summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp6144
1 files changed, 6144 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
new file mode 100644
index 0000000..fbe601f
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -0,0 +1,6144 @@
+//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating from LLVM IR into SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "isel"
+#include "SDNodeDbgValue.h"
+#include "SelectionDAGBuilder.h"
+#include "FunctionLoweringInfo.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Constants.h"
+#include "llvm/CallingConv.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace llvm;
+
+/// LimitFloatPrecision - Generate low-precision inline sequences for
+/// some float libcalls (6, 8 or 12 bits).
+static unsigned LimitFloatPrecision;
+
+static cl::opt<unsigned, true>
+LimitFPPrecision("limit-float-precision",
+ cl::desc("Generate low-precision inline sequences "
+ "for some float libcalls"),
+ cl::location(LimitFloatPrecision),
+ cl::init(0));
+
+namespace {
+ /// RegsForValue - This struct represents the registers (physical or virtual)
+ /// that a particular set of values is assigned, and the type information
+ /// about the value. The most common situation is to represent one value at a
+ /// time, but struct or array values are handled element-wise as multiple
+ /// values. The splitting of aggregates is performed recursively, so that we
+ /// never have aggregate-typed registers. The values at this point do not
+ /// necessarily have legal types, so each value may require one or more
+ /// registers of some legal type.
+ ///
+ struct RegsForValue {
+ /// TLI - The TargetLowering object.
+ ///
+ const TargetLowering *TLI;
+
+ /// ValueVTs - The value types of the values, which may not be legal, and
+ /// may need be promoted or synthesized from one or more registers.
+ ///
+ SmallVector<EVT, 4> ValueVTs;
+
+ /// RegVTs - The value types of the registers. This is the same size as
+ /// ValueVTs and it records, for each value, what the type of the assigned
+ /// register or registers are. (Individual values are never synthesized
+ /// from more than one type of register.)
+ ///
+ /// With virtual registers, the contents of RegVTs is redundant with TLI's
+ /// getRegisterType member function, however when with physical registers
+ /// it is necessary to have a separate record of the types.
+ ///
+ SmallVector<EVT, 4> RegVTs;
+
+ /// Regs - This list holds the registers assigned to the values.
+ /// Each legal or promoted value requires one register, and each
+ /// expanded value requires multiple registers.
+ ///
+ SmallVector<unsigned, 4> Regs;
+
+ RegsForValue() : TLI(0) {}
+
+ RegsForValue(const TargetLowering &tli,
+ const SmallVector<unsigned, 4> &regs,
+ EVT regvt, EVT valuevt)
+ : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
+ RegsForValue(const TargetLowering &tli,
+ const SmallVector<unsigned, 4> &regs,
+ const SmallVector<EVT, 4> &regvts,
+ const SmallVector<EVT, 4> &valuevts)
+ : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
+ RegsForValue(LLVMContext &Context, const TargetLowering &tli,
+ unsigned Reg, const Type *Ty) : TLI(&tli) {
+ ComputeValueVTs(tli, Ty, ValueVTs);
+
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
+ EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
+ for (unsigned i = 0; i != NumRegs; ++i)
+ Regs.push_back(Reg + i);
+ RegVTs.push_back(RegisterVT);
+ Reg += NumRegs;
+ }
+ }
+
+ /// areValueTypesLegal - Return true if types of all the values are legal.
+ bool areValueTypesLegal() {
+ for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ EVT RegisterVT = RegVTs[Value];
+ if (!TLI->isTypeLegal(RegisterVT))
+ return false;
+ }
+ return true;
+ }
+
+
+ /// append - Add the specified values to this one.
+ void append(const RegsForValue &RHS) {
+ TLI = RHS.TLI;
+ ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
+ RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
+ Regs.append(RHS.Regs.begin(), RHS.Regs.end());
+ }
+
+
+ /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+ /// this value and returns the result as a ValueVTs value. This uses
+ /// Chain/Flag as the input and updates them for the output Chain/Flag.
+ /// If the Flag pointer is NULL, no flag is used.
+ SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
+ SDValue &Chain, SDValue *Flag) const;
+
+ /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+ /// specified value into the registers specified by this object. This uses
+ /// Chain/Flag as the input and updates them for the output Chain/Flag.
+ /// If the Flag pointer is NULL, no flag is used.
+ void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
+ SDValue &Chain, SDValue *Flag) const;
+
+ /// AddInlineAsmOperands - Add this value to the specified inlineasm node
+ /// operand list. This adds the code marker, matching input operand index
+ /// (if applicable), and includes the number of values added into it.
+ void AddInlineAsmOperands(unsigned Kind,
+ bool HasMatching, unsigned MatchingIdx,
+ SelectionDAG &DAG,
+ std::vector<SDValue> &Ops) const;
+ };
+}
+
+/// getCopyFromParts - Create a value that contains the specified legal parts
+/// combined into the value they represent. If the parts combine to a type
+/// larger then ValueVT then AssertOp can be used to specify whether the extra
+/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
+/// (ISD::AssertSext).
+static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
+ const SDValue *Parts,
+ unsigned NumParts, EVT PartVT, EVT ValueVT,
+ ISD::NodeType AssertOp = ISD::DELETED_NODE) {
+ assert(NumParts > 0 && "No parts to assemble!");
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Val = Parts[0];
+
+ if (NumParts > 1) {
+ // Assemble the value from multiple parts.
+ if (!ValueVT.isVector() && ValueVT.isInteger()) {
+ unsigned PartBits = PartVT.getSizeInBits();
+ unsigned ValueBits = ValueVT.getSizeInBits();
+
+ // Assemble the power of 2 part.
+ unsigned RoundParts = NumParts & (NumParts - 1) ?
+ 1 << Log2_32(NumParts) : NumParts;
+ unsigned RoundBits = PartBits * RoundParts;
+ EVT RoundVT = RoundBits == ValueBits ?
+ ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
+ SDValue Lo, Hi;
+
+ EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
+
+ if (RoundParts > 2) {
+ Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2,
+ PartVT, HalfVT);
+ Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2,
+ RoundParts / 2, PartVT, HalfVT);
+ } else {
+ Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
+ Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
+ }
+
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+
+ Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
+
+ if (RoundParts < NumParts) {
+ // Assemble the trailing non-power-of-2 part.
+ unsigned OddParts = NumParts - RoundParts;
+ EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
+ Hi = getCopyFromParts(DAG, dl,
+ Parts + RoundParts, OddParts, PartVT, OddVT);
+
+ // Combine the round and odd parts.
+ Lo = Val;
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
+ Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
+ DAG.getConstant(Lo.getValueType().getSizeInBits(),
+ TLI.getPointerTy()));
+ Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
+ Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
+ }
+ } else if (ValueVT.isVector()) {
+ // Handle a multi-element vector.
+ EVT IntermediateVT, RegisterVT;
+ unsigned NumIntermediates;
+ unsigned NumRegs =
+ TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
+ NumIntermediates, RegisterVT);
+ assert(NumRegs == NumParts
+ && "Part count doesn't match vector breakdown!");
+ NumParts = NumRegs; // Silence a compiler warning.
+ assert(RegisterVT == PartVT
+ && "Part type doesn't match vector breakdown!");
+ assert(RegisterVT == Parts[0].getValueType() &&
+ "Part type doesn't match part!");
+
+ // Assemble the parts into intermediate operands.
+ SmallVector<SDValue, 8> Ops(NumIntermediates);
+ if (NumIntermediates == NumParts) {
+ // If the register was not expanded, truncate or copy the value,
+ // as appropriate.
+ for (unsigned i = 0; i != NumParts; ++i)
+ Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
+ PartVT, IntermediateVT);
+ } else if (NumParts > 0) {
+ // If the intermediate type was expanded, build the intermediate
+ // operands from the parts.
+ assert(NumParts % NumIntermediates == 0 &&
+ "Must expand into a divisible number of parts!");
+ unsigned Factor = NumParts / NumIntermediates;
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
+ PartVT, IntermediateVT);
+ }
+
+ // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
+ // intermediate operands.
+ Val = DAG.getNode(IntermediateVT.isVector() ?
+ ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
+ ValueVT, &Ops[0], NumIntermediates);
+ } else if (PartVT.isFloatingPoint()) {
+ // FP split into multiple FP parts (for ppcf128)
+ assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
+ "Unexpected split");
+ SDValue Lo, Hi;
+ Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
+ Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
+ } else {
+ // FP split into integer parts (soft fp)
+ assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
+ !PartVT.isVector() && "Unexpected split");
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
+ Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
+ }
+ }
+
+ // There is now one part, held in Val. Correct it to match ValueVT.
+ PartVT = Val.getValueType();
+
+ if (PartVT == ValueVT)
+ return Val;
+
+ if (PartVT.isVector()) {
+ assert(ValueVT.isVector() && "Unknown vector conversion!");
+ return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
+ }
+
+ if (ValueVT.isVector()) {
+ assert(ValueVT.getVectorElementType() == PartVT &&
+ ValueVT.getVectorNumElements() == 1 &&
+ "Only trivial scalar-to-vector conversions should get here!");
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
+ }
+
+ if (PartVT.isInteger() &&
+ ValueVT.isInteger()) {
+ if (ValueVT.bitsLT(PartVT)) {
+ // For a truncate, see if we have any information to
+ // indicate whether the truncated bits will always be
+ // zero or sign-extension.
+ if (AssertOp != ISD::DELETED_NODE)
+ Val = DAG.getNode(AssertOp, dl, PartVT, Val,
+ DAG.getValueType(ValueVT));
+ return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+ } else {
+ return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
+ }
+ }
+
+ if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+ if (ValueVT.bitsLT(Val.getValueType())) {
+ // FP_ROUND's are always exact here.
+ return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
+ DAG.getIntPtrConstant(1));
+ }
+
+ return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
+ }
+
+ if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
+ return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
+
+ llvm_unreachable("Unknown mismatch!");
+ return SDValue();
+}
+
+/// getCopyToParts - Create a series of nodes that contain the specified value
+/// split into legal parts. If the parts contain more bits than Val, then, for
+/// integers, ExtendKind can be used to specify how to generate the extra bits.
+static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl,
+ SDValue Val, SDValue *Parts, unsigned NumParts,
+ EVT PartVT,
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT PtrVT = TLI.getPointerTy();
+ EVT ValueVT = Val.getValueType();
+ unsigned PartBits = PartVT.getSizeInBits();
+ unsigned OrigNumParts = NumParts;
+ assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
+
+ if (!NumParts)
+ return;
+
+ if (!ValueVT.isVector()) {
+ if (PartVT == ValueVT) {
+ assert(NumParts == 1 && "No-op copy with multiple parts!");
+ Parts[0] = Val;
+ return;
+ }
+
+ if (NumParts * PartBits > ValueVT.getSizeInBits()) {
+ // If the parts cover more bits than the value has, promote the value.
+ if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+ assert(NumParts == 1 && "Do not know what to promote to!");
+ Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
+ } else if (PartVT.isInteger() && ValueVT.isInteger()) {
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
+ } else {
+ llvm_unreachable("Unknown mismatch!");
+ }
+ } else if (PartBits == ValueVT.getSizeInBits()) {
+ // Different types of the same size.
+ assert(NumParts == 1 && PartVT != ValueVT);
+ Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
+ } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
+ // If the parts cover less bits than value has, truncate the value.
+ if (PartVT.isInteger() && ValueVT.isInteger()) {
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+ } else {
+ llvm_unreachable("Unknown mismatch!");
+ }
+ }
+
+ // The value may have changed - recompute ValueVT.
+ ValueVT = Val.getValueType();
+ assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
+ "Failed to tile the value with PartVT!");
+
+ if (NumParts == 1) {
+ assert(PartVT == ValueVT && "Type conversion failed!");
+ Parts[0] = Val;
+ return;
+ }
+
+ // Expand the value into multiple parts.
+ if (NumParts & (NumParts - 1)) {
+ // The number of parts is not a power of 2. Split off and copy the tail.
+ assert(PartVT.isInteger() && ValueVT.isInteger() &&
+ "Do not know what to expand to!");
+ unsigned RoundParts = 1 << Log2_32(NumParts);
+ unsigned RoundBits = RoundParts * PartBits;
+ unsigned OddParts = NumParts - RoundParts;
+ SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
+ DAG.getConstant(RoundBits,
+ TLI.getPointerTy()));
+ getCopyToParts(DAG, dl, OddVal, Parts + RoundParts,
+ OddParts, PartVT);
+
+ if (TLI.isBigEndian())
+ // The odd parts were reversed by getCopyToParts - unreverse them.
+ std::reverse(Parts + RoundParts, Parts + NumParts);
+
+ NumParts = RoundParts;
+ ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+ Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+ }
+
+ // The number of parts is a power of 2. Repeatedly bisect the value using
+ // EXTRACT_ELEMENT.
+ Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
+ EVT::getIntegerVT(*DAG.getContext(),
+ ValueVT.getSizeInBits()),
+ Val);
+
+ for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
+ for (unsigned i = 0; i < NumParts; i += StepSize) {
+ unsigned ThisBits = StepSize * PartBits / 2;
+ EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
+ SDValue &Part0 = Parts[i];
+ SDValue &Part1 = Parts[i+StepSize/2];
+
+ Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ ThisVT, Part0,
+ DAG.getConstant(1, PtrVT));
+ Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+ ThisVT, Part0,
+ DAG.getConstant(0, PtrVT));
+
+ if (ThisBits == PartBits && ThisVT != PartVT) {
+ Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
+ PartVT, Part0);
+ Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
+ PartVT, Part1);
+ }
+ }
+ }
+
+ if (TLI.isBigEndian())
+ std::reverse(Parts, Parts + OrigNumParts);
+
+ return;
+ }
+
+ // Vector ValueVT.
+ if (NumParts == 1) {
+ if (PartVT != ValueVT) {
+ if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
+ Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
+ } else {
+ assert(ValueVT.getVectorElementType() == PartVT &&
+ ValueVT.getVectorNumElements() == 1 &&
+ "Only trivial vector-to-scalar conversions should get here!");
+ Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ PartVT, Val,
+ DAG.getConstant(0, PtrVT));
+ }
+ }
+
+ Parts[0] = Val;
+ return;
+ }
+
+ // Handle a multi-element vector.
+ EVT IntermediateVT, RegisterVT;
+ unsigned NumIntermediates;
+ unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
+ IntermediateVT, NumIntermediates, RegisterVT);
+ unsigned NumElements = ValueVT.getVectorNumElements();
+
+ assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+ NumParts = NumRegs; // Silence a compiler warning.
+ assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+
+ // Split the vector into intermediate operands.
+ SmallVector<SDValue, 8> Ops(NumIntermediates);
+ for (unsigned i = 0; i != NumIntermediates; ++i) {
+ if (IntermediateVT.isVector())
+ Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
+ IntermediateVT, Val,
+ DAG.getConstant(i * (NumElements / NumIntermediates),
+ PtrVT));
+ else
+ Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ IntermediateVT, Val,
+ DAG.getConstant(i, PtrVT));
+ }
+
+ // Split the intermediate operands into legal parts.
+ if (NumParts == NumIntermediates) {
+ // If the register was not expanded, promote or copy the value,
+ // as appropriate.
+ for (unsigned i = 0; i != NumParts; ++i)
+ getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
+ } else if (NumParts > 0) {
+ // If the intermediate type was expanded, split each the value into
+ // legal parts.
+ assert(NumParts % NumIntermediates == 0 &&
+ "Must expand into a divisible number of parts!");
+ unsigned Factor = NumParts / NumIntermediates;
+ for (unsigned i = 0; i != NumIntermediates; ++i)
+ getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT);
+ }
+}
+
+
+void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
+ AA = &aa;
+ GFI = gfi;
+ TD = DAG.getTarget().getTargetData();
+}
+
+/// clear - Clear out the current SelectionDAG and the associated
+/// state and prepare this SelectionDAGBuilder object to be used
+/// for a new block. This doesn't clear out information about
+/// additional blocks that are needed to complete switch lowering
+/// or PHI node updating; that information is cleared out as it is
+/// consumed.
+void SelectionDAGBuilder::clear() {
+ NodeMap.clear();
+ PendingLoads.clear();
+ PendingExports.clear();
+ CurDebugLoc = DebugLoc();
+ HasTailCall = false;
+}
+
+/// getRoot - Return the current virtual root of the Selection DAG,
+/// flushing any PendingLoad items. This must be done before emitting
+/// a store or any other node that may need to be ordered after any
+/// prior load instructions.
+///
+SDValue SelectionDAGBuilder::getRoot() {
+ if (PendingLoads.empty())
+ return DAG.getRoot();
+
+ if (PendingLoads.size() == 1) {
+ SDValue Root = PendingLoads[0];
+ DAG.setRoot(Root);
+ PendingLoads.clear();
+ return Root;
+ }
+
+ // Otherwise, we have to make a token factor node.
+ SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
+ &PendingLoads[0], PendingLoads.size());
+ PendingLoads.clear();
+ DAG.setRoot(Root);
+ return Root;
+}
+
+/// getControlRoot - Similar to getRoot, but instead of flushing all the
+/// PendingLoad items, flush all the PendingExports items. It is necessary
+/// to do this before emitting a terminator instruction.
+///
+SDValue SelectionDAGBuilder::getControlRoot() {
+ SDValue Root = DAG.getRoot();
+
+ if (PendingExports.empty())
+ return Root;
+
+ // Turn all of the CopyToReg chains into one factored node.
+ if (Root.getOpcode() != ISD::EntryToken) {
+ unsigned i = 0, e = PendingExports.size();
+ for (; i != e; ++i) {
+ assert(PendingExports[i].getNode()->getNumOperands() > 1);
+ if (PendingExports[i].getNode()->getOperand(0) == Root)
+ break; // Don't add the root if we already indirectly depend on it.
+ }
+
+ if (i == e)
+ PendingExports.push_back(Root);
+ }
+
+ Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
+ &PendingExports[0],
+ PendingExports.size());
+ PendingExports.clear();
+ DAG.setRoot(Root);
+ return Root;
+}
+
+void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
+ if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
+ DAG.AssignOrdering(Node, SDNodeOrder);
+
+ for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
+ AssignOrderingToNode(Node->getOperand(I).getNode());
+}
+
+void SelectionDAGBuilder::visit(const Instruction &I) {
+ // Set up outgoing PHI node register values before emitting the terminator.
+ if (isa<TerminatorInst>(&I))
+ HandlePHINodesInSuccessorBlocks(I.getParent());
+
+ CurDebugLoc = I.getDebugLoc();
+
+ visit(I.getOpcode(), I);
+
+ if (!isa<TerminatorInst>(&I) && !HasTailCall)
+ CopyToExportRegsIfNeeded(&I);
+
+ CurDebugLoc = DebugLoc();
+}
+
+void SelectionDAGBuilder::visitPHI(const PHINode &) {
+ llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
+}
+
+void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
+ // Note: this doesn't use InstVisitor, because it has to work with
+ // ConstantExpr's in addition to instructions.
+ switch (Opcode) {
+ default: llvm_unreachable("Unknown instruction type encountered!");
+ // Build the switch statement using the Instruction.def file.
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+ case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break;
+#include "llvm/Instruction.def"
+ }
+
+ // Assign the ordering to the freshly created DAG nodes.
+ if (NodeMap.count(&I)) {
+ ++SDNodeOrder;
+ AssignOrderingToNode(getValue(&I).getNode());
+ }
+}
+
+SDValue SelectionDAGBuilder::getValue(const Value *V) {
+ SDValue &N = NodeMap[V];
+ if (N.getNode()) return N;
+
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ EVT VT = TLI.getValueType(V->getType(), true);
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return N = DAG.getConstant(*CI, VT);
+
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return N = DAG.getGlobalAddress(GV, VT);
+
+ if (isa<ConstantPointerNull>(C))
+ return N = DAG.getConstant(0, TLI.getPointerTy());
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+ return N = DAG.getConstantFP(*CFP, VT);
+
+ if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
+ return N = DAG.getUNDEF(VT);
+
+ if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ visit(CE->getOpcode(), *CE);
+ SDValue N1 = NodeMap[V];
+ assert(N1.getNode() && "visit didn't populate the NodeMap!");
+ return N1;
+ }
+
+ if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
+ SmallVector<SDValue, 4> Constants;
+ for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
+ OI != OE; ++OI) {
+ SDNode *Val = getValue(*OI).getNode();
+ // If the operand is an empty aggregate, there are no values.
+ if (!Val) continue;
+ // Add each leaf value from the operand to the Constants list
+ // to form a flattened list of all the values.
+ for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
+ Constants.push_back(SDValue(Val, i));
+ }
+
+ return DAG.getMergeValues(&Constants[0], Constants.size(),
+ getCurDebugLoc());
+ }
+
+ if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
+ assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
+ "Unknown struct or array constant!");
+
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, C->getType(), ValueVTs);
+ unsigned NumElts = ValueVTs.size();
+ if (NumElts == 0)
+ return SDValue(); // empty struct
+ SmallVector<SDValue, 4> Constants(NumElts);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ EVT EltVT = ValueVTs[i];
+ if (isa<UndefValue>(C))
+ Constants[i] = DAG.getUNDEF(EltVT);
+ else if (EltVT.isFloatingPoint())
+ Constants[i] = DAG.getConstantFP(0, EltVT);
+ else
+ Constants[i] = DAG.getConstant(0, EltVT);
+ }
+
+ return DAG.getMergeValues(&Constants[0], NumElts,
+ getCurDebugLoc());
+ }
+
+ if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
+ return DAG.getBlockAddress(BA, VT);
+
+ const VectorType *VecTy = cast<VectorType>(V->getType());
+ unsigned NumElements = VecTy->getNumElements();
+
+ // Now that we know the number and type of the elements, get that number of
+ // elements into the Ops array based on what kind of constant it is.
+ SmallVector<SDValue, 16> Ops;
+ if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
+ for (unsigned i = 0; i != NumElements; ++i)
+ Ops.push_back(getValue(CP->getOperand(i)));
+ } else {
+ assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
+ EVT EltVT = TLI.getValueType(VecTy->getElementType());
+
+ SDValue Op;
+ if (EltVT.isFloatingPoint())
+ Op = DAG.getConstantFP(0, EltVT);
+ else
+ Op = DAG.getConstant(0, EltVT);
+ Ops.assign(NumElements, Op);
+ }
+
+ // Create a BUILD_VECTOR node.
+ return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
+ VT, &Ops[0], Ops.size());
+ }
+
+ // If this is a static alloca, generate it as the frameindex instead of
+ // computation.
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI != FuncInfo.StaticAllocaMap.end())
+ return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
+ }
+
+ unsigned InReg = FuncInfo.ValueMap[V];
+ assert(InReg && "Value not in map!");
+
+ RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
+ SDValue Chain = DAG.getEntryNode();
+ return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
+}
+
+/// Get the EVTs and ArgFlags collections that represent the legalized return
+/// type of the given function. This does not require a DAG or a return value,
+/// and is suitable for use before any DAGs for the function are constructed.
+static void getReturnInfo(const Type* ReturnType,
+ Attributes attr, SmallVectorImpl<EVT> &OutVTs,
+ SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
+ const TargetLowering &TLI,
+ SmallVectorImpl<uint64_t> *Offsets = 0) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, ReturnType, ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0) return;
+ unsigned Offset = 0;
+
+ for (unsigned j = 0, f = NumValues; j != f; ++j) {
+ EVT VT = ValueVTs[j];
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ if (attr & Attribute::SExt)
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (attr & Attribute::ZExt)
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ // FIXME: C calling convention requires the return type to be promoted to
+ // at least 32-bit. But this is not necessary for non-C calling
+ // conventions. The frontend should mark functions whose return values
+ // require promoting with signext or zeroext attributes.
+ if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
+ EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
+ if (VT.bitsLT(MinVT))
+ VT = MinVT;
+ }
+
+ unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
+ EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
+ unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
+ PartVT.getTypeForEVT(ReturnType->getContext()));
+
+ // 'inreg' on function refers to return value
+ ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+ if (attr & Attribute::InReg)
+ Flags.setInReg();
+
+ // Propagate extension type if any
+ if (attr & Attribute::SExt)
+ Flags.setSExt();
+ else if (attr & Attribute::ZExt)
+ Flags.setZExt();
+
+ for (unsigned i = 0; i < NumParts; ++i) {
+ OutVTs.push_back(PartVT);
+ OutFlags.push_back(Flags);
+ if (Offsets)
+ {
+ Offsets->push_back(Offset);
+ Offset += PartSize;
+ }
+ }
+ }
+}
+
+void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
+ SDValue Chain = getControlRoot();
+ SmallVector<ISD::OutputArg, 8> Outs;
+ FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
+
+ if (!FLI.CanLowerReturn) {
+ unsigned DemoteReg = FLI.DemoteRegister;
+ const Function *F = I.getParent()->getParent();
+
+ // Emit a store of the return value through the virtual register.
+ // Leave Outs empty so that LowerReturn won't try to load return
+ // registers the usual way.
+ SmallVector<EVT, 1> PtrValueVTs;
+ ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
+ PtrValueVTs);
+
+ SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
+ SDValue RetOp = getValue(I.getOperand(0));
+
+ SmallVector<EVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+
+ SmallVector<SDValue, 4> Chains(NumValues);
+ EVT PtrVT = PtrValueVTs[0];
+ for (unsigned i = 0; i != NumValues; ++i) {
+ SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
+ DAG.getConstant(Offsets[i], PtrVT));
+ Chains[i] =
+ DAG.getStore(Chain, getCurDebugLoc(),
+ SDValue(RetOp.getNode(), RetOp.getResNo() + i),
+ Add, NULL, Offsets[i], false, false, 0);
+ }
+
+ Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+ MVT::Other, &Chains[0], NumValues);
+ } else if (I.getNumOperands() != 0) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues) {
+ SDValue RetOp = getValue(I.getOperand(0));
+ for (unsigned j = 0, f = NumValues; j != f; ++j) {
+ EVT VT = ValueVTs[j];
+
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ const Function *F = I.getParent()->getParent();
+ if (F->paramHasAttr(0, Attribute::SExt))
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (F->paramHasAttr(0, Attribute::ZExt))
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ // FIXME: C calling convention requires the return type to be promoted
+ // to at least 32-bit. But this is not necessary for non-C calling
+ // conventions. The frontend should mark functions whose return values
+ // require promoting with signext or zeroext attributes.
+ if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
+ EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
+ if (VT.bitsLT(MinVT))
+ VT = MinVT;
+ }
+
+ unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
+ EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
+ SmallVector<SDValue, 4> Parts(NumParts);
+ getCopyToParts(DAG, getCurDebugLoc(),
+ SDValue(RetOp.getNode(), RetOp.getResNo() + j),
+ &Parts[0], NumParts, PartVT, ExtendKind);
+
+ // 'inreg' on function refers to return value
+ ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+ if (F->paramHasAttr(0, Attribute::InReg))
+ Flags.setInReg();
+
+ // Propagate extension type if any
+ if (F->paramHasAttr(0, Attribute::SExt))
+ Flags.setSExt();
+ else if (F->paramHasAttr(0, Attribute::ZExt))
+ Flags.setZExt();
+
+ for (unsigned i = 0; i < NumParts; ++i)
+ Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
+ }
+ }
+ }
+
+ bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
+ CallingConv::ID CallConv =
+ DAG.getMachineFunction().getFunction()->getCallingConv();
+ Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
+ Outs, getCurDebugLoc(), DAG);
+
+ // Verify that the target's LowerReturn behaved as expected.
+ assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
+ "LowerReturn didn't return a valid chain!");
+
+ // Update the DAG with the new chain value resulting from return lowering.
+ DAG.setRoot(Chain);
+}
+
+/// CopyToExportRegsIfNeeded - If the given value has virtual registers
+/// created for it, emit nodes to copy the value into the virtual
+/// registers.
+void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
+ DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
+ if (VMI != FuncInfo.ValueMap.end()) {
+ assert(!V->use_empty() && "Unused value assigned virtual registers!");
+ CopyValueToVirtualRegister(V, VMI->second);
+ }
+}
+
+/// ExportFromCurrentBlock - If this condition isn't known to be exported from
+/// the current basic block, add it to ValueMap now so that we'll get a
+/// CopyTo/FromReg.
+void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
+ // No need to export constants.
+ if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
+
+ // Already exported?
+ if (FuncInfo.isExportedInst(V)) return;
+
+ unsigned Reg = FuncInfo.InitializeRegForValue(V);
+ CopyValueToVirtualRegister(V, Reg);
+}
+
+bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
+ const BasicBlock *FromBB) {
+ // The operands of the setcc have to be in this block. We don't know
+ // how to export them from some other block.
+ if (const Instruction *VI = dyn_cast<Instruction>(V)) {
+ // Can export from current BB.
+ if (VI->getParent() == FromBB)
+ return true;
+
+ // Is already exported, noop.
+ return FuncInfo.isExportedInst(V);
+ }
+
+ // If this is an argument, we can export it if the BB is the entry block or
+ // if it is already exported.
+ if (isa<Argument>(V)) {
+ if (FromBB == &FromBB->getParent()->getEntryBlock())
+ return true;
+
+ // Otherwise, can only export this if it is already exported.
+ return FuncInfo.isExportedInst(V);
+ }
+
+ // Otherwise, constants can always be exported.
+ return true;
+}
+
+static bool InBlock(const Value *V, const BasicBlock *BB) {
+ if (const Instruction *I = dyn_cast<Instruction>(V))
+ return I->getParent() == BB;
+ return true;
+}
+
+/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
+/// This function emits a branch and is used at the leaves of an OR or an
+/// AND operator tree.
+///
+void
+SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ MachineBasicBlock *CurBB,
+ MachineBasicBlock *SwitchBB) {
+ const BasicBlock *BB = CurBB->getBasicBlock();
+
+ // If the leaf of the tree is a comparison, merge the condition into
+ // the caseblock.
+ if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
+ // The operands of the cmp have to be in this block. We don't know
+ // how to export them from some other block. If this is the first block
+ // of the sequence, no exporting is needed.
+ if (CurBB == SwitchBB ||
+ (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
+ isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
+ ISD::CondCode Condition;
+ if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
+ Condition = getICmpCondCode(IC->getPredicate());
+ } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
+ Condition = getFCmpCondCode(FC->getPredicate());
+ } else {
+ Condition = ISD::SETEQ; // silence warning.
+ llvm_unreachable("Unknown compare instruction");
+ }
+
+ CaseBlock CB(Condition, BOp->getOperand(0),
+ BOp->getOperand(1), NULL, TBB, FBB, CurBB);
+ SwitchCases.push_back(CB);
+ return;
+ }
+ }
+
+ // Create a CaseBlock record representing this branch.
+ CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
+ NULL, TBB, FBB, CurBB);
+ SwitchCases.push_back(CB);
+}
+
+/// FindMergedConditions - If Cond is an expression like
+void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ MachineBasicBlock *CurBB,
+ MachineBasicBlock *SwitchBB,
+ unsigned Opc) {
+ // If this node is not part of the or/and tree, emit it as a branch.
+ const Instruction *BOp = dyn_cast<Instruction>(Cond);
+ if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
+ (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
+ BOp->getParent() != CurBB->getBasicBlock() ||
+ !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
+ !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
+ EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
+ return;
+ }
+
+ // Create TmpBB after CurBB.
+ MachineFunction::iterator BBI = CurBB;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
+ CurBB->getParent()->insert(++BBI, TmpBB);
+
+ if (Opc == Instruction::Or) {
+ // Codegen X | Y as:
+ // jmp_if_X TBB
+ // jmp TmpBB
+ // TmpBB:
+ // jmp_if_Y TBB
+ // jmp FBB
+ //
+
+ // Emit the LHS condition.
+ FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
+
+ // Emit the RHS condition into TmpBB.
+ FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
+ } else {
+ assert(Opc == Instruction::And && "Unknown merge op!");
+ // Codegen X & Y as:
+ // jmp_if_X TmpBB
+ // jmp FBB
+ // TmpBB:
+ // jmp_if_Y TBB
+ // jmp FBB
+ //
+ // This requires creation of TmpBB after CurBB.
+
+ // Emit the LHS condition.
+ FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
+
+ // Emit the RHS condition into TmpBB.
+ FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
+ }
+}
+
+/// If the set of cases should be emitted as a series of branches, return true.
+/// If we should emit this as a bunch of and/or'd together conditions, return
+/// false.
+bool
+SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
+ if (Cases.size() != 2) return true;
+
+ // If this is two comparisons of the same values or'd or and'd together, they
+ // will get folded into a single comparison, so don't emit two blocks.
+ if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
+ Cases[0].CmpRHS == Cases[1].CmpRHS) ||
+ (Cases[0].CmpRHS == Cases[1].CmpLHS &&
+ Cases[0].CmpLHS == Cases[1].CmpRHS)) {
+ return false;
+ }
+
+ // Handle: (X != null) | (Y != null) --> (X|Y) != 0
+ // Handle: (X == null) & (Y == null) --> (X|Y) == 0
+ if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
+ Cases[0].CC == Cases[1].CC &&
+ isa<Constant>(Cases[0].CmpRHS) &&
+ cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
+ if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
+ return false;
+ if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
+ return false;
+ }
+
+ return true;
+}
+
+void SelectionDAGBuilder::visitBr(const BranchInst &I) {
+ MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()];
+
+ // Update machine-CFG edges.
+ MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = BrMBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ if (I.isUnconditional()) {
+ // Update machine-CFG edges.
+ BrMBB->addSuccessor(Succ0MBB);
+
+ // If this is not a fall-through branch, emit the branch.
+ if (Succ0MBB != NextBlock)
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
+ MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Succ0MBB)));
+
+ return;
+ }
+
+ // If this condition is one of the special cases we handle, do special stuff
+ // now.
+ const Value *CondVal = I.getCondition();
+ MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
+
+ // If this is a series of conditions that are or'd or and'd together, emit
+ // this as a sequence of branches instead of setcc's with and/or operations.
+ // For example, instead of something like:
+ // cmp A, B
+ // C = seteq
+ // cmp D, E
+ // F = setle
+ // or C, F
+ // jnz foo
+ // Emit:
+ // cmp A, B
+ // je foo
+ // cmp D, E
+ // jle foo
+ //
+ if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
+ if (BOp->hasOneUse() &&
+ (BOp->getOpcode() == Instruction::And ||
+ BOp->getOpcode() == Instruction::Or)) {
+ FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
+ BOp->getOpcode());
+ // If the compares in later blocks need to use values not currently
+ // exported from this block, export them now. This block should always
+ // be the first entry.
+ assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
+
+ // Allow some cases to be rejected.
+ if (ShouldEmitAsBranches(SwitchCases)) {
+ for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
+ ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
+ ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
+ }
+
+ // Emit the branch for this block.
+ visitSwitchCase(SwitchCases[0], BrMBB);
+ SwitchCases.erase(SwitchCases.begin());
+ return;
+ }
+
+ // Okay, we decided not to do this, remove any inserted MBB's and clear
+ // SwitchCases.
+ for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
+ FuncInfo.MF->erase(SwitchCases[i].ThisBB);
+
+ SwitchCases.clear();
+ }
+ }
+
+ // Create a CaseBlock record representing this branch.
+ CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
+ NULL, Succ0MBB, Succ1MBB, BrMBB);
+
+ // Use visitSwitchCase to actually insert the fast branch sequence for this
+ // cond branch.
+ visitSwitchCase(CB, BrMBB);
+}
+
+/// visitSwitchCase - Emits the necessary code to represent a single node in
+/// the binary search tree resulting from lowering a switch instruction.
+void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
+ MachineBasicBlock *SwitchBB) {
+ SDValue Cond;
+ SDValue CondLHS = getValue(CB.CmpLHS);
+ DebugLoc dl = getCurDebugLoc();
+
+ // Build the setcc now.
+ if (CB.CmpMHS == NULL) {
+ // Fold "(X == true)" to X and "(X == false)" to !X to
+ // handle common cases produced by branch lowering.
+ if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
+ CB.CC == ISD::SETEQ)
+ Cond = CondLHS;
+ else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
+ CB.CC == ISD::SETEQ) {
+ SDValue True = DAG.getConstant(1, CondLHS.getValueType());
+ Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
+ } else
+ Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
+ } else {
+ assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
+
+ const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
+ const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
+
+ SDValue CmpOp = getValue(CB.CmpMHS);
+ EVT VT = CmpOp.getValueType();
+
+ if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
+ Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
+ ISD::SETLE);
+ } else {
+ SDValue SUB = DAG.getNode(ISD::SUB, dl,
+ VT, CmpOp, DAG.getConstant(Low, VT));
+ Cond = DAG.getSetCC(dl, MVT::i1, SUB,
+ DAG.getConstant(High-Low, VT), ISD::SETULE);
+ }
+ }
+
+ // Update successor info
+ SwitchBB->addSuccessor(CB.TrueBB);
+ SwitchBB->addSuccessor(CB.FalseBB);
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = SwitchBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ // If the lhs block is the next block, invert the condition so that we can
+ // fall through to the lhs instead of the rhs block.
+ if (CB.TrueBB == NextBlock) {
+ std::swap(CB.TrueBB, CB.FalseBB);
+ SDValue True = DAG.getConstant(1, Cond.getValueType());
+ Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
+ }
+
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
+ MVT::Other, getControlRoot(), Cond,
+ DAG.getBasicBlock(CB.TrueBB));
+
+ // If the branch was constant folded, fix up the CFG.
+ if (BrCond.getOpcode() == ISD::BR) {
+ SwitchBB->removeSuccessor(CB.FalseBB);
+ } else {
+ // Otherwise, go ahead and insert the false branch.
+ if (BrCond == getControlRoot())
+ SwitchBB->removeSuccessor(CB.TrueBB);
+
+ if (CB.FalseBB != NextBlock)
+ BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
+ DAG.getBasicBlock(CB.FalseBB));
+ }
+
+ DAG.setRoot(BrCond);
+}
+
+/// visitJumpTable - Emit JumpTable node in the current MBB
+void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
+ // Emit the code for the jump table
+ assert(JT.Reg != -1U && "Should lower JT Header first!");
+ EVT PTy = TLI.getPointerTy();
+ SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
+ JT.Reg, PTy);
+ SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
+ SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
+ MVT::Other, Index.getValue(1),
+ Table, Index);
+ DAG.setRoot(BrJumpTable);
+}
+
+/// visitJumpTableHeader - This function emits necessary code to produce index
+/// in the JumpTable from switch case.
+void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
+ JumpTableHeader &JTH,
+ MachineBasicBlock *SwitchBB) {
+ // Subtract the lowest switch case value from the value being switched on and
+ // conditional branch to default mbb if the result is greater than the
+ // difference between smallest and largest cases.
+ SDValue SwitchOp = getValue(JTH.SValue);
+ EVT VT = SwitchOp.getValueType();
+ SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
+ DAG.getConstant(JTH.First, VT));
+
+ // The SDNode we just created, which holds the value being switched on minus
+ // the smallest case value, needs to be copied to a virtual register so it
+ // can be used as an index into the jump table in a subsequent basic block.
+ // This value may be smaller or larger than the target's pointer type, and
+ // therefore require extension or truncating.
+ SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
+
+ unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
+ SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
+ JumpTableReg, SwitchOp);
+ JT.Reg = JumpTableReg;
+
+ // Emit the range check for the jump table, and branch to the default block
+ // for the switch statement if the value being switched on exceeds the largest
+ // case in the switch.
+ SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
+ TLI.getSetCCResultType(Sub.getValueType()), Sub,
+ DAG.getConstant(JTH.Last-JTH.First,VT),
+ ISD::SETUGT);
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = SwitchBB;
+
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
+ MVT::Other, CopyTo, CMP,
+ DAG.getBasicBlock(JT.Default));
+
+ if (JT.MBB != NextBlock)
+ BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
+ DAG.getBasicBlock(JT.MBB));
+
+ DAG.setRoot(BrCond);
+}
+
+/// visitBitTestHeader - This function emits necessary code to produce value
+/// suitable for "bit tests"
+void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
+ MachineBasicBlock *SwitchBB) {
+ // Subtract the minimum value
+ SDValue SwitchOp = getValue(B.SValue);
+ EVT VT = SwitchOp.getValueType();
+ SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
+ DAG.getConstant(B.First, VT));
+
+ // Check range
+ SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
+ TLI.getSetCCResultType(Sub.getValueType()),
+ Sub, DAG.getConstant(B.Range, VT),
+ ISD::SETUGT);
+
+ SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(),
+ TLI.getPointerTy());
+
+ B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
+ SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
+ B.Reg, ShiftOp);
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = SwitchBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ MachineBasicBlock* MBB = B.Cases[0].ThisBB;
+
+ SwitchBB->addSuccessor(B.Default);
+ SwitchBB->addSuccessor(MBB);
+
+ SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
+ MVT::Other, CopyTo, RangeCmp,
+ DAG.getBasicBlock(B.Default));
+
+ if (MBB != NextBlock)
+ BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
+ DAG.getBasicBlock(MBB));
+
+ DAG.setRoot(BrRange);
+}
+
+/// visitBitTestCase - this function produces one "bit test"
+void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
+ unsigned Reg,
+ BitTestCase &B,
+ MachineBasicBlock *SwitchBB) {
+ // Make desired shift
+ SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
+ TLI.getPointerTy());
+ SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
+ TLI.getPointerTy(),
+ DAG.getConstant(1, TLI.getPointerTy()),
+ ShiftOp);
+
+ // Emit bit tests and jumps
+ SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
+ TLI.getPointerTy(), SwitchVal,
+ DAG.getConstant(B.Mask, TLI.getPointerTy()));
+ SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
+ TLI.getSetCCResultType(AndOp.getValueType()),
+ AndOp, DAG.getConstant(0, TLI.getPointerTy()),
+ ISD::SETNE);
+
+ SwitchBB->addSuccessor(B.TargetBB);
+ SwitchBB->addSuccessor(NextMBB);
+
+ SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
+ MVT::Other, getControlRoot(),
+ AndCmp, DAG.getBasicBlock(B.TargetBB));
+
+ // Set NextBlock to be the MBB immediately after the current one, if any.
+ // This is used to avoid emitting unnecessary branches to the next block.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = SwitchBB;
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ if (NextMBB != NextBlock)
+ BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
+ DAG.getBasicBlock(NextMBB));
+
+ DAG.setRoot(BrAnd);
+}
+
+void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
+ MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()];
+
+ // Retrieve successors.
+ MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
+ MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
+
+ const Value *Callee(I.getCalledValue());
+ if (isa<InlineAsm>(Callee))
+ visitInlineAsm(&I);
+ else
+ LowerCallTo(&I, getValue(Callee), false, LandingPad);
+
+ // If the value of the invoke is used outside of its defining block, make it
+ // available as a virtual register.
+ CopyToExportRegsIfNeeded(&I);
+
+ // Update successor info
+ InvokeMBB->addSuccessor(Return);
+ InvokeMBB->addSuccessor(LandingPad);
+
+ // Drop into normal successor.
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
+ MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Return)));
+}
+
+void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) {
+}
+
+/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
+/// small case ranges).
+bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock *Default,
+ MachineBasicBlock *SwitchBB) {
+ Case& BackCase = *(CR.Range.second-1);
+
+ // Size is the number of Cases represented by this range.
+ size_t Size = CR.Range.second - CR.Range.first;
+ if (Size > 3)
+ return false;
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = FuncInfo.MF;
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineFunction::iterator BBI = CR.CaseBB;
+
+ if (++BBI != FuncInfo.MF->end())
+ NextBlock = BBI;
+
+ // TODO: If any two of the cases has the same destination, and if one value
+ // is the same as the other, but has one bit unset that the other has set,
+ // use bit manipulation to do two compares at once. For example:
+ // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
+
+ // Rearrange the case blocks so that the last one falls through if possible.
+ if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
+ // The last case block won't fall through into 'NextBlock' if we emit the
+ // branches in this order. See if rearranging a case value would help.
+ for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
+ if (I->BB == NextBlock) {
+ std::swap(*I, BackCase);
+ break;
+ }
+ }
+ }
+
+ // Create a CaseBlock record representing a conditional branch to
+ // the Case's target mbb if the value being switched on SV is equal
+ // to C.
+ MachineBasicBlock *CurBlock = CR.CaseBB;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
+ MachineBasicBlock *FallThrough;
+ if (I != E-1) {
+ FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
+ CurMF->insert(BBI, FallThrough);
+
+ // Put SV in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(SV);
+ } else {
+ // If the last case doesn't match, go to the default block.
+ FallThrough = Default;
+ }
+
+ const Value *RHS, *LHS, *MHS;
+ ISD::CondCode CC;
+ if (I->High == I->Low) {
+ // This is just small small case range :) containing exactly 1 case
+ CC = ISD::SETEQ;
+ LHS = SV; RHS = I->High; MHS = NULL;
+ } else {
+ CC = ISD::SETLE;
+ LHS = I->Low; MHS = SV; RHS = I->High;
+ }
+ CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
+
+ // If emitting the first comparison, just call visitSwitchCase to emit the
+ // code into the current block. Otherwise, push the CaseBlock onto the
+ // vector to be later processed by SDISel, and insert the node's MBB
+ // before the next MBB.
+ if (CurBlock == SwitchBB)
+ visitSwitchCase(CB, SwitchBB);
+ else
+ SwitchCases.push_back(CB);
+
+ CurBlock = FallThrough;
+ }
+
+ return true;
+}
+
+static inline bool areJTsAllowed(const TargetLowering &TLI) {
+ return !DisableJumpTables &&
+ (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+ TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
+}
+
+static APInt ComputeRange(const APInt &First, const APInt &Last) {
+ APInt LastExt(Last), FirstExt(First);
+ uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
+ LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
+ return (LastExt - FirstExt + 1ULL);
+}
+
+/// handleJTSwitchCase - Emit jumptable for current switch case range
+bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock* Default,
+ MachineBasicBlock *SwitchBB) {
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+
+ const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
+ const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
+
+ APInt TSize(First.getBitWidth(), 0);
+ for (CaseItr I = CR.Range.first, E = CR.Range.second;
+ I!=E; ++I)
+ TSize += I->size();
+
+ if (!areJTsAllowed(TLI) || TSize.ult(4))
+ return false;
+
+ APInt Range = ComputeRange(First, Last);
+ double Density = TSize.roundToDouble() / Range.roundToDouble();
+ if (Density < 0.4)
+ return false;
+
+ DEBUG(dbgs() << "Lowering jump table\n"
+ << "First entry: " << First << ". Last entry: " << Last << '\n'
+ << "Range: " << Range
+ << "Size: " << TSize << ". Density: " << Density << "\n\n");
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = FuncInfo.MF;
+
+ // Figure out which block is immediately after the current one.
+ MachineFunction::iterator BBI = CR.CaseBB;
+ ++BBI;
+
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ // Create a new basic block to hold the code for loading the address
+ // of the jump table, and jumping to it. Update successor information;
+ // we will either branch to the default case for the switch, or the jump
+ // table.
+ MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, JumpTableBB);
+ CR.CaseBB->addSuccessor(Default);
+ CR.CaseBB->addSuccessor(JumpTableBB);
+
+ // Build a vector of destination BBs, corresponding to each target
+ // of the jump table. If the value of the jump table slot corresponds to
+ // a case statement, push the case's BB onto the vector, otherwise, push
+ // the default BB.
+ std::vector<MachineBasicBlock*> DestBBs;
+ APInt TEI = First;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
+ const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
+ const APInt &High = cast<ConstantInt>(I->High)->getValue();
+
+ if (Low.sle(TEI) && TEI.sle(High)) {
+ DestBBs.push_back(I->BB);
+ if (TEI==High)
+ ++I;
+ } else {
+ DestBBs.push_back(Default);
+ }
+ }
+
+ // Update successor info. Add one edge to each unique successor.
+ BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
+ for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
+ E = DestBBs.end(); I != E; ++I) {
+ if (!SuccsHandled[(*I)->getNumber()]) {
+ SuccsHandled[(*I)->getNumber()] = true;
+ JumpTableBB->addSuccessor(*I);
+ }
+ }
+
+ // Create a jump table index for this jump table.
+ unsigned JTEncoding = TLI.getJumpTableEncoding();
+ unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
+ ->createJumpTableIndex(DestBBs);
+
+ // Set the jump table information so that we can codegen it as a second
+ // MachineBasicBlock
+ JumpTable JT(-1U, JTI, JumpTableBB, Default);
+ JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
+ if (CR.CaseBB == SwitchBB)
+ visitJumpTableHeader(JT, JTH, SwitchBB);
+
+ JTCases.push_back(JumpTableBlock(JTH, JT));
+
+ return true;
+}
+
+/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
+/// 2 subtrees.
+bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock *Default,
+ MachineBasicBlock *SwitchBB) {
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = FuncInfo.MF;
+
+ // Figure out which block is immediately after the current one.
+ MachineFunction::iterator BBI = CR.CaseBB;
+ ++BBI;
+
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ // Size is the number of Cases represented by this range.
+ unsigned Size = CR.Range.second - CR.Range.first;
+
+ const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
+ const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
+ double FMetric = 0;
+ CaseItr Pivot = CR.Range.first + Size/2;
+
+ // Select optimal pivot, maximizing sum density of LHS and RHS. This will
+ // (heuristically) allow us to emit JumpTable's later.
+ APInt TSize(First.getBitWidth(), 0);
+ for (CaseItr I = CR.Range.first, E = CR.Range.second;
+ I!=E; ++I)
+ TSize += I->size();
+
+ APInt LSize = FrontCase.size();
+ APInt RSize = TSize-LSize;
+ DEBUG(dbgs() << "Selecting best pivot: \n"
+ << "First: " << First << ", Last: " << Last <<'\n'
+ << "LSize: " << LSize << ", RSize: " << RSize << '\n');
+ for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
+ J!=E; ++I, ++J) {
+ const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
+ const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
+ APInt Range = ComputeRange(LEnd, RBegin);
+ assert((Range - 2ULL).isNonNegative() &&
+ "Invalid case distance");
+ double LDensity = (double)LSize.roundToDouble() /
+ (LEnd - First + 1ULL).roundToDouble();
+ double RDensity = (double)RSize.roundToDouble() /
+ (Last - RBegin + 1ULL).roundToDouble();
+ double Metric = Range.logBase2()*(LDensity+RDensity);
+ // Should always split in some non-trivial place
+ DEBUG(dbgs() <<"=>Step\n"
+ << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
+ << "LDensity: " << LDensity
+ << ", RDensity: " << RDensity << '\n'
+ << "Metric: " << Metric << '\n');
+ if (FMetric < Metric) {
+ Pivot = J;
+ FMetric = Metric;
+ DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
+ }
+
+ LSize += J->size();
+ RSize -= J->size();
+ }
+ if (areJTsAllowed(TLI)) {
+ // If our case is dense we *really* should handle it earlier!
+ assert((FMetric > 0) && "Should handle dense range earlier!");
+ } else {
+ Pivot = CR.Range.first + Size/2;
+ }
+
+ CaseRange LHSR(CR.Range.first, Pivot);
+ CaseRange RHSR(Pivot, CR.Range.second);
+ Constant *C = Pivot->Low;
+ MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
+
+ // We know that we branch to the LHS if the Value being switched on is
+ // less than the Pivot value, C. We use this to optimize our binary
+ // tree a bit, by recognizing that if SV is greater than or equal to the
+ // LHS's Case Value, and that Case Value is exactly one less than the
+ // Pivot's Value, then we can branch directly to the LHS's Target,
+ // rather than creating a leaf node for it.
+ if ((LHSR.second - LHSR.first) == 1 &&
+ LHSR.first->High == CR.GE &&
+ cast<ConstantInt>(C)->getValue() ==
+ (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
+ TrueBB = LHSR.first->BB;
+ } else {
+ TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, TrueBB);
+ WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
+
+ // Put SV in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(SV);
+ }
+
+ // Similar to the optimization above, if the Value being switched on is
+ // known to be less than the Constant CR.LT, and the current Case Value
+ // is CR.LT - 1, then we can branch directly to the target block for
+ // the current Case Value, rather than emitting a RHS leaf node for it.
+ if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
+ cast<ConstantInt>(RHSR.first->Low)->getValue() ==
+ (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
+ FalseBB = RHSR.first->BB;
+ } else {
+ FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, FalseBB);
+ WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
+
+ // Put SV in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(SV);
+ }
+
+ // Create a CaseBlock record representing a conditional branch to
+ // the LHS node if the value being switched on SV is less than C.
+ // Otherwise, branch to LHS.
+ CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
+
+ if (CR.CaseBB == SwitchBB)
+ visitSwitchCase(CB, SwitchBB);
+ else
+ SwitchCases.push_back(CB);
+
+ return true;
+}
+
+/// handleBitTestsSwitchCase - if current case range has few destination and
+/// range span less, than machine word bitwidth, encode case range into series
+/// of masks and emit bit tests with these masks.
+bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
+ CaseRecVector& WorkList,
+ const Value* SV,
+ MachineBasicBlock* Default,
+ MachineBasicBlock *SwitchBB){
+ EVT PTy = TLI.getPointerTy();
+ unsigned IntPtrBits = PTy.getSizeInBits();
+
+ Case& FrontCase = *CR.Range.first;
+ Case& BackCase = *(CR.Range.second-1);
+
+ // Get the MachineFunction which holds the current MBB. This is used when
+ // inserting any additional MBBs necessary to represent the switch.
+ MachineFunction *CurMF = FuncInfo.MF;
+
+ // If target does not have legal shift left, do not emit bit tests at all.
+ if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
+ return false;
+
+ size_t numCmps = 0;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second;
+ I!=E; ++I) {
+ // Single case counts one, case range - two.
+ numCmps += (I->Low == I->High ? 1 : 2);
+ }
+
+ // Count unique destinations
+ SmallSet<MachineBasicBlock*, 4> Dests;
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+ Dests.insert(I->BB);
+ if (Dests.size() > 3)
+ // Don't bother the code below, if there are too much unique destinations
+ return false;
+ }
+ DEBUG(dbgs() << "Total number of unique destinations: "
+ << Dests.size() << '\n'
+ << "Total number of comparisons: " << numCmps << '\n');
+
+ // Compute span of values.
+ const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
+ const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
+ APInt cmpRange = maxValue - minValue;
+
+ DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
+ << "Low bound: " << minValue << '\n'
+ << "High bound: " << maxValue << '\n');
+
+ if (cmpRange.uge(IntPtrBits) ||
+ (!(Dests.size() == 1 && numCmps >= 3) &&
+ !(Dests.size() == 2 && numCmps >= 5) &&
+ !(Dests.size() >= 3 && numCmps >= 6)))
+ return false;
+
+ DEBUG(dbgs() << "Emitting bit tests\n");
+ APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
+
+ // Optimize the case where all the case values fit in a
+ // word without having to subtract minValue. In this case,
+ // we can optimize away the subtraction.
+ if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
+ cmpRange = maxValue;
+ } else {
+ lowBound = minValue;
+ }
+
+ CaseBitsVector CasesBits;
+ unsigned i, count = 0;
+
+ for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+ MachineBasicBlock* Dest = I->BB;
+ for (i = 0; i < count; ++i)
+ if (Dest == CasesBits[i].BB)
+ break;
+
+ if (i == count) {
+ assert((count < 3) && "Too much destinations to test!");
+ CasesBits.push_back(CaseBits(0, Dest, 0));
+ count++;
+ }
+
+ const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
+ const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
+
+ uint64_t lo = (lowValue - lowBound).getZExtValue();
+ uint64_t hi = (highValue - lowBound).getZExtValue();
+
+ for (uint64_t j = lo; j <= hi; j++) {
+ CasesBits[i].Mask |= 1ULL << j;
+ CasesBits[i].Bits++;
+ }
+
+ }
+ std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
+
+ BitTestInfo BTC;
+
+ // Figure out which block is immediately after the current one.
+ MachineFunction::iterator BBI = CR.CaseBB;
+ ++BBI;
+
+ const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+ DEBUG(dbgs() << "Cases:\n");
+ for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
+ DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
+ << ", Bits: " << CasesBits[i].Bits
+ << ", BB: " << CasesBits[i].BB << '\n');
+
+ MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+ CurMF->insert(BBI, CaseBB);
+ BTC.push_back(BitTestCase(CasesBits[i].Mask,
+ CaseBB,
+ CasesBits[i].BB));
+
+ // Put SV in a virtual register to make it available from the new blocks.
+ ExportFromCurrentBlock(SV);
+ }
+
+ BitTestBlock BTB(lowBound, cmpRange, SV,
+ -1U, (CR.CaseBB == SwitchBB),
+ CR.CaseBB, Default, BTC);
+
+ if (CR.CaseBB == SwitchBB)
+ visitBitTestHeader(BTB, SwitchBB);
+
+ BitTestCases.push_back(BTB);
+
+ return true;
+}
+
+/// Clusterify - Transform simple list of Cases into list of CaseRange's
+size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
+ const SwitchInst& SI) {
+ size_t numCmps = 0;
+
+ // Start with "simple" cases
+ for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
+ MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
+ Cases.push_back(Case(SI.getSuccessorValue(i),
+ SI.getSuccessorValue(i),
+ SMBB));
+ }
+ std::sort(Cases.begin(), Cases.end(), CaseCmp());
+
+ // Merge case into clusters
+ if (Cases.size() >= 2)
+ // Must recompute end() each iteration because it may be
+ // invalidated by erase if we hold on to it
+ for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
+ const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
+ const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
+ MachineBasicBlock* nextBB = J->BB;
+ MachineBasicBlock* currentBB = I->BB;
+
+ // If the two neighboring cases go to the same destination, merge them
+ // into a single case.
+ if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
+ I->High = J->High;
+ J = Cases.erase(J);
+ } else {
+ I = J++;
+ }
+ }
+
+ for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
+ if (I->Low != I->High)
+ // A range counts double, since it requires two compares.
+ ++numCmps;
+ }
+
+ return numCmps;
+}
+
+void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
+ MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()];
+
+ // Figure out which block is immediately after the current one.
+ MachineBasicBlock *NextBlock = 0;
+ MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
+
+ // If there is only the default destination, branch to it if it is not the
+ // next basic block. Otherwise, just fall through.
+ if (SI.getNumOperands() == 2) {
+ // Update machine-CFG edges.
+
+ // If this is not a fall-through branch, emit the branch.
+ SwitchMBB->addSuccessor(Default);
+ if (Default != NextBlock)
+ DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
+ MVT::Other, getControlRoot(),
+ DAG.getBasicBlock(Default)));
+
+ return;
+ }
+
+ // If there are any non-default case statements, create a vector of Cases
+ // representing each one, and sort the vector so that we can efficiently
+ // create a binary search tree from them.
+ CaseVector Cases;
+ size_t numCmps = Clusterify(Cases, SI);
+ DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
+ << ". Total compares: " << numCmps << '\n');
+ numCmps = 0;
+
+ // Get the Value to be switched on and default basic blocks, which will be
+ // inserted into CaseBlock records, representing basic blocks in the binary
+ // search tree.
+ const Value *SV = SI.getOperand(0);
+
+ // Push the initial CaseRec onto the worklist
+ CaseRecVector WorkList;
+ WorkList.push_back(CaseRec(SwitchMBB,0,0,
+ CaseRange(Cases.begin(),Cases.end())));
+
+ while (!WorkList.empty()) {
+ // Grab a record representing a case range to process off the worklist
+ CaseRec CR = WorkList.back();
+ WorkList.pop_back();
+
+ if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
+ continue;
+
+ // If the range has few cases (two or less) emit a series of specific
+ // tests.
+ if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
+ continue;
+
+ // If the switch has more than 5 blocks, and at least 40% dense, and the
+ // target supports indirect branches, then emit a jump table rather than
+ // lowering the switch to a binary tree of conditional branches.
+ if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
+ continue;
+
+ // Emit binary tree. We need to pick a pivot, and push left and right ranges
+ // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
+ handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
+ }
+}
+
+void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
+ MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()];
+
+ // Update machine-CFG edges with unique successors.
+ SmallVector<BasicBlock*, 32> succs;
+ succs.reserve(I.getNumSuccessors());
+ for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
+ succs.push_back(I.getSuccessor(i));
+ array_pod_sort(succs.begin(), succs.end());
+ succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
+ for (unsigned i = 0, e = succs.size(); i != e; ++i)
+ IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]);
+
+ DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
+ MVT::Other, getControlRoot(),
+ getValue(I.getAddress())));
+}
+
+void SelectionDAGBuilder::visitFSub(const User &I) {
+ // -0.0 - X --> fneg
+ const Type *Ty = I.getType();
+ if (Ty->isVectorTy()) {
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
+ const VectorType *DestTy = cast<VectorType>(I.getType());
+ const Type *ElTy = DestTy->getElementType();
+ unsigned VL = DestTy->getNumElements();
+ std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
+ Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
+ if (CV == CNZ) {
+ SDValue Op2 = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
+ Op2.getValueType(), Op2));
+ return;
+ }
+ }
+ }
+
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
+ if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
+ SDValue Op2 = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
+ Op2.getValueType(), Op2));
+ return;
+ }
+
+ visitBinary(I, ISD::FSUB);
+}
+
+void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
+ Op1.getValueType(), Op1, Op2));
+}
+
+void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ if (!I.getType()->isVectorTy() &&
+ Op2.getValueType() != TLI.getShiftAmountTy()) {
+ // If the operand is smaller than the shift count type, promote it.
+ EVT PTy = TLI.getPointerTy();
+ EVT STy = TLI.getShiftAmountTy();
+ if (STy.bitsGT(Op2.getValueType()))
+ Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
+ TLI.getShiftAmountTy(), Op2);
+ // If the operand is larger than the shift count type but the shift
+ // count type has enough bits to represent any shift value, truncate
+ // it now. This is a common case and it exposes the truncate to
+ // optimization early.
+ else if (STy.getSizeInBits() >=
+ Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
+ Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
+ TLI.getShiftAmountTy(), Op2);
+ // Otherwise we'll need to temporarily settle for some other
+ // convenient type; type legalization will make adjustments as
+ // needed.
+ else if (PTy.bitsLT(Op2.getValueType()))
+ Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
+ TLI.getPointerTy(), Op2);
+ else if (PTy.bitsGT(Op2.getValueType()))
+ Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
+ TLI.getPointerTy(), Op2);
+ }
+
+ setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
+ Op1.getValueType(), Op1, Op2));
+}
+
+void SelectionDAGBuilder::visitICmp(const User &I) {
+ ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
+ if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
+ predicate = IC->getPredicate();
+ else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
+ predicate = ICmpInst::Predicate(IC->getPredicate());
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Opcode = getICmpCondCode(predicate);
+
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
+}
+
+void SelectionDAGBuilder::visitFCmp(const User &I) {
+ FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
+ if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
+ predicate = FC->getPredicate();
+ else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
+ predicate = FCmpInst::Predicate(FC->getPredicate());
+ SDValue Op1 = getValue(I.getOperand(0));
+ SDValue Op2 = getValue(I.getOperand(1));
+ ISD::CondCode Condition = getFCmpCondCode(predicate);
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
+}
+
+void SelectionDAGBuilder::visitSelect(const User &I) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I.getType(), ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0) return;
+
+ SmallVector<SDValue, 4> Values(NumValues);
+ SDValue Cond = getValue(I.getOperand(0));
+ SDValue TrueVal = getValue(I.getOperand(1));
+ SDValue FalseVal = getValue(I.getOperand(2));
+
+ for (unsigned i = 0; i != NumValues; ++i)
+ Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
+ TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
+ Cond,
+ SDValue(TrueVal.getNode(),
+ TrueVal.getResNo() + i),
+ SDValue(FalseVal.getNode(),
+ FalseVal.getResNo() + i));
+
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+ DAG.getVTList(&ValueVTs[0], NumValues),
+ &Values[0], NumValues));
+}
+
+void SelectionDAGBuilder::visitTrunc(const User &I) {
+ // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitZExt(const User &I) {
+ // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
+ // ZExt also can't be a cast to bool for same reason. So, nothing much to do
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitSExt(const User &I) {
+ // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
+ // SExt also can't be a cast to bool for same reason. So, nothing much to do
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPTrunc(const User &I) {
+ // FPTrunc is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
+ DestVT, N, DAG.getIntPtrConstant(0)));
+}
+
+void SelectionDAGBuilder::visitFPExt(const User &I){
+ // FPTrunc is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPToUI(const User &I) {
+ // FPToUI is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPToSI(const User &I) {
+ // FPToSI is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitUIToFP(const User &I) {
+ // UIToFP is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitSIToFP(const User &I){
+ // SIToFP is never a no-op cast, no need to check
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitPtrToInt(const User &I) {
+ // What to do depends on the size of the integer and the size of the pointer.
+ // We can either truncate, zero extend, or no-op, accordingly.
+ SDValue N = getValue(I.getOperand(0));
+ EVT SrcVT = N.getValueType();
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
+}
+
+void SelectionDAGBuilder::visitIntToPtr(const User &I) {
+ // What to do depends on the size of the integer and the size of the pointer.
+ // We can either truncate, zero extend, or no-op, accordingly.
+ SDValue N = getValue(I.getOperand(0));
+ EVT SrcVT = N.getValueType();
+ EVT DestVT = TLI.getValueType(I.getType());
+ setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
+}
+
+void SelectionDAGBuilder::visitBitCast(const User &I) {
+ SDValue N = getValue(I.getOperand(0));
+ EVT DestVT = TLI.getValueType(I.getType());
+
+ // BitCast assures us that source and destination are the same size so this is
+ // either a BIT_CONVERT or a no-op.
+ if (DestVT != N.getValueType())
+ setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+ DestVT, N)); // convert types.
+ else
+ setValue(&I, N); // noop cast.
+}
+
+void SelectionDAGBuilder::visitInsertElement(const User &I) {
+ SDValue InVec = getValue(I.getOperand(0));
+ SDValue InVal = getValue(I.getOperand(1));
+ SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
+ TLI.getPointerTy(),
+ getValue(I.getOperand(2)));
+ setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
+ TLI.getValueType(I.getType()),
+ InVec, InVal, InIdx));
+}
+
+void SelectionDAGBuilder::visitExtractElement(const User &I) {
+ SDValue InVec = getValue(I.getOperand(0));
+ SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
+ TLI.getPointerTy(),
+ getValue(I.getOperand(1)));
+ setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
+ TLI.getValueType(I.getType()), InVec, InIdx));
+}
+
+// Utility for visitShuffleVector - Returns true if the mask is mask starting
+// from SIndx and increasing to the element length (undefs are allowed).
+static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
+ unsigned MaskNumElts = Mask.size();
+ for (unsigned i = 0; i != MaskNumElts; ++i)
+ if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
+ return false;
+ return true;
+}
+
+void SelectionDAGBuilder::visitShuffleVector(const User &I) {
+ SmallVector<int, 8> Mask;
+ SDValue Src1 = getValue(I.getOperand(0));
+ SDValue Src2 = getValue(I.getOperand(1));
+
+ // Convert the ConstantVector mask operand into an array of ints, with -1
+ // representing undef values.
+ SmallVector<Constant*, 8> MaskElts;
+ cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts);
+ unsigned MaskNumElts = MaskElts.size();
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ if (isa<UndefValue>(MaskElts[i]))
+ Mask.push_back(-1);
+ else
+ Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
+ }
+
+ EVT VT = TLI.getValueType(I.getType());
+ EVT SrcVT = Src1.getValueType();
+ unsigned SrcNumElts = SrcVT.getVectorNumElements();
+
+ if (SrcNumElts == MaskNumElts) {
+ setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
+ &Mask[0]));
+ return;
+ }
+
+ // Normalize the shuffle vector since mask and vector length don't match.
+ if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
+ // Mask is longer than the source vectors and is a multiple of the source
+ // vectors. We can use concatenate vector to make the mask and vectors
+ // lengths match.
+ if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
+ // The shuffle is concatenating two vectors together.
+ setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
+ VT, Src1, Src2));
+ return;
+ }
+
+ // Pad both vectors with undefs to make them the same length as the mask.
+ unsigned NumConcat = MaskNumElts / SrcNumElts;
+ bool Src1U = Src1.getOpcode() == ISD::UNDEF;
+ bool Src2U = Src2.getOpcode() == ISD::UNDEF;
+ SDValue UndefVal = DAG.getUNDEF(SrcVT);
+
+ SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
+ SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
+ MOps1[0] = Src1;
+ MOps2[0] = Src2;
+
+ Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
+ getCurDebugLoc(), VT,
+ &MOps1[0], NumConcat);
+ Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
+ getCurDebugLoc(), VT,
+ &MOps2[0], NumConcat);
+
+ // Readjust mask for new input vector length.
+ SmallVector<int, 8> MappedOps;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Idx = Mask[i];
+ if (Idx < (int)SrcNumElts)
+ MappedOps.push_back(Idx);
+ else
+ MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
+ }
+
+ setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
+ &MappedOps[0]));
+ return;
+ }
+
+ if (SrcNumElts > MaskNumElts) {
+ // Analyze the access pattern of the vector to see if we can extract
+ // two subvectors and do the shuffle. The analysis is done by calculating
+ // the range of elements the mask access on both vectors.
+ int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
+ int MaxRange[2] = {-1, -1};
+
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Idx = Mask[i];
+ int Input = 0;
+ if (Idx < 0)
+ continue;
+
+ if (Idx >= (int)SrcNumElts) {
+ Input = 1;
+ Idx -= SrcNumElts;
+ }
+ if (Idx > MaxRange[Input])
+ MaxRange[Input] = Idx;
+ if (Idx < MinRange[Input])
+ MinRange[Input] = Idx;
+ }
+
+ // Check if the access is smaller than the vector size and can we find
+ // a reasonable extract index.
+ int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not
+ // Extract.
+ int StartIdx[2]; // StartIdx to extract from
+ for (int Input=0; Input < 2; ++Input) {
+ if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
+ RangeUse[Input] = 0; // Unused
+ StartIdx[Input] = 0;
+ } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
+ // Fits within range but we should see if we can find a good
+ // start index that is a multiple of the mask length.
+ if (MaxRange[Input] < (int)MaskNumElts) {
+ RangeUse[Input] = 1; // Extract from beginning of the vector
+ StartIdx[Input] = 0;
+ } else {
+ StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
+ if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
+ StartIdx[Input] + MaskNumElts < SrcNumElts)
+ RangeUse[Input] = 1; // Extract from a multiple of the mask length.
+ }
+ }
+ }
+
+ if (RangeUse[0] == 0 && RangeUse[1] == 0) {
+ setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
+ return;
+ }
+ else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
+ // Extract appropriate subvector and generate a vector shuffle
+ for (int Input=0; Input < 2; ++Input) {
+ SDValue &Src = Input == 0 ? Src1 : Src2;
+ if (RangeUse[Input] == 0)
+ Src = DAG.getUNDEF(VT);
+ else
+ Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
+ Src, DAG.getIntPtrConstant(StartIdx[Input]));
+ }
+
+ // Calculate new mask.
+ SmallVector<int, 8> MappedOps;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ int Idx = Mask[i];
+ if (Idx < 0)
+ MappedOps.push_back(Idx);
+ else if (Idx < (int)SrcNumElts)
+ MappedOps.push_back(Idx - StartIdx[0]);
+ else
+ MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
+ }
+
+ setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
+ &MappedOps[0]));
+ return;
+ }
+ }
+
+ // We can't use either concat vectors or extract subvectors so fall back to
+ // replacing the shuffle with extract and build vector.
+ // to insert and build vector.
+ EVT EltVT = VT.getVectorElementType();
+ EVT PtrVT = TLI.getPointerTy();
+ SmallVector<SDValue,8> Ops;
+ for (unsigned i = 0; i != MaskNumElts; ++i) {
+ if (Mask[i] < 0) {
+ Ops.push_back(DAG.getUNDEF(EltVT));
+ } else {
+ int Idx = Mask[i];
+ SDValue Res;
+
+ if (Idx < (int)SrcNumElts)
+ Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
+ EltVT, Src1, DAG.getConstant(Idx, PtrVT));
+ else
+ Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
+ EltVT, Src2,
+ DAG.getConstant(Idx - SrcNumElts, PtrVT));
+
+ Ops.push_back(Res);
+ }
+ }
+
+ setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
+ VT, &Ops[0], Ops.size()));
+}
+
+void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
+ const Value *Op0 = I.getOperand(0);
+ const Value *Op1 = I.getOperand(1);
+ const Type *AggTy = I.getType();
+ const Type *ValTy = Op1->getType();
+ bool IntoUndef = isa<UndefValue>(Op0);
+ bool FromUndef = isa<UndefValue>(Op1);
+
+ unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
+ I.idx_begin(), I.idx_end());
+
+ SmallVector<EVT, 4> AggValueVTs;
+ ComputeValueVTs(TLI, AggTy, AggValueVTs);
+ SmallVector<EVT, 4> ValValueVTs;
+ ComputeValueVTs(TLI, ValTy, ValValueVTs);
+
+ unsigned NumAggValues = AggValueVTs.size();
+ unsigned NumValValues = ValValueVTs.size();
+ SmallVector<SDValue, 4> Values(NumAggValues);
+
+ SDValue Agg = getValue(Op0);
+ SDValue Val = getValue(Op1);
+ unsigned i = 0;
+ // Copy the beginning value(s) from the original aggregate.
+ for (; i != LinearIndex; ++i)
+ Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+ // Copy values from the inserted value(s).
+ for (; i != LinearIndex + NumValValues; ++i)
+ Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+ SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
+ // Copy remaining value(s) from the original aggregate.
+ for (; i != NumAggValues; ++i)
+ Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+ DAG.getVTList(&AggValueVTs[0], NumAggValues),
+ &Values[0], NumAggValues));
+}
+
+void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
+ const Value *Op0 = I.getOperand(0);
+ const Type *AggTy = Op0->getType();
+ const Type *ValTy = I.getType();
+ bool OutOfUndef = isa<UndefValue>(Op0);
+
+ unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
+ I.idx_begin(), I.idx_end());
+
+ SmallVector<EVT, 4> ValValueVTs;
+ ComputeValueVTs(TLI, ValTy, ValValueVTs);
+
+ unsigned NumValValues = ValValueVTs.size();
+ SmallVector<SDValue, 4> Values(NumValValues);
+
+ SDValue Agg = getValue(Op0);
+ // Copy out the selected value(s).
+ for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
+ Values[i - LinearIndex] =
+ OutOfUndef ?
+ DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
+ SDValue(Agg.getNode(), Agg.getResNo() + i);
+
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+ DAG.getVTList(&ValValueVTs[0], NumValValues),
+ &Values[0], NumValValues));
+}
+
+void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
+ SDValue N = getValue(I.getOperand(0));
+ const Type *Ty = I.getOperand(0)->getType();
+
+ for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
+ OI != E; ++OI) {
+ const Value *Idx = *OI;
+ if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
+ unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+ if (Field) {
+ // N = N + Offset
+ uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
+ N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
+ DAG.getIntPtrConstant(Offset));
+ }
+
+ Ty = StTy->getElementType(Field);
+ } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) {
+ unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+
+ // Offset canonically 0 for unions, but type changes
+ Ty = UnTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+
+ // If this is a constant subscript, handle it quickly.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->getZExtValue() == 0) continue;
+ uint64_t Offs =
+ TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+ SDValue OffsVal;
+ EVT PTy = TLI.getPointerTy();
+ unsigned PtrBits = PTy.getSizeInBits();
+ if (PtrBits < 64)
+ OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
+ TLI.getPointerTy(),
+ DAG.getConstant(Offs, MVT::i64));
+ else
+ OffsVal = DAG.getIntPtrConstant(Offs);
+
+ N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
+ OffsVal);
+ continue;
+ }
+
+ // N = N + Idx * ElementSize;
+ APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
+ TD->getTypeAllocSize(Ty));
+ SDValue IdxN = getValue(Idx);
+
+ // If the index is smaller or larger than intptr_t, truncate or extend
+ // it.
+ IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
+
+ // If this is a multiply by a power of two, turn it into a shl
+ // immediately. This is a very common case.
+ if (ElementSize != 1) {
+ if (ElementSize.isPowerOf2()) {
+ unsigned Amt = ElementSize.logBase2();
+ IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
+ N.getValueType(), IdxN,
+ DAG.getConstant(Amt, TLI.getPointerTy()));
+ } else {
+ SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
+ IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
+ N.getValueType(), IdxN, Scale);
+ }
+ }
+
+ N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
+ N.getValueType(), N, IdxN);
+ }
+ }
+
+ setValue(&I, N);
+}
+
+void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
+ // If this is a fixed sized alloca in the entry block of the function,
+ // allocate it statically on the stack.
+ if (FuncInfo.StaticAllocaMap.count(&I))
+ return; // getValue will auto-populate this.
+
+ const Type *Ty = I.getAllocatedType();
+ uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
+ unsigned Align =
+ std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
+ I.getAlignment());
+
+ SDValue AllocSize = getValue(I.getArraySize());
+
+ AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
+ AllocSize,
+ DAG.getConstant(TySize, AllocSize.getValueType()));
+
+ EVT IntPtr = TLI.getPointerTy();
+ AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
+
+ // Handle alignment. If the requested alignment is less than or equal to
+ // the stack alignment, ignore it. If the size is greater than or equal to
+ // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
+ unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
+ if (Align <= StackAlign)
+ Align = 0;
+
+ // Round the size of the allocation up to the stack alignment size
+ // by add SA-1 to the size.
+ AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
+ AllocSize.getValueType(), AllocSize,
+ DAG.getIntPtrConstant(StackAlign-1));
+
+ // Mask out the low bits for alignment purposes.
+ AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
+ AllocSize.getValueType(), AllocSize,
+ DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
+
+ SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
+ SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
+ SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
+ VTs, Ops, 3);
+ setValue(&I, DSA);
+ DAG.setRoot(DSA.getValue(1));
+
+ // Inform the Frame Information that we have just allocated a variable-sized
+ // object.
+ FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
+}
+
+void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
+ const Value *SV = I.getOperand(0);
+ SDValue Ptr = getValue(SV);
+
+ const Type *Ty = I.getType();
+
+ bool isVolatile = I.isVolatile();
+ bool isNonTemporal = I.getMetadata("nontemporal") != 0;
+ unsigned Alignment = I.getAlignment();
+
+ SmallVector<EVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0)
+ return;
+
+ SDValue Root;
+ bool ConstantMemory = false;
+ if (I.isVolatile())
+ // Serialize volatile loads with other side effects.
+ Root = getRoot();
+ else if (AA->pointsToConstantMemory(SV)) {
+ // Do not serialize (non-volatile) loads of constant memory with anything.
+ Root = DAG.getEntryNode();
+ ConstantMemory = true;
+ } else {
+ // Do not serialize non-volatile loads against each other.
+ Root = DAG.getRoot();
+ }
+
+ SmallVector<SDValue, 4> Values(NumValues);
+ SmallVector<SDValue, 4> Chains(NumValues);
+ EVT PtrVT = Ptr.getValueType();
+ for (unsigned i = 0; i != NumValues; ++i) {
+ SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
+ PtrVT, Ptr,
+ DAG.getConstant(Offsets[i], PtrVT));
+ SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
+ A, SV, Offsets[i], isVolatile,
+ isNonTemporal, Alignment);
+
+ Values[i] = L;
+ Chains[i] = L.getValue(1);
+ }
+
+ if (!ConstantMemory) {
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+ MVT::Other, &Chains[0], NumValues);
+ if (isVolatile)
+ DAG.setRoot(Chain);
+ else
+ PendingLoads.push_back(Chain);
+ }
+
+ setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+ DAG.getVTList(&ValueVTs[0], NumValues),
+ &Values[0], NumValues));
+}
+
+void SelectionDAGBuilder::visitStore(const StoreInst &I) {
+ const Value *SrcV = I.getOperand(0);
+ const Value *PtrV = I.getOperand(1);
+
+ SmallVector<EVT, 4> ValueVTs;
+ SmallVector<uint64_t, 4> Offsets;
+ ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
+ unsigned NumValues = ValueVTs.size();
+ if (NumValues == 0)
+ return;
+
+ // Get the lowered operands. Note that we do this after
+ // checking if NumResults is zero, because with zero results
+ // the operands won't have values in the map.
+ SDValue Src = getValue(SrcV);
+ SDValue Ptr = getValue(PtrV);
+
+ SDValue Root = getRoot();
+ SmallVector<SDValue, 4> Chains(NumValues);
+ EVT PtrVT = Ptr.getValueType();
+ bool isVolatile = I.isVolatile();
+ bool isNonTemporal = I.getMetadata("nontemporal") != 0;
+ unsigned Alignment = I.getAlignment();
+
+ for (unsigned i = 0; i != NumValues; ++i) {
+ SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
+ DAG.getConstant(Offsets[i], PtrVT));
+ Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
+ SDValue(Src.getNode(), Src.getResNo() + i),
+ Add, PtrV, Offsets[i], isVolatile,
+ isNonTemporal, Alignment);
+ }
+
+ DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+ MVT::Other, &Chains[0], NumValues));
+}
+
+/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
+/// node.
+void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
+ unsigned Intrinsic) {
+ bool HasChain = !I.doesNotAccessMemory();
+ bool OnlyLoad = HasChain && I.onlyReadsMemory();
+
+ // Build the operand list.
+ SmallVector<SDValue, 8> Ops;
+ if (HasChain) { // If this intrinsic has side-effects, chainify it.
+ if (OnlyLoad) {
+ // We don't need to serialize loads against other loads.
+ Ops.push_back(DAG.getRoot());
+ } else {
+ Ops.push_back(getRoot());
+ }
+ }
+
+ // Info is set by getTgtMemInstrinsic
+ TargetLowering::IntrinsicInfo Info;
+ bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
+
+ // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
+ if (!IsTgtIntrinsic)
+ Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
+
+ // Add all operands of the call to the operand list.
+ for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
+ SDValue Op = getValue(I.getOperand(i));
+ assert(TLI.isTypeLegal(Op.getValueType()) &&
+ "Intrinsic uses a non-legal type?");
+ Ops.push_back(Op);
+ }
+
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I.getType(), ValueVTs);
+#ifndef NDEBUG
+ for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
+ assert(TLI.isTypeLegal(ValueVTs[Val]) &&
+ "Intrinsic uses a non-legal type?");
+ }
+#endif // NDEBUG
+
+ if (HasChain)
+ ValueVTs.push_back(MVT::Other);
+
+ SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
+
+ // Create the node.
+ SDValue Result;
+ if (IsTgtIntrinsic) {
+ // This is target intrinsic that touches memory
+ Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
+ VTs, &Ops[0], Ops.size(),
+ Info.memVT, Info.ptrVal, Info.offset,
+ Info.align, Info.vol,
+ Info.readMem, Info.writeMem);
+ } else if (!HasChain) {
+ Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
+ VTs, &Ops[0], Ops.size());
+ } else if (!I.getType()->isVoidTy()) {
+ Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
+ VTs, &Ops[0], Ops.size());
+ } else {
+ Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
+ VTs, &Ops[0], Ops.size());
+ }
+
+ if (HasChain) {
+ SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
+ if (OnlyLoad)
+ PendingLoads.push_back(Chain);
+ else
+ DAG.setRoot(Chain);
+ }
+
+ if (!I.getType()->isVoidTy()) {
+ if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
+ EVT VT = TLI.getValueType(PTy);
+ Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
+ }
+
+ setValue(&I, Result);
+ }
+}
+
+/// GetSignificand - Get the significand and build it into a floating-point
+/// number with exponent of 1:
+///
+/// Op = (Op & 0x007fffff) | 0x3f800000;
+///
+/// where Op is the hexidecimal representation of floating point value.
+static SDValue
+GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
+ SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
+ DAG.getConstant(0x007fffff, MVT::i32));
+ SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
+ DAG.getConstant(0x3f800000, MVT::i32));
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
+}
+
+/// GetExponent - Get the exponent:
+///
+/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
+///
+/// where Op is the hexidecimal representation of floating point value.
+static SDValue
+GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
+ DebugLoc dl) {
+ SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
+ DAG.getConstant(0x7f800000, MVT::i32));
+ SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
+ DAG.getConstant(23, TLI.getPointerTy()));
+ SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
+ DAG.getConstant(127, MVT::i32));
+ return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
+}
+
+/// getF32Constant - Get 32-bit floating point constant.
+static SDValue
+getF32Constant(SelectionDAG &DAG, unsigned Flt) {
+ return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
+}
+
+/// Inlined utility function to implement binary input atomic intrinsics for
+/// visitIntrinsicCall: I is a call instruction
+/// Op is the associated NodeType for I
+const char *
+SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I,
+ ISD::NodeType Op) {
+ SDValue Root = getRoot();
+ SDValue L =
+ DAG.getAtomic(Op, getCurDebugLoc(),
+ getValue(I.getOperand(2)).getValueType().getSimpleVT(),
+ Root,
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ I.getOperand(1));
+ setValue(&I, L);
+ DAG.setRoot(L.getValue(1));
+ return 0;
+}
+
+// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
+const char *
+SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) {
+ SDValue Op1 = getValue(I.getOperand(1));
+ SDValue Op2 = getValue(I.getOperand(2));
+
+ SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
+ setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
+ return 0;
+}
+
+/// visitExp - Lower an exp intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitExp(const CallInst &I) {
+ SDValue result;
+ DebugLoc dl = getCurDebugLoc();
+
+ if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op = getValue(I.getOperand(1));
+
+ // Put the exponent in the right bit position for later addition to the
+ // final result:
+ //
+ // #define LOG2OFe 1.4426950f
+ // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
+ getF32Constant(DAG, 0x3fb8aa3b));
+ SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
+
+ // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
+ SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+ SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
+
+ // IntegerPartOfX <<= 23;
+ IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+ DAG.getConstant(23, TLI.getPointerTy()));
+
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.997535578f +
+ // (0.735607626f + 0.252464424f * x) * x;
+ //
+ // error 0.0144103317, which is 6 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3e814304));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f3c50c8));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f7f5e7e));
+ SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
+
+ // Add the exponent into the result in integer domain.
+ SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
+ TwoToFracPartOfX, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
+ } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999892986f +
+ // (0.696457318f +
+ // (0.224338339f + 0.792043434e-1f * x) * x) * x;
+ //
+ // 0.000107046256 error, which is 13 to 14 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3da235e3));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3e65b8f3));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f324b07));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3f7ff8fd));
+ SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
+
+ // Add the exponent into the result in integer domain.
+ SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
+ TwoToFracPartOfX, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
+ } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999999982f +
+ // (0.693148872f +
+ // (0.240227044f +
+ // (0.554906021e-1f +
+ // (0.961591928e-2f +
+ // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+ //
+ // error 2.47208000*10^(-7), which is better than 18 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3924b03e));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3ab24b87));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3c1d8c17));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3d634a1d));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3e75fe14));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x3f317234));
+ SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+ SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+ getF32Constant(DAG, 0x3f800000));
+ SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::i32, t13);
+
+ // Add the exponent into the result in integer domain.
+ SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
+ TwoToFracPartOfX, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
+ }
+ } else {
+ // No special expansion.
+ result = DAG.getNode(ISD::FEXP, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1)));
+ }
+
+ setValue(&I, result);
+}
+
+/// visitLog - Lower a log intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitLog(const CallInst &I) {
+ SDValue result;
+ DebugLoc dl = getCurDebugLoc();
+
+ if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op = getValue(I.getOperand(1));
+ SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+
+ // Scale the exponent by log(2) [0.69314718f].
+ SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
+ SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
+ getF32Constant(DAG, 0x3f317218));
+
+ // Get the significand and build it into a floating-point number with
+ // exponent of 1.
+ SDValue X = GetSignificand(DAG, Op1, dl);
+
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // LogofMantissa =
+ // -1.1609546f +
+ // (1.4034025f - 0.23903021f * x) * x;
+ //
+ // error 0.0034276066, which is better than 8 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbe74c456));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3fb3a2b1));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f949a29));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, LogOfMantissa);
+ } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // LogOfMantissa =
+ // -1.7417939f +
+ // (2.8212026f +
+ // (-1.4699568f +
+ // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
+ //
+ // error 0.000061011436, which is 14 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbd67b6d6));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3ee4f4b8));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3fbc278b));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x40348e95));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3fdef31a));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, LogOfMantissa);
+ } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // LogOfMantissa =
+ // -2.1072184f +
+ // (4.2372794f +
+ // (-3.7029485f +
+ // (2.2781945f +
+ // (-0.87823314f +
+ // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
+ //
+ // error 0.0000023660568, which is better than 18 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbc91e5ac));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3e4350aa));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f60d3e3));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x4011cdf0));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x406cfd1c));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x408797cb));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x4006dcab));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, LogOfMantissa);
+ }
+ } else {
+ // No special expansion.
+ result = DAG.getNode(ISD::FLOG, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1)));
+ }
+
+ setValue(&I, result);
+}
+
+/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitLog2(const CallInst &I) {
+ SDValue result;
+ DebugLoc dl = getCurDebugLoc();
+
+ if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op = getValue(I.getOperand(1));
+ SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+
+ // Get the exponent.
+ SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
+
+ // Get the significand and build it into a floating-point number with
+ // exponent of 1.
+ SDValue X = GetSignificand(DAG, Op1, dl);
+
+ // Different possible minimax approximations of significand in
+ // floating-point for various degrees of accuracy over [1,2].
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
+ //
+ // error 0.0049451742, which is more than 7 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbeb08fe0));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x40019463));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3fd6633d));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, Log2ofMantissa);
+ } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // Log2ofMantissa =
+ // -2.51285454f +
+ // (4.07009056f +
+ // (-2.12067489f +
+ // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
+ //
+ // error 0.0000876136000, which is better than 13 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbda7262e));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3f25280b));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x4007b923));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x40823e2f));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x4020d29c));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, Log2ofMantissa);
+ } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // Log2ofMantissa =
+ // -3.0400495f +
+ // (6.1129976f +
+ // (-5.3420409f +
+ // (3.2865683f +
+ // (-1.2669343f +
+ // (0.27515199f -
+ // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
+ //
+ // error 0.0000018516, which is better than 18 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbcd2769e));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3e8ce0b9));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3fa22ae7));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x40525723));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x40aaf200));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x40c39dad));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x4042902c));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, Log2ofMantissa);
+ }
+ } else {
+ // No special expansion.
+ result = DAG.getNode(ISD::FLOG2, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1)));
+ }
+
+ setValue(&I, result);
+}
+
+/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitLog10(const CallInst &I) {
+ SDValue result;
+ DebugLoc dl = getCurDebugLoc();
+
+ if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op = getValue(I.getOperand(1));
+ SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+
+ // Scale the exponent by log10(2) [0.30102999f].
+ SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
+ SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
+ getF32Constant(DAG, 0x3e9a209a));
+
+ // Get the significand and build it into a floating-point number with
+ // exponent of 1.
+ SDValue X = GetSignificand(DAG, Op1, dl);
+
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // Log10ofMantissa =
+ // -0.50419619f +
+ // (0.60948995f - 0.10380950f * x) * x;
+ //
+ // error 0.0014886165, which is 6 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0xbdd49a13));
+ SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3f1c0789));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f011300));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, Log10ofMantissa);
+ } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // Log10ofMantissa =
+ // -0.64831180f +
+ // (0.91751397f +
+ // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
+ //
+ // error 0.00019228036, which is better than 12 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3d431f31));
+ SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3ea21fb2));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f6ae232));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f25f7c3));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, Log10ofMantissa);
+ } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // Log10ofMantissa =
+ // -0.84299375f +
+ // (1.5327582f +
+ // (-1.0688956f +
+ // (0.49102474f +
+ // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
+ //
+ // error 0.0000037995730, which is better than 18 bits
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3c5d51ce));
+ SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
+ getF32Constant(DAG, 0x3e00685a));
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3efb6798));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f88d192));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3fc4316c));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3f57ce70));
+
+ result = DAG.getNode(ISD::FADD, dl,
+ MVT::f32, LogOfExponent, Log10ofMantissa);
+ }
+ } else {
+ // No special expansion.
+ result = DAG.getNode(ISD::FLOG10, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1)));
+ }
+
+ setValue(&I, result);
+}
+
+/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitExp2(const CallInst &I) {
+ SDValue result;
+ DebugLoc dl = getCurDebugLoc();
+
+ if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op = getValue(I.getOperand(1));
+
+ SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
+
+ // FractionalPartOfX = x - (float)IntegerPartOfX;
+ SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+ SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
+
+ // IntegerPartOfX <<= 23;
+ IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+ DAG.getConstant(23, TLI.getPointerTy()));
+
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.997535578f +
+ // (0.735607626f + 0.252464424f * x) * x;
+ //
+ // error 0.0144103317, which is 6 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3e814304));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f3c50c8));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f7f5e7e));
+ SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
+ SDValue TwoToFractionalPartOfX =
+ DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::f32, TwoToFractionalPartOfX);
+ } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999892986f +
+ // (0.696457318f +
+ // (0.224338339f + 0.792043434e-1f * x) * x) * x;
+ //
+ // error 0.000107046256, which is 13 to 14 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3da235e3));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3e65b8f3));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f324b07));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3f7ff8fd));
+ SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
+ SDValue TwoToFractionalPartOfX =
+ DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::f32, TwoToFractionalPartOfX);
+ } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999999982f +
+ // (0.693148872f +
+ // (0.240227044f +
+ // (0.554906021e-1f +
+ // (0.961591928e-2f +
+ // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+ // error 2.47208000*10^(-7), which is better than 18 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3924b03e));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3ab24b87));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3c1d8c17));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3d634a1d));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3e75fe14));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x3f317234));
+ SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+ SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+ getF32Constant(DAG, 0x3f800000));
+ SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
+ SDValue TwoToFractionalPartOfX =
+ DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::f32, TwoToFractionalPartOfX);
+ }
+ } else {
+ // No special expansion.
+ result = DAG.getNode(ISD::FEXP2, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1)));
+ }
+
+ setValue(&I, result);
+}
+
+/// visitPow - Lower a pow intrinsic. Handles the special sequences for
+/// limited-precision mode with x == 10.0f.
+void
+SelectionDAGBuilder::visitPow(const CallInst &I) {
+ SDValue result;
+ const Value *Val = I.getOperand(1);
+ DebugLoc dl = getCurDebugLoc();
+ bool IsExp10 = false;
+
+ if (getValue(Val).getValueType() == MVT::f32 &&
+ getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
+ LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ APFloat Ten(10.0f);
+ IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
+ }
+ }
+ }
+
+ if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+ SDValue Op = getValue(I.getOperand(2));
+
+ // Put the exponent in the right bit position for later addition to the
+ // final result:
+ //
+ // #define LOG2OF10 3.3219281f
+ // IntegerPartOfX = (int32_t)(x * LOG2OF10);
+ SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
+ getF32Constant(DAG, 0x40549a78));
+ SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
+
+ // FractionalPartOfX = x - (float)IntegerPartOfX;
+ SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+ SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
+
+ // IntegerPartOfX <<= 23;
+ IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+ DAG.getConstant(23, TLI.getPointerTy()));
+
+ if (LimitFloatPrecision <= 6) {
+ // For floating-point precision of 6:
+ //
+ // twoToFractionalPartOfX =
+ // 0.997535578f +
+ // (0.735607626f + 0.252464424f * x) * x;
+ //
+ // error 0.0144103317, which is 6 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3e814304));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3f3c50c8));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f7f5e7e));
+ SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
+ SDValue TwoToFractionalPartOfX =
+ DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::f32, TwoToFractionalPartOfX);
+ } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+ // For floating-point precision of 12:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999892986f +
+ // (0.696457318f +
+ // (0.224338339f + 0.792043434e-1f * x) * x) * x;
+ //
+ // error 0.000107046256, which is 13 to 14 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3da235e3));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3e65b8f3));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3f324b07));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3f7ff8fd));
+ SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
+ SDValue TwoToFractionalPartOfX =
+ DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::f32, TwoToFractionalPartOfX);
+ } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+ // For floating-point precision of 18:
+ //
+ // TwoToFractionalPartOfX =
+ // 0.999999982f +
+ // (0.693148872f +
+ // (0.240227044f +
+ // (0.554906021e-1f +
+ // (0.961591928e-2f +
+ // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+ // error 2.47208000*10^(-7), which is better than 18 bits
+ SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+ getF32Constant(DAG, 0x3924b03e));
+ SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+ getF32Constant(DAG, 0x3ab24b87));
+ SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+ SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+ getF32Constant(DAG, 0x3c1d8c17));
+ SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+ SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+ getF32Constant(DAG, 0x3d634a1d));
+ SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+ SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+ getF32Constant(DAG, 0x3e75fe14));
+ SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+ SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+ getF32Constant(DAG, 0x3f317234));
+ SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+ SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+ getF32Constant(DAG, 0x3f800000));
+ SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
+ SDValue TwoToFractionalPartOfX =
+ DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
+
+ result = DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::f32, TwoToFractionalPartOfX);
+ }
+ } else {
+ // No special expansion.
+ result = DAG.getNode(ISD::FPOW, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)));
+ }
+
+ setValue(&I, result);
+}
+
+
+/// ExpandPowI - Expand a llvm.powi intrinsic.
+static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
+ SelectionDAG &DAG) {
+ // If RHS is a constant, we can expand this out to a multiplication tree,
+ // otherwise we end up lowering to a call to __powidf2 (for example). When
+ // optimizing for size, we only want to do this if the expansion would produce
+ // a small number of multiplies, otherwise we do the full expansion.
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+ // Get the exponent as a positive value.
+ unsigned Val = RHSC->getSExtValue();
+ if ((int)Val < 0) Val = -Val;
+
+ // powi(x, 0) -> 1.0
+ if (Val == 0)
+ return DAG.getConstantFP(1.0, LHS.getValueType());
+
+ const Function *F = DAG.getMachineFunction().getFunction();
+ if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
+ // If optimizing for size, don't insert too many multiplies. This
+ // inserts up to 5 multiplies.
+ CountPopulation_32(Val)+Log2_32(Val) < 7) {
+ // We use the simple binary decomposition method to generate the multiply
+ // sequence. There are more optimal ways to do this (for example,
+ // powi(x,15) generates one more multiply than it should), but this has
+ // the benefit of being both really simple and much better than a libcall.
+ SDValue Res; // Logically starts equal to 1.0
+ SDValue CurSquare = LHS;
+ while (Val) {
+ if (Val & 1) {
+ if (Res.getNode())
+ Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
+ else
+ Res = CurSquare; // 1.0*CurSquare.
+ }
+
+ CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
+ CurSquare, CurSquare);
+ Val >>= 1;
+ }
+
+ // If the original was negative, invert the result, producing 1/(x*x*x).
+ if (RHSC->getSExtValue() < 0)
+ Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
+ DAG.getConstantFP(1.0, LHS.getValueType()), Res);
+ return Res;
+ }
+ }
+
+ // Otherwise, expand to a libcall.
+ return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
+}
+
+/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
+/// argument, create the corresponding DBG_VALUE machine instruction for it now.
+/// At the end of instruction selection, they will be inserted to the entry BB.
+bool
+SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
+ const Value *V, MDNode *Variable,
+ uint64_t Offset,
+ const SDValue &N) {
+ if (!isa<Argument>(V))
+ return false;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ // Ignore inlined function arguments here.
+ DIVariable DV(Variable);
+ if (DV.isInlinedFnArgument(MF.getFunction()))
+ return false;
+
+ MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()];
+ if (MBB != &MF.front())
+ return false;
+
+ unsigned Reg = 0;
+ if (N.getOpcode() == ISD::CopyFromReg) {
+ Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
+ if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ unsigned PR = RegInfo.getLiveInPhysReg(Reg);
+ if (PR)
+ Reg = PR;
+ }
+ }
+
+ if (!Reg) {
+ DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
+ if (VMI == FuncInfo.ValueMap.end())
+ return false;
+ Reg = VMI->second;
+ }
+
+ const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
+ MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
+ TII->get(TargetOpcode::DBG_VALUE))
+ .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
+ FuncInfo.ArgDbgValues.push_back(&*MIB);
+ return true;
+}
+
+// VisualStudio defines setjmp as _setjmp
+#if defined(_MSC_VER) && defined(setjmp)
+#define setjmp_undefined_for_visual_studio
+#undef setjmp
+#endif
+
+/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
+/// we want to emit this as a call to a named external function, return the name
+/// otherwise lower it and return null.
+const char *
+SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
+ DebugLoc dl = getCurDebugLoc();
+ SDValue Res;
+
+ switch (Intrinsic) {
+ default:
+ // By default, turn this into a target intrinsic node.
+ visitTargetIntrinsic(I, Intrinsic);
+ return 0;
+ case Intrinsic::vastart: visitVAStart(I); return 0;
+ case Intrinsic::vaend: visitVAEnd(I); return 0;
+ case Intrinsic::vacopy: visitVACopy(I); return 0;
+ case Intrinsic::returnaddress:
+ setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::frameaddress:
+ setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::setjmp:
+ return "_setjmp"+!TLI.usesUnderscoreSetJmp();
+ case Intrinsic::longjmp:
+ return "_longjmp"+!TLI.usesUnderscoreLongJmp();
+ case Intrinsic::memcpy: {
+ // Assert for address < 256 since we support only user defined address
+ // spaces.
+ assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
+ < 256 &&
+ cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
+ < 256 &&
+ "Unknown address space");
+ SDValue Op1 = getValue(I.getOperand(1));
+ SDValue Op2 = getValue(I.getOperand(2));
+ SDValue Op3 = getValue(I.getOperand(3));
+ unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+ bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
+ DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
+ I.getOperand(1), 0, I.getOperand(2), 0));
+ return 0;
+ }
+ case Intrinsic::memset: {
+ // Assert for address < 256 since we support only user defined address
+ // spaces.
+ assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
+ < 256 &&
+ "Unknown address space");
+ SDValue Op1 = getValue(I.getOperand(1));
+ SDValue Op2 = getValue(I.getOperand(2));
+ SDValue Op3 = getValue(I.getOperand(3));
+ unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+ bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
+ DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
+ I.getOperand(1), 0));
+ return 0;
+ }
+ case Intrinsic::memmove: {
+ // Assert for address < 256 since we support only user defined address
+ // spaces.
+ assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace()
+ < 256 &&
+ cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace()
+ < 256 &&
+ "Unknown address space");
+ SDValue Op1 = getValue(I.getOperand(1));
+ SDValue Op2 = getValue(I.getOperand(2));
+ SDValue Op3 = getValue(I.getOperand(3));
+ unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+ bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue();
+
+ // If the source and destination are known to not be aliases, we can
+ // lower memmove as memcpy.
+ uint64_t Size = -1ULL;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
+ Size = C->getZExtValue();
+ if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
+ AliasAnalysis::NoAlias) {
+ DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
+ false, I.getOperand(1), 0, I.getOperand(2), 0));
+ return 0;
+ }
+
+ DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
+ I.getOperand(1), 0, I.getOperand(2), 0));
+ return 0;
+ }
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
+ if (!DIVariable(DI.getVariable()).Verify())
+ return 0;
+
+ MDNode *Variable = DI.getVariable();
+ // Parameters are handled specially.
+ bool isParameter =
+ DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable;
+ const Value *Address = DI.getAddress();
+ if (!Address)
+ return 0;
+ if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
+ Address = BCI->getOperand(0);
+ const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
+ if (AI) {
+ // Don't handle byval arguments or VLAs, for example.
+ // Non-byval arguments are handled here (they refer to the stack temporary
+ // alloca at this point).
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI == FuncInfo.StaticAllocaMap.end())
+ return 0; // VLAs.
+ int FI = SI->second;
+
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
+ MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
+ }
+
+ // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
+ // but do not always have a corresponding SDNode built. The SDNodeOrder
+ // absolute, but not relative, values are different depending on whether
+ // debug info exists.
+ ++SDNodeOrder;
+ SDValue &N = NodeMap[Address];
+ SDDbgValue *SDV;
+ if (N.getNode()) {
+ if (isParameter && !AI) {
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
+ if (FINode)
+ // Byval parameter. We have a frame index at this point.
+ SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
+ 0, dl, SDNodeOrder);
+ else
+ // Can't do anything with other non-AI cases yet. This might be a
+ // parameter of a callee function that got inlined, for example.
+ return 0;
+ } else if (AI)
+ SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
+ 0, dl, SDNodeOrder);
+ else
+ // Can't do anything with other non-AI cases yet.
+ return 0;
+ DAG.AddDbgValue(SDV, N.getNode(), isParameter);
+ } else {
+ // This isn't useful, but it shows what we're missing.
+ SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()),
+ 0, dl, SDNodeOrder);
+ DAG.AddDbgValue(SDV, 0, isParameter);
+ }
+ return 0;
+ }
+ case Intrinsic::dbg_value: {
+ const DbgValueInst &DI = cast<DbgValueInst>(I);
+ if (!DIVariable(DI.getVariable()).Verify())
+ return 0;
+
+ MDNode *Variable = DI.getVariable();
+ uint64_t Offset = DI.getOffset();
+ const Value *V = DI.getValue();
+ if (!V)
+ return 0;
+
+ // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
+ // but do not always have a corresponding SDNode built. The SDNodeOrder
+ // absolute, but not relative, values are different depending on whether
+ // debug info exists.
+ ++SDNodeOrder;
+ SDDbgValue *SDV;
+ if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) {
+ SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
+ DAG.AddDbgValue(SDV, 0, false);
+ } else {
+ bool createUndef = false;
+ // FIXME : Why not use getValue() directly ?
+ SDValue &N = NodeMap[V];
+ if (N.getNode()) {
+ if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
+ SDV = DAG.getDbgValue(Variable, N.getNode(),
+ N.getResNo(), Offset, dl, SDNodeOrder);
+ DAG.AddDbgValue(SDV, N.getNode(), false);
+ }
+ } else if (isa<PHINode>(V) && !V->use_empty()) {
+ SDValue N = getValue(V);
+ if (N.getNode()) {
+ if (!EmitFuncArgumentDbgValue(DI, V, Variable, Offset, N)) {
+ SDV = DAG.getDbgValue(Variable, N.getNode(),
+ N.getResNo(), Offset, dl, SDNodeOrder);
+ DAG.AddDbgValue(SDV, N.getNode(), false);
+ }
+ } else
+ createUndef = true;
+ } else
+ createUndef = true;
+ if (createUndef) {
+ // We may expand this to cover more cases. One case where we have no
+ // data available is an unreferenced parameter; we need this fallback.
+ SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()),
+ Offset, dl, SDNodeOrder);
+ DAG.AddDbgValue(SDV, 0, false);
+ }
+ }
+
+ // Build a debug info table entry.
+ if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
+ V = BCI->getOperand(0);
+ const AllocaInst *AI = dyn_cast<AllocaInst>(V);
+ // Don't handle byval struct arguments or VLAs, for example.
+ if (!AI)
+ return 0;
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(AI);
+ if (SI == FuncInfo.StaticAllocaMap.end())
+ return 0; // VLAs.
+ int FI = SI->second;
+
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
+ MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
+ return 0;
+ }
+ case Intrinsic::eh_exception: {
+ // Insert the EXCEPTIONADDR instruction.
+ assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() &&
+ "Call to eh.exception not in landing pad!");
+ SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
+ SDValue Ops[1];
+ Ops[0] = DAG.getRoot();
+ SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
+ setValue(&I, Op);
+ DAG.setRoot(Op.getValue(1));
+ return 0;
+ }
+
+ case Intrinsic::eh_selector: {
+ MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()];
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ if (CallMBB->isLandingPad())
+ AddCatchInfo(I, &MMI, CallMBB);
+ else {
+#ifndef NDEBUG
+ FuncInfo.CatchInfoLost.insert(&I);
+#endif
+ // FIXME: Mark exception selector register as live in. Hack for PR1508.
+ unsigned Reg = TLI.getExceptionSelectorRegister();
+ if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg);
+ }
+
+ // Insert the EHSELECTION instruction.
+ SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
+ SDValue Ops[2];
+ Ops[0] = getValue(I.getOperand(1));
+ Ops[1] = getRoot();
+ SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
+ DAG.setRoot(Op.getValue(1));
+ setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
+ return 0;
+ }
+
+ case Intrinsic::eh_typeid_for: {
+ // Find the type id for the given typeinfo.
+ GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
+ unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
+ Res = DAG.getConstant(TypeID, MVT::i32);
+ setValue(&I, Res);
+ return 0;
+ }
+
+ case Intrinsic::eh_return_i32:
+ case Intrinsic::eh_return_i64:
+ DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
+ DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
+ MVT::Other,
+ getControlRoot(),
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2))));
+ return 0;
+ case Intrinsic::eh_unwind_init:
+ DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
+ return 0;
+ case Intrinsic::eh_dwarf_cfa: {
+ EVT VT = getValue(I.getOperand(1)).getValueType();
+ SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
+ TLI.getPointerTy());
+ SDValue Offset = DAG.getNode(ISD::ADD, dl,
+ TLI.getPointerTy(),
+ DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
+ TLI.getPointerTy()),
+ CfaArg);
+ SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
+ TLI.getPointerTy(),
+ DAG.getConstant(0, TLI.getPointerTy()));
+ setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
+ FA, Offset));
+ return 0;
+ }
+ case Intrinsic::eh_sjlj_callsite: {
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
+ assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
+ assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
+
+ MMI.setCurrentCallSite(CI->getZExtValue());
+ return 0;
+ }
+ case Intrinsic::eh_sjlj_setjmp: {
+ setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(),
+ getValue(I.getOperand(1))));
+ return 0;
+ }
+ case Intrinsic::eh_sjlj_longjmp: {
+ DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
+ getRoot(),
+ getValue(I.getOperand(1))));
+ return 0;
+ }
+
+ case Intrinsic::convertff:
+ case Intrinsic::convertfsi:
+ case Intrinsic::convertfui:
+ case Intrinsic::convertsif:
+ case Intrinsic::convertuif:
+ case Intrinsic::convertss:
+ case Intrinsic::convertsu:
+ case Intrinsic::convertus:
+ case Intrinsic::convertuu: {
+ ISD::CvtCode Code = ISD::CVT_INVALID;
+ switch (Intrinsic) {
+ case Intrinsic::convertff: Code = ISD::CVT_FF; break;
+ case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
+ case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
+ case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
+ case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
+ case Intrinsic::convertss: Code = ISD::CVT_SS; break;
+ case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
+ case Intrinsic::convertus: Code = ISD::CVT_US; break;
+ case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
+ }
+ EVT DestVT = TLI.getValueType(I.getType());
+ const Value *Op1 = I.getOperand(1);
+ Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
+ DAG.getValueType(DestVT),
+ DAG.getValueType(getValue(Op1).getValueType()),
+ getValue(I.getOperand(2)),
+ getValue(I.getOperand(3)),
+ Code);
+ setValue(&I, Res);
+ return 0;
+ }
+ case Intrinsic::sqrt:
+ setValue(&I, DAG.getNode(ISD::FSQRT, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::powi:
+ setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)), DAG));
+ return 0;
+ case Intrinsic::sin:
+ setValue(&I, DAG.getNode(ISD::FSIN, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::cos:
+ setValue(&I, DAG.getNode(ISD::FCOS, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::log:
+ visitLog(I);
+ return 0;
+ case Intrinsic::log2:
+ visitLog2(I);
+ return 0;
+ case Intrinsic::log10:
+ visitLog10(I);
+ return 0;
+ case Intrinsic::exp:
+ visitExp(I);
+ return 0;
+ case Intrinsic::exp2:
+ visitExp2(I);
+ return 0;
+ case Intrinsic::pow:
+ visitPow(I);
+ return 0;
+ case Intrinsic::convert_to_fp16:
+ setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
+ MVT::i16, getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::convert_from_fp16:
+ setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
+ MVT::f32, getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::pcmarker: {
+ SDValue Tmp = getValue(I.getOperand(1));
+ DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
+ return 0;
+ }
+ case Intrinsic::readcyclecounter: {
+ SDValue Op = getRoot();
+ Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
+ DAG.getVTList(MVT::i64, MVT::Other),
+ &Op, 1);
+ setValue(&I, Res);
+ DAG.setRoot(Res.getValue(1));
+ return 0;
+ }
+ case Intrinsic::bswap:
+ setValue(&I, DAG.getNode(ISD::BSWAP, dl,
+ getValue(I.getOperand(1)).getValueType(),
+ getValue(I.getOperand(1))));
+ return 0;
+ case Intrinsic::cttz: {
+ SDValue Arg = getValue(I.getOperand(1));
+ EVT Ty = Arg.getValueType();
+ setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg));
+ return 0;
+ }
+ case Intrinsic::ctlz: {
+ SDValue Arg = getValue(I.getOperand(1));
+ EVT Ty = Arg.getValueType();
+ setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg));
+ return 0;
+ }
+ case Intrinsic::ctpop: {
+ SDValue Arg = getValue(I.getOperand(1));
+ EVT Ty = Arg.getValueType();
+ setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
+ return 0;
+ }
+ case Intrinsic::stacksave: {
+ SDValue Op = getRoot();
+ Res = DAG.getNode(ISD::STACKSAVE, dl,
+ DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
+ setValue(&I, Res);
+ DAG.setRoot(Res.getValue(1));
+ return 0;
+ }
+ case Intrinsic::stackrestore: {
+ Res = getValue(I.getOperand(1));
+ DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
+ return 0;
+ }
+ case Intrinsic::stackprotector: {
+ // Emit code into the DAG to store the stack guard onto the stack.
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ EVT PtrTy = TLI.getPointerTy();
+
+ SDValue Src = getValue(I.getOperand(1)); // The guard's value.
+ AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
+
+ int FI = FuncInfo.StaticAllocaMap[Slot];
+ MFI->setStackProtectorIndex(FI);
+
+ SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
+
+ // Store the stack protector onto the stack.
+ Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
+ PseudoSourceValue::getFixedStack(FI),
+ 0, true, false, 0);
+ setValue(&I, Res);
+ DAG.setRoot(Res);
+ return 0;
+ }
+ case Intrinsic::objectsize: {
+ // If we don't know by now, we're never going to know.
+ ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
+
+ assert(CI && "Non-constant type in __builtin_object_size?");
+
+ SDValue Arg = getValue(I.getOperand(0));
+ EVT Ty = Arg.getValueType();
+
+ if (CI->getZExtValue() == 0)
+ Res = DAG.getConstant(-1ULL, Ty);
+ else
+ Res = DAG.getConstant(0, Ty);
+
+ setValue(&I, Res);
+ return 0;
+ }
+ case Intrinsic::var_annotation:
+ // Discard annotate attributes
+ return 0;
+
+ case Intrinsic::init_trampoline: {
+ const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
+
+ SDValue Ops[6];
+ Ops[0] = getRoot();
+ Ops[1] = getValue(I.getOperand(1));
+ Ops[2] = getValue(I.getOperand(2));
+ Ops[3] = getValue(I.getOperand(3));
+ Ops[4] = DAG.getSrcValue(I.getOperand(1));
+ Ops[5] = DAG.getSrcValue(F);
+
+ Res = DAG.getNode(ISD::TRAMPOLINE, dl,
+ DAG.getVTList(TLI.getPointerTy(), MVT::Other),
+ Ops, 6);
+
+ setValue(&I, Res);
+ DAG.setRoot(Res.getValue(1));
+ return 0;
+ }
+ case Intrinsic::gcroot:
+ if (GFI) {
+ const Value *Alloca = I.getOperand(1);
+ const Constant *TypeMap = cast<Constant>(I.getOperand(2));
+
+ FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
+ GFI->addStackRoot(FI->getIndex(), TypeMap);
+ }
+ return 0;
+ case Intrinsic::gcread:
+ case Intrinsic::gcwrite:
+ llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
+ return 0;
+ case Intrinsic::flt_rounds:
+ setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
+ return 0;
+ case Intrinsic::trap:
+ DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
+ return 0;
+ case Intrinsic::uadd_with_overflow:
+ return implVisitAluOverflow(I, ISD::UADDO);
+ case Intrinsic::sadd_with_overflow:
+ return implVisitAluOverflow(I, ISD::SADDO);
+ case Intrinsic::usub_with_overflow:
+ return implVisitAluOverflow(I, ISD::USUBO);
+ case Intrinsic::ssub_with_overflow:
+ return implVisitAluOverflow(I, ISD::SSUBO);
+ case Intrinsic::umul_with_overflow:
+ return implVisitAluOverflow(I, ISD::UMULO);
+ case Intrinsic::smul_with_overflow:
+ return implVisitAluOverflow(I, ISD::SMULO);
+
+ case Intrinsic::prefetch: {
+ SDValue Ops[4];
+ Ops[0] = getRoot();
+ Ops[1] = getValue(I.getOperand(1));
+ Ops[2] = getValue(I.getOperand(2));
+ Ops[3] = getValue(I.getOperand(3));
+ DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
+ return 0;
+ }
+
+ case Intrinsic::memory_barrier: {
+ SDValue Ops[6];
+ Ops[0] = getRoot();
+ for (int x = 1; x < 6; ++x)
+ Ops[x] = getValue(I.getOperand(x));
+
+ DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
+ return 0;
+ }
+ case Intrinsic::atomic_cmp_swap: {
+ SDValue Root = getRoot();
+ SDValue L =
+ DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
+ getValue(I.getOperand(2)).getValueType().getSimpleVT(),
+ Root,
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ getValue(I.getOperand(3)),
+ I.getOperand(1));
+ setValue(&I, L);
+ DAG.setRoot(L.getValue(1));
+ return 0;
+ }
+ case Intrinsic::atomic_load_add:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
+ case Intrinsic::atomic_load_sub:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
+ case Intrinsic::atomic_load_or:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
+ case Intrinsic::atomic_load_xor:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
+ case Intrinsic::atomic_load_and:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
+ case Intrinsic::atomic_load_nand:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
+ case Intrinsic::atomic_load_max:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
+ case Intrinsic::atomic_load_min:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
+ case Intrinsic::atomic_load_umin:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
+ case Intrinsic::atomic_load_umax:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
+ case Intrinsic::atomic_swap:
+ return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
+
+ case Intrinsic::invariant_start:
+ case Intrinsic::lifetime_start:
+ // Discard region information.
+ setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
+ return 0;
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_end:
+ // Discard region information.
+ return 0;
+ }
+}
+
+void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
+ bool isTailCall,
+ MachineBasicBlock *LandingPad) {
+ const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ const Type *RetTy = FTy->getReturnType();
+ MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
+ MCSymbol *BeginLabel = 0;
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Args.reserve(CS.arg_size());
+
+ // Check whether the function can return without sret-demotion.
+ SmallVector<EVT, 4> OutVTs;
+ SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
+ SmallVector<uint64_t, 4> Offsets;
+ getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
+ OutVTs, OutsFlags, TLI, &Offsets);
+
+ bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
+ FTy->isVarArg(), OutVTs, OutsFlags, DAG);
+
+ SDValue DemoteStackSlot;
+
+ if (!CanLowerReturn) {
+ uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
+ FTy->getReturnType());
+ unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(
+ FTy->getReturnType());
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
+ const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
+
+ DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
+ Entry.Node = DemoteStackSlot;
+ Entry.Ty = StackSlotPtrType;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Entry.isInReg = false;
+ Entry.isSRet = true;
+ Entry.isNest = false;
+ Entry.isByVal = false;
+ Entry.Alignment = Align;
+ Args.push_back(Entry);
+ RetTy = Type::getVoidTy(FTy->getContext());
+ }
+
+ for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ SDValue ArgNode = getValue(*i);
+ Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
+
+ unsigned attrInd = i - CS.arg_begin() + 1;
+ Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
+ Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
+ Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
+ Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
+ Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
+ Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
+ Entry.Alignment = CS.getParamAlignment(attrInd);
+ Args.push_back(Entry);
+ }
+
+ if (LandingPad) {
+ // Insert a label before the invoke call to mark the try range. This can be
+ // used to detect deletion of the invoke via the MachineModuleInfo.
+ BeginLabel = MMI.getContext().CreateTempSymbol();
+
+ // For SjLj, keep track of which landing pads go with which invokes
+ // so as to maintain the ordering of pads in the LSDA.
+ unsigned CallSiteIndex = MMI.getCurrentCallSite();
+ if (CallSiteIndex) {
+ MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
+ // Now that the call site is handled, stop tracking it.
+ MMI.setCurrentCallSite(0);
+ }
+
+ // Both PendingLoads and PendingExports must be flushed here;
+ // this call might not return.
+ (void)getRoot();
+ DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
+ }
+
+ // Check if target-independent constraints permit a tail call here.
+ // Target-dependent constraints are checked within TLI.LowerCallTo.
+ if (isTailCall &&
+ !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
+ isTailCall = false;
+
+ std::pair<SDValue,SDValue> Result =
+ TLI.LowerCallTo(getRoot(), RetTy,
+ CS.paramHasAttr(0, Attribute::SExt),
+ CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
+ CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
+ CS.getCallingConv(),
+ isTailCall,
+ !CS.getInstruction()->use_empty(),
+ Callee, Args, DAG, getCurDebugLoc());
+ assert((isTailCall || Result.second.getNode()) &&
+ "Non-null chain expected with non-tail call!");
+ assert((Result.second.getNode() || !Result.first.getNode()) &&
+ "Null value expected with tail call!");
+ if (Result.first.getNode()) {
+ setValue(CS.getInstruction(), Result.first);
+ } else if (!CanLowerReturn && Result.second.getNode()) {
+ // The instruction result is the result of loading from the
+ // hidden sret parameter.
+ SmallVector<EVT, 1> PVTs;
+ const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
+
+ ComputeValueVTs(TLI, PtrRetTy, PVTs);
+ assert(PVTs.size() == 1 && "Pointers should fit in one register");
+ EVT PtrVT = PVTs[0];
+ unsigned NumValues = OutVTs.size();
+ SmallVector<SDValue, 4> Values(NumValues);
+ SmallVector<SDValue, 4> Chains(NumValues);
+
+ for (unsigned i = 0; i < NumValues; ++i) {
+ SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
+ DemoteStackSlot,
+ DAG.getConstant(Offsets[i], PtrVT));
+ SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
+ Add, NULL, Offsets[i], false, false, 1);
+ Values[i] = L;
+ Chains[i] = L.getValue(1);
+ }
+
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+ MVT::Other, &Chains[0], NumValues);
+ PendingLoads.push_back(Chain);
+
+ // Collect the legal value parts into potentially illegal values
+ // that correspond to the original function's return values.
+ SmallVector<EVT, 4> RetTys;
+ RetTy = FTy->getReturnType();
+ ComputeValueVTs(TLI, RetTy, RetTys);
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ SmallVector<SDValue, 4> ReturnValues;
+ unsigned CurReg = 0;
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ EVT VT = RetTys[I];
+ EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT);
+ unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT);
+
+ SDValue ReturnValue =
+ getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs,
+ RegisterVT, VT, AssertOp);
+ ReturnValues.push_back(ReturnValue);
+ CurReg += NumRegs;
+ }
+
+ setValue(CS.getInstruction(),
+ DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+ DAG.getVTList(&RetTys[0], RetTys.size()),
+ &ReturnValues[0], ReturnValues.size()));
+
+ }
+
+ // As a special case, a null chain means that a tail call has been emitted and
+ // the DAG root is already updated.
+ if (Result.second.getNode())
+ DAG.setRoot(Result.second);
+ else
+ HasTailCall = true;
+
+ if (LandingPad) {
+ // Insert a label at the end of the invoke call to mark the try range. This
+ // can be used to detect deletion of the invoke via the MachineModuleInfo.
+ MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
+ DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
+
+ // Inform MachineModuleInfo of range.
+ MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
+ }
+}
+
+/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
+/// value is equal or not-equal to zero.
+static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
+ for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
+ UI != E; ++UI) {
+ if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
+ if (IC->isEquality())
+ if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
+ if (C->isNullValue())
+ continue;
+ // Unknown instruction.
+ return false;
+ }
+ return true;
+}
+
+static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
+ const Type *LoadTy,
+ SelectionDAGBuilder &Builder) {
+
+ // Check to see if this load can be trivially constant folded, e.g. if the
+ // input is from a string literal.
+ if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
+ // Cast pointer to the type we really want to load.
+ LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
+ PointerType::getUnqual(LoadTy));
+
+ if (const Constant *LoadCst =
+ ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
+ Builder.TD))
+ return Builder.getValue(LoadCst);
+ }
+
+ // Otherwise, we have to emit the load. If the pointer is to unfoldable but
+ // still constant memory, the input chain can be the entry node.
+ SDValue Root;
+ bool ConstantMemory = false;
+
+ // Do not serialize (non-volatile) loads of constant memory with anything.
+ if (Builder.AA->pointsToConstantMemory(PtrVal)) {
+ Root = Builder.DAG.getEntryNode();
+ ConstantMemory = true;
+ } else {
+ // Do not serialize non-volatile loads against each other.
+ Root = Builder.DAG.getRoot();
+ }
+
+ SDValue Ptr = Builder.getValue(PtrVal);
+ SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
+ Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/,
+ false /*volatile*/,
+ false /*nontemporal*/, 1 /* align=1 */);
+
+ if (!ConstantMemory)
+ Builder.PendingLoads.push_back(LoadVal.getValue(1));
+ return LoadVal;
+}
+
+
+/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
+/// If so, return true and lower it, otherwise return false and it will be
+/// lowered like a normal call.
+bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
+ // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
+ if (I.getNumOperands() != 4)
+ return false;
+
+ const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2);
+ if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
+ !I.getOperand(3)->getType()->isIntegerTy() ||
+ !I.getType()->isIntegerTy())
+ return false;
+
+ const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3));
+
+ // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
+ // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
+ if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
+ bool ActuallyDoIt = true;
+ MVT LoadVT;
+ const Type *LoadTy;
+ switch (Size->getZExtValue()) {
+ default:
+ LoadVT = MVT::Other;
+ LoadTy = 0;
+ ActuallyDoIt = false;
+ break;
+ case 2:
+ LoadVT = MVT::i16;
+ LoadTy = Type::getInt16Ty(Size->getContext());
+ break;
+ case 4:
+ LoadVT = MVT::i32;
+ LoadTy = Type::getInt32Ty(Size->getContext());
+ break;
+ case 8:
+ LoadVT = MVT::i64;
+ LoadTy = Type::getInt64Ty(Size->getContext());
+ break;
+ /*
+ case 16:
+ LoadVT = MVT::v4i32;
+ LoadTy = Type::getInt32Ty(Size->getContext());
+ LoadTy = VectorType::get(LoadTy, 4);
+ break;
+ */
+ }
+
+ // This turns into unaligned loads. We only do this if the target natively
+ // supports the MVT we'll be loading or if it is small enough (<= 4) that
+ // we'll only produce a small number of byte loads.
+
+ // Require that we can find a legal MVT, and only do this if the target
+ // supports unaligned loads of that type. Expanding into byte loads would
+ // bloat the code.
+ if (ActuallyDoIt && Size->getZExtValue() > 4) {
+ // TODO: Handle 5 byte compare as 4-byte + 1 byte.
+ // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
+ if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
+ ActuallyDoIt = false;
+ }
+
+ if (ActuallyDoIt) {
+ SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
+ SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
+
+ SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
+ ISD::SETNE);
+ EVT CallVT = TLI.getValueType(I.getType(), true);
+ setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
+ return true;
+ }
+ }
+
+
+ return false;
+}
+
+
+void SelectionDAGBuilder::visitCall(const CallInst &I) {
+ const char *RenameFn = 0;
+ if (Function *F = I.getCalledFunction()) {
+ if (F->isDeclaration()) {
+ const TargetIntrinsicInfo *II = TM.getIntrinsicInfo();
+ if (II) {
+ if (unsigned IID = II->getIntrinsicID(F)) {
+ RenameFn = visitIntrinsicCall(I, IID);
+ if (!RenameFn)
+ return;
+ }
+ }
+ if (unsigned IID = F->getIntrinsicID()) {
+ RenameFn = visitIntrinsicCall(I, IID);
+ if (!RenameFn)
+ return;
+ }
+ }
+
+ // Check for well-known libc/libm calls. If the function is internal, it
+ // can't be a library call.
+ if (!F->hasLocalLinkage() && F->hasName()) {
+ StringRef Name = F->getName();
+ if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") {
+ if (I.getNumOperands() == 3 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPointTy() &&
+ I.getType() == I.getOperand(1)->getType() &&
+ I.getType() == I.getOperand(2)->getType()) {
+ SDValue LHS = getValue(I.getOperand(1));
+ SDValue RHS = getValue(I.getOperand(2));
+ setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
+ LHS.getValueType(), LHS, RHS));
+ return;
+ }
+ } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
+ if (I.getNumOperands() == 2 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPointTy() &&
+ I.getType() == I.getOperand(1)->getType()) {
+ SDValue Tmp = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
+ Tmp.getValueType(), Tmp));
+ return;
+ }
+ } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
+ if (I.getNumOperands() == 2 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPointTy() &&
+ I.getType() == I.getOperand(1)->getType() &&
+ I.onlyReadsMemory()) {
+ SDValue Tmp = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
+ Tmp.getValueType(), Tmp));
+ return;
+ }
+ } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
+ if (I.getNumOperands() == 2 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPointTy() &&
+ I.getType() == I.getOperand(1)->getType() &&
+ I.onlyReadsMemory()) {
+ SDValue Tmp = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
+ Tmp.getValueType(), Tmp));
+ return;
+ }
+ } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
+ if (I.getNumOperands() == 2 && // Basic sanity checks.
+ I.getOperand(1)->getType()->isFloatingPointTy() &&
+ I.getType() == I.getOperand(1)->getType() &&
+ I.onlyReadsMemory()) {
+ SDValue Tmp = getValue(I.getOperand(1));
+ setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
+ Tmp.getValueType(), Tmp));
+ return;
+ }
+ } else if (Name == "memcmp") {
+ if (visitMemCmpCall(I))
+ return;
+ }
+ }
+ } else if (isa<InlineAsm>(I.getOperand(0))) {
+ visitInlineAsm(&I);
+ return;
+ }
+
+ SDValue Callee;
+ if (!RenameFn)
+ Callee = getValue(I.getOperand(0));
+ else
+ Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
+
+ // Check if we can potentially perform a tail call. More detailed checking is
+ // be done within LowerCallTo, after more information about the call is known.
+ LowerCallTo(&I, Callee, I.isTailCall());
+}
+
+/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+/// this value and returns the result as a ValueVT value. This uses
+/// Chain/Flag as the input and updates them for the output Chain/Flag.
+/// If the Flag pointer is NULL, no flag is used.
+SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
+ SDValue &Chain, SDValue *Flag) const {
+ // Assemble the legal parts into the final values.
+ SmallVector<SDValue, 4> Values(ValueVTs.size());
+ SmallVector<SDValue, 8> Parts;
+ for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ // Copy the legal parts from the registers.
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
+ EVT RegisterVT = RegVTs[Value];
+
+ Parts.resize(NumRegs);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ SDValue P;
+ if (Flag == 0) {
+ P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
+ } else {
+ P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
+ *Flag = P.getValue(2);
+ }
+
+ Chain = P.getValue(1);
+
+ // If the source register was virtual and if we know something about it,
+ // add an assert node.
+ if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
+ RegisterVT.isInteger() && !RegisterVT.isVector()) {
+ unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
+ FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
+ if (FLI.LiveOutRegInfo.size() > SlotNo) {
+ FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
+
+ unsigned RegSize = RegisterVT.getSizeInBits();
+ unsigned NumSignBits = LOI.NumSignBits;
+ unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
+
+ // FIXME: We capture more information than the dag can represent. For
+ // now, just use the tightest assertzext/assertsext possible.
+ bool isSExt = true;
+ EVT FromVT(MVT::Other);
+ if (NumSignBits == RegSize)
+ isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
+ else if (NumZeroBits >= RegSize-1)
+ isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
+ else if (NumSignBits > RegSize-8)
+ isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
+ else if (NumZeroBits >= RegSize-8)
+ isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
+ else if (NumSignBits > RegSize-16)
+ isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
+ else if (NumZeroBits >= RegSize-16)
+ isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
+ else if (NumSignBits > RegSize-32)
+ isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
+ else if (NumZeroBits >= RegSize-32)
+ isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
+
+ if (FromVT != MVT::Other)
+ P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
+ RegisterVT, P, DAG.getValueType(FromVT));
+ }
+ }
+
+ Parts[i] = P;
+ }
+
+ Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
+ NumRegs, RegisterVT, ValueVT);
+ Part += NumRegs;
+ Parts.clear();
+ }
+
+ return DAG.getNode(ISD::MERGE_VALUES, dl,
+ DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
+ &Values[0], ValueVTs.size());
+}
+
+/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+/// specified value into the registers specified by this object. This uses
+/// Chain/Flag as the input and updates them for the output Chain/Flag.
+/// If the Flag pointer is NULL, no flag is used.
+void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
+ SDValue &Chain, SDValue *Flag) const {
+ // Get the list of the values's legal parts.
+ unsigned NumRegs = Regs.size();
+ SmallVector<SDValue, 8> Parts(NumRegs);
+ for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ EVT ValueVT = ValueVTs[Value];
+ unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
+ EVT RegisterVT = RegVTs[Value];
+
+ getCopyToParts(DAG, dl,
+ Val.getValue(Val.getResNo() + Value),
+ &Parts[Part], NumParts, RegisterVT);
+ Part += NumParts;
+ }
+
+ // Copy the parts into the registers.
+ SmallVector<SDValue, 8> Chains(NumRegs);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ SDValue Part;
+ if (Flag == 0) {
+ Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
+ } else {
+ Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
+ *Flag = Part.getValue(1);
+ }
+
+ Chains[i] = Part.getValue(0);
+ }
+
+ if (NumRegs == 1 || Flag)
+ // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
+ // flagged to it. That is the CopyToReg nodes and the user are considered
+ // a single scheduling unit. If we create a TokenFactor and return it as
+ // chain, then the TokenFactor is both a predecessor (operand) of the
+ // user as well as a successor (the TF operands are flagged to the user).
+ // c1, f1 = CopyToReg
+ // c2, f2 = CopyToReg
+ // c3 = TokenFactor c1, c2
+ // ...
+ // = op c3, ..., f2
+ Chain = Chains[NumRegs-1];
+ else
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
+}
+
+/// AddInlineAsmOperands - Add this value to the specified inlineasm node
+/// operand list. This adds the code marker and includes the number of
+/// values added into it.
+void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
+ unsigned MatchingIdx,
+ SelectionDAG &DAG,
+ std::vector<SDValue> &Ops) const {
+ unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
+ if (HasMatching)
+ Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
+ SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
+ Ops.push_back(Res);
+
+ for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
+ unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
+ EVT RegisterVT = RegVTs[Value];
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ assert(Reg < Regs.size() && "Mismatch in # registers expected");
+ Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
+ }
+ }
+}
+
+/// isAllocatableRegister - If the specified register is safe to allocate,
+/// i.e. it isn't a stack pointer or some other special register, return the
+/// register class for the register. Otherwise, return null.
+static const TargetRegisterClass *
+isAllocatableRegister(unsigned Reg, MachineFunction &MF,
+ const TargetLowering &TLI,
+ const TargetRegisterInfo *TRI) {
+ EVT FoundVT = MVT::Other;
+ const TargetRegisterClass *FoundRC = 0;
+ for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
+ E = TRI->regclass_end(); RCI != E; ++RCI) {
+ EVT ThisVT = MVT::Other;
+
+ const TargetRegisterClass *RC = *RCI;
+ // If none of the value types for this register class are valid, we
+ // can't use it. For example, 64-bit reg classes on 32-bit targets.
+ for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
+ I != E; ++I) {
+ if (TLI.isTypeLegal(*I)) {
+ // If we have already found this register in a different register class,
+ // choose the one with the largest VT specified. For example, on
+ // PowerPC, we favor f64 register classes over f32.
+ if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
+ ThisVT = *I;
+ break;
+ }
+ }
+ }
+
+ if (ThisVT == MVT::Other) continue;
+
+ // NOTE: This isn't ideal. In particular, this might allocate the
+ // frame pointer in functions that need it (due to them not being taken
+ // out of allocation, because a variable sized allocation hasn't been seen
+ // yet). This is a slight code pessimization, but should still work.
+ for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
+ E = RC->allocation_order_end(MF); I != E; ++I)
+ if (*I == Reg) {
+ // We found a matching register class. Keep looking at others in case
+ // we find one with larger registers that this physreg is also in.
+ FoundRC = RC;
+ FoundVT = ThisVT;
+ break;
+ }
+ }
+ return FoundRC;
+}
+
+
+namespace llvm {
+/// AsmOperandInfo - This contains information for each constraint that we are
+/// lowering.
+class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo :
+ public TargetLowering::AsmOperandInfo {
+public:
+ /// CallOperand - If this is the result output operand or a clobber
+ /// this is null, otherwise it is the incoming operand to the CallInst.
+ /// This gets modified as the asm is processed.
+ SDValue CallOperand;
+
+ /// AssignedRegs - If this is a register or register class operand, this
+ /// contains the set of register corresponding to the operand.
+ RegsForValue AssignedRegs;
+
+ explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
+ : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
+ }
+
+ /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
+ /// busy in OutputRegs/InputRegs.
+ void MarkAllocatedRegs(bool isOutReg, bool isInReg,
+ std::set<unsigned> &OutputRegs,
+ std::set<unsigned> &InputRegs,
+ const TargetRegisterInfo &TRI) const {
+ if (isOutReg) {
+ for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
+ MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
+ }
+ if (isInReg) {
+ for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
+ MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
+ }
+ }
+
+ /// getCallOperandValEVT - Return the EVT of the Value* that this operand
+ /// corresponds to. If there is no Value* for this operand, it returns
+ /// MVT::Other.
+ EVT getCallOperandValEVT(LLVMContext &Context,
+ const TargetLowering &TLI,
+ const TargetData *TD) const {
+ if (CallOperandVal == 0) return MVT::Other;
+
+ if (isa<BasicBlock>(CallOperandVal))
+ return TLI.getPointerTy();
+
+ const llvm::Type *OpTy = CallOperandVal->getType();
+
+ // If this is an indirect operand, the operand is a pointer to the
+ // accessed type.
+ if (isIndirect) {
+ const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
+ if (!PtrTy)
+ report_fatal_error("Indirect operand for inline asm not a pointer!");
+ OpTy = PtrTy->getElementType();
+ }
+
+ // If OpTy is not a single value, it may be a struct/union that we
+ // can tile with integers.
+ if (!OpTy->isSingleValueType() && OpTy->isSized()) {
+ unsigned BitSize = TD->getTypeSizeInBits(OpTy);
+ switch (BitSize) {
+ default: break;
+ case 1:
+ case 8:
+ case 16:
+ case 32:
+ case 64:
+ case 128:
+ OpTy = IntegerType::get(Context, BitSize);
+ break;
+ }
+ }
+
+ return TLI.getValueType(OpTy, true);
+ }
+
+private:
+ /// MarkRegAndAliases - Mark the specified register and all aliases in the
+ /// specified set.
+ static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
+ const TargetRegisterInfo &TRI) {
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
+ Regs.insert(Reg);
+ if (const unsigned *Aliases = TRI.getAliasSet(Reg))
+ for (; *Aliases; ++Aliases)
+ Regs.insert(*Aliases);
+ }
+};
+} // end llvm namespace.
+
+
+/// GetRegistersForValue - Assign registers (virtual or physical) for the
+/// specified operand. We prefer to assign virtual registers, to allow the
+/// register allocator to handle the assignment process. However, if the asm
+/// uses features that we can't model on machineinstrs, we have SDISel do the
+/// allocation. This produces generally horrible, but correct, code.
+///
+/// OpInfo describes the operand.
+/// Input and OutputRegs are the set of already allocated physical registers.
+///
+void SelectionDAGBuilder::
+GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
+ std::set<unsigned> &OutputRegs,
+ std::set<unsigned> &InputRegs) {
+ LLVMContext &Context = FuncInfo.Fn->getContext();
+
+ // Compute whether this value requires an input register, an output register,
+ // or both.
+ bool isOutReg = false;
+ bool isInReg = false;
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ isOutReg = true;
+
+ // If there is an input constraint that matches this, we need to reserve
+ // the input register so no other inputs allocate to it.
+ isInReg = OpInfo.hasMatchingInput();
+ break;
+ case InlineAsm::isInput:
+ isInReg = true;
+ isOutReg = false;
+ break;
+ case InlineAsm::isClobber:
+ isOutReg = true;
+ isInReg = true;
+ break;
+ }
+
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ SmallVector<unsigned, 4> Regs;
+
+ // If this is a constraint for a single physreg, or a constraint for a
+ // register class, find it.
+ std::pair<unsigned, const TargetRegisterClass*> PhysReg =
+ TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+
+ unsigned NumRegs = 1;
+ if (OpInfo.ConstraintVT != MVT::Other) {
+ // If this is a FP input in an integer register (or visa versa) insert a bit
+ // cast of the input value. More generally, handle any case where the input
+ // value disagrees with the register class we plan to stick this in.
+ if (OpInfo.Type == InlineAsm::isInput &&
+ PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
+ // Try to convert to the first EVT that the reg class contains. If the
+ // types are identical size, use a bitcast to convert (e.g. two differing
+ // vector types).
+ EVT RegVT = *PhysReg.second->vt_begin();
+ if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
+ OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+ RegVT, OpInfo.CallOperand);
+ OpInfo.ConstraintVT = RegVT;
+ } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
+ // If the input is a FP value and we want it in FP registers, do a
+ // bitcast to the corresponding integer type. This turns an f64 value
+ // into i64, which can be passed with two i32 values on a 32-bit
+ // machine.
+ RegVT = EVT::getIntegerVT(Context,
+ OpInfo.ConstraintVT.getSizeInBits());
+ OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+ RegVT, OpInfo.CallOperand);
+ OpInfo.ConstraintVT = RegVT;
+ }
+ }
+
+ NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
+ }
+
+ EVT RegVT;
+ EVT ValueVT = OpInfo.ConstraintVT;
+
+ // If this is a constraint for a specific physical register, like {r17},
+ // assign it now.
+ if (unsigned AssignedReg = PhysReg.first) {
+ const TargetRegisterClass *RC = PhysReg.second;
+ if (OpInfo.ConstraintVT == MVT::Other)
+ ValueVT = *RC->vt_begin();
+
+ // Get the actual register value type. This is important, because the user
+ // may have asked for (e.g.) the AX register in i32 type. We need to
+ // remember that AX is actually i16 to get the right extension.
+ RegVT = *RC->vt_begin();
+
+ // This is a explicit reference to a physical register.
+ Regs.push_back(AssignedReg);
+
+ // If this is an expanded reference, add the rest of the regs to Regs.
+ if (NumRegs != 1) {
+ TargetRegisterClass::iterator I = RC->begin();
+ for (; *I != AssignedReg; ++I)
+ assert(I != RC->end() && "Didn't find reg!");
+
+ // Already added the first reg.
+ --NumRegs; ++I;
+ for (; NumRegs; --NumRegs, ++I) {
+ assert(I != RC->end() && "Ran out of registers to allocate!");
+ Regs.push_back(*I);
+ }
+ }
+
+ OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
+ const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+ OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
+ return;
+ }
+
+ // Otherwise, if this was a reference to an LLVM register class, create vregs
+ // for this reference.
+ if (const TargetRegisterClass *RC = PhysReg.second) {
+ RegVT = *RC->vt_begin();
+ if (OpInfo.ConstraintVT == MVT::Other)
+ ValueVT = RegVT;
+
+ // Create the appropriate number of virtual registers.
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ for (; NumRegs; --NumRegs)
+ Regs.push_back(RegInfo.createVirtualRegister(RC));
+
+ OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
+ return;
+ }
+
+ // This is a reference to a register class that doesn't directly correspond
+ // to an LLVM register class. Allocate NumRegs consecutive, available,
+ // registers from the class.
+ std::vector<unsigned> RegClassRegs
+ = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
+ OpInfo.ConstraintVT);
+
+ const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+ unsigned NumAllocated = 0;
+ for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
+ unsigned Reg = RegClassRegs[i];
+ // See if this register is available.
+ if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
+ (isInReg && InputRegs.count(Reg))) { // Already used.
+ // Make sure we find consecutive registers.
+ NumAllocated = 0;
+ continue;
+ }
+
+ // Check to see if this register is allocatable (i.e. don't give out the
+ // stack pointer).
+ const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
+ if (!RC) { // Couldn't allocate this register.
+ // Reset NumAllocated to make sure we return consecutive registers.
+ NumAllocated = 0;
+ continue;
+ }
+
+ // Okay, this register is good, we can use it.
+ ++NumAllocated;
+
+ // If we allocated enough consecutive registers, succeed.
+ if (NumAllocated == NumRegs) {
+ unsigned RegStart = (i-NumAllocated)+1;
+ unsigned RegEnd = i+1;
+ // Mark all of the allocated registers used.
+ for (unsigned i = RegStart; i != RegEnd; ++i)
+ Regs.push_back(RegClassRegs[i]);
+
+ OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
+ OpInfo.ConstraintVT);
+ OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
+ return;
+ }
+ }
+
+ // Otherwise, we couldn't allocate enough registers for this.
+}
+
+/// visitInlineAsm - Handle a call to an InlineAsm object.
+///
+void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
+ const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+
+ /// ConstraintOperands - Information about all of the constraints.
+ std::vector<SDISelAsmOperandInfo> ConstraintOperands;
+
+ std::set<unsigned> OutputRegs, InputRegs;
+
+ // Do a prepass over the constraints, canonicalizing them, and building up the
+ // ConstraintOperands list.
+ std::vector<InlineAsm::ConstraintInfo>
+ ConstraintInfos = IA->ParseConstraints();
+
+ bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
+
+ SDValue Chain, Flag;
+
+ // We won't need to flush pending loads if this asm doesn't touch
+ // memory and is nonvolatile.
+ if (hasMemory || IA->hasSideEffects())
+ Chain = getRoot();
+ else
+ Chain = DAG.getRoot();
+
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ unsigned ResNo = 0; // ResNo - The result number of the next output.
+ for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+ ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ EVT OpVT = MVT::Other;
+
+ // Compute the value type for each operand.
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ // Indirect outputs just consume an argument.
+ if (OpInfo.isIndirect) {
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ }
+
+ // The return value of the call is this value. As such, there is no
+ // corresponding argument.
+ assert(!CS.getType()->isVoidTy() &&
+ "Bad inline asm!");
+ if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
+ OpVT = TLI.getValueType(STy->getElementType(ResNo));
+ } else {
+ assert(ResNo == 0 && "Asm only has one result!");
+ OpVT = TLI.getValueType(CS.getType());
+ }
+ ++ResNo;
+ break;
+ case InlineAsm::isInput:
+ OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
+ break;
+ case InlineAsm::isClobber:
+ // Nothing to do.
+ break;
+ }
+
+ // If this is an input or an indirect output, process the call argument.
+ // BasicBlocks are labels, currently appearing only in asm's.
+ if (OpInfo.CallOperandVal) {
+ // Strip bitcasts, if any. This mostly comes up for functions.
+ OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
+
+ if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
+ OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
+ } else {
+ OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
+ }
+
+ OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
+ }
+
+ OpInfo.ConstraintVT = OpVT;
+ }
+
+ // Second pass over the constraints: compute which constraint option to use
+ // and assign registers to constraints that want a specific physreg.
+ for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+ // If this is an output operand with a matching input operand, look up the
+ // matching input. If their types mismatch, e.g. one is an integer, the
+ // other is floating point, or their sizes are different, flag it as an
+ // error.
+ if (OpInfo.hasMatchingInput()) {
+ SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+
+ if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+ if ((OpInfo.ConstraintVT.isInteger() !=
+ Input.ConstraintVT.isInteger()) ||
+ (OpInfo.ConstraintVT.getSizeInBits() !=
+ Input.ConstraintVT.getSizeInBits())) {
+ report_fatal_error("Unsupported asm: input constraint"
+ " with a matching output constraint of"
+ " incompatible type!");
+ }
+ Input.ConstraintVT = OpInfo.ConstraintVT;
+ }
+ }
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
+
+ // If this is a memory input, and if the operand is not indirect, do what we
+ // need to to provide an address for the memory input.
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
+ !OpInfo.isIndirect) {
+ assert(OpInfo.Type == InlineAsm::isInput &&
+ "Can only indirectify direct input operands!");
+
+ // Memory operands really want the address of the value. If we don't have
+ // an indirect input, put it in the constpool if we can, otherwise spill
+ // it to a stack slot.
+
+ // If the operand is a float, integer, or vector constant, spill to a
+ // constant pool entry to get its address.
+ const Value *OpVal = OpInfo.CallOperandVal;
+ if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
+ isa<ConstantVector>(OpVal)) {
+ OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
+ TLI.getPointerTy());
+ } else {
+ // Otherwise, create a stack slot and emit a store to it before the
+ // asm.
+ const Type *Ty = OpVal->getType();
+ uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
+ unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
+ Chain = DAG.getStore(Chain, getCurDebugLoc(),
+ OpInfo.CallOperand, StackSlot, NULL, 0,
+ false, false, 0);
+ OpInfo.CallOperand = StackSlot;
+ }
+
+ // There is no longer a Value* corresponding to this operand.
+ OpInfo.CallOperandVal = 0;
+
+ // It is now an indirect operand.
+ OpInfo.isIndirect = true;
+ }
+
+ // If this constraint is for a specific register, allocate it before
+ // anything else.
+ if (OpInfo.ConstraintType == TargetLowering::C_Register)
+ GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
+ }
+
+ ConstraintInfos.clear();
+
+ // Second pass - Loop over all of the operands, assigning virtual or physregs
+ // to register class operands.
+ for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+ // C_Register operands have already been allocated, Other/Memory don't need
+ // to be.
+ if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
+ GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
+ }
+
+ // AsmNodeOperands - The operands for the ISD::INLINEASM node.
+ std::vector<SDValue> AsmNodeOperands;
+ AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
+ AsmNodeOperands.push_back(
+ DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
+ TLI.getPointerTy()));
+
+ // If we have a !srcloc metadata node associated with it, we want to attach
+ // this to the ultimately generated inline asm machineinstr. To do this, we
+ // pass in the third operand as this (potentially null) inline asm MDNode.
+ const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
+ AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
+
+ // Loop over all of the inputs, copying the operand values into the
+ // appropriate registers and processing the output regs.
+ RegsForValue RetValRegs;
+
+ // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
+ std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
+
+ for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+ SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput: {
+ if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
+ OpInfo.ConstraintType != TargetLowering::C_Register) {
+ // Memory output, or 'other' output (e.g. 'X' constraint).
+ assert(OpInfo.isIndirect && "Memory output must be indirect operand");
+
+ // Add information to the INLINEASM node to know about this output.
+ unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
+ TLI.getPointerTy()));
+ AsmNodeOperands.push_back(OpInfo.CallOperand);
+ break;
+ }
+
+ // Otherwise, this is a register or register class output.
+
+ // Copy the output from the appropriate register. Find a register that
+ // we can use.
+ if (OpInfo.AssignedRegs.Regs.empty())
+ report_fatal_error("Couldn't allocate output reg for constraint '" +
+ Twine(OpInfo.ConstraintCode) + "'!");
+
+ // If this is an indirect operand, store through the pointer after the
+ // asm.
+ if (OpInfo.isIndirect) {
+ IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
+ OpInfo.CallOperandVal));
+ } else {
+ // This is the result value of the call.
+ assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
+ // Concatenate this output onto the outputs list.
+ RetValRegs.append(OpInfo.AssignedRegs);
+ }
+
+ // Add information to the INLINEASM node to know that this register is
+ // set.
+ OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
+ InlineAsm::Kind_RegDefEarlyClobber :
+ InlineAsm::Kind_RegDef,
+ false,
+ 0,
+ DAG,
+ AsmNodeOperands);
+ break;
+ }
+ case InlineAsm::isInput: {
+ SDValue InOperandVal = OpInfo.CallOperand;
+
+ if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
+ // If this is required to match an output register we have already set,
+ // just use its register.
+ unsigned OperandNo = OpInfo.getMatchedOperand();
+
+ // Scan until we find the definition we already emitted of this operand.
+ // When we find it, create a RegsForValue operand.
+ unsigned CurOp = InlineAsm::Op_FirstOperand;
+ for (; OperandNo; --OperandNo) {
+ // Advance to the next operand.
+ unsigned OpFlag =
+ cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
+ assert((InlineAsm::isRegDefKind(OpFlag) ||
+ InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
+ InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
+ CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
+ }
+
+ unsigned OpFlag =
+ cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
+ if (InlineAsm::isRegDefKind(OpFlag) ||
+ InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
+ // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
+ if (OpInfo.isIndirect) {
+ // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
+ LLVMContext &Ctx = *DAG.getContext();
+ Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
+ " don't know how to handle tied "
+ "indirect register inputs");
+ }
+
+ RegsForValue MatchedRegs;
+ MatchedRegs.TLI = &TLI;
+ MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
+ EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
+ MatchedRegs.RegVTs.push_back(RegVT);
+ MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
+ for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
+ i != e; ++i)
+ MatchedRegs.Regs.push_back
+ (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
+
+ // Use the produced MatchedRegs object to
+ MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
+ Chain, &Flag);
+ MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
+ true, OpInfo.getMatchedOperand(),
+ DAG, AsmNodeOperands);
+ break;
+ }
+
+ assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
+ assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
+ "Unexpected number of operands");
+ // Add information to the INLINEASM node to know about this input.
+ // See InlineAsm.h isUseOperandTiedToDef.
+ OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
+ OpInfo.getMatchedOperand());
+ AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
+ TLI.getPointerTy()));
+ AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
+ break;
+ }
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Other) {
+ assert(!OpInfo.isIndirect &&
+ "Don't know how to handle indirect other inputs yet!");
+
+ std::vector<SDValue> Ops;
+ TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
+ hasMemory, Ops, DAG);
+ if (Ops.empty())
+ report_fatal_error("Invalid operand for inline asm constraint '" +
+ Twine(OpInfo.ConstraintCode) + "'!");
+
+ // Add information to the INLINEASM node to know about this input.
+ unsigned ResOpType =
+ InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ TLI.getPointerTy()));
+ AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
+ break;
+ }
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
+ assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
+ assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
+ "Memory operands expect pointer values");
+
+ // Add information to the INLINEASM node to know about this input.
+ unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
+ AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+ TLI.getPointerTy()));
+ AsmNodeOperands.push_back(InOperandVal);
+ break;
+ }
+
+ assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
+ OpInfo.ConstraintType == TargetLowering::C_Register) &&
+ "Unknown constraint type!");
+ assert(!OpInfo.isIndirect &&
+ "Don't know how to handle indirect register inputs yet!");
+
+ // Copy the input into the appropriate registers.
+ if (OpInfo.AssignedRegs.Regs.empty() ||
+ !OpInfo.AssignedRegs.areValueTypesLegal())
+ report_fatal_error("Couldn't allocate input reg for constraint '" +
+ Twine(OpInfo.ConstraintCode) + "'!");
+
+ OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
+ Chain, &Flag);
+
+ OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
+ DAG, AsmNodeOperands);
+ break;
+ }
+ case InlineAsm::isClobber: {
+ // Add the clobbered value to the operand list, so that the register
+ // allocator is aware that the physreg got clobbered.
+ if (!OpInfo.AssignedRegs.Regs.empty())
+ OpInfo.AssignedRegs.AddInlineAsmOperands(
+ InlineAsm::Kind_RegDefEarlyClobber,
+ false, 0, DAG,
+ AsmNodeOperands);
+ break;
+ }
+ }
+ }
+
+ // Finish up input operands. Set the input chain and add the flag last.
+ AsmNodeOperands[0] = Chain;
+ if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
+
+ Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
+ DAG.getVTList(MVT::Other, MVT::Flag),
+ &AsmNodeOperands[0], AsmNodeOperands.size());
+ Flag = Chain.getValue(1);
+
+ // If this asm returns a register value, copy the result from that register
+ // and set it as the value of the call.
+ if (!RetValRegs.Regs.empty()) {
+ SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
+ Chain, &Flag);
+
+ // FIXME: Why don't we do this for inline asms with MRVs?
+ if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
+ EVT ResultType = TLI.getValueType(CS.getType());
+
+ // If any of the results of the inline asm is a vector, it may have the
+ // wrong width/num elts. This can happen for register classes that can
+ // contain multiple different value types. The preg or vreg allocated may
+ // not have the same VT as was expected. Convert it to the right type
+ // with bit_convert.
+ if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
+ Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+ ResultType, Val);
+
+ } else if (ResultType != Val.getValueType() &&
+ ResultType.isInteger() && Val.getValueType().isInteger()) {
+ // If a result value was tied to an input value, the computed result may
+ // have a wider width than the expected result. Extract the relevant
+ // portion.
+ Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
+ }
+
+ assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
+ }
+
+ setValue(CS.getInstruction(), Val);
+ // Don't need to use this as a chain in this case.
+ if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
+ return;
+ }
+
+ std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
+
+ // Process indirect outputs, first output all of the flagged copies out of
+ // physregs.
+ for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
+ RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
+ const Value *Ptr = IndirectStoresToEmit[i].second;
+ SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
+ Chain, &Flag);
+ StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
+ }
+
+ // Emit the non-flagged stores from the physregs.
+ SmallVector<SDValue, 8> OutChains;
+ for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
+ SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
+ StoresToEmit[i].first,
+ getValue(StoresToEmit[i].second),
+ StoresToEmit[i].second, 0,
+ false, false, 0);
+ OutChains.push_back(Val);
+ }
+
+ if (!OutChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
+ &OutChains[0], OutChains.size());
+
+ DAG.setRoot(Chain);
+}
+
+void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
+ MVT::Other, getRoot(),
+ getValue(I.getOperand(1)),
+ DAG.getSrcValue(I.getOperand(1))));
+}
+
+void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
+ SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
+ getRoot(), getValue(I.getOperand(0)),
+ DAG.getSrcValue(I.getOperand(0)));
+ setValue(&I, V);
+ DAG.setRoot(V.getValue(1));
+}
+
+void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
+ MVT::Other, getRoot(),
+ getValue(I.getOperand(1)),
+ DAG.getSrcValue(I.getOperand(1))));
+}
+
+void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
+ DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
+ MVT::Other, getRoot(),
+ getValue(I.getOperand(1)),
+ getValue(I.getOperand(2)),
+ DAG.getSrcValue(I.getOperand(1)),
+ DAG.getSrcValue(I.getOperand(2))));
+}
+
+/// TargetLowering::LowerCallTo - This is the default LowerCallTo
+/// implementation, which just calls LowerCall.
+/// FIXME: When all targets are
+/// migrated to using LowerCall, this hook should be integrated into SDISel.
+std::pair<SDValue, SDValue>
+TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
+ bool RetSExt, bool RetZExt, bool isVarArg,
+ bool isInreg, unsigned NumFixedArgs,
+ CallingConv::ID CallConv, bool isTailCall,
+ bool isReturnValueUsed,
+ SDValue Callee,
+ ArgListTy &Args, SelectionDAG &DAG,
+ DebugLoc dl) const {
+ // Handle all of the outgoing arguments.
+ SmallVector<ISD::OutputArg, 32> Outs;
+ for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
+ for (unsigned Value = 0, NumValues = ValueVTs.size();
+ Value != NumValues; ++Value) {
+ EVT VT = ValueVTs[Value];
+ const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
+ SDValue Op = SDValue(Args[i].Node.getNode(),
+ Args[i].Node.getResNo() + Value);
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment =
+ getTargetData()->getABITypeAlignment(ArgTy);
+
+ if (Args[i].isZExt)
+ Flags.setZExt();
+ if (Args[i].isSExt)
+ Flags.setSExt();
+ if (Args[i].isInReg)
+ Flags.setInReg();
+ if (Args[i].isSRet)
+ Flags.setSRet();
+ if (Args[i].isByVal) {
+ Flags.setByVal();
+ const PointerType *Ty = cast<PointerType>(Args[i].Ty);
+ const Type *ElementTy = Ty->getElementType();
+ unsigned FrameAlign = getByValTypeAlignment(ElementTy);
+ unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy);
+ // For ByVal, alignment should come from FE. BE will guess if this
+ // info is not there but there are cases it cannot get right.
+ if (Args[i].Alignment)
+ FrameAlign = Args[i].Alignment;
+ Flags.setByValAlign(FrameAlign);
+ Flags.setByValSize(FrameSize);
+ }
+ if (Args[i].isNest)
+ Flags.setNest();
+ Flags.setOrigAlign(OriginalAlignment);
+
+ EVT PartVT = getRegisterType(RetTy->getContext(), VT);
+ unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
+ SmallVector<SDValue, 4> Parts(NumParts);
+ ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+ if (Args[i].isSExt)
+ ExtendKind = ISD::SIGN_EXTEND;
+ else if (Args[i].isZExt)
+ ExtendKind = ISD::ZERO_EXTEND;
+
+ getCopyToParts(DAG, dl, Op, &Parts[0], NumParts,
+ PartVT, ExtendKind);
+
+ for (unsigned j = 0; j != NumParts; ++j) {
+ // if it isn't first piece, alignment must be 1
+ ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
+ if (NumParts > 1 && j == 0)
+ MyFlags.Flags.setSplit();
+ else if (j != 0)
+ MyFlags.Flags.setOrigAlign(1);
+
+ Outs.push_back(MyFlags);
+ }
+ }
+ }
+
+ // Handle the incoming return values from the call.
+ SmallVector<ISD::InputArg, 32> Ins;
+ SmallVector<EVT, 4> RetTys;
+ ComputeValueVTs(*this, RetTy, RetTys);
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ EVT VT = RetTys[I];
+ EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
+ unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ ISD::InputArg MyFlags;
+ MyFlags.VT = RegisterVT;
+ MyFlags.Used = isReturnValueUsed;
+ if (RetSExt)
+ MyFlags.Flags.setSExt();
+ if (RetZExt)
+ MyFlags.Flags.setZExt();
+ if (isInreg)
+ MyFlags.Flags.setInReg();
+ Ins.push_back(MyFlags);
+ }
+ }
+
+ SmallVector<SDValue, 4> InVals;
+ Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
+ Outs, Ins, dl, DAG, InVals);
+
+ // Verify that the target's LowerCall behaved as expected.
+ assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
+ "LowerCall didn't return a valid chain!");
+ assert((!isTailCall || InVals.empty()) &&
+ "LowerCall emitted a return value for a tail call!");
+ assert((isTailCall || InVals.size() == Ins.size()) &&
+ "LowerCall didn't emit the correct number of values!");
+
+ // For a tail call, the return value is merely live-out and there aren't
+ // any nodes in the DAG representing it. Return a special value to
+ // indicate that a tail call has been emitted and no more Instructions
+ // should be processed in the current block.
+ if (isTailCall) {
+ DAG.setRoot(Chain);
+ return std::make_pair(SDValue(), SDValue());
+ }
+
+ DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ assert(InVals[i].getNode() &&
+ "LowerCall emitted a null value!");
+ assert(Ins[i].VT == InVals[i].getValueType() &&
+ "LowerCall emitted a value with the wrong type!");
+ });
+
+ // Collect the legal value parts into potentially illegal values
+ // that correspond to the original function's return values.
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ if (RetSExt)
+ AssertOp = ISD::AssertSext;
+ else if (RetZExt)
+ AssertOp = ISD::AssertZext;
+ SmallVector<SDValue, 4> ReturnValues;
+ unsigned CurReg = 0;
+ for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+ EVT VT = RetTys[I];
+ EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
+ unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
+
+ ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg],
+ NumRegs, RegisterVT, VT,
+ AssertOp));
+ CurReg += NumRegs;
+ }
+
+ // For a function returning void, there is no return value. We can't create
+ // such a node, so we just return a null return value in that case. In
+ // that case, nothing will actualy look at the value.
+ if (ReturnValues.empty())
+ return std::make_pair(SDValue(), Chain);
+
+ SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
+ DAG.getVTList(&RetTys[0], RetTys.size()),
+ &ReturnValues[0], ReturnValues.size());
+ return std::make_pair(Res, Chain);
+}
+
+void TargetLowering::LowerOperationWrapper(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ SDValue Res = LowerOperation(SDValue(N, 0), DAG);
+ if (Res.getNode())
+ Results.push_back(Res);
+}
+
+SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ llvm_unreachable("LowerOperation not implemented for this target!");
+ return SDValue();
+}
+
+void
+SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
+ SDValue Op = getValue(V);
+ assert((Op.getOpcode() != ISD::CopyFromReg ||
+ cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
+ "Copy from a reg to the same reg!");
+ assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
+
+ RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
+ SDValue Chain = DAG.getEntryNode();
+ RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
+ PendingExports.push_back(Chain);
+}
+
+#include "llvm/CodeGen/SelectionDAGISel.h"
+
+void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
+ // If this is the entry block, emit arguments.
+ const Function &F = *LLVMBB->getParent();
+ SelectionDAG &DAG = SDB->DAG;
+ SDValue OldRoot = DAG.getRoot();
+ DebugLoc dl = SDB->getCurDebugLoc();
+ const TargetData *TD = TLI.getTargetData();
+ SmallVector<ISD::InputArg, 16> Ins;
+
+ // Check whether the function can return without sret-demotion.
+ SmallVector<EVT, 4> OutVTs;
+ SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
+ getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
+ OutVTs, OutsFlags, TLI);
+ FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
+
+ FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
+ OutVTs, OutsFlags, DAG);
+ if (!FLI.CanLowerReturn) {
+ // Put in an sret pointer parameter before all the other parameters.
+ SmallVector<EVT, 1> ValueVTs;
+ ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
+
+ // NOTE: Assuming that a pointer will never break down to more than one VT
+ // or one register.
+ ISD::ArgFlagsTy Flags;
+ Flags.setSRet();
+ EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
+ ISD::InputArg RetArg(Flags, RegisterVT, true);
+ Ins.push_back(RetArg);
+ }
+
+ // Set up the incoming argument description vector.
+ unsigned Idx = 1;
+ for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
+ I != E; ++I, ++Idx) {
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I->getType(), ValueVTs);
+ bool isArgValueUsed = !I->use_empty();
+ for (unsigned Value = 0, NumValues = ValueVTs.size();
+ Value != NumValues; ++Value) {
+ EVT VT = ValueVTs[Value];
+ const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
+ ISD::ArgFlagsTy Flags;
+ unsigned OriginalAlignment =
+ TD->getABITypeAlignment(ArgTy);
+
+ if (F.paramHasAttr(Idx, Attribute::ZExt))
+ Flags.setZExt();
+ if (F.paramHasAttr(Idx, Attribute::SExt))
+ Flags.setSExt();
+ if (F.paramHasAttr(Idx, Attribute::InReg))
+ Flags.setInReg();
+ if (F.paramHasAttr(Idx, Attribute::StructRet))
+ Flags.setSRet();
+ if (F.paramHasAttr(Idx, Attribute::ByVal)) {
+ Flags.setByVal();
+ const PointerType *Ty = cast<PointerType>(I->getType());
+ const Type *ElementTy = Ty->getElementType();
+ unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
+ unsigned FrameSize = TD->getTypeAllocSize(ElementTy);
+ // For ByVal, alignment should be passed from FE. BE will guess if
+ // this info is not there but there are cases it cannot get right.
+ if (F.getParamAlignment(Idx))
+ FrameAlign = F.getParamAlignment(Idx);
+ Flags.setByValAlign(FrameAlign);
+ Flags.setByValSize(FrameSize);
+ }
+ if (F.paramHasAttr(Idx, Attribute::Nest))
+ Flags.setNest();
+ Flags.setOrigAlign(OriginalAlignment);
+
+ EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
+ unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
+ for (unsigned i = 0; i != NumRegs; ++i) {
+ ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
+ if (NumRegs > 1 && i == 0)
+ MyFlags.Flags.setSplit();
+ // if it isn't first piece, alignment must be 1
+ else if (i > 0)
+ MyFlags.Flags.setOrigAlign(1);
+ Ins.push_back(MyFlags);
+ }
+ }
+ }
+
+ // Call the target to set up the argument values.
+ SmallVector<SDValue, 8> InVals;
+ SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
+ F.isVarArg(), Ins,
+ dl, DAG, InVals);
+
+ // Verify that the target's LowerFormalArguments behaved as expected.
+ assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
+ "LowerFormalArguments didn't return a valid chain!");
+ assert(InVals.size() == Ins.size() &&
+ "LowerFormalArguments didn't emit the correct number of values!");
+ DEBUG({
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ assert(InVals[i].getNode() &&
+ "LowerFormalArguments emitted a null value!");
+ assert(Ins[i].VT == InVals[i].getValueType() &&
+ "LowerFormalArguments emitted a value with the wrong type!");
+ }
+ });
+
+ // Update the DAG with the new chain value resulting from argument lowering.
+ DAG.setRoot(NewRoot);
+
+ // Set up the argument values.
+ unsigned i = 0;
+ Idx = 1;
+ if (!FLI.CanLowerReturn) {
+ // Create a virtual register for the sret pointer, and put in a copy
+ // from the sret argument into it.
+ SmallVector<EVT, 1> ValueVTs;
+ ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
+ EVT VT = ValueVTs[0];
+ EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
+ RegVT, VT, AssertOp);
+
+ MachineFunction& MF = SDB->DAG.getMachineFunction();
+ MachineRegisterInfo& RegInfo = MF.getRegInfo();
+ unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
+ FLI.DemoteRegister = SRetReg;
+ NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
+ SRetReg, ArgValue);
+ DAG.setRoot(NewRoot);
+
+ // i indexes lowered arguments. Bump it past the hidden sret argument.
+ // Idx indexes LLVM arguments. Don't touch it.
+ ++i;
+ }
+
+ for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
+ ++I, ++Idx) {
+ SmallVector<SDValue, 4> ArgValues;
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, I->getType(), ValueVTs);
+ unsigned NumValues = ValueVTs.size();
+ for (unsigned Value = 0; Value != NumValues; ++Value) {
+ EVT VT = ValueVTs[Value];
+ EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
+ unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
+
+ if (!I->use_empty()) {
+ ISD::NodeType AssertOp = ISD::DELETED_NODE;
+ if (F.paramHasAttr(Idx, Attribute::SExt))
+ AssertOp = ISD::AssertSext;
+ else if (F.paramHasAttr(Idx, Attribute::ZExt))
+ AssertOp = ISD::AssertZext;
+
+ ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
+ NumParts, PartVT, VT,
+ AssertOp));
+ }
+
+ i += NumParts;
+ }
+
+ if (!I->use_empty()) {
+ SDValue Res;
+ if (!ArgValues.empty())
+ Res = DAG.getMergeValues(&ArgValues[0], NumValues,
+ SDB->getCurDebugLoc());
+ SDB->setValue(I, Res);
+
+ // If this argument is live outside of the entry block, insert a copy from
+ // whereever we got it to the vreg that other BB's will reference it as.
+ SDB->CopyToExportRegsIfNeeded(I);
+ }
+ }
+
+ assert(i == InVals.size() && "Argument register count mismatch!");
+
+ // Finally, if the target has anything special to do, allow it to do so.
+ // FIXME: this should insert code into the DAG!
+ EmitFunctionEntryCode();
+}
+
+/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
+/// ensure constants are generated when needed. Remember the virtual registers
+/// that need to be added to the Machine PHI nodes as input. We cannot just
+/// directly add them, because expansion might result in multiple MBB's for one
+/// BB. As such, the start of the BB might correspond to a different MBB than
+/// the end.
+///
+void
+SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
+ const TerminatorInst *TI = LLVMBB->getTerminator();
+
+ SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
+
+ // Check successor nodes' PHI nodes that expect a constant to be available
+ // from this block.
+ for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
+ const BasicBlock *SuccBB = TI->getSuccessor(succ);
+ if (!isa<PHINode>(SuccBB->begin())) continue;
+ MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
+
+ // If this terminator has multiple identical successors (common for
+ // switches), only handle each succ once.
+ if (!SuccsHandled.insert(SuccMBB)) continue;
+
+ MachineBasicBlock::iterator MBBI = SuccMBB->begin();
+
+ // At this point we know that there is a 1-1 correspondence between LLVM PHI
+ // nodes and Machine PHI nodes, but the incoming operands have not been
+ // emitted yet.
+ for (BasicBlock::const_iterator I = SuccBB->begin();
+ const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+ // Ignore dead phi's.
+ if (PN->use_empty()) continue;
+
+ unsigned Reg;
+ const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
+
+ if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
+ unsigned &RegOut = ConstantsOut[C];
+ if (RegOut == 0) {
+ RegOut = FuncInfo.CreateRegForValue(C);
+ CopyValueToVirtualRegister(C, RegOut);
+ }
+ Reg = RegOut;
+ } else {
+ Reg = FuncInfo.ValueMap[PHIOp];
+ if (Reg == 0) {
+ assert(isa<AllocaInst>(PHIOp) &&
+ FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
+ "Didn't codegen value into a register!??");
+ Reg = FuncInfo.CreateRegForValue(PHIOp);
+ CopyValueToVirtualRegister(PHIOp, Reg);
+ }
+ }
+
+ // Remember that this register needs to added to the machine PHI node as
+ // the input for this MBB.
+ SmallVector<EVT, 4> ValueVTs;
+ ComputeValueVTs(TLI, PN->getType(), ValueVTs);
+ for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
+ EVT VT = ValueVTs[vti];
+ unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
+ for (unsigned i = 0, e = NumRegisters; i != e; ++i)
+ FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
+ Reg += NumRegisters;
+ }
+ }
+ }
+ ConstantsOut.clear();
+}
OpenPOWER on IntegriCloud