getValue will auto-populate this.
+ SDLoc dl = getCurSDLoc();
Type *Ty = I.getAllocatedType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
@@ -3460,11 +2815,11 @@ void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
EVT IntPtr = TLI.getPointerTy();
if (AllocSize.getValueType() != IntPtr)
- AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
+ AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
- AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
+ AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
AllocSize,
- DAG.getConstant(TySize, IntPtr));
+ DAG.getConstant(TySize, dl, IntPtr));
// Handle alignment. If the requested alignment is less than or equal to
// the stack alignment, ignore it. If the size is greater than or equal to
@@ -3476,18 +2831,19 @@ void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
// Round the size of the allocation up to the stack alignment size
// by add SA-1 to the size.
- AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
+ AllocSize = DAG.getNode(ISD::ADD, dl,
AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(StackAlign-1));
+ DAG.getIntPtrConstant(StackAlign - 1, dl));
// Mask out the low bits for alignment purposes.
- AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
+ AllocSize = DAG.getNode(ISD::AND, dl,
AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
+ DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
+ dl));
- SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
+ SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
- SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
+ SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
setValue(&I, DSA);
DAG.setRoot(DSA.getValue(1));
@@ -3505,7 +2861,17 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
bool isVolatile = I.isVolatile();
bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
- bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
+
+ // The IR notion of invariant_load only guarantees that all *non-faulting*
+ // invariant loads result in the same value. The MI notion of invariant load
+ // guarantees that the load can be legally moved to any location within its
+ // containing function. The MI notion of invariant_load is stronger than the
+ // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
+ // with a guarantee that the location being loaded from is dereferenceable
+ // throughout the function's lifetime.
+
+ bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
+ isDereferenceablePointer(SV, *DAG.getTarget().getDataLayout());
unsigned Alignment = I.getAlignment();
AAMDNodes AAInfo;
@@ -3535,8 +2901,10 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
Root = DAG.getRoot();
}
+ SDLoc dl = getCurSDLoc();
+
if (isVolatile)
- Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
+ Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
SmallVector<SDValue, 4> Values(NumValues);
SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
@@ -3552,15 +2920,15 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
// (MaxParallelChains should always remain as failsafe).
if (ChainI == MaxParallelChains) {
assert(PendingLoads.empty() && "PendingLoads must be serialized first");
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(Chains.data(), ChainI));
Root = Chain;
ChainI = 0;
}
- SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
+ SDValue A = DAG.getNode(ISD::ADD, dl,
PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT));
- SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
+ DAG.getConstant(Offsets[i], dl, PtrVT));
+ SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
isNonTemporal, isInvariant, Alignment, AAInfo,
Ranges);
@@ -3570,7 +2938,7 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
}
if (!ConstantMemory) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(Chains.data(), ChainI));
if (isVolatile)
DAG.setRoot(Chain);
@@ -3578,7 +2946,7 @@ void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
PendingLoads.push_back(Chain);
}
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
DAG.getVTList(ValueVTs), Values));
}
@@ -3610,6 +2978,7 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
bool isVolatile = I.isVolatile();
bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
unsigned Alignment = I.getAlignment();
+ SDLoc dl = getCurSDLoc();
AAMDNodes AAInfo;
I.getAAMetadata(AAInfo);
@@ -3618,21 +2987,21 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) {
for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
// See visitLoad comments.
if (ChainI == MaxParallelChains) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(Chains.data(), ChainI));
Root = Chain;
ChainI = 0;
}
- SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT));
- SDValue St = DAG.getStore(Root, getCurSDLoc(),
+ SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
+ DAG.getConstant(Offsets[i], dl, PtrVT));
+ SDValue St = DAG.getStore(Root, dl,
SDValue(Src.getNode(), Src.getResNo() + i),
Add, MachinePointerInfo(PtrV, Offsets[i]),
isVolatile, isNonTemporal, Alignment, AAInfo);
Chains[ChainI] = St;
}
- SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
+ SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(Chains.data(), ChainI));
DAG.setRoot(StoreNode);
}
@@ -3664,6 +3033,94 @@ void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
setValue(&I, StoreNode);
}
+// Gather/scatter receive a vector of pointers.
+// This vector of pointers may be represented as a base pointer + vector of
+// indices, it depends on GEP and instruction preceeding GEP
+// that calculates indices
+static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index,
+ SelectionDAGBuilder* SDB) {
+
+ assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type");
+ GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
+ if (!Gep || Gep->getNumOperands() > 2)
+ return false;
+ ShuffleVectorInst *ShuffleInst =
+ dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand());
+ if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() ||
+ cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() !=
+ Instruction::InsertElement)
+ return false;
+
+ Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1);
+
+ SelectionDAG& DAG = SDB->DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ // Check is the Ptr is inside current basic block
+ // If not, look for the shuffle instruction
+ if (SDB->findValue(Ptr))
+ Base = SDB->getValue(Ptr);
+ else if (SDB->findValue(ShuffleInst)) {
+ SDValue ShuffleNode = SDB->getValue(ShuffleInst);
+ SDLoc sdl = ShuffleNode;
+ Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
+ ShuffleNode.getValueType().getScalarType(), ShuffleNode,
+ DAG.getConstant(0, sdl, TLI.getVectorIdxTy()));
+ SDB->setValue(Ptr, Base);
+ }
+ else
+ return false;
+
+ Value *IndexVal = Gep->getOperand(1);
+ if (SDB->findValue(IndexVal)) {
+ Index = SDB->getValue(IndexVal);
+
+ if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
+ IndexVal = Sext->getOperand(0);
+ if (SDB->findValue(IndexVal))
+ Index = SDB->getValue(IndexVal);
+ }
+ return true;
+ }
+ return false;
+}
+
+void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
+ SDLoc sdl = getCurSDLoc();
+
+ // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
+ Value *Ptr = I.getArgOperand(1);
+ SDValue Src0 = getValue(I.getArgOperand(0));
+ SDValue Mask = getValue(I.getArgOperand(3));
+ EVT VT = Src0.getValueType();
+ unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
+ if (!Alignment)
+ Alignment = DAG.getEVTAlignment(VT);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ AAMDNodes AAInfo;
+ I.getAAMetadata(AAInfo);
+
+ SDValue Base;
+ SDValue Index;
+ Value *BasePtr = Ptr;
+ bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
+
+ Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
+ MachineMemOperand::MOStore, VT.getStoreSize(),
+ Alignment, AAInfo);
+ if (!UniformBase) {
+ Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy());
+ Index = getValue(Ptr);
+ }
+ SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
+ SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
+ Ops, MMO);
+ DAG.setRoot(Scatter);
+ setValue(&I, Scatter);
+}
+
void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
SDLoc sdl = getCurSDLoc();
@@ -3705,6 +3162,59 @@ void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
setValue(&I, Load);
}
+void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
+ SDLoc sdl = getCurSDLoc();
+
+ // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
+ Value *Ptr = I.getArgOperand(0);
+ SDValue Src0 = getValue(I.getArgOperand(3));
+ SDValue Mask = getValue(I.getArgOperand(2));
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = TLI.getValueType(I.getType());
+ unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
+ if (!Alignment)
+ Alignment = DAG.getEVTAlignment(VT);
+
+ AAMDNodes AAInfo;
+ I.getAAMetadata(AAInfo);
+ const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
+
+ SDValue Root = DAG.getRoot();
+ SDValue Base;
+ SDValue Index;
+ Value *BasePtr = Ptr;
+ bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
+ bool ConstantMemory = false;
+ if (UniformBase && AA->pointsToConstantMemory(
+ AliasAnalysis::Location(BasePtr,
+ AA->getTypeStoreSize(I.getType()),
+ AAInfo))) {
+ // Do not serialize (non-volatile) loads of constant memory with anything.
+ Root = DAG.getEntryNode();
+ ConstantMemory = true;
+ }
+
+ MachineMemOperand *MMO =
+ DAG.getMachineFunction().
+ getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
+ MachineMemOperand::MOLoad, VT.getStoreSize(),
+ Alignment, AAInfo, Ranges);
+
+ if (!UniformBase) {
+ Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy());
+ Index = getValue(Ptr);
+ }
+ SDValue Ops[] = { Root, Src0, Mask, Base, Index };
+ SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
+ Ops, MMO);
+
+ SDValue OutChain = Gather.getValue(1);
+ if (!ConstantMemory)
+ PendingLoads.push_back(OutChain);
+ setValue(&I, Gather);
+}
+
void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
SDLoc dl = getCurSDLoc();
AtomicOrdering SuccessOrder = I.getSuccessOrdering();
@@ -3769,8 +3279,8 @@ void SelectionDAGBuilder::visitFence(const FenceInst &I) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Ops[3];
Ops[0] = getRoot();
- Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
- Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
+ Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy());
+ Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy());
DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
}
@@ -3859,7 +3369,8 @@ void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
// Add the intrinsic ID as an integer operand if it's not a target intrinsic.
if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
Info.opc == ISD::INTRINSIC_W_CHAIN)
- Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
+ Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
+ TLI.getPointerTy()));
// Add all operands of the call to the operand list.
for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
@@ -3919,9 +3430,9 @@ void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
static SDValue
GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x007fffff, MVT::i32));
+ DAG.getConstant(0x007fffff, dl, MVT::i32));
SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
- DAG.getConstant(0x3f800000, MVT::i32));
+ DAG.getConstant(0x3f800000, dl, MVT::i32));
return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
}
@@ -3934,21 +3445,108 @@ static SDValue
GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
SDLoc dl) {
SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x7f800000, MVT::i32));
+ DAG.getConstant(0x7f800000, dl, MVT::i32));
SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
- DAG.getConstant(23, TLI.getPointerTy()));
+ DAG.getConstant(23, dl, TLI.getPointerTy()));
SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
- DAG.getConstant(127, MVT::i32));
+ DAG.getConstant(127, dl, MVT::i32));
return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
}
/// getF32Constant - Get 32-bit floating point constant.
static SDValue
-getF32Constant(SelectionDAG &DAG, unsigned Flt) {
- return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
+getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
+ return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
MVT::f32);
}
+static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
+ SelectionDAG &DAG) {
+ // IntegerPartOfX = ((int32_t)(t0);
+ SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
+
+ // FractionalPartOfX = t0 - (float)IntegerPartOfX;
+ SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+ SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
+
+ // IntegerPartOfX <<= 23;
+ IntegerPartOfX = DAG.getNode(
+ ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+ DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy()));
+
+ SDValue TwoToFractionalPartOfX;
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.997535578f +
+ // (0.735607626f + 0.252464424f * x) * x;
+ //
+ // error 0.0144103317, which is 6 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3e814304, dl));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f3c50c8, dl));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f7f5e7e, dl));
+ } else if (LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999892986f +
+ // (0.696457318f +
+ // (0.224338339f + 0.792043434e-1f * x) * x) * x;
+ //
+ // error 0.000107046256, which is 13 to 14 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3da235e3, dl));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3e65b8f3, dl));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f324b07, dl));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3f7ff8fd, dl));
+ } else { // LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999999982f +
+ // (0.693148872f +
+ // (0.240227044f +
+ // (0.554906021e-1f +
+ // (0.961591928e-2f +
+ // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+ // error 2.47208000*10^(-7), which is better than 18 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3924b03e, dl));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3ab24b87, dl));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3c1d8c17, dl));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3d634a1d, dl));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3e75fe14, dl));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x3f317234, dl));
+ SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+ TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+ getF32Constant(DAG, 0x3f800000, dl));
+ }
+
+ // Add the exponent into the result in integer domain.
+ SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
+ DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
+}
+
/// expandExp - Lower an exp intrinsic. Handles the special sequences for
/// limited-precision mode.
static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
@@ -3960,92 +3558,10 @@ static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
// final result:
//
// #define LOG2OFe 1.4426950f
- // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
+ // t0 = Op * LOG2OFe
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- getF32Constant(DAG, 0x3fb8aa3b));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
-
- // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
-
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
-
- SDValue TwoToFracPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // 0.000107046256 error, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- //
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
-
- // Add the exponent into the result in integer domain.
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
+ getF32Constant(DAG, 0x3fb8aa3b, dl));
+ return getLimitedPrecisionExp2(t0, dl, DAG);
}
// No special expansion.
@@ -4063,7 +3579,7 @@ static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
// Scale the exponent by log(2) [0.69314718f].
SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3f317218));
+ getF32Constant(DAG, 0x3f317218, dl));
// Get the significand and build it into a floating-point number with
// exponent of 1.
@@ -4079,12 +3595,12 @@ static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.0034276066, which is better than 8 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbe74c456));
+ getF32Constant(DAG, 0xbe74c456, dl));
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3fb3a2b1));
+ getF32Constant(DAG, 0x3fb3a2b1, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f949a29));
+ getF32Constant(DAG, 0x3f949a29, dl));
} else if (LimitFloatPrecision <= 12) {
// For floating-point precision of 12:
//
@@ -4096,18 +3612,18 @@ static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.000061011436, which is 14 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbd67b6d6));
+ getF32Constant(DAG, 0xbd67b6d6, dl));
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ee4f4b8));
+ getF32Constant(DAG, 0x3ee4f4b8, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fbc278b));
+ getF32Constant(DAG, 0x3fbc278b, dl));
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40348e95));
+ getF32Constant(DAG, 0x40348e95, dl));
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fdef31a));
+ getF32Constant(DAG, 0x3fdef31a, dl));
} else { // LimitFloatPrecision <= 18
// For floating-point precision of 18:
//
@@ -4121,24 +3637,24 @@ static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.0000023660568, which is better than 18 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbc91e5ac));
+ getF32Constant(DAG, 0xbc91e5ac, dl));
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e4350aa));
+ getF32Constant(DAG, 0x3e4350aa, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f60d3e3));
+ getF32Constant(DAG, 0x3f60d3e3, dl));
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x4011cdf0));
+ getF32Constant(DAG, 0x4011cdf0, dl));
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x406cfd1c));
+ getF32Constant(DAG, 0x406cfd1c, dl));
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x408797cb));
+ getF32Constant(DAG, 0x408797cb, dl));
SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4006dcab));
+ getF32Constant(DAG, 0x4006dcab, dl));
}
return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
@@ -4173,12 +3689,12 @@ static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.0049451742, which is more than 7 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbeb08fe0));
+ getF32Constant(DAG, 0xbeb08fe0, dl));
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x40019463));
+ getF32Constant(DAG, 0x40019463, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fd6633d));
+ getF32Constant(DAG, 0x3fd6633d, dl));
} else if (LimitFloatPrecision <= 12) {
// For floating-point precision of 12:
//
@@ -4190,18 +3706,18 @@ static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.0000876136000, which is better than 13 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbda7262e));
+ getF32Constant(DAG, 0xbda7262e, dl));
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f25280b));
+ getF32Constant(DAG, 0x3f25280b, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x4007b923));
+ getF32Constant(DAG, 0x4007b923, dl));
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40823e2f));
+ getF32Constant(DAG, 0x40823e2f, dl));
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x4020d29c));
+ getF32Constant(DAG, 0x4020d29c, dl));
} else { // LimitFloatPrecision <= 18
// For floating-point precision of 18:
//
@@ -4216,24 +3732,24 @@ static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.0000018516, which is better than 18 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbcd2769e));
+ getF32Constant(DAG, 0xbcd2769e, dl));
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e8ce0b9));
+ getF32Constant(DAG, 0x3e8ce0b9, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fa22ae7));
+ getF32Constant(DAG, 0x3fa22ae7, dl));
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40525723));
+ getF32Constant(DAG, 0x40525723, dl));
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x40aaf200));
+ getF32Constant(DAG, 0x40aaf200, dl));
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x40c39dad));
+ getF32Constant(DAG, 0x40c39dad, dl));
SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4042902c));
+ getF32Constant(DAG, 0x4042902c, dl));
}
return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
@@ -4254,7 +3770,7 @@ static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
// Scale the exponent by log10(2) [0.30102999f].
SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3e9a209a));
+ getF32Constant(DAG, 0x3e9a209a, dl));
// Get the significand and build it into a floating-point number with
// exponent of 1.
@@ -4270,12 +3786,12 @@ static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.0014886165, which is 6 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbdd49a13));
+ getF32Constant(DAG, 0xbdd49a13, dl));
SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f1c0789));
+ getF32Constant(DAG, 0x3f1c0789, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f011300));
+ getF32Constant(DAG, 0x3f011300, dl));
} else if (LimitFloatPrecision <= 12) {
// For floating-point precision of 12:
//
@@ -4286,15 +3802,15 @@ static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.00019228036, which is better than 12 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3d431f31));
+ getF32Constant(DAG, 0x3d431f31, dl));
SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ea21fb2));
+ getF32Constant(DAG, 0x3ea21fb2, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f6ae232));
+ getF32Constant(DAG, 0x3f6ae232, dl));
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f25f7c3));
+ getF32Constant(DAG, 0x3f25f7c3, dl));
} else { // LimitFloatPrecision <= 18
// For floating-point precision of 18:
//
@@ -4307,21 +3823,21 @@ static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
//
// error 0.0000037995730, which is better than 18 bits
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3c5d51ce));
+ getF32Constant(DAG, 0x3c5d51ce, dl));
SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e00685a));
+ getF32Constant(DAG, 0x3e00685a, dl));
SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3efb6798));
+ getF32Constant(DAG, 0x3efb6798, dl));
SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f88d192));
+ getF32Constant(DAG, 0x3f88d192, dl));
SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fc4316c));
+ getF32Constant(DAG, 0x3fc4316c, dl));
SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3f57ce70));
+ getF32Constant(DAG, 0x3f57ce70, dl));
}
return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
@@ -4336,91 +3852,8 @@ static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
const TargetLowering &TLI) {
if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
-
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
-
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
-
- SDValue TwoToFractionalPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
-
- // Add the exponent into the result in integer domain.
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
- TwoToFractionalPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
- }
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
+ return getLimitedPrecisionExp2(Op, dl, DAG);
// No special expansion.
return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
@@ -4444,90 +3877,10 @@ static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
// final result:
//
// #define LOG2OF10 3.3219281f
- // IntegerPartOfX = (int32_t)(x * LOG2OF10);
+ // t0 = Op * LOG2OF10;
SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
- getF32Constant(DAG, 0x40549a78));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
-
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
-
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
-
- SDValue TwoToFractionalPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // twoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
-
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
+ getF32Constant(DAG, 0x40549a78, dl));
+ return getLimitedPrecisionExp2(t0, dl, DAG);
}
// No special expansion.
@@ -4549,14 +3902,13 @@ static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
// powi(x, 0) -> 1.0
if (Val == 0)
- return DAG.getConstantFP(1.0, LHS.getValueType());
+ return DAG.getConstantFP(1.0, DL, LHS.getValueType());
const Function *F = DAG.getMachineFunction().getFunction();
- if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize) ||
+ if (!F->hasFnAttribute(Attribute::OptimizeForSize) ||
// If optimizing for size, don't insert too many multiplies. This
// inserts up to 5 multiplies.
- CountPopulation_32(Val)+Log2_32(Val) < 7) {
+ countPopulation(Val) + Log2_32(Val) < 7) {
// We use the simple binary decomposition method to generate the multiply
// sequence. There are more optimal ways to do this (for example,
// powi(x,15) generates one more multiply than it should), but this has
@@ -4579,7 +3931,7 @@ static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
// If the original was negative, invert the result, producing 1/(x*x*x).
if (RHSC->getSExtValue() < 0)
Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
- DAG.getConstantFP(1.0, LHS.getValueType()), Res);
+ DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
return Res;
}
}
@@ -4609,11 +3961,9 @@ static unsigned getTruncatedArgReg(const SDValue &N) {
/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
/// argument, create the corresponding DBG_VALUE machine instruction for it now.
/// At the end of instruction selection, they will be inserted to the entry BB.
-bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V,
- MDNode *Variable,
- MDNode *Expr, int64_t Offset,
- bool IsIndirect,
- const SDValue &N) {
+bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
+ const Value *V, DILocalVariable *Variable, DIExpression *Expr,
+ DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
const Argument *Arg = dyn_cast<Argument>(V);
if (!Arg)
return false;
@@ -4622,8 +3972,9 @@ bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V,
const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
// Ignore inlined function arguments here.
- DIVariable DV(Variable);
- if (DV.isInlinedFnArgument(MF.getFunction()))
+ //
+ // FIXME: Should we be checking DL->inlinedAt() to determine this?
+ if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
return false;
Optional<MachineOperand> Op;
@@ -4664,13 +4015,15 @@ bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V,
if (!Op)
return false;
+ assert(Variable->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
if (Op->isReg())
FuncInfo.ArgDbgValues.push_back(
- BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE),
- IsIndirect, Op->getReg(), Offset, Variable, Expr));
+ BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
+ Op->getReg(), Offset, Variable, Expr));
else
FuncInfo.ArgDbgValues.push_back(
- BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
+ BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
.addOperand(*Op)
.addImm(Offset)
.addMetadata(Variable)
@@ -4715,16 +4068,20 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
case Intrinsic::read_register: {
Value *Reg = I.getArgOperand(0);
+ SDValue Chain = getRoot();
SDValue RegName =
DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
EVT VT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
+ Res = DAG.getNode(ISD::READ_REGISTER, sdl,
+ DAG.getVTList(VT, MVT::Other), Chain, RegName);
+ setValue(&I, Res);
+ DAG.setRoot(Res.getValue(1));
return nullptr;
}
case Intrinsic::write_register: {
Value *Reg = I.getArgOperand(0);
Value *RegValue = I.getArgOperand(1);
- SDValue Chain = getValue(RegValue).getOperand(0);
+ SDValue Chain = getRoot();
SDValue RegName =
DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
@@ -4736,6 +4093,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::longjmp:
return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
case Intrinsic::memcpy: {
+ // FIXME: this definition of "user defined address space" is x86-specific
// Assert for address < 256 since we support only user defined address
// spaces.
assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
@@ -4750,12 +4108,16 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
if (!Align)
Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
- MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1))));
+ bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
+ SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
+ false, isTC,
+ MachinePointerInfo(I.getArgOperand(0)),
+ MachinePointerInfo(I.getArgOperand(1)));
+ updateDAGForMaybeTailCall(MC);
return nullptr;
}
case Intrinsic::memset: {
+ // FIXME: this definition of "user defined address space" is x86-specific
// Assert for address < 256 since we support only user defined address
// spaces.
assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
@@ -4768,11 +4130,14 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
if (!Align)
Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
- MachinePointerInfo(I.getArgOperand(0))));
+ bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
+ SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
+ isTC, MachinePointerInfo(I.getArgOperand(0)));
+ updateDAGForMaybeTailCall(MS);
return nullptr;
}
case Intrinsic::memmove: {
+ // FIXME: this definition of "user defined address space" is x86-specific
// Assert for address < 256 since we support only user defined address
// spaces.
assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
@@ -4787,20 +4152,20 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
if (!Align)
Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
- MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1))));
+ bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
+ SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
+ isTC, MachinePointerInfo(I.getArgOperand(0)),
+ MachinePointerInfo(I.getArgOperand(1)));
+ updateDAGForMaybeTailCall(MM);
return nullptr;
}
case Intrinsic::dbg_declare: {
const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
- MDNode *Variable = DI.getVariable();
- MDNode *Expression = DI.getExpression();
+ DILocalVariable *Variable = DI.getVariable();
+ DIExpression *Expression = DI.getExpression();
const Value *Address = DI.getAddress();
- DIVariable DIVar(Variable);
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgDeclareInst should be either null or a DIVariable.");
- if (!Address || !DIVar) {
+ assert(Variable && "Missing variable");
+ if (!Address) {
DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
return nullptr;
}
@@ -4821,9 +4186,8 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
Address = BCI->getOperand(0);
// Parameters are handled specially.
- bool isParameter =
- (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
- isa<Argument>(Address));
+ bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable ||
+ isa<Argument>(Address);
const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
@@ -4836,7 +4200,8 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
else {
// Address is an argument, so try to emit its dbg value using
// virtual register info from the FuncInfo.ValueMap.
- EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N);
+ EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
+ N);
return nullptr;
}
} else if (AI)
@@ -4853,7 +4218,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
} else {
// If Address is an argument then try to emit its dbg value using
// virtual register info from the FuncInfo.ValueMap.
- if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false,
+ if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
N)) {
// If variable is pinned by a alloca in dominating bb then
// use StaticAllocaMap.
@@ -4876,14 +4241,10 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::dbg_value: {
const DbgValueInst &DI = cast<DbgValueInst>(I);
- DIVariable DIVar(DI.getVariable());
- assert((!DIVar || DIVar.isVariable()) &&
- "Variable in DbgValueInst should be either null or a DIVariable.");
- if (!DIVar)
- return nullptr;
+ assert(DI.getVariable() && "Missing variable");
- MDNode *Variable = DI.getVariable();
- MDNode *Expression = DI.getExpression();
+ DILocalVariable *Variable = DI.getVariable();
+ DIExpression *Expression = DI.getExpression();
uint64_t Offset = DI.getOffset();
const Value *V = DI.getValue();
if (!V)
@@ -4904,7 +4265,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
if (N.getNode()) {
// A dbg.value for an alloca is always indirect.
bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
- if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset,
+ if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
IsIndirect, N)) {
SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
IsIndirect, Offset, dl, SDNodeOrder);
@@ -4943,7 +4304,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
// Find the type id for the given typeinfo.
GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
- Res = DAG.getConstant(TypeID, MVT::i32);
+ Res = DAG.getConstant(TypeID, sdl, MVT::i32);
setValue(&I, Res);
return nullptr;
}
@@ -4969,7 +4330,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
CfaArg.getValueType()),
CfaArg);
SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
- DAG.getConstant(0, TLI.getPointerTy()));
+ DAG.getConstant(0, sdl, TLI.getPointerTy()));
setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
FA, Offset));
return nullptr;
@@ -5008,9 +4369,15 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
}
+ case Intrinsic::masked_gather:
+ visitMaskedGather(I);
+ return nullptr;
case Intrinsic::masked_load:
visitMaskedLoad(I);
return nullptr;
+ case Intrinsic::masked_scatter:
+ visitMaskedScatter(I);
+ return nullptr;
case Intrinsic::masked_store:
visitMaskedStore(I);
return nullptr;
@@ -5063,44 +4430,16 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
// We must do this early because v2i32 is not a legal type.
SDValue ShOps[2];
ShOps[0] = ShAmt;
- ShOps[1] = DAG.getConstant(0, MVT::i32);
+ ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
EVT DestVT = TLI.getValueType(I.getType());
ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
- DAG.getConstant(NewIntrinsic, MVT::i32),
+ DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
getValue(I.getArgOperand(0)), ShAmt);
setValue(&I, Res);
return nullptr;
}
- case Intrinsic::x86_avx_vinsertf128_pd_256:
- case Intrinsic::x86_avx_vinsertf128_ps_256:
- case Intrinsic::x86_avx_vinsertf128_si_256:
- case Intrinsic::x86_avx2_vinserti128: {
- EVT DestVT = TLI.getValueType(I.getType());
- EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
- uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
- ElVT.getVectorNumElements();
- Res =
- DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
- getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
- DAG.getConstant(Idx, TLI.getVectorIdxTy()));
- setValue(&I, Res);
- return nullptr;
- }
- case Intrinsic::x86_avx_vextractf128_pd_256:
- case Intrinsic::x86_avx_vextractf128_ps_256:
- case Intrinsic::x86_avx_vextractf128_si_256:
- case Intrinsic::x86_avx2_vextracti128: {
- EVT DestVT = TLI.getValueType(I.getType());
- uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
- DestVT.getVectorNumElements();
- Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
- getValue(I.getArgOperand(0)),
- DAG.getConstant(Idx, TLI.getVectorIdxTy()));
- setValue(&I, Res);
- return nullptr;
- }
case Intrinsic::convertff:
case Intrinsic::convertfsi:
case Intrinsic::convertfui:
@@ -5238,7 +4577,8 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
getValue(I.getArgOperand(0)),
- DAG.getTargetConstant(0, MVT::i32))));
+ DAG.getTargetConstant(0, sdl,
+ MVT::i32))));
return nullptr;
case Intrinsic::convert_from_fp16:
setValue(&I,
@@ -5366,9 +4706,9 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
EVT Ty = Arg.getValueType();
if (CI->isZero())
- Res = DAG.getConstant(-1ULL, Ty);
+ Res = DAG.getConstant(-1ULL, sdl, Ty);
else
- Res = DAG.getConstant(0, Ty);
+ Res = DAG.getConstant(0, sdl, Ty);
setValue(&I, Res);
return nullptr;
@@ -5498,7 +4838,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
SmallVector<Value *, 4> Allocas;
- GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
+ GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
E = Allocas.end(); Object != E; ++Object) {
@@ -5547,6 +4887,9 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::clear_cache:
return TLI.getClearCacheBuiltinName();
+ case Intrinsic::eh_actions:
+ setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
+ return nullptr;
case Intrinsic::donothing:
// ignore
return nullptr;
@@ -5565,7 +4908,8 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
}
case Intrinsic::experimental_gc_result_int:
case Intrinsic::experimental_gc_result_float:
- case Intrinsic::experimental_gc_result_ptr: {
+ case Intrinsic::experimental_gc_result_ptr:
+ case Intrinsic::experimental_gc_result: {
visitGCResult(I);
return nullptr;
}
@@ -5576,45 +4920,49 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
case Intrinsic::instrprof_increment:
llvm_unreachable("instrprof failed to lower an increment");
- case Intrinsic::frameallocate: {
+ case Intrinsic::frameescape: {
MachineFunction &MF = DAG.getMachineFunction();
const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
- // Do the allocation and map it as a normal value.
- // FIXME: Maybe we should add this to the alloca map so that we don't have
- // to register allocate it?
- uint64_t Size = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
- int Alloc = MF.getFrameInfo()->CreateFrameAllocation(Size);
- MVT PtrVT = TLI.getPointerTy(0);
- SDValue FIVal = DAG.getFrameIndex(Alloc, PtrVT);
- setValue(&I, FIVal);
-
- // Directly emit a FRAME_ALLOC machine instr. Label assignment emission is
- // the same on all targets.
- MCSymbol *FrameAllocSym =
- MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName());
- BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
- TII->get(TargetOpcode::FRAME_ALLOC))
- .addSym(FrameAllocSym)
- .addFrameIndex(Alloc);
+ // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission
+ // is the same on all targets.
+ for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
+ Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
+ if (isa<ConstantPointerNull>(Arg))
+ continue; // Skip null pointers. They represent a hole in index space.
+ AllocaInst *Slot = cast<AllocaInst>(Arg);
+ assert(FuncInfo.StaticAllocaMap.count(Slot) &&
+ "can only escape static allocas");
+ int FI = FuncInfo.StaticAllocaMap[Slot];
+ MCSymbol *FrameAllocSym =
+ MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
+ GlobalValue::getRealLinkageName(MF.getName()), Idx);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
+ TII->get(TargetOpcode::FRAME_ALLOC))
+ .addSym(FrameAllocSym)
+ .addFrameIndex(FI);
+ }
return nullptr;
}
case Intrinsic::framerecover: {
- // i8* @llvm.framerecover(i8* %fn, i8* %fp)
+ // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx)
MachineFunction &MF = DAG.getMachineFunction();
MVT PtrVT = TLI.getPointerTy(0);
// Get the symbol that defines the frame offset.
- Function *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
+ auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
+ auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
+ unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
MCSymbol *FrameAllocSym =
- MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName());
+ MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
+ GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
// Create a TargetExternalSymbol for the label to avoid any target lowering
// that would make this PC relative.
StringRef Name = FrameAllocSym->getName();
- assert(Name.size() == strlen(Name.data()) && "not null terminated");
+ assert(Name.data()[Name.size()] == '\0' && "not null terminated");
SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT);
SDValue OffsetVal =
DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym);
@@ -5627,6 +4975,21 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
return nullptr;
}
+ case Intrinsic::eh_begincatch:
+ case Intrinsic::eh_endcatch:
+ llvm_unreachable("begin/end catch intrinsics not lowered in codegen");
+ case Intrinsic::eh_exceptioncode: {
+ unsigned Reg = TLI.getExceptionPointerRegister();
+ assert(Reg && "cannot get exception code on this platform");
+ MVT PtrVT = TLI.getPointerTy();
+ const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
+ unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC);
+ SDValue N =
+ DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
+ N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
+ setValue(&I, N);
+ return nullptr;
+ }
}
}
@@ -5639,7 +5002,7 @@ SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
if (LandingPad) {
// Insert a label before the invoke call to mark the try range. This can be
// used to detect deletion of the invoke via the MachineModuleInfo.
- BeginLabel = MMI.getContext().CreateTempSymbol();
+ BeginLabel = MMI.getContext().createTempSymbol();
// For SjLj, keep track of which landing pads go with which invokes
// so as to maintain the ordering of pads in the LSDA.
@@ -5659,9 +5022,8 @@ SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
CLI.setChain(getRoot());
}
-
- const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
- std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
assert((CLI.IsTailCall || Result.second.getNode()) &&
"Non-null chain expected with non-tail call!");
@@ -5683,7 +5045,7 @@ SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
if (LandingPad) {
// Insert a label at the end of the invoke call to mark the try range. This
// can be used to detect deletion of the invoke via the MachineModuleInfo.
- MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
+ MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
// Inform MachineModuleInfo of range.
@@ -5766,9 +5128,8 @@ static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
PointerType::getUnqual(LoadTy));
- if (const Constant *LoadCst =
- ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
- Builder.DL))
+ if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
+ const_cast<Constant *>(LoadInput), *Builder.DL))
return Builder.getValue(LoadCst);
}
@@ -5829,7 +5190,7 @@ bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
if (CSize && CSize->getZExtValue() == 0) {
EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
- setValue(&I, DAG.getConstant(0, CallVT));
+ setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
return true;
}
@@ -6112,7 +5473,7 @@ void SelectionDAGBuilder::visitCall(const CallInst &I) {
return;
}
}
- if (unsigned IID = F->getIntrinsicID()) {
+ if (Intrinsic::ID IID = F->getIntrinsicID()) {
RenameFn = visitIntrinsicCall(I, IID);
if (!RenameFn)
return;
@@ -6364,9 +5725,10 @@ static void GetRegistersForValue(SelectionDAG &DAG,
// If this is a constraint for a single physreg, or a constraint for a
// register class, find it.
- std::pair<unsigned, const TargetRegisterClass*> PhysReg =
- TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
+ std::pair<unsigned, const TargetRegisterClass *> PhysReg =
+ TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
+ OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
unsigned NumRegs = 1;
if (OpInfo.ConstraintVT != MVT::Other) {
@@ -6462,8 +5824,8 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
SDISelAsmOperandInfoVector ConstraintOperands;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- TargetLowering::AsmOperandInfoVector
- TargetConstraints = TLI.ParseConstraints(CS);
+ TargetLowering::AsmOperandInfoVector TargetConstraints =
+ TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS);
bool hasMemory = false;
@@ -6555,12 +5917,13 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- std::pair<unsigned, const TargetRegisterClass*> MatchRC =
- TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass*> InputRC =
- TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
- Input.ConstraintVT);
+ const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
+ std::pair<unsigned, const TargetRegisterClass *> MatchRC =
+ TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+ std::pair<unsigned, const TargetRegisterClass *> InputRC =
+ TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
+ Input.ConstraintVT);
if ((OpInfo.ConstraintVT.isInteger() !=
Input.ConstraintVT.isInteger()) ||
(MatchRC.second != InputRC.second)) {
@@ -6687,7 +6050,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
}
}
- AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(),
TLI.getPointerTy()));
// Loop over all of the inputs, copying the operand values into the
@@ -6707,10 +6070,16 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// Memory output, or 'other' output (e.g. 'X' constraint).
assert(OpInfo.isIndirect && "Memory output must be indirect operand");
+ unsigned ConstraintID =
+ TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
+ assert(ConstraintID != InlineAsm::Constraint_Unknown &&
+ "Failed to convert memory constraint code to constraint id.");
+
// Add information to the INLINEASM node to know about this output.
unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
- TLI.getPointerTy()));
+ OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
+ MVT::i32));
AsmNodeOperands.push_back(OpInfo.CallOperand);
break;
}
@@ -6745,7 +6114,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
.AddInlineAsmOperands(OpInfo.isEarlyClobber
? InlineAsm::Kind_RegDefEarlyClobber
: InlineAsm::Kind_RegDef,
- false, 0, DAG, AsmNodeOperands);
+ false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
break;
}
case InlineAsm::isInput: {
@@ -6800,11 +6169,12 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
return;
}
}
+ SDLoc dl = getCurSDLoc();
// Use the produced MatchedRegs object to
- MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
+ MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
Chain, &Flag, CS.getInstruction());
MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
- true, OpInfo.getMatchedOperand(),
+ true, OpInfo.getMatchedOperand(), dl,
DAG, AsmNodeOperands);
break;
}
@@ -6814,9 +6184,10 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
"Unexpected number of operands");
// Add information to the INLINEASM node to know about this input.
// See InlineAsm.h isUseOperandTiedToDef.
+ OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
OpInfo.getMatchedOperand());
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
+ AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(),
TLI.getPointerTy()));
AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
break;
@@ -6843,6 +6214,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
unsigned ResOpType =
InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ getCurSDLoc(),
TLI.getPointerTy()));
AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
break;
@@ -6853,10 +6225,17 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
"Memory operands expect pointer values");
+ unsigned ConstraintID =
+ TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
+ assert(ConstraintID != InlineAsm::Constraint_Unknown &&
+ "Failed to convert memory constraint code to constraint id.");
+
// Add information to the INLINEASM node to know about this input.
unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
+ ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
+ getCurSDLoc(),
+ MVT::i32));
AsmNodeOperands.push_back(InOperandVal);
break;
}
@@ -6884,11 +6263,13 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
return;
}
- OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
+ SDLoc dl = getCurSDLoc();
+
+ OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
Chain, &Flag, CS.getInstruction());
OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
- DAG, AsmNodeOperands);
+ dl, DAG, AsmNodeOperands);
break;
}
case InlineAsm::isClobber: {
@@ -6896,7 +6277,7 @@ void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
// allocator is aware that the physreg got clobbered.
if (!OpInfo.AssignedRegs.Regs.empty())
OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
- false, 0, DAG,
+ false, 0, getCurSDLoc(), DAG,
AsmNodeOperands);
break;
}
@@ -7020,7 +6401,7 @@ void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
std::pair<SDValue, SDValue>
SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
unsigned NumArgs, SDValue Callee,
- bool UseVoidTy,
+ Type *ReturnTy,
MachineBasicBlock *LandingPad,
bool IsPatchPoint) {
TargetLowering::ArgListTy Args;
@@ -7041,10 +6422,9 @@ SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
Args.push_back(Entry);
}
- Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
- .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
+ .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
.setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
return lowerInvokable(CLI, LandingPad);
@@ -7068,15 +6448,15 @@ SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
/// only available in a register, then the runtime would need to trap when
/// execution reaches the StackMap in order to read the alloca's location.
static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
- SmallVectorImpl<SDValue> &Ops,
+ SDLoc DL, SmallVectorImpl<SDValue> &Ops,
SelectionDAGBuilder &Builder) {
for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
SDValue OpVal = Builder.getValue(CS.getArgument(i));
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
Ops.push_back(
- Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
+ Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
Ops.push_back(
- Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
+ Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
Ops.push_back(
@@ -7098,7 +6478,7 @@ void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
SDLoc DL = getCurSDLoc();
Callee = getValue(CI.getCalledValue());
- NullPtr = DAG.getIntPtrConstant(0, true);
+ NullPtr = DAG.getIntPtrConstant(0, DL, true);
// The stackmap intrinsic only records the live variables (the arguemnts
// passed to it) and emits NOPS (if requested). Unlike the patchpoint
@@ -7116,13 +6496,14 @@ void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
// Add the <id> and <numBytes> constants.
SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
+ cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
+ cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
+ MVT::i32));
// Push live variables for the stack map.
- addStackMapLiveVars(&CI, 2, Ops, *this);
+ addStackMapLiveVars(&CI, 2, DL, Ops, *this);
// We are not pushing any register mask info here on the operands list,
// because the stackmap doesn't clobber anything.
@@ -7161,7 +6542,17 @@ void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
CallingConv::ID CC = CS.getCallingConv();
bool IsAnyRegCC = CC == CallingConv::AnyReg;
bool HasDef = !CS->getType()->isVoidTy();
- SDValue Callee = getValue(CS->getOperand(2)); // <target>
+ SDLoc dl = getCurSDLoc();
+ SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
+
+ // Handle immediate and symbolic callees.
+ if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
+ Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
+ /*isTarget=*/true);
+ else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
+ SDLoc(SymbolicCallee),
+ SymbolicCallee->getValueType(0));
// Get the real number of arguments participating in the call <numArgs>
SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
@@ -7175,8 +6566,10 @@ void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
// For AnyRegCC the arguments are lowered later on manually.
unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
+ Type *ReturnTy =
+ IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
std::pair<SDValue, SDValue> Result =
- lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC,
+ lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
LandingPad, true);
SDNode *CallEnd = Result.second.getNode();
@@ -7196,26 +6589,24 @@ void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
// Add the <id> and <numBytes> constants.
SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
+ cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
Ops.push_back(DAG.getTargetConstant(
- cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
+ cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
+ MVT::i32));
- // Assume that the Callee is a constant address.
- // FIXME: handle function symbols in the future.
- Ops.push_back(
- DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
- /*isTarget=*/true));
+ // Add the callee.
+ Ops.push_back(Callee);
// Adjust <numArgs> to account for any arguments that have been passed on the
// stack instead.
// Call Node: Chain, Target, {Args}, RegMask, [Glue]
unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
- Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
+ Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
// Add the calling convention
- Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
+ Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
// Add the arguments we omitted previously. The register allocator should
// place these in any free register.
@@ -7225,11 +6616,10 @@ void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
// Push the arguments from the call instruction up to the register mask.
SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
- for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
- Ops.push_back(*i);
+ Ops.append(Call->op_begin() + 2, e);
// Push live variables for the stack map.
- addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this);
+ addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
// Push the register mask info.
if (HasGlue)
@@ -7262,7 +6652,7 @@ void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
// Replace the target specific call node with a PATCHPOINT node.
MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
- getCurSDLoc(), NodeTys, Ops);
+ dl, NodeTys, Ops);
// Update the NodeMap.
if (HasDef) {
@@ -7529,7 +6919,8 @@ TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
for (unsigned i = 0; i < NumValues; ++i) {
SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
- CLI.DAG.getConstant(Offsets[i], PtrVT));
+ CLI.DAG.getConstant(Offsets[i], CLI.DL,
+ PtrVT));
SDValue L = CLI.DAG.getLoad(
RetTys[i], CLI.DL, CLI.Chain, Add,
MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
@@ -7849,7 +7240,6 @@ void SelectionDAGISel::LowerArguments(const Function &F) {
assert(i == InVals.size() && "Argument register count mismatch!");
// Finally, if the target has anything special to do, allow it to do so.
- // FIXME: this should insert code into the DAG!
EmitFunctionEntryCode();
}
@@ -7866,8 +7256,8 @@ SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- // Check successor nodes' PHI nodes that expect a constant to be available
- // from this block.
+ // Check PHI nodes in successors that expect a value to be available from this
+ // block.
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
const BasicBlock *SuccBB = TI->getSuccessor(succ);
if (!isa<PHINode>(SuccBB->begin())) continue;
@@ -7954,3 +7344,812 @@ AddSuccessorMBB(const BasicBlock *BB,
SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
return SuccMBB;
}
+
+MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
+ MachineFunction::iterator I = MBB;
+ if (++I == FuncInfo.MF->end())
+ return nullptr;
+ return I;
+}
+
+/// During lowering new call nodes can be created (such as memset, etc.).
+/// Those will become new roots of the current DAG, but complications arise
+/// when they are tail calls. In such cases, the call lowering will update
+/// the root, but the builder still needs to know that a tail call has been
+/// lowered in order to avoid generating an additional return.
+void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
+ // If the node is null, we do have a tail call.
+ if (MaybeTC.getNode() != nullptr)
+ DAG.setRoot(MaybeTC);
+ else
+ HasTailCall = true;
+}
+
+bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
+ unsigned *TotalCases, unsigned First,
+ unsigned Last) {
+ assert(Last >= First);
+ assert(TotalCases[Last] >= TotalCases[First]);
+
+ APInt LowCase = Clusters[First].Low->getValue();
+ APInt HighCase = Clusters[Last].High->getValue();
+ assert(LowCase.getBitWidth() == HighCase.getBitWidth());
+
+ // FIXME: A range of consecutive cases has 100% density, but only requires one
+ // comparison to lower. We should discriminate against such consecutive ranges
+ // in jump tables.
+
+ uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
+ uint64_t Range = Diff + 1;
+
+ uint64_t NumCases =
+ TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
+
+ assert(NumCases < UINT64_MAX / 100);
+ assert(Range >= NumCases);
+
+ return NumCases * 100 >= Range * MinJumpTableDensity;
+}
+
+static inline bool areJTsAllowed(const TargetLowering &TLI) {
+ return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+ TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
+}
+
+bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
+ unsigned First, unsigned Last,
+ const SwitchInst *SI,
+ MachineBasicBlock *DefaultMBB,
+ CaseCluster &JTCluster) {
+ assert(First <= Last);
+
+ uint32_t Weight = 0;
+ unsigned NumCmps = 0;
+ std::vector<MachineBasicBlock*> Table;
+ DenseMap<MachineBasicBlock*, uint32_t> JTWeights;
+ for (unsigned I = First; I <= Last; ++I) {
+ assert(Clusters[I].Kind == CC_Range);
+ Weight += Clusters[I].Weight;
+ assert(Weight >= Clusters[I].Weight && "Weight overflow!");
+ APInt Low = Clusters[I].Low->getValue();
+ APInt High = Clusters[I].High->getValue();
+ NumCmps += (Low == High) ? 1 : 2;
+ if (I != First) {
+ // Fill the gap between this and the previous cluster.
+ APInt PreviousHigh = Clusters[I - 1].High->getValue();
+ assert(PreviousHigh.slt(Low));
+ uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
+ for (uint64_t J = 0; J < Gap; J++)
+ Table.push_back(DefaultMBB);
+ }
+ uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
+ for (uint64_t J = 0; J < ClusterSize; ++J)
+ Table.push_back(Clusters[I].MBB);
+ JTWeights[Clusters[I].MBB] += Clusters[I].Weight;
+ }
+
+ unsigned NumDests = JTWeights.size();
+ if (isSuitableForBitTests(NumDests, NumCmps,
+ Clusters[First].Low->getValue(),
+ Clusters[Last].High->getValue())) {
+ // Clusters[First..Last] should be lowered as bit tests instead.
+ return false;
+ }
+
+ // Create the MBB that will load from and jump through the table.
+ // Note: We create it here, but it's not inserted into the function yet.
+ MachineFunction *CurMF = FuncInfo.MF;
+ MachineBasicBlock *JumpTableMBB =
+ CurMF->CreateMachineBasicBlock(SI->getParent());
+
+ // Add successors. Note: use table order for determinism.
+ SmallPtrSet<MachineBasicBlock *, 8> Done;
+ for (MachineBasicBlock *Succ : Table) {
+ if (Done.count(Succ))
+ continue;
+ addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]);
+ Done.insert(Succ);
+ }
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
+ ->createJumpTableIndex(Table);
+
+ // Set up the jump table info.
+ JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
+ JumpTableHeader JTH(Clusters[First].Low->getValue(),
+ Clusters[Last].High->getValue(), SI->getCondition(),
+ nullptr, false);
+ JTCases.emplace_back(std::move(JTH), std::move(JT));
+
+ JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
+ JTCases.size() - 1, Weight);
+ return true;
+}
+
+void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
+ const SwitchInst *SI,
+ MachineBasicBlock *DefaultMBB) {
+#ifndef NDEBUG
+ // Clusters must be non-empty, sorted, and only contain Range clusters.
+ assert(!Clusters.empty());
+ for (CaseCluster &C : Clusters)
+ assert(C.Kind == CC_Range);
+ for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
+ assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
+#endif
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!areJTsAllowed(TLI))
+ return;
+
+ const int64_t N = Clusters.size();
+ const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
+
+ // Split Clusters into minimum number of dense partitions. The algorithm uses
+ // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
+ // for the Case Statement'" (1994), but builds the MinPartitions array in
+ // reverse order to make it easier to reconstruct the partitions in ascending
+ // order. In the choice between two optimal partitionings, it picks the one
+ // which yields more jump tables.
+
+ // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
+ SmallVector<unsigned, 8> MinPartitions(N);
+ // LastElement[i] is the last element of the partition starting at i.
+ SmallVector<unsigned, 8> LastElement(N);
+ // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
+ SmallVector<unsigned, 8> NumTables(N);
+ // TotalCases[i]: Total nbr of cases in Clusters[0..i].
+ SmallVector<unsigned, 8> TotalCases(N);
+
+ for (unsigned i = 0; i < N; ++i) {
+ APInt Hi = Clusters[i].High->getValue();
+ APInt Lo = Clusters[i].Low->getValue();
+ TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
+ if (i != 0)
+ TotalCases[i] += TotalCases[i - 1];
+ }
+
+ // Base case: There is only one way to partition Clusters[N-1].
+ MinPartitions[N - 1] = 1;
+ LastElement[N - 1] = N - 1;
+ assert(MinJumpTableSize > 1);
+ NumTables[N - 1] = 0;
+
+ // Note: loop indexes are signed to avoid underflow.
+ for (int64_t i = N - 2; i >= 0; i--) {
+ // Find optimal partitioning of Clusters[i..N-1].
+ // Baseline: Put Clusters[i] into a partition on its own.
+ MinPartitions[i] = MinPartitions[i + 1] + 1;
+ LastElement[i] = i;
+ NumTables[i] = NumTables[i + 1];
+
+ // Search for a solution that results in fewer partitions.
+ for (int64_t j = N - 1; j > i; j--) {
+ // Try building a partition from Clusters[i..j].
+ if (isDense(Clusters, &TotalCases[0], i, j)) {
+ unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
+ bool IsTable = j - i + 1 >= MinJumpTableSize;
+ unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
+
+ // If this j leads to fewer partitions, or same number of partitions
+ // with more lookup tables, it is a better partitioning.
+ if (NumPartitions < MinPartitions[i] ||
+ (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
+ MinPartitions[i] = NumPartitions;
+ LastElement[i] = j;
+ NumTables[i] = Tables;
+ }
+ }
+ }
+ }
+
+ // Iterate over the partitions, replacing some with jump tables in-place.
+ unsigned DstIndex = 0;
+ for (unsigned First = 0, Last; First < N; First = Last + 1) {
+ Last = LastElement[First];
+ assert(Last >= First);
+ assert(DstIndex <= First);
+ unsigned NumClusters = Last - First + 1;
+
+ CaseCluster JTCluster;
+ if (NumClusters >= MinJumpTableSize &&
+ buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
+ Clusters[DstIndex++] = JTCluster;
+ } else {
+ for (unsigned I = First; I <= Last; ++I)
+ std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
+ }
+ }
+ Clusters.resize(DstIndex);
+}
+
+bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
+ // FIXME: Using the pointer type doesn't seem ideal.
+ uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits();
+ uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
+ return Range <= BW;
+}
+
+bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
+ unsigned NumCmps,
+ const APInt &Low,
+ const APInt &High) {
+ // FIXME: I don't think NumCmps is the correct metric: a single case and a
+ // range of cases both require only one branch to lower. Just looking at the
+ // number of clusters and destinations should be enough to decide whether to
+ // build bit tests.
+
+ // To lower a range with bit tests, the range must fit the bitwidth of a
+ // machine word.
+ if (!rangeFitsInWord(Low, High))
+ return false;
+
+ // Decide whether it's profitable to lower this range with bit tests. Each
+ // destination requires a bit test and branch, and there is an overall range
+ // check branch. For a small number of clusters, separate comparisons might be
+ // cheaper, and for many destinations, splitting the range might be better.
+ return (NumDests == 1 && NumCmps >= 3) ||
+ (NumDests == 2 && NumCmps >= 5) ||
+ (NumDests == 3 && NumCmps >= 6);
+}
+
+bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
+ unsigned First, unsigned Last,
+ const SwitchInst *SI,
+ CaseCluster &BTCluster) {
+ assert(First <= Last);
+ if (First == Last)
+ return false;
+
+ BitVector Dests(FuncInfo.MF->getNumBlockIDs());
+ unsigned NumCmps = 0;
+ for (int64_t I = First; I <= Last; ++I) {
+ assert(Clusters[I].Kind == CC_Range);
+ Dests.set(Clusters[I].MBB->getNumber());
+ NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
+ }
+ unsigned NumDests = Dests.count();
+
+ APInt Low = Clusters[First].Low->getValue();
+ APInt High = Clusters[Last].High->getValue();
+ assert(Low.slt(High));
+
+ if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
+ return false;
+
+ APInt LowBound;
+ APInt CmpRange;
+
+ const int BitWidth =
+ DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits();
+ assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
+
+ if (Low.isNonNegative() && High.slt(BitWidth)) {
+ // Optimize the case where all the case values fit in a
+ // word without having to subtract minValue. In this case,
+ // we can optimize away the subtraction.
+ LowBound = APInt::getNullValue(Low.getBitWidth());
+ CmpRange = High;
+ } else {
+ LowBound = Low;
+ CmpRange = High - Low;
+ }
+
+ CaseBitsVector CBV;
+ uint32_t TotalWeight = 0;
+ for (unsigned i = First; i <= Last; ++i) {
+ // Find the CaseBits for this destination.
+ unsigned j;
+ for (j = 0; j < CBV.size(); ++j)
+ if (CBV[j].BB == Clusters[i].MBB)
+ break;
+ if (j == CBV.size())
+ CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0));
+ CaseBits *CB = &CBV[j];
+
+ // Update Mask, Bits and ExtraWeight.
+ uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
+ uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
+ assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
+ CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
+ CB->Bits += Hi - Lo + 1;
+ CB->ExtraWeight += Clusters[i].Weight;
+ TotalWeight += Clusters[i].Weight;
+ assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!");
+ }
+
+ BitTestInfo BTI;
+ std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
+ // Sort by weight first, number of bits second.
+ if (a.ExtraWeight != b.ExtraWeight)
+ return a.ExtraWeight > b.ExtraWeight;
+ return a.Bits > b.Bits;
+ });
+
+ for (auto &CB : CBV) {
+ MachineBasicBlock *BitTestBB =
+ FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
+ BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight));
+ }
+ BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
+ SI->getCondition(), -1U, MVT::Other, false, nullptr,
+ nullptr, std::move(BTI));
+
+ BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
+ BitTestCases.size() - 1, TotalWeight);
+ return true;
+}
+
+void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
+ const SwitchInst *SI) {
+// Partition Clusters into as few subsets as possible, where each subset has a
+// range that fits in a machine word and has <= 3 unique destinations.
+
+#ifndef NDEBUG
+ // Clusters must be sorted and contain Range or JumpTable clusters.
+ assert(!Clusters.empty());
+ assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
+ for (const CaseCluster &C : Clusters)
+ assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
+ for (unsigned i = 1; i < Clusters.size(); ++i)
+ assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
+#endif
+
+ // If target does not have legal shift left, do not emit bit tests at all.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT PTy = TLI.getPointerTy();
+ if (!TLI.isOperationLegal(ISD::SHL, PTy))
+ return;
+
+ int BitWidth = PTy.getSizeInBits();
+ const int64_t N = Clusters.size();
+
+ // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
+ SmallVector<unsigned, 8> MinPartitions(N);
+ // LastElement[i] is the last element of the partition starting at i.
+ SmallVector<unsigned, 8> LastElement(N);
+
+ // FIXME: This might not be the best algorithm for finding bit test clusters.
+
+ // Base case: There is only one way to partition Clusters[N-1].
+ MinPartitions[N - 1] = 1;
+ LastElement[N - 1] = N - 1;
+
+ // Note: loop indexes are signed to avoid underflow.
+ for (int64_t i = N - 2; i >= 0; --i) {
+ // Find optimal partitioning of Clusters[i..N-1].
+ // Baseline: Put Clusters[i] into a partition on its own.
+ MinPartitions[i] = MinPartitions[i + 1] + 1;
+ LastElement[i] = i;
+
+ // Search for a solution that results in fewer partitions.
+ // Note: the search is limited by BitWidth, reducing time complexity.
+ for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
+ // Try building a partition from Clusters[i..j].
+
+ // Check the range.
+ if (!rangeFitsInWord(Clusters[i].Low->getValue(),
+ Clusters[j].High->getValue()))
+ continue;
+
+ // Check nbr of destinations and cluster types.
+ // FIXME: This works, but doesn't seem very efficient.
+ bool RangesOnly = true;
+ BitVector Dests(FuncInfo.MF->getNumBlockIDs());
+ for (int64_t k = i; k <= j; k++) {
+ if (Clusters[k].Kind != CC_Range) {
+ RangesOnly = false;
+ break;
+ }
+ Dests.set(Clusters[k].MBB->getNumber());
+ }
+ if (!RangesOnly || Dests.count() > 3)
+ break;
+
+ // Check if it's a better partition.
+ unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
+ if (NumPartitions < MinPartitions[i]) {
+ // Found a better partition.
+ MinPartitions[i] = NumPartitions;
+ LastElement[i] = j;
+ }
+ }
+ }
+
+ // Iterate over the partitions, replacing with bit-test clusters in-place.
+ unsigned DstIndex = 0;
+ for (unsigned First = 0, Last; First < N; First = Last + 1) {
+ Last = LastElement[First];
+ assert(First <= Last);
+ assert(DstIndex <= First);
+
+ CaseCluster BitTestCluster;
+ if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
+ Clusters[DstIndex++] = BitTestCluster;
+ } else {
+ size_t NumClusters = Last - First + 1;
+ std::memmove(&Clusters[DstIndex], &Clusters[First],
+ sizeof(Clusters[0]) * NumClusters);
+ DstIndex += NumClusters;
+ }
+ }
+ Clusters.resize(DstIndex);
+}
+
+void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
+ MachineBasicBlock *SwitchMBB,
+ MachineBasicBlock *DefaultMBB) {
+ MachineFunction *CurMF = FuncInfo.MF;
+ MachineBasicBlock *NextMBB = nullptr;
+ MachineFunction::iterator BBI = W.MBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextMBB = BBI;
+
+ unsigned Size = W.LastCluster - W.FirstCluster + 1;
+
+ BranchProbabilityInfo *BPI = FuncInfo.BPI;
+
+ if (Size == 2 && W.MBB == SwitchMBB) {
+ // If any two of the cases has the same destination, and if one value
+ // is the same as the other, but has one bit unset that the other has set,
+ // use bit manipulation to do two compares at once. For example:
+ // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
+ // TODO: This could be extended to merge any 2 cases in switches with 3
+ // cases.
+ // TODO: Handle cases where W.CaseBB != SwitchBB.
+ CaseCluster &Small = *W.FirstCluster;
+ CaseCluster &Big = *W.LastCluster;
+
+ if (Small.Low == Small.High && Big.Low == Big.High &&
+ Small.MBB == Big.MBB) {
+ const APInt &SmallValue = Small.Low->getValue();
+ const APInt &BigValue = Big.Low->getValue();
+
+ // Check that there is only one bit different.
+ APInt CommonBit = BigValue ^ SmallValue;
+ if (CommonBit.isPowerOf2()) {
+ SDValue CondLHS = getValue(Cond);
+ EVT VT = CondLHS.getValueType();
+ SDLoc DL = getCurSDLoc();
+
+ SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
+ DAG.getConstant(CommonBit, DL, VT));
+ SDValue Cond = DAG.getSetCC(
+ DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
+ ISD::SETEQ);
+
+ // Update successor info.
+ // Both Small and Big will jump to Small.BB, so we sum up the weights.
+ addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight);
+ addSuccessorWithWeight(
+ SwitchMBB, DefaultMBB,
+ // The default destination is the first successor in IR.
+ BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0)
+ : 0);
+
+ // Insert the true branch.
+ SDValue BrCond =
+ DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
+ DAG.getBasicBlock(Small.MBB));
+ // Insert the false branch.
+ BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
+ DAG.getBasicBlock(DefaultMBB));
+
+ DAG.setRoot(BrCond);
+ return;
+ }
+ }
+ }
+
+ if (TM.getOptLevel() != CodeGenOpt::None) {
+ // Order cases by weight so the most likely case will be checked first.
+ std::sort(W.FirstCluster, W.LastCluster + 1,
+ [](const CaseCluster &a, const CaseCluster &b) {
+ return a.Weight > b.Weight;
+ });
+
+ // Rearrange the case blocks so that the last one falls through if possible
+ // without without changing the order of weights.
+ for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
+ --I;
+ if (I->Weight > W.LastCluster->Weight)
+ break;
+ if (I->Kind == CC_Range && I->MBB == NextMBB) {
+ std::swap(*I, *W.LastCluster);
+ break;
+ }
+ }
+ }
+
+ // Compute total weight.
+ uint32_t UnhandledWeights = 0;
+ for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) {
+ UnhandledWeights += I->Weight;
+ assert(UnhandledWeights >= I->Weight && "Weight overflow!");
+ }
+
+ MachineBasicBlock *CurMBB = W.MBB;
+ for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
+ MachineBasicBlock *Fallthrough;
+ if (I == W.LastCluster) {
+ // For the last cluster, fall through to the default destination.
+ Fallthrough = DefaultMBB;
+ } else {
+ Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
+ CurMF->insert(BBI, Fallthrough);
+ // Put Cond in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(Cond);
+ }
+
+ switch (I->Kind) {
+ case CC_JumpTable: {
+ // FIXME: Optimize away range check based on pivot comparisons.
+ JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
+ JumpTable *JT = &JTCases[I->JTCasesIndex].second;
+
+ // The jump block hasn't been inserted yet; insert it here.
+ MachineBasicBlock *JumpMBB = JT->MBB;
+ CurMF->insert(BBI, JumpMBB);
+ addSuccessorWithWeight(CurMBB, Fallthrough);
+ addSuccessorWithWeight(CurMBB, JumpMBB);
+
+ // The jump table header will be inserted in our current block, do the
+ // range check, and fall through to our fallthrough block.
+ JTH->HeaderBB = CurMBB;
+ JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
+
+ // If we're in the right place, emit the jump table header right now.
+ if (CurMBB == SwitchMBB) {
+ visitJumpTableHeader(*JT, *JTH, SwitchMBB);
+ JTH->Emitted = true;
+ }
+ break;
+ }
+ case CC_BitTests: {
+ // FIXME: Optimize away range check based on pivot comparisons.
+ BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
+
+ // The bit test blocks haven't been inserted yet; insert them here.
+ for (BitTestCase &BTC : BTB->Cases)
+ CurMF->insert(BBI, BTC.ThisBB);
+
+ // Fill in fields of the BitTestBlock.
+ BTB->Parent = CurMBB;
+ BTB->Default = Fallthrough;
+
+ // If we're in the right place, emit the bit test header header right now.
+ if (CurMBB ==SwitchMBB) {
+ visitBitTestHeader(*BTB, SwitchMBB);
+ BTB->Emitted = true;
+ }
+ break;
+ }
+ case CC_Range: {
+ const Value *RHS, *LHS, *MHS;
+ ISD::CondCode CC;
+ if (I->Low == I->High) {
+ // Check Cond == I->Low.
+ CC = ISD::SETEQ;
+ LHS = Cond;
+ RHS=I->Low;
+ MHS = nullptr;
+ } else {
+ // Check I->Low <= Cond <= I->High.
+ CC = ISD::SETLE;
+ LHS = I->Low;
+ MHS = Cond;
+ RHS = I->High;
+ }
+
+ // The false weight is the sum of all unhandled cases.
+ UnhandledWeights -= I->Weight;
+ CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight,
+ UnhandledWeights);
+
+ if (CurMBB == SwitchMBB)
+ visitSwitchCase(CB, SwitchMBB);
+ else
+ SwitchCases.push_back(CB);
+
+ break;
+ }
+ }
+ CurMBB = Fallthrough;
+ }
+}
+
+void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
+ const SwitchWorkListItem &W,
+ Value *Cond,
+ MachineBasicBlock *SwitchMBB) {
+ assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
+ "Clusters not sorted?");
+
+ assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
+
+ // Balance the tree based on branch weights to create a near-optimal (in terms
+ // of search time given key frequency) binary search tree. See e.g. Kurt
+ // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
+ CaseClusterIt LastLeft = W.FirstCluster;
+ CaseClusterIt FirstRight = W.LastCluster;
+ uint32_t LeftWeight = LastLeft->Weight;
+ uint32_t RightWeight = FirstRight->Weight;
+
+ // Move LastLeft and FirstRight towards each other from opposite directions to
+ // find a partitioning of the clusters which balances the weight on both
+ // sides. If LeftWeight and RightWeight are equal, alternate which side is
+ // taken to ensure 0-weight nodes are distributed evenly.
+ unsigned I = 0;
+ while (LastLeft + 1 < FirstRight) {
+ if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1)))
+ LeftWeight += (++LastLeft)->Weight;
+ else
+ RightWeight += (--FirstRight)->Weight;
+ I++;
+ }
+ assert(LastLeft + 1 == FirstRight);
+ assert(LastLeft >= W.FirstCluster);
+ assert(FirstRight <= W.LastCluster);
+
+ // Use the first element on the right as pivot since we will make less-than
+ // comparisons against it.
+ CaseClusterIt PivotCluster = FirstRight;
+ assert(PivotCluster > W.FirstCluster);
+ assert(PivotCluster <= W.LastCluster);
+
+ CaseClusterIt FirstLeft = W.FirstCluster;
+ CaseClusterIt LastRight = W.LastCluster;
+
+ const ConstantInt *Pivot = PivotCluster->Low;
+
+ // New blocks will be inserted immediately after the current one.
+ MachineFunction::iterator BBI = W.MBB;
+ ++BBI;
+
+ // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
+ // we can branch to its destination directly if it's squeezed exactly in
+ // between the known lower bound and Pivot - 1.
+ MachineBasicBlock *LeftMBB;
+ if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
+ FirstLeft->Low == W.GE &&
+ (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
+ LeftMBB = FirstLeft->MBB;
+ } else {
+ LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
+ FuncInfo.MF->insert(BBI, LeftMBB);
+ WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot});
+ // Put Cond in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(Cond);
+ }
+
+ // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
+ // single cluster, RHS.Low == Pivot, and we can branch to its destination
+ // directly if RHS.High equals the current upper bound.
+ MachineBasicBlock *RightMBB;
+ if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
+ W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
+ RightMBB = FirstRight->MBB;
+ } else {
+ RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
+ FuncInfo.MF->insert(BBI, RightMBB);
+ WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT});
+ // Put Cond in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(Cond);
+ }
+
+ // Create the CaseBlock record that will be used to lower the branch.
+ CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
+ LeftWeight, RightWeight);
+
+ if (W.MBB == SwitchMBB)
+ visitSwitchCase(CB, SwitchMBB);
+ else
+ SwitchCases.push_back(CB);
+}
+
+void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
+ // Extract cases from the switch.
+ BranchProbabilityInfo *BPI = FuncInfo.BPI;
+ CaseClusterVector Clusters;
+ Clusters.reserve(SI.getNumCases());
+ for (auto I : SI.cases()) {
+ MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
+ const ConstantInt *CaseVal = I.getCaseValue();
+ uint32_t Weight =
+ BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0;
+ Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight));
+ }
+
+ MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
+
+ // Cluster adjacent cases with the same destination. We do this at all
+ // optimization levels because it's cheap to do and will make codegen faster
+ // if there are many clusters.
+ sortAndRangeify(Clusters);
+
+ if (TM.getOptLevel() != CodeGenOpt::None) {
+ // Replace an unreachable default with the most popular destination.
+ // FIXME: Exploit unreachable default more aggressively.
+ bool UnreachableDefault =
+ isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
+ if (UnreachableDefault && !Clusters.empty()) {
+ DenseMap<const BasicBlock *, unsigned> Popularity;
+ unsigned MaxPop = 0;
+ const BasicBlock *MaxBB = nullptr;
+ for (auto I : SI.cases()) {
+ const BasicBlock *BB = I.getCaseSuccessor();
+ if (++Popularity[BB] > MaxPop) {
+ MaxPop = Popularity[BB];
+ MaxBB = BB;
+ }
+ }
+ // Set new default.
+ assert(MaxPop > 0 && MaxBB);
+ DefaultMBB = FuncInfo.MBBMap[MaxBB];
+
+ // Remove cases that were pointing to the destination that is now the
+ // default.
+ CaseClusterVector New;
+ New.reserve(Clusters.size());
+ for (CaseCluster &CC : Clusters) {
+ if (CC.MBB != DefaultMBB)
+ New.push_back(CC);
+ }
+ Clusters = std::move(New);
+ }
+ }
+
+ // If there is only the default destination, jump there directly.
+ MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
+ if (Clusters.empty()) {
+ SwitchMBB->addSuccessor(DefaultMBB);
+ if (DefaultMBB != NextBlock(SwitchMBB)) {
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
+ getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
+ }
+ return;
+ }
+
+ if (TM.getOptLevel() != CodeGenOpt::None) {
+ findJumpTables(Clusters, &SI, DefaultMBB);
+ findBitTestClusters(Clusters, &SI);
+ }
+
+
+ DEBUG({
+ dbgs() << "Case clusters: ";
+ for (const CaseCluster &C : Clusters) {
+ if (C.Kind == CC_JumpTable) dbgs() << "JT:";
+ if (C.Kind == CC_BitTests) dbgs() << "BT:";
+
+ C.Low->getValue().print(dbgs(), true);
+ if (C.Low != C.High) {
+ dbgs() << '-';
+ C.High->getValue().print(dbgs(), true);
+ }
+ dbgs() << ' ';
+ }
+ dbgs() << '\n';
+ });
+
+ assert(!Clusters.empty());
+ SwitchWorkList WorkList;
+ CaseClusterIt First = Clusters.begin();
+ CaseClusterIt Last = Clusters.end() - 1;
+ WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr});
+
+ while (!WorkList.empty()) {
+ SwitchWorkListItem W = WorkList.back();
+ WorkList.pop_back();
+ unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
+
+ if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
+ // For optimized builds, lower large range as a balanced binary tree.
+ splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
+ continue;
+ }
+
+ lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
+ }
+}
OpenPOWER on IntegriCloud