diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp | 7150 |
1 files changed, 7150 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp new file mode 100644 index 0000000..0eff930 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp @@ -0,0 +1,7150 @@ +//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the SelectionDAG class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/SelectionDAG.h" +#include "SDNodeDbgValue.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Mutex.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSelectionDAGInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <algorithm> +#include <cmath> +#include <utility> + +using namespace llvm; + +/// makeVTList - Return an instance of the SDVTList struct initialized with the +/// specified members. +static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) { + SDVTList Res = {VTs, NumVTs}; + return Res; +} + +// Default null implementations of the callbacks. +void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {} +void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {} + +//===----------------------------------------------------------------------===// +// ConstantFPSDNode Class +//===----------------------------------------------------------------------===// + +/// isExactlyValue - We don't rely on operator== working on double values, as +/// it returns true for things that are clearly not equal, like -0.0 and 0.0. +/// As such, this method can be used to do an exact bit-for-bit comparison of +/// two floating point values. +bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { + return getValueAPF().bitwiseIsEqual(V); +} + +bool ConstantFPSDNode::isValueValidForType(EVT VT, + const APFloat& Val) { + assert(VT.isFloatingPoint() && "Can only convert between FP types"); + + // convert modifies in place, so make a copy. + APFloat Val2 = APFloat(Val); + bool losesInfo; + (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT), + APFloat::rmNearestTiesToEven, + &losesInfo); + return !losesInfo; +} + +//===----------------------------------------------------------------------===// +// ISD Namespace +//===----------------------------------------------------------------------===// + +/// isBuildVectorAllOnes - Return true if the specified node is a +/// BUILD_VECTOR where all of the elements are ~0 or undef. +bool ISD::isBuildVectorAllOnes(const SDNode *N) { + // Look through a bit convert. + while (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0).getNode(); + + if (N->getOpcode() != ISD::BUILD_VECTOR) return false; + + unsigned i = 0, e = N->getNumOperands(); + + // Skip over all of the undef values. + while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) + ++i; + + // Do not accept an all-undef vector. + if (i == e) return false; + + // Do not accept build_vectors that aren't all constants or which have non-~0 + // elements. We have to be a bit careful here, as the type of the constant + // may not be the same as the type of the vector elements due to type + // legalization (the elements are promoted to a legal type for the target and + // a vector of a type may be legal when the base element type is not). + // We only want to check enough bits to cover the vector elements, because + // we care if the resultant vector is all ones, not whether the individual + // constants are. + SDValue NotZero = N->getOperand(i); + unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) { + if (CN->getAPIntValue().countTrailingOnes() < EltSize) + return false; + } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) { + if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize) + return false; + } else + return false; + + // Okay, we have at least one ~0 value, check to see if the rest match or are + // undefs. Even with the above element type twiddling, this should be OK, as + // the same type legalization should have applied to all the elements. + for (++i; i != e; ++i) + if (N->getOperand(i) != NotZero && + N->getOperand(i).getOpcode() != ISD::UNDEF) + return false; + return true; +} + + +/// isBuildVectorAllZeros - Return true if the specified node is a +/// BUILD_VECTOR where all of the elements are 0 or undef. +bool ISD::isBuildVectorAllZeros(const SDNode *N) { + // Look through a bit convert. + while (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0).getNode(); + + if (N->getOpcode() != ISD::BUILD_VECTOR) return false; + + bool IsAllUndef = true; + for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) { + if (N->getOperand(i).getOpcode() == ISD::UNDEF) + continue; + IsAllUndef = false; + // Do not accept build_vectors that aren't all constants or which have non-0 + // elements. We have to be a bit careful here, as the type of the constant + // may not be the same as the type of the vector elements due to type + // legalization (the elements are promoted to a legal type for the target + // and a vector of a type may be legal when the base element type is not). + // We only want to check enough bits to cover the vector elements, because + // we care if the resultant vector is all zeros, not whether the individual + // constants are. + SDValue Zero = N->getOperand(i); + unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits(); + if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) { + if (CN->getAPIntValue().countTrailingZeros() < EltSize) + return false; + } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) { + if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize) + return false; + } else + return false; + } + + // Do not accept an all-undef vector. + if (IsAllUndef) + return false; + return true; +} + +/// \brief Return true if the specified node is a BUILD_VECTOR node of +/// all ConstantSDNode or undef. +bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) { + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + SDValue Op = N->getOperand(i); + if (Op.getOpcode() == ISD::UNDEF) + continue; + if (!isa<ConstantSDNode>(Op)) + return false; + } + return true; +} + +/// \brief Return true if the specified node is a BUILD_VECTOR node of +/// all ConstantFPSDNode or undef. +bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) { + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + SDValue Op = N->getOperand(i); + if (Op.getOpcode() == ISD::UNDEF) + continue; + if (!isa<ConstantFPSDNode>(Op)) + return false; + } + return true; +} + +/// isScalarToVector - Return true if the specified node is a +/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low +/// element is not an undef. +bool ISD::isScalarToVector(const SDNode *N) { + if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) + return true; + + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + if (N->getOperand(0).getOpcode() == ISD::UNDEF) + return false; + unsigned NumElems = N->getNumOperands(); + if (NumElems == 1) + return false; + for (unsigned i = 1; i < NumElems; ++i) { + SDValue V = N->getOperand(i); + if (V.getOpcode() != ISD::UNDEF) + return false; + } + return true; +} + +/// allOperandsUndef - Return true if the node has at least one operand +/// and all operands of the specified node are ISD::UNDEF. +bool ISD::allOperandsUndef(const SDNode *N) { + // Return false if the node has no operands. + // This is "logically inconsistent" with the definition of "all" but + // is probably the desired behavior. + if (N->getNumOperands() == 0) + return false; + + for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i) + if (N->getOperand(i).getOpcode() != ISD::UNDEF) + return false; + + return true; +} + +ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) { + switch (ExtType) { + case ISD::EXTLOAD: + return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND; + case ISD::SEXTLOAD: + return ISD::SIGN_EXTEND; + case ISD::ZEXTLOAD: + return ISD::ZERO_EXTEND; + default: + break; + } + + llvm_unreachable("Invalid LoadExtType"); +} + +/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) +/// when given the operation for (X op Y). +ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { + // To perform this operation, we just need to swap the L and G bits of the + // operation. + unsigned OldL = (Operation >> 2) & 1; + unsigned OldG = (Operation >> 1) & 1; + return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits + (OldL << 1) | // New G bit + (OldG << 2)); // New L bit. +} + +/// getSetCCInverse - Return the operation corresponding to !(X op Y), where +/// 'op' is a valid SetCC operation. +ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { + unsigned Operation = Op; + if (isInteger) + Operation ^= 7; // Flip L, G, E bits, but not U. + else + Operation ^= 15; // Flip all of the condition bits. + + if (Operation > ISD::SETTRUE2) + Operation &= ~8; // Don't let N and U bits get set. + + return ISD::CondCode(Operation); +} + + +/// isSignedOp - For an integer comparison, return 1 if the comparison is a +/// signed operation and 2 if the result is an unsigned comparison. Return zero +/// if the operation does not depend on the sign of the input (setne and seteq). +static int isSignedOp(ISD::CondCode Opcode) { + switch (Opcode) { + default: llvm_unreachable("Illegal integer setcc operation!"); + case ISD::SETEQ: + case ISD::SETNE: return 0; + case ISD::SETLT: + case ISD::SETLE: + case ISD::SETGT: + case ISD::SETGE: return 1; + case ISD::SETULT: + case ISD::SETULE: + case ISD::SETUGT: + case ISD::SETUGE: return 2; + } +} + +/// getSetCCOrOperation - Return the result of a logical OR between different +/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function +/// returns SETCC_INVALID if it is not possible to represent the resultant +/// comparison. +ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, + bool isInteger) { + if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) + // Cannot fold a signed integer setcc with an unsigned integer setcc. + return ISD::SETCC_INVALID; + + unsigned Op = Op1 | Op2; // Combine all of the condition bits. + + // If the N and U bits get set then the resultant comparison DOES suddenly + // care about orderedness, and is true when ordered. + if (Op > ISD::SETTRUE2) + Op &= ~16; // Clear the U bit if the N bit is set. + + // Canonicalize illegal integer setcc's. + if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT + Op = ISD::SETNE; + + return ISD::CondCode(Op); +} + +/// getSetCCAndOperation - Return the result of a logical AND between different +/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This +/// function returns zero if it is not possible to represent the resultant +/// comparison. +ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, + bool isInteger) { + if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) + // Cannot fold a signed setcc with an unsigned setcc. + return ISD::SETCC_INVALID; + + // Combine all of the condition bits. + ISD::CondCode Result = ISD::CondCode(Op1 & Op2); + + // Canonicalize illegal integer setcc's. + if (isInteger) { + switch (Result) { + default: break; + case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT + case ISD::SETOEQ: // SETEQ & SETU[LG]E + case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE + case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE + case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE + } + } + + return Result; +} + +//===----------------------------------------------------------------------===// +// SDNode Profile Support +//===----------------------------------------------------------------------===// + +/// AddNodeIDOpcode - Add the node opcode to the NodeID data. +/// +static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) { + ID.AddInteger(OpC); +} + +/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them +/// solely with their pointer. +static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { + ID.AddPointer(VTList.VTs); +} + +/// AddNodeIDOperands - Various routines for adding operands to the NodeID data. +/// +static void AddNodeIDOperands(FoldingSetNodeID &ID, + ArrayRef<SDValue> Ops) { + for (auto& Op : Ops) { + ID.AddPointer(Op.getNode()); + ID.AddInteger(Op.getResNo()); + } +} + +/// AddNodeIDOperands - Various routines for adding operands to the NodeID data. +/// +static void AddNodeIDOperands(FoldingSetNodeID &ID, + ArrayRef<SDUse> Ops) { + for (auto& Op : Ops) { + ID.AddPointer(Op.getNode()); + ID.AddInteger(Op.getResNo()); + } +} +/// Add logical or fast math flag values to FoldingSetNodeID value. +static void AddNodeIDFlags(FoldingSetNodeID &ID, unsigned Opcode, + const SDNodeFlags *Flags) { + if (!Flags || !isBinOpWithFlags(Opcode)) + return; + + unsigned RawFlags = Flags->getRawFlags(); + // If no flags are set, do not alter the ID. We must match the ID of nodes + // that were created without explicitly specifying flags. This also saves time + // and allows a gradual increase in API usage of the optional optimization + // flags. + if (RawFlags != 0) + ID.AddInteger(RawFlags); +} + +static void AddNodeIDFlags(FoldingSetNodeID &ID, const SDNode *N) { + if (auto *Node = dyn_cast<BinaryWithFlagsSDNode>(N)) + AddNodeIDFlags(ID, Node->getOpcode(), &Node->Flags); +} + +static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC, + SDVTList VTList, ArrayRef<SDValue> OpList) { + AddNodeIDOpcode(ID, OpC); + AddNodeIDValueTypes(ID, VTList); + AddNodeIDOperands(ID, OpList); +} + +/// AddNodeIDCustom - If this is an SDNode with special info, add this info to +/// the NodeID data. +static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) { + switch (N->getOpcode()) { + case ISD::TargetExternalSymbol: + case ISD::ExternalSymbol: + llvm_unreachable("Should only be used on nodes with operands"); + default: break; // Normal nodes don't need extra info. + case ISD::TargetConstant: + case ISD::Constant: { + const ConstantSDNode *C = cast<ConstantSDNode>(N); + ID.AddPointer(C->getConstantIntValue()); + ID.AddBoolean(C->isOpaque()); + break; + } + case ISD::TargetConstantFP: + case ISD::ConstantFP: { + ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue()); + break; + } + case ISD::TargetGlobalAddress: + case ISD::GlobalAddress: + case ISD::TargetGlobalTLSAddress: + case ISD::GlobalTLSAddress: { + const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); + ID.AddPointer(GA->getGlobal()); + ID.AddInteger(GA->getOffset()); + ID.AddInteger(GA->getTargetFlags()); + ID.AddInteger(GA->getAddressSpace()); + break; + } + case ISD::BasicBlock: + ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); + break; + case ISD::Register: + ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); + break; + case ISD::RegisterMask: + ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask()); + break; + case ISD::SRCVALUE: + ID.AddPointer(cast<SrcValueSDNode>(N)->getValue()); + break; + case ISD::FrameIndex: + case ISD::TargetFrameIndex: + ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); + break; + case ISD::JumpTable: + case ISD::TargetJumpTable: + ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); + ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags()); + break; + case ISD::ConstantPool: + case ISD::TargetConstantPool: { + const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); + ID.AddInteger(CP->getAlignment()); + ID.AddInteger(CP->getOffset()); + if (CP->isMachineConstantPoolEntry()) + CP->getMachineCPVal()->addSelectionDAGCSEId(ID); + else + ID.AddPointer(CP->getConstVal()); + ID.AddInteger(CP->getTargetFlags()); + break; + } + case ISD::TargetIndex: { + const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N); + ID.AddInteger(TI->getIndex()); + ID.AddInteger(TI->getOffset()); + ID.AddInteger(TI->getTargetFlags()); + break; + } + case ISD::LOAD: { + const LoadSDNode *LD = cast<LoadSDNode>(N); + ID.AddInteger(LD->getMemoryVT().getRawBits()); + ID.AddInteger(LD->getRawSubclassData()); + ID.AddInteger(LD->getPointerInfo().getAddrSpace()); + break; + } + case ISD::STORE: { + const StoreSDNode *ST = cast<StoreSDNode>(N); + ID.AddInteger(ST->getMemoryVT().getRawBits()); + ID.AddInteger(ST->getRawSubclassData()); + ID.AddInteger(ST->getPointerInfo().getAddrSpace()); + break; + } + case ISD::ATOMIC_CMP_SWAP: + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: + case ISD::ATOMIC_LOAD: + case ISD::ATOMIC_STORE: { + const AtomicSDNode *AT = cast<AtomicSDNode>(N); + ID.AddInteger(AT->getMemoryVT().getRawBits()); + ID.AddInteger(AT->getRawSubclassData()); + ID.AddInteger(AT->getPointerInfo().getAddrSpace()); + break; + } + case ISD::PREFETCH: { + const MemSDNode *PF = cast<MemSDNode>(N); + ID.AddInteger(PF->getPointerInfo().getAddrSpace()); + break; + } + case ISD::VECTOR_SHUFFLE: { + const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); + for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements(); + i != e; ++i) + ID.AddInteger(SVN->getMaskElt(i)); + break; + } + case ISD::TargetBlockAddress: + case ISD::BlockAddress: { + const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N); + ID.AddPointer(BA->getBlockAddress()); + ID.AddInteger(BA->getOffset()); + ID.AddInteger(BA->getTargetFlags()); + break; + } + } // end switch (N->getOpcode()) + + AddNodeIDFlags(ID, N); + + // Target specific memory nodes could also have address spaces to check. + if (N->isTargetMemoryOpcode()) + ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace()); +} + +/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID +/// data. +static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) { + AddNodeIDOpcode(ID, N->getOpcode()); + // Add the return value info. + AddNodeIDValueTypes(ID, N->getVTList()); + // Add the operand info. + AddNodeIDOperands(ID, N->ops()); + + // Handle SDNode leafs with special info. + AddNodeIDCustom(ID, N); +} + +/// encodeMemSDNodeFlags - Generic routine for computing a value for use in +/// the CSE map that carries volatility, temporalness, indexing mode, and +/// extension/truncation information. +/// +static inline unsigned +encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile, + bool isNonTemporal, bool isInvariant) { + assert((ConvType & 3) == ConvType && + "ConvType may not require more than 2 bits!"); + assert((AM & 7) == AM && + "AM may not require more than 3 bits!"); + return ConvType | + (AM << 2) | + (isVolatile << 5) | + (isNonTemporal << 6) | + (isInvariant << 7); +} + +//===----------------------------------------------------------------------===// +// SelectionDAG Class +//===----------------------------------------------------------------------===// + +/// doNotCSE - Return true if CSE should not be performed for this node. +static bool doNotCSE(SDNode *N) { + if (N->getValueType(0) == MVT::Glue) + return true; // Never CSE anything that produces a flag. + + switch (N->getOpcode()) { + default: break; + case ISD::HANDLENODE: + case ISD::EH_LABEL: + return true; // Never CSE these nodes. + } + + // Check that remaining values produced are not flags. + for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) + if (N->getValueType(i) == MVT::Glue) + return true; // Never CSE anything that produces a flag. + + return false; +} + +/// RemoveDeadNodes - This method deletes all unreachable nodes in the +/// SelectionDAG. +void SelectionDAG::RemoveDeadNodes() { + // Create a dummy node (which is not added to allnodes), that adds a reference + // to the root node, preventing it from being deleted. + HandleSDNode Dummy(getRoot()); + + SmallVector<SDNode*, 128> DeadNodes; + + // Add all obviously-dead nodes to the DeadNodes worklist. + for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) + if (I->use_empty()) + DeadNodes.push_back(I); + + RemoveDeadNodes(DeadNodes); + + // If the root changed (e.g. it was a dead load, update the root). + setRoot(Dummy.getValue()); +} + +/// RemoveDeadNodes - This method deletes the unreachable nodes in the +/// given list, and any nodes that become unreachable as a result. +void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) { + + // Process the worklist, deleting the nodes and adding their uses to the + // worklist. + while (!DeadNodes.empty()) { + SDNode *N = DeadNodes.pop_back_val(); + + for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) + DUL->NodeDeleted(N, nullptr); + + // Take the node out of the appropriate CSE map. + RemoveNodeFromCSEMaps(N); + + // Next, brutally remove the operand list. This is safe to do, as there are + // no cycles in the graph. + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { + SDUse &Use = *I++; + SDNode *Operand = Use.getNode(); + Use.set(SDValue()); + + // Now that we removed this operand, see if there are no uses of it left. + if (Operand->use_empty()) + DeadNodes.push_back(Operand); + } + + DeallocateNode(N); + } +} + +void SelectionDAG::RemoveDeadNode(SDNode *N){ + SmallVector<SDNode*, 16> DeadNodes(1, N); + + // Create a dummy node that adds a reference to the root node, preventing + // it from being deleted. (This matters if the root is an operand of the + // dead node.) + HandleSDNode Dummy(getRoot()); + + RemoveDeadNodes(DeadNodes); +} + +void SelectionDAG::DeleteNode(SDNode *N) { + // First take this out of the appropriate CSE map. + RemoveNodeFromCSEMaps(N); + + // Finally, remove uses due to operands of this node, remove from the + // AllNodes list, and delete the node. + DeleteNodeNotInCSEMaps(N); +} + +void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { + assert(N != AllNodes.begin() && "Cannot delete the entry node!"); + assert(N->use_empty() && "Cannot delete a node that is not dead!"); + + // Drop all of the operands and decrement used node's use counts. + N->DropOperands(); + + DeallocateNode(N); +} + +void SDDbgInfo::erase(const SDNode *Node) { + DbgValMapType::iterator I = DbgValMap.find(Node); + if (I == DbgValMap.end()) + return; + for (auto &Val: I->second) + Val->setIsInvalidated(); + DbgValMap.erase(I); +} + +void SelectionDAG::DeallocateNode(SDNode *N) { + if (N->OperandsNeedDelete) + delete[] N->OperandList; + + // Set the opcode to DELETED_NODE to help catch bugs when node + // memory is reallocated. + N->NodeType = ISD::DELETED_NODE; + + NodeAllocator.Deallocate(AllNodes.remove(N)); + + // If any of the SDDbgValue nodes refer to this SDNode, invalidate + // them and forget about that node. + DbgInfo->erase(N); +} + +#ifndef NDEBUG +/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid. +static void VerifySDNode(SDNode *N) { + switch (N->getOpcode()) { + default: + break; + case ISD::BUILD_PAIR: { + EVT VT = N->getValueType(0); + assert(N->getNumValues() == 1 && "Too many results!"); + assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) && + "Wrong return type!"); + assert(N->getNumOperands() == 2 && "Wrong number of operands!"); + assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() && + "Mismatched operand types!"); + assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() && + "Wrong operand type!"); + assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() && + "Wrong return type size"); + break; + } + case ISD::BUILD_VECTOR: { + assert(N->getNumValues() == 1 && "Too many results!"); + assert(N->getValueType(0).isVector() && "Wrong return type!"); + assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() && + "Wrong number of operands!"); + EVT EltVT = N->getValueType(0).getVectorElementType(); + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { + assert((I->getValueType() == EltVT || + (EltVT.isInteger() && I->getValueType().isInteger() && + EltVT.bitsLE(I->getValueType()))) && + "Wrong operand type!"); + assert(I->getValueType() == N->getOperand(0).getValueType() && + "Operands must all have the same type"); + } + break; + } + } +} +#endif // NDEBUG + +/// \brief Insert a newly allocated node into the DAG. +/// +/// Handles insertion into the all nodes list and CSE map, as well as +/// verification and other common operations when a new node is allocated. +void SelectionDAG::InsertNode(SDNode *N) { + AllNodes.push_back(N); +#ifndef NDEBUG + VerifySDNode(N); +#endif +} + +/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that +/// correspond to it. This is useful when we're about to delete or repurpose +/// the node. We don't want future request for structurally identical nodes +/// to return N anymore. +bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { + bool Erased = false; + switch (N->getOpcode()) { + case ISD::HANDLENODE: return false; // noop. + case ISD::CONDCODE: + assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && + "Cond code doesn't exist!"); + Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr; + CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr; + break; + case ISD::ExternalSymbol: + Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); + break; + case ISD::TargetExternalSymbol: { + ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N); + Erased = TargetExternalSymbols.erase( + std::pair<std::string,unsigned char>(ESN->getSymbol(), + ESN->getTargetFlags())); + break; + } + case ISD::VALUETYPE: { + EVT VT = cast<VTSDNode>(N)->getVT(); + if (VT.isExtended()) { + Erased = ExtendedValueTypeNodes.erase(VT); + } else { + Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr; + ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr; + } + break; + } + default: + // Remove it from the CSE Map. + assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!"); + assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!"); + Erased = CSEMap.RemoveNode(N); + break; + } +#ifndef NDEBUG + // Verify that the node was actually in one of the CSE maps, unless it has a + // flag result (which cannot be CSE'd) or is one of the special cases that are + // not subject to CSE. + if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue && + !N->isMachineOpcode() && !doNotCSE(N)) { + N->dump(this); + dbgs() << "\n"; + llvm_unreachable("Node is not in map!"); + } +#endif + return Erased; +} + +/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE +/// maps and modified in place. Add it back to the CSE maps, unless an identical +/// node already exists, in which case transfer all its users to the existing +/// node. This transfer can potentially trigger recursive merging. +/// +void +SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) { + // For node types that aren't CSE'd, just act as if no identical node + // already exists. + if (!doNotCSE(N)) { + SDNode *Existing = CSEMap.GetOrInsertNode(N); + if (Existing != N) { + // If there was already an existing matching node, use ReplaceAllUsesWith + // to replace the dead one with the existing one. This can cause + // recursive merging of other unrelated nodes down the line. + ReplaceAllUsesWith(N, Existing); + + // N is now dead. Inform the listeners and delete it. + for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) + DUL->NodeDeleted(N, Existing); + DeleteNodeNotInCSEMaps(N); + return; + } + } + + // If the node doesn't already exist, we updated it. Inform listeners. + for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next) + DUL->NodeUpdated(N); +} + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op, + void *&InsertPos) { + if (doNotCSE(N)) + return nullptr; + + SDValue Ops[] = { Op }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); + AddNodeIDCustom(ID, N); + SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos); + return Node; +} + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, + SDValue Op1, SDValue Op2, + void *&InsertPos) { + if (doNotCSE(N)) + return nullptr; + + SDValue Ops[] = { Op1, Op2 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); + AddNodeIDCustom(ID, N); + SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos); + return Node; +} + + +/// FindModifiedNodeSlot - Find a slot for the specified node if its operands +/// were replaced with those specified. If this node is never memoized, +/// return null, otherwise return a pointer to the slot it would take. If a +/// node already exists with these operands, the slot will be non-null. +SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, + void *&InsertPos) { + if (doNotCSE(N)) + return nullptr; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops); + AddNodeIDCustom(ID, N); + SDNode *Node = FindNodeOrInsertPos(ID, N->getDebugLoc(), InsertPos); + return Node; +} + +/// getEVTAlignment - Compute the default alignment value for the +/// given type. +/// +unsigned SelectionDAG::getEVTAlignment(EVT VT) const { + Type *Ty = VT == MVT::iPTR ? + PointerType::get(Type::getInt8Ty(*getContext()), 0) : + VT.getTypeForEVT(*getContext()); + + return TLI->getDataLayout()->getABITypeAlignment(Ty); +} + +// EntryNode could meaningfully have debug info if we can find it... +SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL) + : TM(tm), TSI(nullptr), TLI(nullptr), OptLevel(OL), + EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)), + Root(getEntryNode()), NewNodesMustHaveLegalTypes(false), + UpdateListeners(nullptr) { + AllNodes.push_back(&EntryNode); + DbgInfo = new SDDbgInfo(); +} + +void SelectionDAG::init(MachineFunction &mf) { + MF = &mf; + TLI = getSubtarget().getTargetLowering(); + TSI = getSubtarget().getSelectionDAGInfo(); + Context = &mf.getFunction()->getContext(); +} + +SelectionDAG::~SelectionDAG() { + assert(!UpdateListeners && "Dangling registered DAGUpdateListeners"); + allnodes_clear(); + delete DbgInfo; +} + +void SelectionDAG::allnodes_clear() { + assert(&*AllNodes.begin() == &EntryNode); + AllNodes.remove(AllNodes.begin()); + while (!AllNodes.empty()) + DeallocateNode(AllNodes.begin()); +} + +BinarySDNode *SelectionDAG::GetBinarySDNode(unsigned Opcode, SDLoc DL, + SDVTList VTs, SDValue N1, + SDValue N2, + const SDNodeFlags *Flags) { + if (isBinOpWithFlags(Opcode)) { + // If no flags were passed in, use a default flags object. + SDNodeFlags F; + if (Flags == nullptr) + Flags = &F; + + BinaryWithFlagsSDNode *FN = new (NodeAllocator) BinaryWithFlagsSDNode( + Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2, *Flags); + + return FN; + } + + BinarySDNode *N = new (NodeAllocator) + BinarySDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs, N1, N2); + return N; +} + +SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, + void *&InsertPos) { + SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); + if (N) { + switch (N->getOpcode()) { + default: break; + case ISD::Constant: + case ISD::ConstantFP: + llvm_unreachable("Querying for Constant and ConstantFP nodes requires " + "debug location. Use another overload."); + } + } + return N; +} + +SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID, + DebugLoc DL, void *&InsertPos) { + SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos); + if (N) { + switch (N->getOpcode()) { + default: break; // Process only regular (non-target) constant nodes. + case ISD::Constant: + case ISD::ConstantFP: + // Erase debug location from the node if the node is used at several + // different places to do not propagate one location to all uses as it + // leads to incorrect debug info. + if (N->getDebugLoc() != DL) + N->setDebugLoc(DebugLoc()); + break; + } + } + return N; +} + +void SelectionDAG::clear() { + allnodes_clear(); + OperandAllocator.Reset(); + CSEMap.clear(); + + ExtendedValueTypeNodes.clear(); + ExternalSymbols.clear(); + TargetExternalSymbols.clear(); + std::fill(CondCodeNodes.begin(), CondCodeNodes.end(), + static_cast<CondCodeSDNode*>(nullptr)); + std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(), + static_cast<SDNode*>(nullptr)); + + EntryNode.UseList = nullptr; + AllNodes.push_back(&EntryNode); + Root = getEntryNode(); + DbgInfo->clear(); +} + +SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) { + return VT.bitsGT(Op.getValueType()) ? + getNode(ISD::ANY_EXTEND, DL, VT, Op) : + getNode(ISD::TRUNCATE, DL, VT, Op); +} + +SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) { + return VT.bitsGT(Op.getValueType()) ? + getNode(ISD::SIGN_EXTEND, DL, VT, Op) : + getNode(ISD::TRUNCATE, DL, VT, Op); +} + +SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, SDLoc DL, EVT VT) { + return VT.bitsGT(Op.getValueType()) ? + getNode(ISD::ZERO_EXTEND, DL, VT, Op) : + getNode(ISD::TRUNCATE, DL, VT, Op); +} + +SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, SDLoc SL, EVT VT, + EVT OpVT) { + if (VT.bitsLE(Op.getValueType())) + return getNode(ISD::TRUNCATE, SL, VT, Op); + + TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT); + return getNode(TLI->getExtendForContent(BType), SL, VT, Op); +} + +SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, SDLoc DL, EVT VT) { + assert(!VT.isVector() && + "getZeroExtendInReg should use the vector element type instead of " + "the vector type!"); + if (Op.getValueType() == VT) return Op; + unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); + APInt Imm = APInt::getLowBitsSet(BitWidth, + VT.getSizeInBits()); + return getNode(ISD::AND, DL, Op.getValueType(), Op, + getConstant(Imm, DL, Op.getValueType())); +} + +SDValue SelectionDAG::getAnyExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) { + assert(VT.isVector() && "This DAG node is restricted to vector types."); + assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && + "The sizes of the input and result must match in order to perform the " + "extend in-register."); + assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && + "The destination vector type must have fewer lanes than the input."); + return getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Op); +} + +SDValue SelectionDAG::getSignExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) { + assert(VT.isVector() && "This DAG node is restricted to vector types."); + assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && + "The sizes of the input and result must match in order to perform the " + "extend in-register."); + assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && + "The destination vector type must have fewer lanes than the input."); + return getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, Op); +} + +SDValue SelectionDAG::getZeroExtendVectorInReg(SDValue Op, SDLoc DL, EVT VT) { + assert(VT.isVector() && "This DAG node is restricted to vector types."); + assert(VT.getSizeInBits() == Op.getValueType().getSizeInBits() && + "The sizes of the input and result must match in order to perform the " + "extend in-register."); + assert(VT.getVectorNumElements() < Op.getValueType().getVectorNumElements() && + "The destination vector type must have fewer lanes than the input."); + return getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, Op); +} + +/// getNOT - Create a bitwise NOT operation as (XOR Val, -1). +/// +SDValue SelectionDAG::getNOT(SDLoc DL, SDValue Val, EVT VT) { + EVT EltVT = VT.getScalarType(); + SDValue NegOne = + getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT); + return getNode(ISD::XOR, DL, VT, Val, NegOne); +} + +SDValue SelectionDAG::getLogicalNOT(SDLoc DL, SDValue Val, EVT VT) { + EVT EltVT = VT.getScalarType(); + SDValue TrueValue; + switch (TLI->getBooleanContents(VT)) { + case TargetLowering::ZeroOrOneBooleanContent: + case TargetLowering::UndefinedBooleanContent: + TrueValue = getConstant(1, DL, VT); + break; + case TargetLowering::ZeroOrNegativeOneBooleanContent: + TrueValue = getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, + VT); + break; + } + return getNode(ISD::XOR, DL, VT, Val, TrueValue); +} + +SDValue SelectionDAG::getConstant(uint64_t Val, SDLoc DL, EVT VT, bool isT, + bool isO) { + EVT EltVT = VT.getScalarType(); + assert((EltVT.getSizeInBits() >= 64 || + (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) && + "getConstant with a uint64_t value that doesn't fit in the type!"); + return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO); +} + +SDValue SelectionDAG::getConstant(const APInt &Val, SDLoc DL, EVT VT, bool isT, + bool isO) +{ + return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO); +} + +SDValue SelectionDAG::getConstant(const ConstantInt &Val, SDLoc DL, EVT VT, + bool isT, bool isO) { + assert(VT.isInteger() && "Cannot create FP integer constant!"); + + EVT EltVT = VT.getScalarType(); + const ConstantInt *Elt = &Val; + + // In some cases the vector type is legal but the element type is illegal and + // needs to be promoted, for example v8i8 on ARM. In this case, promote the + // inserted value (the type does not need to match the vector element type). + // Any extra bits introduced will be truncated away. + if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) == + TargetLowering::TypePromoteInteger) { + EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); + APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits()); + Elt = ConstantInt::get(*getContext(), NewVal); + } + // In other cases the element type is illegal and needs to be expanded, for + // example v2i64 on MIPS32. In this case, find the nearest legal type, split + // the value into n parts and use a vector type with n-times the elements. + // Then bitcast to the type requested. + // Legalizing constants too early makes the DAGCombiner's job harder so we + // only legalize if the DAG tells us we must produce legal types. + else if (NewNodesMustHaveLegalTypes && VT.isVector() && + TLI->getTypeAction(*getContext(), EltVT) == + TargetLowering::TypeExpandInteger) { + APInt NewVal = Elt->getValue(); + EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT); + unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits(); + unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits; + EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts); + + // Check the temporary vector is the correct size. If this fails then + // getTypeToTransformTo() probably returned a type whose size (in bits) + // isn't a power-of-2 factor of the requested type size. + assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits()); + + SmallVector<SDValue, 2> EltParts; + for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) { + EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits) + .trunc(ViaEltSizeInBits), DL, + ViaEltVT, isT, isO)); + } + + // EltParts is currently in little endian order. If we actually want + // big-endian order then reverse it now. + if (TLI->isBigEndian()) + std::reverse(EltParts.begin(), EltParts.end()); + + // The elements must be reversed when the element order is different + // to the endianness of the elements (because the BITCAST is itself a + // vector shuffle in this situation). However, we do not need any code to + // perform this reversal because getConstant() is producing a vector + // splat. + // This situation occurs in MIPS MSA. + + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) + Ops.insert(Ops.end(), EltParts.begin(), EltParts.end()); + + SDValue Result = getNode(ISD::BITCAST, SDLoc(), VT, + getNode(ISD::BUILD_VECTOR, SDLoc(), ViaVecVT, + Ops)); + return Result; + } + + assert(Elt->getBitWidth() == EltVT.getSizeInBits() && + "APInt size does not match type size!"); + unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(EltVT), None); + ID.AddPointer(Elt); + ID.AddBoolean(isO); + void *IP = nullptr; + SDNode *N = nullptr; + if ((N = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))) + if (!VT.isVector()) + return SDValue(N, 0); + + if (!N) { + N = new (NodeAllocator) ConstantSDNode(isT, isO, Elt, DL.getDebugLoc(), + EltVT); + CSEMap.InsertNode(N, IP); + InsertNode(N); + } + + SDValue Result(N, 0); + if (VT.isVector()) { + SmallVector<SDValue, 8> Ops; + Ops.assign(VT.getVectorNumElements(), Result); + Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Ops); + } + return Result; +} + +SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, SDLoc DL, bool isTarget) { + return getConstant(Val, DL, TLI->getPointerTy(), isTarget); +} + +SDValue SelectionDAG::getConstantFP(const APFloat& V, SDLoc DL, EVT VT, + bool isTarget) { + return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget); +} + +SDValue SelectionDAG::getConstantFP(const ConstantFP& V, SDLoc DL, EVT VT, + bool isTarget){ + assert(VT.isFloatingPoint() && "Cannot create integer FP constant!"); + + EVT EltVT = VT.getScalarType(); + + // Do the map lookup using the actual bit pattern for the floating point + // value, so that we don't have problems with 0.0 comparing equal to -0.0, and + // we don't have issues with SNANs. + unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(EltVT), None); + ID.AddPointer(&V); + void *IP = nullptr; + SDNode *N = nullptr; + if ((N = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP))) + if (!VT.isVector()) + return SDValue(N, 0); + + if (!N) { + N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, DL.getDebugLoc(), + EltVT); + CSEMap.InsertNode(N, IP); + InsertNode(N); + } + + SDValue Result(N, 0); + if (VT.isVector()) { + SmallVector<SDValue, 8> Ops; + Ops.assign(VT.getVectorNumElements(), Result); + Result = getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Ops); + } + return Result; +} + +SDValue SelectionDAG::getConstantFP(double Val, SDLoc DL, EVT VT, + bool isTarget) { + EVT EltVT = VT.getScalarType(); + if (EltVT==MVT::f32) + return getConstantFP(APFloat((float)Val), DL, VT, isTarget); + else if (EltVT==MVT::f64) + return getConstantFP(APFloat(Val), DL, VT, isTarget); + else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 || + EltVT==MVT::f16) { + bool ignored; + APFloat apf = APFloat(Val); + apf.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven, + &ignored); + return getConstantFP(apf, DL, VT, isTarget); + } else + llvm_unreachable("Unsupported type in getConstantFP"); +} + +SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, SDLoc DL, + EVT VT, int64_t Offset, + bool isTargetGA, + unsigned char TargetFlags) { + assert((TargetFlags == 0 || isTargetGA) && + "Cannot set target flags on target-independent globals"); + + // Truncate (with sign-extension) the offset value to the pointer size. + unsigned BitWidth = TLI->getPointerTypeSizeInBits(GV->getType()); + if (BitWidth < 64) + Offset = SignExtend64(Offset, BitWidth); + + unsigned Opc; + if (GV->isThreadLocal()) + Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; + else + Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddPointer(GV); + ID.AddInteger(Offset); + ID.AddInteger(TargetFlags); + ID.AddInteger(GV->getType()->getAddressSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL.getIROrder(), + DL.getDebugLoc(), GV, VT, + Offset, TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) { + unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddInteger(FI); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget, + unsigned char TargetFlags) { + assert((TargetFlags == 0 || isTarget) && + "Cannot set target flags on target-independent jump tables"); + unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddInteger(JTI); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget, + TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT, + unsigned Alignment, int Offset, + bool isTarget, + unsigned char TargetFlags) { + assert((TargetFlags == 0 || isTarget) && + "Cannot set target flags on target-independent globals"); + if (Alignment == 0) + Alignment = TLI->getDataLayout()->getPrefTypeAlignment(C->getType()); + unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddInteger(Alignment); + ID.AddInteger(Offset); + ID.AddPointer(C); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset, + Alignment, TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + + +SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT, + unsigned Alignment, int Offset, + bool isTarget, + unsigned char TargetFlags) { + assert((TargetFlags == 0 || isTarget) && + "Cannot set target flags on target-independent globals"); + if (Alignment == 0) + Alignment = TLI->getDataLayout()->getPrefTypeAlignment(C->getType()); + unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddInteger(Alignment); + ID.AddInteger(Offset); + C->addSelectionDAGCSEId(ID); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset, + Alignment, TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset, + unsigned char TargetFlags) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None); + ID.AddInteger(Index); + ID.AddInteger(Offset); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset, + TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None); + ID.AddPointer(MBB); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getValueType(EVT VT) { + if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >= + ValueTypeNodes.size()) + ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1); + + SDNode *&N = VT.isExtended() ? + ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy]; + + if (N) return SDValue(N, 0); + N = new (NodeAllocator) VTSDNode(VT); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) { + SDNode *&N = ExternalSymbols[Sym]; + if (N) return SDValue(N, 0); + N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT, + unsigned char TargetFlags) { + SDNode *&N = + TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym, + TargetFlags)]; + if (N) return SDValue(N, 0); + N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) { + if ((unsigned)Cond >= CondCodeNodes.size()) + CondCodeNodes.resize(Cond+1); + + if (!CondCodeNodes[Cond]) { + CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond); + CondCodeNodes[Cond] = N; + InsertNode(N); + } + + return SDValue(CondCodeNodes[Cond], 0); +} + +// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in +// the shuffle mask M that point at N1 to point at N2, and indices that point +// N2 to point at N1. +static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) { + std::swap(N1, N2); + ShuffleVectorSDNode::commuteMask(M); +} + +SDValue SelectionDAG::getVectorShuffle(EVT VT, SDLoc dl, SDValue N1, + SDValue N2, const int *Mask) { + assert(VT == N1.getValueType() && VT == N2.getValueType() && + "Invalid VECTOR_SHUFFLE"); + + // Canonicalize shuffle undef, undef -> undef + if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF) + return getUNDEF(VT); + + // Validate that all indices in Mask are within the range of the elements + // input to the shuffle. + unsigned NElts = VT.getVectorNumElements(); + SmallVector<int, 8> MaskVec; + for (unsigned i = 0; i != NElts; ++i) { + assert(Mask[i] < (int)(NElts * 2) && "Index out of range"); + MaskVec.push_back(Mask[i]); + } + + // Canonicalize shuffle v, v -> v, undef + if (N1 == N2) { + N2 = getUNDEF(VT); + for (unsigned i = 0; i != NElts; ++i) + if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts; + } + + // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. + if (N1.getOpcode() == ISD::UNDEF) + commuteShuffle(N1, N2, MaskVec); + + // If shuffling a splat, try to blend the splat instead. We do this here so + // that even when this arises during lowering we don't have to re-handle it. + auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) { + BitVector UndefElements; + SDValue Splat = BV->getSplatValue(&UndefElements); + if (!Splat) + return; + + for (int i = 0; i < (int)NElts; ++i) { + if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + (int)NElts)) + continue; + + // If this input comes from undef, mark it as such. + if (UndefElements[MaskVec[i] - Offset]) { + MaskVec[i] = -1; + continue; + } + + // If we can blend a non-undef lane, use that instead. + if (!UndefElements[i]) + MaskVec[i] = i + Offset; + } + }; + if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) + BlendSplat(N1BV, 0); + if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2)) + BlendSplat(N2BV, NElts); + + // Canonicalize all index into lhs, -> shuffle lhs, undef + // Canonicalize all index into rhs, -> shuffle rhs, undef + bool AllLHS = true, AllRHS = true; + bool N2Undef = N2.getOpcode() == ISD::UNDEF; + for (unsigned i = 0; i != NElts; ++i) { + if (MaskVec[i] >= (int)NElts) { + if (N2Undef) + MaskVec[i] = -1; + else + AllLHS = false; + } else if (MaskVec[i] >= 0) { + AllRHS = false; + } + } + if (AllLHS && AllRHS) + return getUNDEF(VT); + if (AllLHS && !N2Undef) + N2 = getUNDEF(VT); + if (AllRHS) { + N1 = getUNDEF(VT); + commuteShuffle(N1, N2, MaskVec); + } + // Reset our undef status after accounting for the mask. + N2Undef = N2.getOpcode() == ISD::UNDEF; + // Re-check whether both sides ended up undef. + if (N1.getOpcode() == ISD::UNDEF && N2Undef) + return getUNDEF(VT); + + // If Identity shuffle return that node. + bool Identity = true, AllSame = true; + for (unsigned i = 0; i != NElts; ++i) { + if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false; + if (MaskVec[i] != MaskVec[0]) AllSame = false; + } + if (Identity && NElts) + return N1; + + // Shuffling a constant splat doesn't change the result. + if (N2Undef) { + SDValue V = N1; + + // Look through any bitcasts. We check that these don't change the number + // (and size) of elements and just changes their types. + while (V.getOpcode() == ISD::BITCAST) + V = V->getOperand(0); + + // A splat should always show up as a build vector node. + if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { + BitVector UndefElements; + SDValue Splat = BV->getSplatValue(&UndefElements); + // If this is a splat of an undef, shuffling it is also undef. + if (Splat && Splat.getOpcode() == ISD::UNDEF) + return getUNDEF(VT); + + bool SameNumElts = + V.getValueType().getVectorNumElements() == VT.getVectorNumElements(); + + // We only have a splat which can skip shuffles if there is a splatted + // value and no undef lanes rearranged by the shuffle. + if (Splat && UndefElements.none()) { + // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the + // number of elements match or the value splatted is a zero constant. + if (SameNumElts) + return N1; + if (auto *C = dyn_cast<ConstantSDNode>(Splat)) + if (C->isNullValue()) + return N1; + } + + // If the shuffle itself creates a splat, build the vector directly. + if (AllSame && SameNumElts) { + const SDValue &Splatted = BV->getOperand(MaskVec[0]); + SmallVector<SDValue, 8> Ops(NElts, Splatted); + + EVT BuildVT = BV->getValueType(0); + SDValue NewBV = getNode(ISD::BUILD_VECTOR, dl, BuildVT, Ops); + + // We may have jumped through bitcasts, so the type of the + // BUILD_VECTOR may not match the type of the shuffle. + if (BuildVT != VT) + NewBV = getNode(ISD::BITCAST, dl, VT, NewBV); + return NewBV; + } + } + } + + FoldingSetNodeID ID; + SDValue Ops[2] = { N1, N2 }; + AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops); + for (unsigned i = 0; i != NElts; ++i) + ID.AddInteger(MaskVec[i]); + + void* IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) + return SDValue(E, 0); + + // Allocate the mask array for the node out of the BumpPtrAllocator, since + // SDNode doesn't have access to it. This memory will be "leaked" when + // the node is deallocated, but recovered when the NodeAllocator is released. + int *MaskAlloc = OperandAllocator.Allocate<int>(NElts); + memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int)); + + ShuffleVectorSDNode *N = + new (NodeAllocator) ShuffleVectorSDNode(VT, dl.getIROrder(), + dl.getDebugLoc(), N1, N2, + MaskAlloc); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) { + MVT VT = SV.getSimpleValueType(0); + SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end()); + ShuffleVectorSDNode::commuteMask(MaskVec); + + SDValue Op0 = SV.getOperand(0); + SDValue Op1 = SV.getOperand(1); + return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, &MaskVec[0]); +} + +SDValue SelectionDAG::getConvertRndSat(EVT VT, SDLoc dl, + SDValue Val, SDValue DTy, + SDValue STy, SDValue Rnd, SDValue Sat, + ISD::CvtCode Code) { + // If the src and dest types are the same and the conversion is between + // integer types of the same sign or two floats, no conversion is necessary. + if (DTy == STy && + (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF)) + return Val; + + FoldingSetNodeID ID; + SDValue Ops[] = { Val, DTy, STy, Rnd, Sat }; + AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), Ops); + void* IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) + return SDValue(E, 0); + + CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl.getIROrder(), + dl.getDebugLoc(), + Ops, Code); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::Register, getVTList(VT), None); + ID.AddInteger(RegNo); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None); + ID.AddPointer(RegMask); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getEHLabel(SDLoc dl, SDValue Root, MCSymbol *Label) { + FoldingSetNodeID ID; + SDValue Ops[] = { Root }; + AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), Ops); + ID.AddPointer(Label); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) EHLabelSDNode(dl.getIROrder(), + dl.getDebugLoc(), Root, Label); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + + +SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT, + int64_t Offset, + bool isTarget, + unsigned char TargetFlags) { + unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress; + + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, getVTList(VT), None); + ID.AddPointer(BA); + ID.AddInteger(Offset); + ID.AddInteger(TargetFlags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset, + TargetFlags); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getSrcValue(const Value *V) { + assert((!V || V->getType()->isPointerTy()) && + "SrcValue is not a pointer?"); + + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None); + ID.AddPointer(V); + + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) SrcValueSDNode(V); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +/// getMDNode - Return an MDNodeSDNode which holds an MDNode. +SDValue SelectionDAG::getMDNode(const MDNode *MD) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None); + ID.AddPointer(MD); + + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) MDNodeSDNode(MD); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) { + if (VT == V.getValueType()) + return V; + + return getNode(ISD::BITCAST, SDLoc(V), VT, V); +} + +/// getAddrSpaceCast - Return an AddrSpaceCastSDNode. +SDValue SelectionDAG::getAddrSpaceCast(SDLoc dl, EVT VT, SDValue Ptr, + unsigned SrcAS, unsigned DestAS) { + SDValue Ops[] = {Ptr}; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops); + ID.AddInteger(SrcAS); + ID.AddInteger(DestAS); + + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) AddrSpaceCastSDNode(dl.getIROrder(), + dl.getDebugLoc(), + VT, Ptr, SrcAS, DestAS); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +/// getShiftAmountOperand - Return the specified value casted to +/// the target's desired shift amount type. +SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) { + EVT OpTy = Op.getValueType(); + EVT ShTy = TLI->getShiftAmountTy(LHSTy); + if (OpTy == ShTy || OpTy.isVector()) return Op; + + ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; + return getNode(Opcode, SDLoc(Op), ShTy, Op); +} + +/// CreateStackTemporary - Create a stack temporary, suitable for holding the +/// specified value type. +SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) { + MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); + unsigned ByteSize = VT.getStoreSize(); + Type *Ty = VT.getTypeForEVT(*getContext()); + unsigned StackAlign = + std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), minAlign); + + int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false); + return getFrameIndex(FrameIdx, TLI->getPointerTy()); +} + +/// CreateStackTemporary - Create a stack temporary suitable for holding +/// either of the specified value types. +SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) { + unsigned Bytes = std::max(VT1.getStoreSizeInBits(), + VT2.getStoreSizeInBits())/8; + Type *Ty1 = VT1.getTypeForEVT(*getContext()); + Type *Ty2 = VT2.getTypeForEVT(*getContext()); + const DataLayout *TD = TLI->getDataLayout(); + unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1), + TD->getPrefTypeAlignment(Ty2)); + + MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); + int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false); + return getFrameIndex(FrameIdx, TLI->getPointerTy()); +} + +SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, + SDValue N2, ISD::CondCode Cond, SDLoc dl) { + // These setcc operations always fold. + switch (Cond) { + default: break; + case ISD::SETFALSE: + case ISD::SETFALSE2: return getConstant(0, dl, VT); + case ISD::SETTRUE: + case ISD::SETTRUE2: { + TargetLowering::BooleanContent Cnt = + TLI->getBooleanContents(N1->getValueType(0)); + return getConstant( + Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, + VT); + } + + case ISD::SETOEQ: + case ISD::SETOGT: + case ISD::SETOGE: + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETONE: + case ISD::SETO: + case ISD::SETUO: + case ISD::SETUEQ: + case ISD::SETUNE: + assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!"); + break; + } + + if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) { + const APInt &C2 = N2C->getAPIntValue(); + if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { + const APInt &C1 = N1C->getAPIntValue(); + + switch (Cond) { + default: llvm_unreachable("Unknown integer setcc!"); + case ISD::SETEQ: return getConstant(C1 == C2, dl, VT); + case ISD::SETNE: return getConstant(C1 != C2, dl, VT); + case ISD::SETULT: return getConstant(C1.ult(C2), dl, VT); + case ISD::SETUGT: return getConstant(C1.ugt(C2), dl, VT); + case ISD::SETULE: return getConstant(C1.ule(C2), dl, VT); + case ISD::SETUGE: return getConstant(C1.uge(C2), dl, VT); + case ISD::SETLT: return getConstant(C1.slt(C2), dl, VT); + case ISD::SETGT: return getConstant(C1.sgt(C2), dl, VT); + case ISD::SETLE: return getConstant(C1.sle(C2), dl, VT); + case ISD::SETGE: return getConstant(C1.sge(C2), dl, VT); + } + } + } + if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) { + if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) { + APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); + switch (Cond) { + default: break; + case ISD::SETEQ: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + // fall through + case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, dl, VT); + case ISD::SETNE: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + // fall through + case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpLessThan, dl, VT); + case ISD::SETLT: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + // fall through + case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, dl, VT); + case ISD::SETGT: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + // fall through + case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, dl, VT); + case ISD::SETLE: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + // fall through + case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || + R==APFloat::cmpEqual, dl, VT); + case ISD::SETGE: if (R==APFloat::cmpUnordered) + return getUNDEF(VT); + // fall through + case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpEqual, dl, VT); + case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, dl, VT); + case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, dl, VT); + case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || + R==APFloat::cmpEqual, dl, VT); + case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, dl, VT); + case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || + R==APFloat::cmpLessThan, dl, VT); + case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || + R==APFloat::cmpUnordered, dl, VT); + case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, dl, VT); + case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, dl, VT); + } + } else { + // Ensure that the constant occurs on the RHS. + ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond); + MVT CompVT = N1.getValueType().getSimpleVT(); + if (!TLI->isCondCodeLegal(SwappedCond, CompVT)) + return SDValue(); + + return getSetCC(dl, VT, N2, N1, SwappedCond); + } + } + + // Could not fold it. + return SDValue(); +} + +/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We +/// use this predicate to simplify operations downstream. +bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const { + // This predicate is not safe for vector operations. + if (Op.getValueType().isVector()) + return false; + + unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); + return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth); +} + +/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use +/// this predicate to simplify operations downstream. Mask is known to be zero +/// for bits that V cannot have. +bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask, + unsigned Depth) const { + APInt KnownZero, KnownOne; + computeKnownBits(Op, KnownZero, KnownOne, Depth); + return (KnownZero & Mask) == Mask; +} + +/// Determine which bits of Op are known to be either zero or one and return +/// them in the KnownZero/KnownOne bitsets. +void SelectionDAG::computeKnownBits(SDValue Op, APInt &KnownZero, + APInt &KnownOne, unsigned Depth) const { + unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits(); + + KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. + if (Depth == 6) + return; // Limit search depth. + + APInt KnownZero2, KnownOne2; + + switch (Op.getOpcode()) { + case ISD::Constant: + // We know all of the bits for a constant! + KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); + KnownZero = ~KnownOne; + break; + case ISD::AND: + // If either the LHS or the RHS are Zero, the result is zero. + computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); + + // Output known-1 bits are only known if set in both the LHS & RHS. + KnownOne &= KnownOne2; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + KnownZero |= KnownZero2; + break; + case ISD::OR: + computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); + + // Output known-0 bits are only known if clear in both the LHS & RHS. + KnownZero &= KnownZero2; + // Output known-1 are known to be set if set in either the LHS | RHS. + KnownOne |= KnownOne2; + break; + case ISD::XOR: { + computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); + KnownZero = KnownZeroOut; + break; + } + case ISD::MUL: { + computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); + + // If low bits are zero in either operand, output low known-0 bits. + // Also compute a conserative estimate for high known-0 bits. + // More trickiness is possible, but this is sufficient for the + // interesting case of alignment computation. + KnownOne.clearAllBits(); + unsigned TrailZ = KnownZero.countTrailingOnes() + + KnownZero2.countTrailingOnes(); + unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + + KnownZero2.countLeadingOnes(), + BitWidth) - BitWidth; + + TrailZ = std::min(TrailZ, BitWidth); + LeadZ = std::min(LeadZ, BitWidth); + KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | + APInt::getHighBitsSet(BitWidth, LeadZ); + break; + } + case ISD::UDIV: { + // For the purposes of computing leading zeros we can conservatively + // treat a udiv as a logical right shift by the power of 2 known to + // be less than the denominator. + computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); + unsigned LeadZ = KnownZero2.countLeadingOnes(); + + KnownOne2.clearAllBits(); + KnownZero2.clearAllBits(); + computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); + unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); + if (RHSUnknownLeadingOnes != BitWidth) + LeadZ = std::min(BitWidth, + LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); + + KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); + break; + } + case ISD::SELECT: + computeKnownBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + break; + case ISD::SELECT_CC: + computeKnownBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1); + + // Only known if known in both the LHS and RHS. + KnownOne &= KnownOne2; + KnownZero &= KnownZero2; + break; + case ISD::SADDO: + case ISD::UADDO: + case ISD::SSUBO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: + if (Op.getResNo() != 1) + break; + // The boolean result conforms to getBooleanContents. + // If we know the result of a setcc has the top bits zero, use this info. + // We know that we have an integer-based boolean since these operations + // are only available for integer. + if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); + break; + case ISD::SETCC: + // If we know the result of a setcc has the top bits zero, use this info. + if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == + TargetLowering::ZeroOrOneBooleanContent && + BitWidth > 1) + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); + break; + case ISD::SHL: + // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned ShAmt = SA->getZExtValue(); + + // If the shift count is an invalid immediate, don't do anything. + if (ShAmt >= BitWidth) + break; + + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownZero <<= ShAmt; + KnownOne <<= ShAmt; + // low bits known zero. + KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt); + } + break; + case ISD::SRL: + // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned ShAmt = SA->getZExtValue(); + + // If the shift count is an invalid immediate, don't do anything. + if (ShAmt >= BitWidth) + break; + + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownZero = KnownZero.lshr(ShAmt); + KnownOne = KnownOne.lshr(ShAmt); + + APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); + KnownZero |= HighBits; // High bits known zero. + } + break; + case ISD::SRA: + if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned ShAmt = SA->getZExtValue(); + + // If the shift count is an invalid immediate, don't do anything. + if (ShAmt >= BitWidth) + break; + + // If any of the demanded bits are produced by the sign extension, we also + // demand the input sign bit. + APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); + + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownZero = KnownZero.lshr(ShAmt); + KnownOne = KnownOne.lshr(ShAmt); + + // Handle the sign bits. + APInt SignBit = APInt::getSignBit(BitWidth); + SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask. + + if (KnownZero.intersects(SignBit)) { + KnownZero |= HighBits; // New bits are known zero. + } else if (KnownOne.intersects(SignBit)) { + KnownOne |= HighBits; // New bits are known one. + } + } + break; + case ISD::SIGN_EXTEND_INREG: { + EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + unsigned EBits = EVT.getScalarType().getSizeInBits(); + + // Sign extension. Compute the demanded bits in the result that are not + // present in the input. + APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits); + + APInt InSignBit = APInt::getSignBit(EBits); + APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits); + + // If the sign extended bits are demanded, we know that the sign + // bit is demanded. + InSignBit = InSignBit.zext(BitWidth); + if (NewBits.getBoolValue()) + InputDemandedBits |= InSignBit; + + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownOne &= InputDemandedBits; + KnownZero &= InputDemandedBits; + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear + KnownZero |= NewBits; + KnownOne &= ~NewBits; + } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set + KnownOne |= NewBits; + KnownZero &= ~NewBits; + } else { // Input sign bit unknown + KnownZero &= ~NewBits; + KnownOne &= ~NewBits; + } + break; + } + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + case ISD::CTPOP: { + unsigned LowBits = Log2_32(BitWidth)+1; + KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); + KnownOne.clearAllBits(); + break; + } + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(Op); + // If this is a ZEXTLoad and we are looking at the loaded value. + if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { + EVT VT = LD->getMemoryVT(); + unsigned MemBits = VT.getScalarType().getSizeInBits(); + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); + } else if (const MDNode *Ranges = LD->getRanges()) { + computeKnownBitsFromRangeMetadata(*Ranges, KnownZero); + } + break; + } + case ISD::ZERO_EXTEND: { + EVT InVT = Op.getOperand(0).getValueType(); + unsigned InBits = InVT.getScalarType().getSizeInBits(); + APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); + KnownZero = KnownZero.trunc(InBits); + KnownOne = KnownOne.trunc(InBits); + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); + KnownZero |= NewBits; + break; + } + case ISD::SIGN_EXTEND: { + EVT InVT = Op.getOperand(0).getValueType(); + unsigned InBits = InVT.getScalarType().getSizeInBits(); + APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits); + + KnownZero = KnownZero.trunc(InBits); + KnownOne = KnownOne.trunc(InBits); + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + + // Note if the sign bit is known to be zero or one. + bool SignBitKnownZero = KnownZero.isNegative(); + bool SignBitKnownOne = KnownOne.isNegative(); + + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); + + // If the sign bit is known zero or one, the top bits match. + if (SignBitKnownZero) + KnownZero |= NewBits; + else if (SignBitKnownOne) + KnownOne |= NewBits; + break; + } + case ISD::ANY_EXTEND: { + EVT InVT = Op.getOperand(0).getValueType(); + unsigned InBits = InVT.getScalarType().getSizeInBits(); + KnownZero = KnownZero.trunc(InBits); + KnownOne = KnownOne.trunc(InBits); + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownZero = KnownZero.zext(BitWidth); + KnownOne = KnownOne.zext(BitWidth); + break; + } + case ISD::TRUNCATE: { + EVT InVT = Op.getOperand(0).getValueType(); + unsigned InBits = InVT.getScalarType().getSizeInBits(); + KnownZero = KnownZero.zext(InBits); + KnownOne = KnownOne.zext(InBits); + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownZero = KnownZero.trunc(BitWidth); + KnownOne = KnownOne.trunc(BitWidth); + break; + } + case ISD::AssertZext: { + EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits()); + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + KnownZero |= (~InMask); + KnownOne &= (~KnownZero); + break; + } + case ISD::FGETSIGN: + // All bits are zero except the low bit. + KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1); + break; + + case ISD::SUB: { + if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) { + // We know that the top bits of C-X are clear if X contains less bits + // than C (i.e. no wrap-around can happen). For example, 20-X is + // positive if we can prove that X is >= 0 and < 16. + if (CLHS->getAPIntValue().isNonNegative()) { + unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros(); + // NLZ can't be BitWidth with no sign bit + APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); + computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); + + // If all of the MaskV bits are known to be zero, then we know the + // output top bits are zero, because we now know that the output is + // from [0-C]. + if ((KnownZero2 & MaskV) == MaskV) { + unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros(); + // Top bits known zero. + KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); + } + } + } + } + // fall through + case ISD::ADD: + case ISD::ADDE: { + // Output known-0 bits are known if clear or set in both the low clear bits + // common to both LHS & RHS. For example, 8+(X<<3) is known to have the + // low 3 bits clear. + computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1); + unsigned KnownZeroOut = KnownZero2.countTrailingOnes(); + + computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); + KnownZeroOut = std::min(KnownZeroOut, + KnownZero2.countTrailingOnes()); + + if (Op.getOpcode() == ISD::ADD) { + KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut); + break; + } + + // With ADDE, a carry bit may be added in, so we can only use this + // information if we know (at least) that the low two bits are clear. We + // then return to the caller that the low bit is unknown but that other bits + // are known zero. + if (KnownZeroOut >= 2) // ADDE + KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut); + break; + } + case ISD::SREM: + if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + const APInt &RA = Rem->getAPIntValue().abs(); + if (RA.isPowerOf2()) { + APInt LowBits = RA - 1; + computeKnownBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1); + + // The low bits of the first operand are unchanged by the srem. + KnownZero = KnownZero2 & LowBits; + KnownOne = KnownOne2 & LowBits; + + // If the first operand is non-negative or has all low bits zero, then + // the upper bits are all zero. + if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) + KnownZero |= ~LowBits; + + // If the first operand is negative and not all low bits are zero, then + // the upper bits are all one. + if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) + KnownOne |= ~LowBits; + assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); + } + } + break; + case ISD::UREM: { + if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + const APInt &RA = Rem->getAPIntValue(); + if (RA.isPowerOf2()) { + APInt LowBits = (RA - 1); + computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth + 1); + + // The upper bits are all zero, the lower ones are unchanged. + KnownZero = KnownZero2 | ~LowBits; + KnownOne = KnownOne2 & LowBits; + break; + } + } + + // Since the result is less than or equal to either operand, any leading + // zero bits in either operand must also exist in the result. + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + computeKnownBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1); + + uint32_t Leaders = std::max(KnownZero.countLeadingOnes(), + KnownZero2.countLeadingOnes()); + KnownOne.clearAllBits(); + KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); + break; + } + case ISD::EXTRACT_ELEMENT: { + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + const unsigned Index = + cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + const unsigned BitWidth = Op.getValueType().getSizeInBits(); + + // Remove low part of known bits mask + KnownZero = KnownZero.getHiBits(KnownZero.getBitWidth() - Index * BitWidth); + KnownOne = KnownOne.getHiBits(KnownOne.getBitWidth() - Index * BitWidth); + + // Remove high part of known bit mask + KnownZero = KnownZero.trunc(BitWidth); + KnownOne = KnownOne.trunc(BitWidth); + break; + } + case ISD::SMIN: + case ISD::SMAX: + case ISD::UMIN: + case ISD::UMAX: { + APInt Op0Zero, Op0One; + APInt Op1Zero, Op1One; + computeKnownBits(Op.getOperand(0), Op0Zero, Op0One, Depth); + computeKnownBits(Op.getOperand(1), Op1Zero, Op1One, Depth); + + KnownZero = Op0Zero & Op1Zero; + KnownOne = Op0One & Op1One; + break; + } + case ISD::FrameIndex: + case ISD::TargetFrameIndex: + if (unsigned Align = InferPtrAlignment(Op)) { + // The low bits are known zero if the pointer is aligned. + KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align)); + break; + } + break; + + default: + if (Op.getOpcode() < ISD::BUILTIN_OP_END) + break; + // Fallthrough + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_VOID: + // Allow the target to implement this method for its nodes. + TLI->computeKnownBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth); + break; + } + + assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); +} + +/// ComputeNumSignBits - Return the number of times the sign bit of the +/// register is replicated into the other bits. We know that at least 1 bit +/// is always equal to the sign bit (itself), but other cases can give us +/// information. For example, immediately after an "SRA X, 2", we know that +/// the top 3 bits are all equal to each other, so we return 3. +unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{ + EVT VT = Op.getValueType(); + assert(VT.isInteger() && "Invalid VT!"); + unsigned VTBits = VT.getScalarType().getSizeInBits(); + unsigned Tmp, Tmp2; + unsigned FirstAnswer = 1; + + if (Depth == 6) + return 1; // Limit search depth. + + switch (Op.getOpcode()) { + default: break; + case ISD::AssertSext: + Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); + return VTBits-Tmp+1; + case ISD::AssertZext: + Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits(); + return VTBits-Tmp; + + case ISD::Constant: { + const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue(); + return Val.getNumSignBits(); + } + + case ISD::SIGN_EXTEND: + Tmp = + VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); + return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; + + case ISD::SIGN_EXTEND_INREG: + // Max of the input and what this extends. + Tmp = + cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits(); + Tmp = VTBits-Tmp+1; + + Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); + return std::max(Tmp, Tmp2); + + case ISD::SRA: + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + // SRA X, C -> adds C sign bits. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Tmp += C->getZExtValue(); + if (Tmp > VTBits) Tmp = VTBits; + } + return Tmp; + case ISD::SHL: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + // shl destroys sign bits. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (C->getZExtValue() >= VTBits || // Bad shift. + C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. + return Tmp - C->getZExtValue(); + } + break; + case ISD::AND: + case ISD::OR: + case ISD::XOR: // NOT is handled here. + // Logical binary ops preserve the number of sign bits at the worst. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp != 1) { + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + FirstAnswer = std::min(Tmp, Tmp2); + // We computed what we know about the sign bits as our first + // answer. Now proceed to the generic code that uses + // computeKnownBits, and pick whichever answer is better. + } + break; + + case ISD::SELECT: + Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1); + if (Tmp == 1) return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1); + return std::min(Tmp, Tmp2); + case ISD::SMIN: + case ISD::SMAX: + case ISD::UMIN: + case ISD::UMAX: + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth + 1); + if (Tmp == 1) + return 1; // Early out. + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth + 1); + return std::min(Tmp, Tmp2); + case ISD::SADDO: + case ISD::UADDO: + case ISD::SSUBO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: + if (Op.getResNo() != 1) + break; + // The boolean result conforms to getBooleanContents. Fall through. + // If setcc returns 0/-1, all bits are sign bits. + // We know that we have an integer-based boolean since these operations + // are only available for integer. + if (TLI->getBooleanContents(Op.getValueType().isVector(), false) == + TargetLowering::ZeroOrNegativeOneBooleanContent) + return VTBits; + break; + case ISD::SETCC: + // If setcc returns 0/-1, all bits are sign bits. + if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) == + TargetLowering::ZeroOrNegativeOneBooleanContent) + return VTBits; + break; + case ISD::ROTL: + case ISD::ROTR: + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned RotAmt = C->getZExtValue() & (VTBits-1); + + // Handle rotate right by N like a rotate left by 32-N. + if (Op.getOpcode() == ISD::ROTR) + RotAmt = (VTBits-RotAmt) & (VTBits-1); + + // If we aren't rotating out all of the known-in sign bits, return the + // number that are left. This handles rotl(sext(x), 1) for example. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp > RotAmt+1) return Tmp-RotAmt; + } + break; + case ISD::ADD: + // Add can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + + // Special case decrementing a value (ADD X, -1): + if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) + if (CRHS->isAllOnesValue()) { + APInt KnownZero, KnownOne; + computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); + + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) + return VTBits; + + // If we are subtracting one from a positive number, there is no carry + // out of the result. + if (KnownZero.isNegative()) + return Tmp; + } + + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + if (Tmp2 == 1) return 1; + return std::min(Tmp, Tmp2)-1; + + case ISD::SUB: + Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); + if (Tmp2 == 1) return 1; + + // Handle NEG. + if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) + if (CLHS->isNullValue()) { + APInt KnownZero, KnownOne; + computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1); + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue()) + return VTBits; + + // If the input is known to be positive (the sign bit is known clear), + // the output of the NEG has the same number of sign bits as the input. + if (KnownZero.isNegative()) + return Tmp2; + + // Otherwise, we treat this like a SUB. + } + + // Sub can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); + if (Tmp == 1) return 1; // Early out. + return std::min(Tmp, Tmp2)-1; + case ISD::TRUNCATE: + // FIXME: it's tricky to do anything useful for this, but it is an important + // case for targets like X86. + break; + case ISD::EXTRACT_ELEMENT: { + const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1); + const int BitWidth = Op.getValueType().getSizeInBits(); + const int Items = + Op.getOperand(0).getValueType().getSizeInBits() / BitWidth; + + // Get reverse index (starting from 1), Op1 value indexes elements from + // little end. Sign starts at big end. + const int rIndex = Items - 1 - + cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + + // If the sign portion ends in our element the substraction gives correct + // result. Otherwise it gives either negative or > bitwidth result + return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0); + } + } + + // If we are looking at the loaded value of the SDNode. + if (Op.getResNo() == 0) { + // Handle LOADX separately here. EXTLOAD case will fallthrough. + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) { + unsigned ExtType = LD->getExtensionType(); + switch (ExtType) { + default: break; + case ISD::SEXTLOAD: // '17' bits known + Tmp = LD->getMemoryVT().getScalarType().getSizeInBits(); + return VTBits-Tmp+1; + case ISD::ZEXTLOAD: // '16' bits known + Tmp = LD->getMemoryVT().getScalarType().getSizeInBits(); + return VTBits-Tmp; + } + } + } + + // Allow the target to implement this method for its nodes. + if (Op.getOpcode() >= ISD::BUILTIN_OP_END || + Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || + Op.getOpcode() == ISD::INTRINSIC_VOID) { + unsigned NumBits = TLI->ComputeNumSignBitsForTargetNode(Op, *this, Depth); + if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits); + } + + // Finally, if we can prove that the top bits of the result are 0's or 1's, + // use this information. + APInt KnownZero, KnownOne; + computeKnownBits(Op, KnownZero, KnownOne, Depth); + + APInt Mask; + if (KnownZero.isNegative()) { // sign bit is 0 + Mask = KnownZero; + } else if (KnownOne.isNegative()) { // sign bit is 1; + Mask = KnownOne; + } else { + // Nothing known. + return FirstAnswer; + } + + // Okay, we know that the sign bit in Mask is set. Use CLZ to determine + // the number of identical bits in the top of the input value. + Mask = ~Mask; + Mask <<= Mask.getBitWidth()-VTBits; + // Return # leading zeros. We use 'min' here in case Val was zero before + // shifting. We don't want to return '64' as for an i32 "0". + return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros())); +} + +/// isBaseWithConstantOffset - Return true if the specified operand is an +/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an +/// ISD::OR with a ConstantSDNode that is guaranteed to have the same +/// semantics as an ADD. This handles the equivalence: +/// X|Cst == X+Cst iff X&Cst = 0. +bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const { + if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) || + !isa<ConstantSDNode>(Op.getOperand(1))) + return false; + + if (Op.getOpcode() == ISD::OR && + !MaskedValueIsZero(Op.getOperand(0), + cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue())) + return false; + + return true; +} + + +bool SelectionDAG::isKnownNeverNaN(SDValue Op) const { + // If we're told that NaNs won't happen, assume they won't. + if (getTarget().Options.NoNaNsFPMath) + return true; + + // If the value is a constant, we can obviously see if it is a NaN or not. + if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) + return !C->getValueAPF().isNaN(); + + // TODO: Recognize more cases here. + + return false; +} + +bool SelectionDAG::isKnownNeverZero(SDValue Op) const { + // If the value is a constant, we can obviously see if it is a zero or not. + if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) + return !C->isZero(); + + // TODO: Recognize more cases here. + switch (Op.getOpcode()) { + default: break; + case ISD::OR: + if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) + return !C->isNullValue(); + break; + } + + return false; +} + +bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const { + // Check the obvious case. + if (A == B) return true; + + // For for negative and positive zero. + if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) + if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) + if (CA->isZero() && CB->isZero()) return true; + + // Otherwise they may not be equal. + return false; +} + +/// getNode - Gets or creates the specified node. +/// +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, getVTList(VT), None); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), getVTList(VT)); + CSEMap.InsertNode(N, IP); + + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, + EVT VT, SDValue Operand) { + // Constant fold unary operations with an integer constant operand. Even + // opaque constant will be folded, because the folding of unary operations + // doesn't create new constants with different values. Nevertheless, the + // opaque flag is preserved during folding to prevent future folding with + // other constants. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) { + const APInt &Val = C->getAPIntValue(); + switch (Opcode) { + default: break; + case ISD::SIGN_EXTEND: + return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT, + C->isTargetOpcode(), C->isOpaque()); + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::TRUNCATE: + return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT, + C->isTargetOpcode(), C->isOpaque()); + case ISD::UINT_TO_FP: + case ISD::SINT_TO_FP: { + APFloat apf(EVTToAPFloatSemantics(VT), + APInt::getNullValue(VT.getSizeInBits())); + (void)apf.convertFromAPInt(Val, + Opcode==ISD::SINT_TO_FP, + APFloat::rmNearestTiesToEven); + return getConstantFP(apf, DL, VT); + } + case ISD::BITCAST: + if (VT == MVT::f16 && C->getValueType(0) == MVT::i16) + return getConstantFP(APFloat(APFloat::IEEEhalf, Val), DL, VT); + if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) + return getConstantFP(APFloat(APFloat::IEEEsingle, Val), DL, VT); + else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) + return getConstantFP(APFloat(APFloat::IEEEdouble, Val), DL, VT); + break; + case ISD::BSWAP: + return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::CTPOP: + return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(), + C->isOpaque()); + } + } + + // Constant fold unary operations with a floating point constant operand. + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) { + APFloat V = C->getValueAPF(); // make copy + switch (Opcode) { + case ISD::FNEG: + V.changeSign(); + return getConstantFP(V, DL, VT); + case ISD::FABS: + V.clearSign(); + return getConstantFP(V, DL, VT); + case ISD::FCEIL: { + APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive); + if (fs == APFloat::opOK || fs == APFloat::opInexact) + return getConstantFP(V, DL, VT); + break; + } + case ISD::FTRUNC: { + APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero); + if (fs == APFloat::opOK || fs == APFloat::opInexact) + return getConstantFP(V, DL, VT); + break; + } + case ISD::FFLOOR: { + APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative); + if (fs == APFloat::opOK || fs == APFloat::opInexact) + return getConstantFP(V, DL, VT); + break; + } + case ISD::FP_EXTEND: { + bool ignored; + // This can return overflow, underflow, or inexact; we don't care. + // FIXME need to be more flexible about rounding mode. + (void)V.convert(EVTToAPFloatSemantics(VT), + APFloat::rmNearestTiesToEven, &ignored); + return getConstantFP(V, DL, VT); + } + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: { + integerPart x[2]; + bool ignored; + static_assert(integerPartWidth >= 64, "APFloat parts too small!"); + // FIXME need to be more flexible about rounding mode. + APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(), + Opcode==ISD::FP_TO_SINT, + APFloat::rmTowardZero, &ignored); + if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual + break; + APInt api(VT.getSizeInBits(), x); + return getConstant(api, DL, VT); + } + case ISD::BITCAST: + if (VT == MVT::i16 && C->getValueType(0) == MVT::f16) + return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT); + else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) + return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT); + else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) + return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT); + break; + } + } + + // Constant fold unary operations with a vector integer or float operand. + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand.getNode())) { + if (BV->isConstant()) { + switch (Opcode) { + default: + // FIXME: Entirely reasonable to perform folding of other unary + // operations here as the need arises. + break; + case ISD::FNEG: + case ISD::FABS: + case ISD::FCEIL: + case ISD::FTRUNC: + case ISD::FFLOOR: + case ISD::FP_EXTEND: + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + case ISD::TRUNCATE: + case ISD::UINT_TO_FP: + case ISD::SINT_TO_FP: + case ISD::BSWAP: + case ISD::CTLZ: + case ISD::CTLZ_ZERO_UNDEF: + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: + case ISD::CTPOP: { + EVT SVT = VT.getScalarType(); + EVT InVT = BV->getValueType(0); + EVT InSVT = InVT.getScalarType(); + + // Find legal integer scalar type for constant promotion and + // ensure that its scalar size is at least as large as source. + EVT LegalSVT = SVT; + if (SVT.isInteger()) { + LegalSVT = TLI->getTypeToTransformTo(*getContext(), SVT); + if (LegalSVT.bitsLT(SVT)) break; + } + + // Let the above scalar folding handle the folding of each element. + SmallVector<SDValue, 8> Ops; + for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { + SDValue OpN = BV->getOperand(i); + EVT OpVT = OpN.getValueType(); + + // Build vector (integer) scalar operands may need implicit + // truncation - do this before constant folding. + if (OpVT.isInteger() && OpVT.bitsGT(InSVT)) + OpN = getNode(ISD::TRUNCATE, DL, InSVT, OpN); + + OpN = getNode(Opcode, DL, SVT, OpN); + + // Legalize the (integer) scalar constant if necessary. + if (LegalSVT != SVT) + OpN = getNode(ISD::ANY_EXTEND, DL, LegalSVT, OpN); + + if (OpN.getOpcode() != ISD::UNDEF && + OpN.getOpcode() != ISD::Constant && + OpN.getOpcode() != ISD::ConstantFP) + break; + Ops.push_back(OpN); + } + if (Ops.size() == VT.getVectorNumElements()) + return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); + break; + } + } + } + } + + unsigned OpOpcode = Operand.getNode()->getOpcode(); + switch (Opcode) { + case ISD::TokenFactor: + case ISD::MERGE_VALUES: + case ISD::CONCAT_VECTORS: + return Operand; // Factor, merge or concat of one node? No need. + case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node"); + case ISD::FP_EXTEND: + assert(VT.isFloatingPoint() && + Operand.getValueType().isFloatingPoint() && "Invalid FP cast!"); + if (Operand.getValueType() == VT) return Operand; // noop conversion. + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + if (Operand.getOpcode() == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::SIGN_EXTEND: + assert(VT.isInteger() && Operand.getValueType().isInteger() && + "Invalid SIGN_EXTEND!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) && + "Invalid sext node, dst < src!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) + return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); + else if (OpOpcode == ISD::UNDEF) + // sext(undef) = 0, because the top bits will all be the same. + return getConstant(0, DL, VT); + break; + case ISD::ZERO_EXTEND: + assert(VT.isInteger() && Operand.getValueType().isInteger() && + "Invalid ZERO_EXTEND!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) && + "Invalid zext node, dst < src!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) + return getNode(ISD::ZERO_EXTEND, DL, VT, + Operand.getNode()->getOperand(0)); + else if (OpOpcode == ISD::UNDEF) + // zext(undef) = 0, because the top bits will be zero. + return getConstant(0, DL, VT); + break; + case ISD::ANY_EXTEND: + assert(VT.isInteger() && Operand.getValueType().isInteger() && + "Invalid ANY_EXTEND!"); + if (Operand.getValueType() == VT) return Operand; // noop extension + assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) && + "Invalid anyext node, dst < src!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + + if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || + OpOpcode == ISD::ANY_EXTEND) + // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x) + return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); + else if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + + // (ext (trunx x)) -> x + if (OpOpcode == ISD::TRUNCATE) { + SDValue OpOp = Operand.getNode()->getOperand(0); + if (OpOp.getValueType() == VT) + return OpOp; + } + break; + case ISD::TRUNCATE: + assert(VT.isInteger() && Operand.getValueType().isInteger() && + "Invalid TRUNCATE!"); + if (Operand.getValueType() == VT) return Operand; // noop truncate + assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) && + "Invalid truncate node, src < dst!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == + Operand.getValueType().getVectorNumElements()) && + "Vector element count mismatch!"); + if (OpOpcode == ISD::TRUNCATE) + return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); + if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || + OpOpcode == ISD::ANY_EXTEND) { + // If the source is smaller than the dest, we still need an extend. + if (Operand.getNode()->getOperand(0).getValueType().getScalarType() + .bitsLT(VT.getScalarType())) + return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0)); + if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT)) + return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0)); + return Operand.getNode()->getOperand(0); + } + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::BSWAP: + assert(VT.isInteger() && VT == Operand.getValueType() && + "Invalid BSWAP!"); + assert((VT.getScalarSizeInBits() % 16 == 0) && + "BSWAP types must be a multiple of 16 bits!"); + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::BITCAST: + // Basic sanity checking. + assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits() + && "Cannot BITCAST between types of different sizes!"); + if (VT == Operand.getValueType()) return Operand; // noop conversion. + if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x) + return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0)); + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + break; + case ISD::SCALAR_TO_VECTOR: + assert(VT.isVector() && !Operand.getValueType().isVector() && + (VT.getVectorElementType() == Operand.getValueType() || + (VT.getVectorElementType().isInteger() && + Operand.getValueType().isInteger() && + VT.getVectorElementType().bitsLE(Operand.getValueType()))) && + "Illegal SCALAR_TO_VECTOR node!"); + if (OpOpcode == ISD::UNDEF) + return getUNDEF(VT); + // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined. + if (OpOpcode == ISD::EXTRACT_VECTOR_ELT && + isa<ConstantSDNode>(Operand.getOperand(1)) && + Operand.getConstantOperandVal(1) == 0 && + Operand.getOperand(0).getValueType() == VT) + return Operand.getOperand(0); + break; + case ISD::FNEG: + // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 + if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB) + return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1), + Operand.getNode()->getOperand(0)); + if (OpOpcode == ISD::FNEG) // --X -> X + return Operand.getNode()->getOperand(0); + break; + case ISD::FABS: + if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) + return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0)); + break; + } + + SDNode *N; + SDVTList VTs = getVTList(VT); + if (VT != MVT::Glue) { // Don't CSE flag producing nodes + FoldingSetNodeID ID; + SDValue Ops[1] = { Operand }; + AddNodeIDNode(ID, Opcode, VTs, Ops); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) + return SDValue(E, 0); + + N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTs, Operand); + CSEMap.InsertNode(N, IP); + } else { + N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTs, Operand); + } + + InsertNode(N); + return SDValue(N, 0); +} + +static std::pair<APInt, bool> FoldValue(unsigned Opcode, const APInt &C1, + const APInt &C2) { + switch (Opcode) { + case ISD::ADD: return std::make_pair(C1 + C2, true); + case ISD::SUB: return std::make_pair(C1 - C2, true); + case ISD::MUL: return std::make_pair(C1 * C2, true); + case ISD::AND: return std::make_pair(C1 & C2, true); + case ISD::OR: return std::make_pair(C1 | C2, true); + case ISD::XOR: return std::make_pair(C1 ^ C2, true); + case ISD::SHL: return std::make_pair(C1 << C2, true); + case ISD::SRL: return std::make_pair(C1.lshr(C2), true); + case ISD::SRA: return std::make_pair(C1.ashr(C2), true); + case ISD::ROTL: return std::make_pair(C1.rotl(C2), true); + case ISD::ROTR: return std::make_pair(C1.rotr(C2), true); + case ISD::UDIV: + if (!C2.getBoolValue()) + break; + return std::make_pair(C1.udiv(C2), true); + case ISD::UREM: + if (!C2.getBoolValue()) + break; + return std::make_pair(C1.urem(C2), true); + case ISD::SDIV: + if (!C2.getBoolValue()) + break; + return std::make_pair(C1.sdiv(C2), true); + case ISD::SREM: + if (!C2.getBoolValue()) + break; + return std::make_pair(C1.srem(C2), true); + } + return std::make_pair(APInt(1, 0), false); +} + +SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, SDLoc DL, EVT VT, + const ConstantSDNode *Cst1, + const ConstantSDNode *Cst2) { + if (Cst1->isOpaque() || Cst2->isOpaque()) + return SDValue(); + + std::pair<APInt, bool> Folded = FoldValue(Opcode, Cst1->getAPIntValue(), + Cst2->getAPIntValue()); + if (!Folded.second) + return SDValue(); + return getConstant(Folded.first, DL, VT); +} + +SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, SDLoc DL, EVT VT, + SDNode *Cst1, SDNode *Cst2) { + // If the opcode is a target-specific ISD node, there's nothing we can + // do here and the operand rules may not line up with the below, so + // bail early. + if (Opcode >= ISD::BUILTIN_OP_END) + return SDValue(); + + // Handle the case of two scalars. + if (const ConstantSDNode *Scalar1 = dyn_cast<ConstantSDNode>(Cst1)) { + if (const ConstantSDNode *Scalar2 = dyn_cast<ConstantSDNode>(Cst2)) { + if (SDValue Folded = + FoldConstantArithmetic(Opcode, DL, VT, Scalar1, Scalar2)) { + if (!VT.isVector()) + return Folded; + SmallVector<SDValue, 4> Outputs; + // We may have a vector type but a scalar result. Create a splat. + Outputs.resize(VT.getVectorNumElements(), Outputs.back()); + // Build a big vector out of the scalar elements we generated. + return getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Outputs); + } else { + return SDValue(); + } + } + } + + // For vectors extract each constant element into Inputs so we can constant + // fold them individually. + BuildVectorSDNode *BV1 = dyn_cast<BuildVectorSDNode>(Cst1); + BuildVectorSDNode *BV2 = dyn_cast<BuildVectorSDNode>(Cst2); + if (!BV1 || !BV2) + return SDValue(); + + assert(BV1->getNumOperands() == BV2->getNumOperands() && "Out of sync!"); + + EVT SVT = VT.getScalarType(); + SmallVector<SDValue, 4> Outputs; + for (unsigned I = 0, E = BV1->getNumOperands(); I != E; ++I) { + ConstantSDNode *V1 = dyn_cast<ConstantSDNode>(BV1->getOperand(I)); + ConstantSDNode *V2 = dyn_cast<ConstantSDNode>(BV2->getOperand(I)); + if (!V1 || !V2) // Not a constant, bail. + return SDValue(); + + if (V1->isOpaque() || V2->isOpaque()) + return SDValue(); + + // Avoid BUILD_VECTOR nodes that perform implicit truncation. + // FIXME: This is valid and could be handled by truncating the APInts. + if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT) + return SDValue(); + + // Fold one vector element. + std::pair<APInt, bool> Folded = FoldValue(Opcode, V1->getAPIntValue(), + V2->getAPIntValue()); + if (!Folded.second) + return SDValue(); + Outputs.push_back(getConstant(Folded.first, DL, SVT)); + } + + assert(VT.getVectorNumElements() == Outputs.size() && + "Vector size mismatch!"); + + // We may have a vector type but a scalar result. Create a splat. + Outputs.resize(VT.getVectorNumElements(), Outputs.back()); + + // Build a big vector out of the scalar elements we generated. + return getNode(ISD::BUILD_VECTOR, SDLoc(), VT, Outputs); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, SDValue N1, + SDValue N2, const SDNodeFlags *Flags) { + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); + ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); + switch (Opcode) { + default: break; + case ISD::TokenFactor: + assert(VT == MVT::Other && N1.getValueType() == MVT::Other && + N2.getValueType() == MVT::Other && "Invalid token factor!"); + // Fold trivial token factors. + if (N1.getOpcode() == ISD::EntryToken) return N2; + if (N2.getOpcode() == ISD::EntryToken) return N1; + if (N1 == N2) return N1; + break; + case ISD::CONCAT_VECTORS: + // Concat of UNDEFs is UNDEF. + if (N1.getOpcode() == ISD::UNDEF && + N2.getOpcode() == ISD::UNDEF) + return getUNDEF(VT); + + // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to + // one big BUILD_VECTOR. + if (N1.getOpcode() == ISD::BUILD_VECTOR && + N2.getOpcode() == ISD::BUILD_VECTOR) { + SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), + N1.getNode()->op_end()); + Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end()); + + // BUILD_VECTOR requires all inputs to be of the same type, find the + // maximum type and extend them all. + EVT SVT = VT.getScalarType(); + for (SDValue Op : Elts) + SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); + if (SVT.bitsGT(VT.getScalarType())) + for (SDValue &Op : Elts) + Op = TLI->isZExtFree(Op.getValueType(), SVT) + ? getZExtOrTrunc(Op, DL, SVT) + : getSExtOrTrunc(Op, DL, SVT); + + return getNode(ISD::BUILD_VECTOR, DL, VT, Elts); + } + break; + case ISD::AND: + assert(VT.isInteger() && "This operator does not apply to FP types!"); + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's + // worth handling here. + if (N2C && N2C->isNullValue()) + return N2; + if (N2C && N2C->isAllOnesValue()) // X & -1 -> X + return N1; + break; + case ISD::OR: + case ISD::XOR: + case ISD::ADD: + case ISD::SUB: + assert(VT.isInteger() && "This operator does not apply to FP types!"); + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so + // it's worth handling here. + if (N2C && N2C->isNullValue()) + return N1; + break; + case ISD::UDIV: + case ISD::UREM: + case ISD::MULHU: + case ISD::MULHS: + case ISD::MUL: + case ISD::SDIV: + case ISD::SREM: + assert(VT.isInteger() && "This operator does not apply to FP types!"); + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + break; + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + if (getTarget().Options.UnsafeFPMath) { + if (Opcode == ISD::FADD) { + // 0+x --> x + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) + if (CFP->getValueAPF().isZero()) + return N2; + // x+0 --> x + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) + if (CFP->getValueAPF().isZero()) + return N1; + } else if (Opcode == ISD::FSUB) { + // x-0 --> x + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) + if (CFP->getValueAPF().isZero()) + return N1; + } else if (Opcode == ISD::FMUL) { + ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1); + SDValue V = N2; + + // If the first operand isn't the constant, try the second + if (!CFP) { + CFP = dyn_cast<ConstantFPSDNode>(N2); + V = N1; + } + + if (CFP) { + // 0*x --> 0 + if (CFP->isZero()) + return SDValue(CFP,0); + // 1*x --> x + if (CFP->isExactlyValue(1.0)) + return V; + } + } + } + assert(VT.isFloatingPoint() && "This operator only applies to FP types!"); + assert(N1.getValueType() == N2.getValueType() && + N1.getValueType() == VT && "Binary operator types must match!"); + break; + case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match. + assert(N1.getValueType() == VT && + N1.getValueType().isFloatingPoint() && + N2.getValueType().isFloatingPoint() && + "Invalid FCOPYSIGN!"); + break; + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + case ISD::ROTL: + case ISD::ROTR: + assert(VT == N1.getValueType() && + "Shift operators return type must be the same as their first arg"); + assert(VT.isInteger() && N2.getValueType().isInteger() && + "Shifts only work on integers"); + assert((!VT.isVector() || VT == N2.getValueType()) && + "Vector shift amounts must be in the same as their first arg"); + // Verify that the shift amount VT is bit enough to hold valid shift + // amounts. This catches things like trying to shift an i1024 value by an + // i8, which is easy to fall into in generic code that uses + // TLI.getShiftAmount(). + assert(N2.getValueType().getSizeInBits() >= + Log2_32_Ceil(N1.getValueType().getSizeInBits()) && + "Invalid use of small shift amount with oversized value!"); + + // Always fold shifts of i1 values so the code generator doesn't need to + // handle them. Since we know the size of the shift has to be less than the + // size of the value, the shift/rotate count is guaranteed to be zero. + if (VT == MVT::i1) + return N1; + if (N2C && N2C->isNullValue()) + return N1; + break; + case ISD::FP_ROUND_INREG: { + EVT EVT = cast<VTSDNode>(N2)->getVT(); + assert(VT == N1.getValueType() && "Not an inreg round!"); + assert(VT.isFloatingPoint() && EVT.isFloatingPoint() && + "Cannot FP_ROUND_INREG integer types"); + assert(EVT.isVector() == VT.isVector() && + "FP_ROUND_INREG type should be vector iff the operand " + "type is vector!"); + assert((!EVT.isVector() || + EVT.getVectorNumElements() == VT.getVectorNumElements()) && + "Vector element counts must match in FP_ROUND_INREG"); + assert(EVT.bitsLE(VT) && "Not rounding down!"); + (void)EVT; + if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. + break; + } + case ISD::FP_ROUND: + assert(VT.isFloatingPoint() && + N1.getValueType().isFloatingPoint() && + VT.bitsLE(N1.getValueType()) && + isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!"); + if (N1.getValueType() == VT) return N1; // noop conversion. + break; + case ISD::AssertSext: + case ISD::AssertZext: { + EVT EVT = cast<VTSDNode>(N2)->getVT(); + assert(VT == N1.getValueType() && "Not an inreg extend!"); + assert(VT.isInteger() && EVT.isInteger() && + "Cannot *_EXTEND_INREG FP types"); + assert(!EVT.isVector() && + "AssertSExt/AssertZExt type should be the vector element type " + "rather than the vector type!"); + assert(EVT.bitsLE(VT) && "Not extending!"); + if (VT == EVT) return N1; // noop assertion. + break; + } + case ISD::SIGN_EXTEND_INREG: { + EVT EVT = cast<VTSDNode>(N2)->getVT(); + assert(VT == N1.getValueType() && "Not an inreg extend!"); + assert(VT.isInteger() && EVT.isInteger() && + "Cannot *_EXTEND_INREG FP types"); + assert(EVT.isVector() == VT.isVector() && + "SIGN_EXTEND_INREG type should be vector iff the operand " + "type is vector!"); + assert((!EVT.isVector() || + EVT.getVectorNumElements() == VT.getVectorNumElements()) && + "Vector element counts must match in SIGN_EXTEND_INREG"); + assert(EVT.bitsLE(VT) && "Not extending!"); + if (EVT == VT) return N1; // Not actually extending + + auto SignExtendInReg = [&](APInt Val) { + unsigned FromBits = EVT.getScalarType().getSizeInBits(); + Val <<= Val.getBitWidth() - FromBits; + Val = Val.ashr(Val.getBitWidth() - FromBits); + return getConstant(Val, DL, VT.getScalarType()); + }; + + if (N1C) { + APInt Val = N1C->getAPIntValue(); + return SignExtendInReg(Val); + } + if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) { + SmallVector<SDValue, 8> Ops; + for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) { + SDValue Op = N1.getOperand(i); + if (Op.getValueType() != VT.getScalarType()) break; + if (Op.getOpcode() == ISD::UNDEF) { + Ops.push_back(Op); + continue; + } + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getNode())) { + APInt Val = C->getAPIntValue(); + Ops.push_back(SignExtendInReg(Val)); + continue; + } + break; + } + if (Ops.size() == VT.getVectorNumElements()) + return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); + } + break; + } + case ISD::EXTRACT_VECTOR_ELT: + // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF. + if (N1.getOpcode() == ISD::UNDEF) + return getUNDEF(VT); + + // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF + if (N2C && N2C->getZExtValue() >= N1.getValueType().getVectorNumElements()) + return getUNDEF(VT); + + // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is + // expanding copies of large vectors from registers. + if (N2C && + N1.getOpcode() == ISD::CONCAT_VECTORS && + N1.getNumOperands() > 0) { + unsigned Factor = + N1.getOperand(0).getValueType().getVectorNumElements(); + return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, + N1.getOperand(N2C->getZExtValue() / Factor), + getConstant(N2C->getZExtValue() % Factor, DL, + N2.getValueType())); + } + + // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is + // expanding large vector constants. + if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) { + SDValue Elt = N1.getOperand(N2C->getZExtValue()); + + if (VT != Elt.getValueType()) + // If the vector element type is not legal, the BUILD_VECTOR operands + // are promoted and implicitly truncated, and the result implicitly + // extended. Make that explicit here. + Elt = getAnyExtOrTrunc(Elt, DL, VT); + + return Elt; + } + + // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector + // operations are lowered to scalars. + if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) { + // If the indices are the same, return the inserted element else + // if the indices are known different, extract the element from + // the original vector. + SDValue N1Op2 = N1.getOperand(2); + ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode()); + + if (N1Op2C && N2C) { + if (N1Op2C->getZExtValue() == N2C->getZExtValue()) { + if (VT == N1.getOperand(1).getValueType()) + return N1.getOperand(1); + else + return getSExtOrTrunc(N1.getOperand(1), DL, VT); + } + + return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2); + } + } + break; + case ISD::EXTRACT_ELEMENT: + assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!"); + assert(!N1.getValueType().isVector() && !VT.isVector() && + (N1.getValueType().isInteger() == VT.isInteger()) && + N1.getValueType() != VT && + "Wrong types for EXTRACT_ELEMENT!"); + + // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding + // 64-bit integers into 32-bit parts. Instead of building the extract of + // the BUILD_PAIR, only to have legalize rip it apart, just do it now. + if (N1.getOpcode() == ISD::BUILD_PAIR) + return N1.getOperand(N2C->getZExtValue()); + + // EXTRACT_ELEMENT of a constant int is also very common. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { + unsigned ElementSize = VT.getSizeInBits(); + unsigned Shift = ElementSize * N2C->getZExtValue(); + APInt ShiftedVal = C->getAPIntValue().lshr(Shift); + return getConstant(ShiftedVal.trunc(ElementSize), DL, VT); + } + break; + case ISD::EXTRACT_SUBVECTOR: { + SDValue Index = N2; + if (VT.isSimple() && N1.getValueType().isSimple()) { + assert(VT.isVector() && N1.getValueType().isVector() && + "Extract subvector VTs must be a vectors!"); + assert(VT.getVectorElementType() == + N1.getValueType().getVectorElementType() && + "Extract subvector VTs must have the same element type!"); + assert(VT.getSimpleVT() <= N1.getSimpleValueType() && + "Extract subvector must be from larger vector to smaller vector!"); + + if (isa<ConstantSDNode>(Index.getNode())) { + assert((VT.getVectorNumElements() + + cast<ConstantSDNode>(Index.getNode())->getZExtValue() + <= N1.getValueType().getVectorNumElements()) + && "Extract subvector overflow!"); + } + + // Trivial extraction. + if (VT.getSimpleVT() == N1.getSimpleValueType()) + return N1; + } + break; + } + } + + // Perform trivial constant folding. + if (SDValue SV = + FoldConstantArithmetic(Opcode, DL, VT, N1.getNode(), N2.getNode())) + return SV; + + // Canonicalize constant to RHS if commutative. + if (N1C && !N2C && isCommutativeBinOp(Opcode)) { + std::swap(N1C, N2C); + std::swap(N1, N2); + } + + // Constant fold FP operations. + bool HasFPExceptions = TLI->hasFloatingPointExceptions(); + ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode()); + ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode()); + if (N1CFP) { + if (!N2CFP && isCommutativeBinOp(Opcode)) { + // Canonicalize constant to RHS if commutative. + std::swap(N1CFP, N2CFP); + std::swap(N1, N2); + } else if (N2CFP) { + APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); + APFloat::opStatus s; + switch (Opcode) { + case ISD::FADD: + s = V1.add(V2, APFloat::rmNearestTiesToEven); + if (!HasFPExceptions || s != APFloat::opInvalidOp) + return getConstantFP(V1, DL, VT); + break; + case ISD::FSUB: + s = V1.subtract(V2, APFloat::rmNearestTiesToEven); + if (!HasFPExceptions || s!=APFloat::opInvalidOp) + return getConstantFP(V1, DL, VT); + break; + case ISD::FMUL: + s = V1.multiply(V2, APFloat::rmNearestTiesToEven); + if (!HasFPExceptions || s!=APFloat::opInvalidOp) + return getConstantFP(V1, DL, VT); + break; + case ISD::FDIV: + s = V1.divide(V2, APFloat::rmNearestTiesToEven); + if (!HasFPExceptions || (s!=APFloat::opInvalidOp && + s!=APFloat::opDivByZero)) { + return getConstantFP(V1, DL, VT); + } + break; + case ISD::FREM : + s = V1.mod(V2, APFloat::rmNearestTiesToEven); + if (!HasFPExceptions || (s!=APFloat::opInvalidOp && + s!=APFloat::opDivByZero)) { + return getConstantFP(V1, DL, VT); + } + break; + case ISD::FCOPYSIGN: + V1.copySign(V2); + return getConstantFP(V1, DL, VT); + default: break; + } + } + + if (Opcode == ISD::FP_ROUND) { + APFloat V = N1CFP->getValueAPF(); // make copy + bool ignored; + // This can return overflow, underflow, or inexact; we don't care. + // FIXME need to be more flexible about rounding mode. + (void)V.convert(EVTToAPFloatSemantics(VT), + APFloat::rmNearestTiesToEven, &ignored); + return getConstantFP(V, DL, VT); + } + } + + // Canonicalize an UNDEF to the RHS, even over a constant. + if (N1.getOpcode() == ISD::UNDEF) { + if (isCommutativeBinOp(Opcode)) { + std::swap(N1, N2); + } else { + switch (Opcode) { + case ISD::FP_ROUND_INREG: + case ISD::SIGN_EXTEND_INREG: + case ISD::SUB: + case ISD::FSUB: + case ISD::FDIV: + case ISD::FREM: + case ISD::SRA: + return N1; // fold op(undef, arg2) -> undef + case ISD::UDIV: + case ISD::SDIV: + case ISD::UREM: + case ISD::SREM: + case ISD::SRL: + case ISD::SHL: + if (!VT.isVector()) + return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0 + // For vectors, we can't easily build an all zero vector, just return + // the LHS. + return N2; + } + } + } + + // Fold a bunch of operators when the RHS is undef. + if (N2.getOpcode() == ISD::UNDEF) { + switch (Opcode) { + case ISD::XOR: + if (N1.getOpcode() == ISD::UNDEF) + // Handle undef ^ undef -> 0 special case. This is a common + // idiom (misuse). + return getConstant(0, DL, VT); + // fallthrough + case ISD::ADD: + case ISD::ADDC: + case ISD::ADDE: + case ISD::SUB: + case ISD::UDIV: + case ISD::SDIV: + case ISD::UREM: + case ISD::SREM: + return N2; // fold op(arg1, undef) -> undef + case ISD::FADD: + case ISD::FSUB: + case ISD::FMUL: + case ISD::FDIV: + case ISD::FREM: + if (getTarget().Options.UnsafeFPMath) + return N2; + break; + case ISD::MUL: + case ISD::AND: + case ISD::SRL: + case ISD::SHL: + if (!VT.isVector()) + return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0 + // For vectors, we can't easily build an all zero vector, just return + // the LHS. + return N1; + case ISD::OR: + if (!VT.isVector()) + return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); + // For vectors, we can't easily build an all one vector, just return + // the LHS. + return N1; + case ISD::SRA: + return N1; + } + } + + // Memoize this node if possible. + BinarySDNode *N; + SDVTList VTs = getVTList(VT); + if (VT != MVT::Glue) { + SDValue Ops[] = {N1, N2}; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops); + AddNodeIDFlags(ID, Opcode, Flags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) + return SDValue(E, 0); + + N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); + + CSEMap.InsertNode(N, IP); + } else { + N = GetBinarySDNode(Opcode, DL, VTs, N1, N2, Flags); + } + + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, + SDValue N1, SDValue N2, SDValue N3) { + // Perform various simplifications. + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); + switch (Opcode) { + case ISD::FMA: { + ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); + ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2); + ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3); + if (N1CFP && N2CFP && N3CFP) { + APFloat V1 = N1CFP->getValueAPF(); + const APFloat &V2 = N2CFP->getValueAPF(); + const APFloat &V3 = N3CFP->getValueAPF(); + APFloat::opStatus s = + V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven); + if (!TLI->hasFloatingPointExceptions() || s != APFloat::opInvalidOp) + return getConstantFP(V1, DL, VT); + } + break; + } + case ISD::CONCAT_VECTORS: + // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to + // one big BUILD_VECTOR. + if (N1.getOpcode() == ISD::BUILD_VECTOR && + N2.getOpcode() == ISD::BUILD_VECTOR && + N3.getOpcode() == ISD::BUILD_VECTOR) { + SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), + N1.getNode()->op_end()); + Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end()); + Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end()); + return getNode(ISD::BUILD_VECTOR, DL, VT, Elts); + } + break; + case ISD::SETCC: { + // Use FoldSetCC to simplify SETCC's. + SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL); + if (Simp.getNode()) return Simp; + break; + } + case ISD::SELECT: + if (N1C) { + if (N1C->getZExtValue()) + return N2; // select true, X, Y -> X + return N3; // select false, X, Y -> Y + } + + if (N2 == N3) return N2; // select C, X, X -> X + break; + case ISD::VECTOR_SHUFFLE: + llvm_unreachable("should use getVectorShuffle constructor!"); + case ISD::INSERT_SUBVECTOR: { + SDValue Index = N3; + if (VT.isSimple() && N1.getValueType().isSimple() + && N2.getValueType().isSimple()) { + assert(VT.isVector() && N1.getValueType().isVector() && + N2.getValueType().isVector() && + "Insert subvector VTs must be a vectors"); + assert(VT == N1.getValueType() && + "Dest and insert subvector source types must match!"); + assert(N2.getSimpleValueType() <= N1.getSimpleValueType() && + "Insert subvector must be from smaller vector to larger vector!"); + if (isa<ConstantSDNode>(Index.getNode())) { + assert((N2.getValueType().getVectorNumElements() + + cast<ConstantSDNode>(Index.getNode())->getZExtValue() + <= VT.getVectorNumElements()) + && "Insert subvector overflow!"); + } + + // Trivial insertion. + if (VT.getSimpleVT() == N2.getSimpleValueType()) + return N2; + } + break; + } + case ISD::BITCAST: + // Fold bit_convert nodes from a type to themselves. + if (N1.getValueType() == VT) + return N1; + break; + } + + // Memoize node if it doesn't produce a flag. + SDNode *N; + SDVTList VTs = getVTList(VT); + if (VT != MVT::Glue) { + SDValue Ops[] = { N1, N2, N3 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) + return SDValue(E, 0); + + N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTs, N1, N2, N3); + CSEMap.InsertNode(N, IP); + } else { + N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTs, N1, N2, N3); + } + + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, + SDValue N1, SDValue N2, SDValue N3, + SDValue N4) { + SDValue Ops[] = { N1, N2, N3, N4 }; + return getNode(Opcode, DL, VT, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, + SDValue N1, SDValue N2, SDValue N3, + SDValue N4, SDValue N5) { + SDValue Ops[] = { N1, N2, N3, N4, N5 }; + return getNode(Opcode, DL, VT, Ops); +} + +/// getStackArgumentTokenFactor - Compute a TokenFactor to force all +/// the incoming stack arguments to be loaded from the stack. +SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) { + SmallVector<SDValue, 8> ArgChains; + + // Include the original chain at the beginning of the list. When this is + // used by target LowerCall hooks, this helps legalize find the + // CALLSEQ_BEGIN node. + ArgChains.push_back(Chain); + + // Add a chain value for each stack argument. + for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(), + UE = getEntryNode().getNode()->use_end(); U != UE; ++U) + if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) + if (FI->getIndex() < 0) + ArgChains.push_back(SDValue(L, 1)); + + // Build a tokenfactor for all the chains. + return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); +} + +/// getMemsetValue - Vectorized representation of the memset value +/// operand. +static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG, + SDLoc dl) { + assert(Value.getOpcode() != ISD::UNDEF); + + unsigned NumBits = VT.getScalarType().getSizeInBits(); + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) { + assert(C->getAPIntValue().getBitWidth() == 8); + APInt Val = APInt::getSplat(NumBits, C->getAPIntValue()); + if (VT.isInteger()) + return DAG.getConstant(Val, dl, VT); + return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl, + VT); + } + + assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?"); + EVT IntVT = VT.getScalarType(); + if (!IntVT.isInteger()) + IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits()); + + Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value); + if (NumBits > 8) { + // Use a multiplication with 0x010101... to extend the input to the + // required length. + APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); + Value = DAG.getNode(ISD::MUL, dl, IntVT, Value, + DAG.getConstant(Magic, dl, IntVT)); + } + + if (VT != Value.getValueType() && !VT.isInteger()) + Value = DAG.getNode(ISD::BITCAST, dl, VT.getScalarType(), Value); + if (VT != Value.getValueType()) { + assert(VT.getVectorElementType() == Value.getValueType() && + "value type should be one vector element here"); + SmallVector<SDValue, 8> BVOps(VT.getVectorNumElements(), Value); + Value = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, BVOps); + } + + return Value; +} + +/// getMemsetStringVal - Similar to getMemsetValue. Except this is only +/// used when a memcpy is turned into a memset when the source is a constant +/// string ptr. +static SDValue getMemsetStringVal(EVT VT, SDLoc dl, SelectionDAG &DAG, + const TargetLowering &TLI, StringRef Str) { + // Handle vector with all elements zero. + if (Str.empty()) { + if (VT.isInteger()) + return DAG.getConstant(0, dl, VT); + else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) + return DAG.getConstantFP(0.0, dl, VT); + else if (VT.isVector()) { + unsigned NumElts = VT.getVectorNumElements(); + MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; + return DAG.getNode(ISD::BITCAST, dl, VT, + DAG.getConstant(0, dl, + EVT::getVectorVT(*DAG.getContext(), + EltVT, NumElts))); + } else + llvm_unreachable("Expected type!"); + } + + assert(!VT.isVector() && "Can't handle vector type here!"); + unsigned NumVTBits = VT.getSizeInBits(); + unsigned NumVTBytes = NumVTBits / 8; + unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size())); + + APInt Val(NumVTBits, 0); + if (TLI.isLittleEndian()) { + for (unsigned i = 0; i != NumBytes; ++i) + Val |= (uint64_t)(unsigned char)Str[i] << i*8; + } else { + for (unsigned i = 0; i != NumBytes; ++i) + Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8; + } + + // If the "cost" of materializing the integer immediate is less than the cost + // of a load, then it is cost effective to turn the load into the immediate. + Type *Ty = VT.getTypeForEVT(*DAG.getContext()); + if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty)) + return DAG.getConstant(Val, dl, VT); + return SDValue(nullptr, 0); +} + +/// getMemBasePlusOffset - Returns base and offset node for the +/// +static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, SDLoc dl, + SelectionDAG &DAG) { + EVT VT = Base.getValueType(); + return DAG.getNode(ISD::ADD, dl, + VT, Base, DAG.getConstant(Offset, dl, VT)); +} + +/// isMemSrcFromString - Returns true if memcpy source is a string constant. +/// +static bool isMemSrcFromString(SDValue Src, StringRef &Str) { + unsigned SrcDelta = 0; + GlobalAddressSDNode *G = nullptr; + if (Src.getOpcode() == ISD::GlobalAddress) + G = cast<GlobalAddressSDNode>(Src); + else if (Src.getOpcode() == ISD::ADD && + Src.getOperand(0).getOpcode() == ISD::GlobalAddress && + Src.getOperand(1).getOpcode() == ISD::Constant) { + G = cast<GlobalAddressSDNode>(Src.getOperand(0)); + SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue(); + } + if (!G) + return false; + + return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false); +} + +/// Determines the optimal series of memory ops to replace the memset / memcpy. +/// Return true if the number of memory ops is below the threshold (Limit). +/// It returns the types of the sequence of memory ops to perform +/// memset / memcpy by reference. +static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps, + unsigned Limit, uint64_t Size, + unsigned DstAlign, unsigned SrcAlign, + bool IsMemset, + bool ZeroMemset, + bool MemcpyStrSrc, + bool AllowOverlap, + SelectionDAG &DAG, + const TargetLowering &TLI) { + assert((SrcAlign == 0 || SrcAlign >= DstAlign) && + "Expecting memcpy / memset source to meet alignment requirement!"); + // If 'SrcAlign' is zero, that means the memory operation does not need to + // load the value, i.e. memset or memcpy from constant string. Otherwise, + // it's the inferred alignment of the source. 'DstAlign', on the other hand, + // is the specified alignment of the memory operation. If it is zero, that + // means it's possible to change the alignment of the destination. + // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does + // not need to be loaded. + EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign, + IsMemset, ZeroMemset, MemcpyStrSrc, + DAG.getMachineFunction()); + + if (VT == MVT::Other) { + unsigned AS = 0; + if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment(AS) || + TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign)) { + VT = TLI.getPointerTy(); + } else { + switch (DstAlign & 7) { + case 0: VT = MVT::i64; break; + case 4: VT = MVT::i32; break; + case 2: VT = MVT::i16; break; + default: VT = MVT::i8; break; + } + } + + MVT LVT = MVT::i64; + while (!TLI.isTypeLegal(LVT)) + LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); + assert(LVT.isInteger()); + + if (VT.bitsGT(LVT)) + VT = LVT; + } + + unsigned NumMemOps = 0; + while (Size != 0) { + unsigned VTSize = VT.getSizeInBits() / 8; + while (VTSize > Size) { + // For now, only use non-vector load / store's for the left-over pieces. + EVT NewVT = VT; + unsigned NewVTSize; + + bool Found = false; + if (VT.isVector() || VT.isFloatingPoint()) { + NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; + if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) && + TLI.isSafeMemOpType(NewVT.getSimpleVT())) + Found = true; + else if (NewVT == MVT::i64 && + TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) && + TLI.isSafeMemOpType(MVT::f64)) { + // i64 is usually not legal on 32-bit targets, but f64 may be. + NewVT = MVT::f64; + Found = true; + } + } + + if (!Found) { + do { + NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); + if (NewVT == MVT::i8) + break; + } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT())); + } + NewVTSize = NewVT.getSizeInBits() / 8; + + // If the new VT cannot cover all of the remaining bits, then consider + // issuing a (or a pair of) unaligned and overlapping load / store. + // FIXME: Only does this for 64-bit or more since we don't have proper + // cost model for unaligned load / store. + bool Fast; + unsigned AS = 0; + if (NumMemOps && AllowOverlap && + VTSize >= 8 && NewVTSize < Size && + TLI.allowsMisalignedMemoryAccesses(VT, AS, DstAlign, &Fast) && Fast) + VTSize = Size; + else { + VT = NewVT; + VTSize = NewVTSize; + } + } + + if (++NumMemOps > Limit) + return false; + + MemOps.push_back(VT); + Size -= VTSize; + } + + return true; +} + +static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, SDLoc dl, + SDValue Chain, SDValue Dst, + SDValue Src, uint64_t Size, + unsigned Align, bool isVol, + bool AlwaysInline, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + // Turn a memcpy of undef to nop. + if (Src.getOpcode() == ISD::UNDEF) + return Chain; + + // Expand memcpy to a series of load and store ops if the size operand falls + // below a certain threshold. + // TODO: In the AlwaysInline case, if the size is big then generate a loop + // rather than maybe a humongous number of loads and stores. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + std::vector<EVT> MemOps; + bool DstAlignCanChange = false; + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize); + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); + if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) + DstAlignCanChange = true; + unsigned SrcAlign = DAG.InferPtrAlignment(Src); + if (Align > SrcAlign) + SrcAlign = Align; + StringRef Str; + bool CopyFromStr = isMemSrcFromString(Src, Str); + bool isZeroStr = CopyFromStr && Str.empty(); + unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize); + + if (!FindOptimalMemOpLowering(MemOps, Limit, Size, + (DstAlignCanChange ? 0 : Align), + (isZeroStr ? 0 : SrcAlign), + false, false, CopyFromStr, true, DAG, TLI)) + return SDValue(); + + if (DstAlignCanChange) { + Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); + unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty); + + // Don't promote to an alignment that would require dynamic stack + // realignment. + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + if (!TRI->needsStackRealignment(MF)) + while (NewAlign > Align && + TLI.getDataLayout()->exceedsNaturalStackAlignment(NewAlign)) + NewAlign /= 2; + + if (NewAlign > Align) { + // Give the stack frame object a larger alignment if needed. + if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) + MFI->setObjectAlignment(FI->getIndex(), NewAlign); + Align = NewAlign; + } + } + + SmallVector<SDValue, 8> OutChains; + unsigned NumMemOps = MemOps.size(); + uint64_t SrcOff = 0, DstOff = 0; + for (unsigned i = 0; i != NumMemOps; ++i) { + EVT VT = MemOps[i]; + unsigned VTSize = VT.getSizeInBits() / 8; + SDValue Value, Store; + + if (VTSize > Size) { + // Issuing an unaligned load / store pair that overlaps with the previous + // pair. Adjust the offset accordingly. + assert(i == NumMemOps-1 && i != 0); + SrcOff -= VTSize - Size; + DstOff -= VTSize - Size; + } + + if (CopyFromStr && + (isZeroStr || (VT.isInteger() && !VT.isVector()))) { + // It's unlikely a store of a vector immediate can be done in a single + // instruction. It would require a load from a constantpool first. + // We only handle zero vectors here. + // FIXME: Handle other cases where store of vector immediate is done in + // a single instruction. + Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff)); + if (Value.getNode()) + Store = DAG.getStore(Chain, dl, Value, + getMemBasePlusOffset(Dst, DstOff, dl, DAG), + DstPtrInfo.getWithOffset(DstOff), isVol, + false, Align); + } + + if (!Store.getNode()) { + // The type might not be legal for the target. This should only happen + // if the type is smaller than a legal type, as on PPC, so the right + // thing to do is generate a LoadExt/StoreTrunc pair. These simplify + // to Load/Store if NVT==VT. + // FIXME does the case above also need this? + EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); + assert(NVT.bitsGE(VT)); + Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain, + getMemBasePlusOffset(Src, SrcOff, dl, DAG), + SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false, + false, MinAlign(SrcAlign, SrcOff)); + Store = DAG.getTruncStore(Chain, dl, Value, + getMemBasePlusOffset(Dst, DstOff, dl, DAG), + DstPtrInfo.getWithOffset(DstOff), VT, isVol, + false, Align); + } + OutChains.push_back(Store); + SrcOff += VTSize; + DstOff += VTSize; + Size -= VTSize; + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); +} + +static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, SDLoc dl, + SDValue Chain, SDValue Dst, + SDValue Src, uint64_t Size, + unsigned Align, bool isVol, + bool AlwaysInline, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + // Turn a memmove of undef to nop. + if (Src.getOpcode() == ISD::UNDEF) + return Chain; + + // Expand memmove to a series of load and store ops if the size operand falls + // below a certain threshold. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + std::vector<EVT> MemOps; + bool DstAlignCanChange = false; + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize); + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); + if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) + DstAlignCanChange = true; + unsigned SrcAlign = DAG.InferPtrAlignment(Src); + if (Align > SrcAlign) + SrcAlign = Align; + unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize); + + if (!FindOptimalMemOpLowering(MemOps, Limit, Size, + (DstAlignCanChange ? 0 : Align), SrcAlign, + false, false, false, false, DAG, TLI)) + return SDValue(); + + if (DstAlignCanChange) { + Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); + unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty); + if (NewAlign > Align) { + // Give the stack frame object a larger alignment if needed. + if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) + MFI->setObjectAlignment(FI->getIndex(), NewAlign); + Align = NewAlign; + } + } + + uint64_t SrcOff = 0, DstOff = 0; + SmallVector<SDValue, 8> LoadValues; + SmallVector<SDValue, 8> LoadChains; + SmallVector<SDValue, 8> OutChains; + unsigned NumMemOps = MemOps.size(); + for (unsigned i = 0; i < NumMemOps; i++) { + EVT VT = MemOps[i]; + unsigned VTSize = VT.getSizeInBits() / 8; + SDValue Value; + + Value = DAG.getLoad(VT, dl, Chain, + getMemBasePlusOffset(Src, SrcOff, dl, DAG), + SrcPtrInfo.getWithOffset(SrcOff), isVol, + false, false, SrcAlign); + LoadValues.push_back(Value); + LoadChains.push_back(Value.getValue(1)); + SrcOff += VTSize; + } + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); + OutChains.clear(); + for (unsigned i = 0; i < NumMemOps; i++) { + EVT VT = MemOps[i]; + unsigned VTSize = VT.getSizeInBits() / 8; + SDValue Store; + + Store = DAG.getStore(Chain, dl, LoadValues[i], + getMemBasePlusOffset(Dst, DstOff, dl, DAG), + DstPtrInfo.getWithOffset(DstOff), isVol, false, Align); + OutChains.push_back(Store); + DstOff += VTSize; + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); +} + +/// \brief Lower the call to 'memset' intrinsic function into a series of store +/// operations. +/// +/// \param DAG Selection DAG where lowered code is placed. +/// \param dl Link to corresponding IR location. +/// \param Chain Control flow dependency. +/// \param Dst Pointer to destination memory location. +/// \param Src Value of byte to write into the memory. +/// \param Size Number of bytes to write. +/// \param Align Alignment of the destination in bytes. +/// \param isVol True if destination is volatile. +/// \param DstPtrInfo IR information on the memory pointer. +/// \returns New head in the control flow, if lowering was successful, empty +/// SDValue otherwise. +/// +/// The function tries to replace 'llvm.memset' intrinsic with several store +/// operations and value calculation code. This is usually profitable for small +/// memory size. +static SDValue getMemsetStores(SelectionDAG &DAG, SDLoc dl, + SDValue Chain, SDValue Dst, + SDValue Src, uint64_t Size, + unsigned Align, bool isVol, + MachinePointerInfo DstPtrInfo) { + // Turn a memset of undef to nop. + if (Src.getOpcode() == ISD::UNDEF) + return Chain; + + // Expand memset to a series of load/store ops if the size operand + // falls below a certain threshold. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + std::vector<EVT> MemOps; + bool DstAlignCanChange = false; + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + bool OptSize = MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize); + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst); + if (FI && !MFI->isFixedObjectIndex(FI->getIndex())) + DstAlignCanChange = true; + bool IsZeroVal = + isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue(); + if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize), + Size, (DstAlignCanChange ? 0 : Align), 0, + true, IsZeroVal, false, true, DAG, TLI)) + return SDValue(); + + if (DstAlignCanChange) { + Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext()); + unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty); + if (NewAlign > Align) { + // Give the stack frame object a larger alignment if needed. + if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign) + MFI->setObjectAlignment(FI->getIndex(), NewAlign); + Align = NewAlign; + } + } + + SmallVector<SDValue, 8> OutChains; + uint64_t DstOff = 0; + unsigned NumMemOps = MemOps.size(); + + // Find the largest store and generate the bit pattern for it. + EVT LargestVT = MemOps[0]; + for (unsigned i = 1; i < NumMemOps; i++) + if (MemOps[i].bitsGT(LargestVT)) + LargestVT = MemOps[i]; + SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl); + + for (unsigned i = 0; i < NumMemOps; i++) { + EVT VT = MemOps[i]; + unsigned VTSize = VT.getSizeInBits() / 8; + if (VTSize > Size) { + // Issuing an unaligned load / store pair that overlaps with the previous + // pair. Adjust the offset accordingly. + assert(i == NumMemOps-1 && i != 0); + DstOff -= VTSize - Size; + } + + // If this store is smaller than the largest store see whether we can get + // the smaller value for free with a truncate. + SDValue Value = MemSetValue; + if (VT.bitsLT(LargestVT)) { + if (!LargestVT.isVector() && !VT.isVector() && + TLI.isTruncateFree(LargestVT, VT)) + Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue); + else + Value = getMemsetValue(Src, VT, DAG, dl); + } + assert(Value.getValueType() == VT && "Value with wrong type."); + SDValue Store = DAG.getStore(Chain, dl, Value, + getMemBasePlusOffset(Dst, DstOff, dl, DAG), + DstPtrInfo.getWithOffset(DstOff), + isVol, false, Align); + OutChains.push_back(Store); + DstOff += VT.getSizeInBits() / 8; + Size -= VTSize; + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); +} + +SDValue SelectionDAG::getMemcpy(SDValue Chain, SDLoc dl, SDValue Dst, + SDValue Src, SDValue Size, + unsigned Align, bool isVol, bool AlwaysInline, + bool isTailCall, MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); + + // Check to see if we should lower the memcpy to loads and stores first. + // For cases within the target-specified limits, this is the best choice. + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + if (ConstantSize) { + // Memcpy with size zero? Just return the original chain. + if (ConstantSize->isNullValue()) + return Chain; + + SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, + ConstantSize->getZExtValue(),Align, + isVol, false, DstPtrInfo, SrcPtrInfo); + if (Result.getNode()) + return Result; + } + + // Then check to see if we should lower the memcpy with target-specific + // code. If the target chooses to do this, this is the next best. + if (TSI) { + SDValue Result = TSI->EmitTargetCodeForMemcpy( + *this, dl, Chain, Dst, Src, Size, Align, isVol, AlwaysInline, + DstPtrInfo, SrcPtrInfo); + if (Result.getNode()) + return Result; + } + + // If we really need inline code and the target declined to provide it, + // use a (potentially long) sequence of loads and stores. + if (AlwaysInline) { + assert(ConstantSize && "AlwaysInline requires a constant size!"); + return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src, + ConstantSize->getZExtValue(), Align, isVol, + true, DstPtrInfo, SrcPtrInfo); + } + + // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc + // memcpy is not guaranteed to be safe. libc memcpys aren't required to + // respect volatile, so they may do things like read or write memory + // beyond the given memory regions. But fixing this isn't easy, and most + // people don't care. + + // Emit a library call. + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Ty = TLI->getDataLayout()->getIntPtrType(*getContext()); + Entry.Node = Dst; Args.push_back(Entry); + Entry.Node = Src; Args.push_back(Entry); + Entry.Node = Size; Args.push_back(Entry); + // FIXME: pass in SDLoc + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl).setChain(Chain) + .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMCPY), + Type::getVoidTy(*getContext()), + getExternalSymbol(TLI->getLibcallName(RTLIB::MEMCPY), + TLI->getPointerTy()), std::move(Args), 0) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getMemmove(SDValue Chain, SDLoc dl, SDValue Dst, + SDValue Src, SDValue Size, + unsigned Align, bool isVol, bool isTailCall, + MachinePointerInfo DstPtrInfo, + MachinePointerInfo SrcPtrInfo) { + assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); + + // Check to see if we should lower the memmove to loads and stores first. + // For cases within the target-specified limits, this is the best choice. + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + if (ConstantSize) { + // Memmove with size zero? Just return the original chain. + if (ConstantSize->isNullValue()) + return Chain; + + SDValue Result = + getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src, + ConstantSize->getZExtValue(), Align, isVol, + false, DstPtrInfo, SrcPtrInfo); + if (Result.getNode()) + return Result; + } + + // Then check to see if we should lower the memmove with target-specific + // code. If the target chooses to do this, this is the next best. + if (TSI) { + SDValue Result = TSI->EmitTargetCodeForMemmove( + *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo, SrcPtrInfo); + if (Result.getNode()) + return Result; + } + + // FIXME: If the memmove is volatile, lowering it to plain libc memmove may + // not be safe. See memcpy above for more details. + + // Emit a library call. + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Ty = TLI->getDataLayout()->getIntPtrType(*getContext()); + Entry.Node = Dst; Args.push_back(Entry); + Entry.Node = Src; Args.push_back(Entry); + Entry.Node = Size; Args.push_back(Entry); + // FIXME: pass in SDLoc + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl).setChain(Chain) + .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE), + Type::getVoidTy(*getContext()), + getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE), + TLI->getPointerTy()), std::move(Args), 0) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getMemset(SDValue Chain, SDLoc dl, SDValue Dst, + SDValue Src, SDValue Size, + unsigned Align, bool isVol, bool isTailCall, + MachinePointerInfo DstPtrInfo) { + assert(Align && "The SDAG layer expects explicit alignment and reserves 0"); + + // Check to see if we should lower the memset to stores first. + // For cases within the target-specified limits, this is the best choice. + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + if (ConstantSize) { + // Memset with size zero? Just return the original chain. + if (ConstantSize->isNullValue()) + return Chain; + + SDValue Result = + getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), + Align, isVol, DstPtrInfo); + + if (Result.getNode()) + return Result; + } + + // Then check to see if we should lower the memset with target-specific + // code. If the target chooses to do this, this is the next best. + if (TSI) { + SDValue Result = TSI->EmitTargetCodeForMemset( + *this, dl, Chain, Dst, Src, Size, Align, isVol, DstPtrInfo); + if (Result.getNode()) + return Result; + } + + // Emit a library call. + Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(*getContext()); + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Node = Dst; Entry.Ty = IntPtrTy; + Args.push_back(Entry); + Entry.Node = Src; + Entry.Ty = Src.getValueType().getTypeForEVT(*getContext()); + Args.push_back(Entry); + Entry.Node = Size; + Entry.Ty = IntPtrTy; + Args.push_back(Entry); + + // FIXME: pass in SDLoc + TargetLowering::CallLoweringInfo CLI(*this); + CLI.setDebugLoc(dl).setChain(Chain) + .setCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET), + Type::getVoidTy(*getContext()), + getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET), + TLI->getPointerTy()), std::move(Args), 0) + .setDiscardResult() + .setTailCall(isTailCall); + + std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI); + return CallResult.second; +} + +SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, + SDVTList VTList, ArrayRef<SDValue> Ops, + MachineMemOperand *MMO, + AtomicOrdering SuccessOrdering, + AtomicOrdering FailureOrdering, + SynchronizationScope SynchScope) { + FoldingSetNodeID ID; + ID.AddInteger(MemVT.getRawBits()); + AddNodeIDNode(ID, Opcode, VTList, Ops); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void* IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<AtomicSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + + // Allocate the operands array for the node out of the BumpPtrAllocator, since + // SDNode doesn't have access to it. This memory will be "leaked" when + // the node is deallocated, but recovered when the allocator is released. + // If the number of operands is less than 5 we use AtomicSDNode's internal + // storage. + unsigned NumOps = Ops.size(); + SDUse *DynOps = NumOps > 4 ? OperandAllocator.Allocate<SDUse>(NumOps) + : nullptr; + + SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl.getIROrder(), + dl.getDebugLoc(), VTList, MemVT, + Ops.data(), DynOps, NumOps, MMO, + SuccessOrdering, FailureOrdering, + SynchScope); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, + SDVTList VTList, ArrayRef<SDValue> Ops, + MachineMemOperand *MMO, + AtomicOrdering Ordering, + SynchronizationScope SynchScope) { + return getAtomic(Opcode, dl, MemVT, VTList, Ops, MMO, Ordering, + Ordering, SynchScope); +} + +SDValue SelectionDAG::getAtomicCmpSwap( + unsigned Opcode, SDLoc dl, EVT MemVT, SDVTList VTs, SDValue Chain, + SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, + unsigned Alignment, AtomicOrdering SuccessOrdering, + AtomicOrdering FailureOrdering, SynchronizationScope SynchScope) { + assert(Opcode == ISD::ATOMIC_CMP_SWAP || + Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); + assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); + + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = getEVTAlignment(MemVT); + + MachineFunction &MF = getMachineFunction(); + + // FIXME: Volatile isn't really correct; we should keep track of atomic + // orderings in the memoperand. + unsigned Flags = MachineMemOperand::MOVolatile; + Flags |= MachineMemOperand::MOLoad; + Flags |= MachineMemOperand::MOStore; + + MachineMemOperand *MMO = + MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment); + + return getAtomicCmpSwap(Opcode, dl, MemVT, VTs, Chain, Ptr, Cmp, Swp, MMO, + SuccessOrdering, FailureOrdering, SynchScope); +} + +SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, SDLoc dl, EVT MemVT, + SDVTList VTs, SDValue Chain, SDValue Ptr, + SDValue Cmp, SDValue Swp, + MachineMemOperand *MMO, + AtomicOrdering SuccessOrdering, + AtomicOrdering FailureOrdering, + SynchronizationScope SynchScope) { + assert(Opcode == ISD::ATOMIC_CMP_SWAP || + Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); + assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types"); + + SDValue Ops[] = {Chain, Ptr, Cmp, Swp}; + return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, + SuccessOrdering, FailureOrdering, SynchScope); +} + +SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, + SDValue Chain, + SDValue Ptr, SDValue Val, + const Value* PtrVal, + unsigned Alignment, + AtomicOrdering Ordering, + SynchronizationScope SynchScope) { + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = getEVTAlignment(MemVT); + + MachineFunction &MF = getMachineFunction(); + // An atomic store does not load. An atomic load does not store. + // (An atomicrmw obviously both loads and stores.) + // For now, atomics are considered to be volatile always, and they are + // chained as such. + // FIXME: Volatile isn't really correct; we should keep track of atomic + // orderings in the memoperand. + unsigned Flags = MachineMemOperand::MOVolatile; + if (Opcode != ISD::ATOMIC_STORE) + Flags |= MachineMemOperand::MOLoad; + if (Opcode != ISD::ATOMIC_LOAD) + Flags |= MachineMemOperand::MOStore; + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags, + MemVT.getStoreSize(), Alignment); + + return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO, + Ordering, SynchScope); +} + +SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, + SDValue Chain, + SDValue Ptr, SDValue Val, + MachineMemOperand *MMO, + AtomicOrdering Ordering, + SynchronizationScope SynchScope) { + assert((Opcode == ISD::ATOMIC_LOAD_ADD || + Opcode == ISD::ATOMIC_LOAD_SUB || + Opcode == ISD::ATOMIC_LOAD_AND || + Opcode == ISD::ATOMIC_LOAD_OR || + Opcode == ISD::ATOMIC_LOAD_XOR || + Opcode == ISD::ATOMIC_LOAD_NAND || + Opcode == ISD::ATOMIC_LOAD_MIN || + Opcode == ISD::ATOMIC_LOAD_MAX || + Opcode == ISD::ATOMIC_LOAD_UMIN || + Opcode == ISD::ATOMIC_LOAD_UMAX || + Opcode == ISD::ATOMIC_SWAP || + Opcode == ISD::ATOMIC_STORE) && + "Invalid Atomic Op"); + + EVT VT = Val.getValueType(); + + SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) : + getVTList(VT, MVT::Other); + SDValue Ops[] = {Chain, Ptr, Val}; + return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope); +} + +SDValue SelectionDAG::getAtomic(unsigned Opcode, SDLoc dl, EVT MemVT, + EVT VT, SDValue Chain, + SDValue Ptr, + MachineMemOperand *MMO, + AtomicOrdering Ordering, + SynchronizationScope SynchScope) { + assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op"); + + SDVTList VTs = getVTList(VT, MVT::Other); + SDValue Ops[] = {Chain, Ptr}; + return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO, Ordering, SynchScope); +} + +/// getMergeValues - Create a MERGE_VALUES node from the given operands. +SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, SDLoc dl) { + if (Ops.size() == 1) + return Ops[0]; + + SmallVector<EVT, 4> VTs; + VTs.reserve(Ops.size()); + for (unsigned i = 0; i < Ops.size(); ++i) + VTs.push_back(Ops[i].getValueType()); + return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops); +} + +SDValue +SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList, + ArrayRef<SDValue> Ops, + EVT MemVT, MachinePointerInfo PtrInfo, + unsigned Align, bool Vol, + bool ReadMem, bool WriteMem, unsigned Size) { + if (Align == 0) // Ensure that codegen never sees alignment 0 + Align = getEVTAlignment(MemVT); + + MachineFunction &MF = getMachineFunction(); + unsigned Flags = 0; + if (WriteMem) + Flags |= MachineMemOperand::MOStore; + if (ReadMem) + Flags |= MachineMemOperand::MOLoad; + if (Vol) + Flags |= MachineMemOperand::MOVolatile; + if (!Size) + Size = MemVT.getStoreSize(); + MachineMemOperand *MMO = + MF.getMachineMemOperand(PtrInfo, Flags, Size, Align); + + return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO); +} + +SDValue +SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDLoc dl, SDVTList VTList, + ArrayRef<SDValue> Ops, EVT MemVT, + MachineMemOperand *MMO) { + assert((Opcode == ISD::INTRINSIC_VOID || + Opcode == ISD::INTRINSIC_W_CHAIN || + Opcode == ISD::PREFETCH || + Opcode == ISD::LIFETIME_START || + Opcode == ISD::LIFETIME_END || + (Opcode <= INT_MAX && + (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) && + "Opcode is not a memory-accessing opcode!"); + + // Memoize the node unless it returns a flag. + MemIntrinsicSDNode *N; + if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTList, Ops); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + + N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(), + dl.getDebugLoc(), VTList, Ops, + MemVT, MMO); + CSEMap.InsertNode(N, IP); + } else { + N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl.getIROrder(), + dl.getDebugLoc(), VTList, Ops, + MemVT, MMO); + } + InsertNode(N); + return SDValue(N, 0); +} + +/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a +/// MachinePointerInfo record from it. This is particularly useful because the +/// code generator has many cases where it doesn't bother passing in a +/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". +static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) { + // If this is FI+Offset, we can model it. + if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) + return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset); + + // If this is (FI+Offset1)+Offset2, we can model it. + if (Ptr.getOpcode() != ISD::ADD || + !isa<ConstantSDNode>(Ptr.getOperand(1)) || + !isa<FrameIndexSDNode>(Ptr.getOperand(0))) + return MachinePointerInfo(); + + int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); + return MachinePointerInfo::getFixedStack(FI, Offset+ + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue()); +} + +/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a +/// MachinePointerInfo record from it. This is particularly useful because the +/// code generator has many cases where it doesn't bother passing in a +/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst". +static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) { + // If the 'Offset' value isn't a constant, we can't handle this. + if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp)) + return InferPointerInfo(Ptr, OffsetNode->getSExtValue()); + if (OffsetOp.getOpcode() == ISD::UNDEF) + return InferPointerInfo(Ptr); + return MachinePointerInfo(); +} + + +SDValue +SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, + EVT VT, SDLoc dl, SDValue Chain, + SDValue Ptr, SDValue Offset, + MachinePointerInfo PtrInfo, EVT MemVT, + bool isVolatile, bool isNonTemporal, bool isInvariant, + unsigned Alignment, const AAMDNodes &AAInfo, + const MDNode *Ranges) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = getEVTAlignment(VT); + + unsigned Flags = MachineMemOperand::MOLoad; + if (isVolatile) + Flags |= MachineMemOperand::MOVolatile; + if (isNonTemporal) + Flags |= MachineMemOperand::MONonTemporal; + if (isInvariant) + Flags |= MachineMemOperand::MOInvariant; + + // If we don't have a PtrInfo, infer the trivial frame index case to simplify + // clients. + if (PtrInfo.V.isNull()) + PtrInfo = InferPointerInfo(Ptr, Offset); + + MachineFunction &MF = getMachineFunction(); + MachineMemOperand *MMO = + MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment, + AAInfo, Ranges); + return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO); +} + +SDValue +SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, + EVT VT, SDLoc dl, SDValue Chain, + SDValue Ptr, SDValue Offset, EVT MemVT, + MachineMemOperand *MMO) { + if (VT == MemVT) { + ExtType = ISD::NON_EXTLOAD; + } else if (ExtType == ISD::NON_EXTLOAD) { + assert(VT == MemVT && "Non-extending load from different memory type!"); + } else { + // Extending load. + assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) && + "Should only be an extending load, not truncating!"); + assert(VT.isInteger() == MemVT.isInteger() && + "Cannot convert from FP to Int or Int -> FP!"); + assert(VT.isVector() == MemVT.isVector() && + "Cannot use an ext load to convert to or from a vector!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == MemVT.getVectorNumElements()) && + "Cannot use an ext load to change the number of vector elements!"); + } + + bool Indexed = AM != ISD::UNINDEXED; + assert((Indexed || Offset.getOpcode() == ISD::UNDEF) && + "Unindexed load with an offset!"); + + SDVTList VTs = Indexed ? + getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other); + SDValue Ops[] = { Chain, Ptr, Offset }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::LOAD, VTs, Ops); + ID.AddInteger(MemVT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(), + MMO->isNonTemporal(), + MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<LoadSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl.getIROrder(), + dl.getDebugLoc(), VTs, AM, ExtType, + MemVT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl, + SDValue Chain, SDValue Ptr, + MachinePointerInfo PtrInfo, + bool isVolatile, bool isNonTemporal, + bool isInvariant, unsigned Alignment, + const AAMDNodes &AAInfo, + const MDNode *Ranges) { + SDValue Undef = getUNDEF(Ptr.getValueType()); + return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, + PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment, + AAInfo, Ranges); +} + +SDValue SelectionDAG::getLoad(EVT VT, SDLoc dl, + SDValue Chain, SDValue Ptr, + MachineMemOperand *MMO) { + SDValue Undef = getUNDEF(Ptr.getValueType()); + return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef, + VT, MMO); +} + +SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT, + SDValue Chain, SDValue Ptr, + MachinePointerInfo PtrInfo, EVT MemVT, + bool isVolatile, bool isNonTemporal, + bool isInvariant, unsigned Alignment, + const AAMDNodes &AAInfo) { + SDValue Undef = getUNDEF(Ptr.getValueType()); + return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, + PtrInfo, MemVT, isVolatile, isNonTemporal, isInvariant, + Alignment, AAInfo); +} + + +SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT, + SDValue Chain, SDValue Ptr, EVT MemVT, + MachineMemOperand *MMO) { + SDValue Undef = getUNDEF(Ptr.getValueType()); + return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, + MemVT, MMO); +} + +SDValue +SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDLoc dl, SDValue Base, + SDValue Offset, ISD::MemIndexedMode AM) { + LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); + assert(LD->getOffset().getOpcode() == ISD::UNDEF && + "Load is already a indexed load!"); + return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl, + LD->getChain(), Base, Offset, LD->getPointerInfo(), + LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(), + false, LD->getAlignment()); +} + +SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val, + SDValue Ptr, MachinePointerInfo PtrInfo, + bool isVolatile, bool isNonTemporal, + unsigned Alignment, const AAMDNodes &AAInfo) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = getEVTAlignment(Val.getValueType()); + + unsigned Flags = MachineMemOperand::MOStore; + if (isVolatile) + Flags |= MachineMemOperand::MOVolatile; + if (isNonTemporal) + Flags |= MachineMemOperand::MONonTemporal; + + if (PtrInfo.V.isNull()) + PtrInfo = InferPointerInfo(Ptr); + + MachineFunction &MF = getMachineFunction(); + MachineMemOperand *MMO = + MF.getMachineMemOperand(PtrInfo, Flags, + Val.getValueType().getStoreSize(), Alignment, + AAInfo); + + return getStore(Chain, dl, Val, Ptr, MMO); +} + +SDValue SelectionDAG::getStore(SDValue Chain, SDLoc dl, SDValue Val, + SDValue Ptr, MachineMemOperand *MMO) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + EVT VT = Val.getValueType(); + SDVTList VTs = getVTList(MVT::Other); + SDValue Undef = getUNDEF(Ptr.getValueType()); + SDValue Ops[] = { Chain, Val, Ptr, Undef }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), + MMO->isNonTemporal(), MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<StoreSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(), + dl.getDebugLoc(), VTs, + ISD::UNINDEXED, false, VT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val, + SDValue Ptr, MachinePointerInfo PtrInfo, + EVT SVT,bool isVolatile, bool isNonTemporal, + unsigned Alignment, + const AAMDNodes &AAInfo) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + if (Alignment == 0) // Ensure that codegen never sees alignment 0 + Alignment = getEVTAlignment(SVT); + + unsigned Flags = MachineMemOperand::MOStore; + if (isVolatile) + Flags |= MachineMemOperand::MOVolatile; + if (isNonTemporal) + Flags |= MachineMemOperand::MONonTemporal; + + if (PtrInfo.V.isNull()) + PtrInfo = InferPointerInfo(Ptr); + + MachineFunction &MF = getMachineFunction(); + MachineMemOperand *MMO = + MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment, + AAInfo); + + return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO); +} + +SDValue SelectionDAG::getTruncStore(SDValue Chain, SDLoc dl, SDValue Val, + SDValue Ptr, EVT SVT, + MachineMemOperand *MMO) { + EVT VT = Val.getValueType(); + + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + if (VT == SVT) + return getStore(Chain, dl, Val, Ptr, MMO); + + assert(SVT.getScalarType().bitsLT(VT.getScalarType()) && + "Should only be a truncating store, not extending!"); + assert(VT.isInteger() == SVT.isInteger() && + "Can't do FP-INT conversion!"); + assert(VT.isVector() == SVT.isVector() && + "Cannot use trunc store to convert to or from a vector!"); + assert((!VT.isVector() || + VT.getVectorNumElements() == SVT.getVectorNumElements()) && + "Cannot use trunc store to change the number of vector elements!"); + + SDVTList VTs = getVTList(MVT::Other); + SDValue Undef = getUNDEF(Ptr.getValueType()); + SDValue Ops[] = { Chain, Val, Ptr, Undef }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops); + ID.AddInteger(SVT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(), + MMO->isNonTemporal(), MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<StoreSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(), + dl.getDebugLoc(), VTs, + ISD::UNINDEXED, true, SVT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue +SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base, + SDValue Offset, ISD::MemIndexedMode AM) { + StoreSDNode *ST = cast<StoreSDNode>(OrigStore); + assert(ST->getOffset().getOpcode() == ISD::UNDEF && + "Store is already a indexed store!"); + SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); + SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::STORE, VTs, Ops); + ID.AddInteger(ST->getMemoryVT().getRawBits()); + ID.AddInteger(ST->getRawSubclassData()); + ID.AddInteger(ST->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) + return SDValue(E, 0); + + SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl.getIROrder(), + dl.getDebugLoc(), VTs, AM, + ST->isTruncatingStore(), + ST->getMemoryVT(), + ST->getMemOperand()); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue +SelectionDAG::getMaskedLoad(EVT VT, SDLoc dl, SDValue Chain, + SDValue Ptr, SDValue Mask, SDValue Src0, EVT MemVT, + MachineMemOperand *MMO, ISD::LoadExtType ExtTy) { + + SDVTList VTs = getVTList(VT, MVT::Other); + SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(ExtTy, ISD::UNINDEXED, + MMO->isVolatile(), + MMO->isNonTemporal(), + MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + SDNode *N = new (NodeAllocator) MaskedLoadSDNode(dl.getIROrder(), + dl.getDebugLoc(), Ops, 4, VTs, + ExtTy, MemVT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getMaskedStore(SDValue Chain, SDLoc dl, SDValue Val, + SDValue Ptr, SDValue Mask, EVT MemVT, + MachineMemOperand *MMO, bool isTrunc) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + EVT VT = Val.getValueType(); + SDVTList VTs = getVTList(MVT::Other); + SDValue Ops[] = { Chain, Ptr, Mask, Val }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), + MMO->isNonTemporal(), MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + SDNode *N = new (NodeAllocator) MaskedStoreSDNode(dl.getIROrder(), + dl.getDebugLoc(), Ops, 4, + VTs, isTrunc, MemVT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue +SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, SDLoc dl, + ArrayRef<SDValue> Ops, + MachineMemOperand *MMO) { + + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED, + MMO->isVolatile(), + MMO->isNonTemporal(), + MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<MaskedGatherSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + MaskedGatherSDNode *N = + new (NodeAllocator) MaskedGatherSDNode(dl.getIROrder(), dl.getDebugLoc(), + Ops, VTs, VT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, SDLoc dl, + ArrayRef<SDValue> Ops, + MachineMemOperand *MMO) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), + MMO->isNonTemporal(), + MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, dl.getDebugLoc(), IP)) { + cast<MaskedScatterSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + SDNode *N = + new (NodeAllocator) MaskedScatterSDNode(dl.getIROrder(), dl.getDebugLoc(), + Ops, VTs, VT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getVAArg(EVT VT, SDLoc dl, + SDValue Chain, SDValue Ptr, + SDValue SV, + unsigned Align) { + SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) }; + return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, + ArrayRef<SDUse> Ops) { + switch (Ops.size()) { + case 0: return getNode(Opcode, DL, VT); + case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0])); + case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); + case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); + default: break; + } + + // Copy from an SDUse array into an SDValue array for use with + // the regular getNode logic. + SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end()); + return getNode(Opcode, DL, VT, NewOps); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, EVT VT, + ArrayRef<SDValue> Ops) { + unsigned NumOps = Ops.size(); + switch (NumOps) { + case 0: return getNode(Opcode, DL, VT); + case 1: return getNode(Opcode, DL, VT, Ops[0]); + case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]); + case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]); + default: break; + } + + switch (Opcode) { + default: break; + case ISD::SELECT_CC: { + assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); + assert(Ops[0].getValueType() == Ops[1].getValueType() && + "LHS and RHS of condition must have same type!"); + assert(Ops[2].getValueType() == Ops[3].getValueType() && + "True and False arms of SelectCC must have same type!"); + assert(Ops[2].getValueType() == VT && + "select_cc node must be of same type as true and false value!"); + break; + } + case ISD::BR_CC: { + assert(NumOps == 5 && "BR_CC takes 5 operands!"); + assert(Ops[2].getValueType() == Ops[3].getValueType() && + "LHS/RHS of comparison should match types!"); + break; + } + } + + // Memoize nodes. + SDNode *N; + SDVTList VTs = getVTList(VT); + + if (VT != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTs, Ops); + void *IP = nullptr; + + if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) + return SDValue(E, 0); + + N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), + VTs, Ops); + CSEMap.InsertNode(N, IP); + } else { + N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), + VTs, Ops); + } + + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, + ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) { + return getNode(Opcode, DL, getVTList(ResultTys), Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList, + ArrayRef<SDValue> Ops) { + if (VTList.NumVTs == 1) + return getNode(Opcode, DL, VTList.VTs[0], Ops); + +#if 0 + switch (Opcode) { + // FIXME: figure out how to safely handle things like + // int foo(int x) { return 1 << (x & 255); } + // int bar() { return foo(256); } + case ISD::SRA_PARTS: + case ISD::SRL_PARTS: + case ISD::SHL_PARTS: + if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && + cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) + return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); + else if (N3.getOpcode() == ISD::AND) + if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { + // If the and is only masking out bits that cannot effect the shift, + // eliminate the and. + unsigned NumBits = VT.getScalarType().getSizeInBits()*2; + if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) + return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0)); + } + break; + } +#endif + + // Memoize the node unless it returns a flag. + SDNode *N; + unsigned NumOps = Ops.size(); + if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTList, Ops); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) + return SDValue(E, 0); + + if (NumOps == 1) { + N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTList, Ops[0]); + } else if (NumOps == 2) { + N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTList, Ops[0], + Ops[1]); + } else if (NumOps == 3) { + N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTList, Ops[0], + Ops[1], Ops[2]); + } else { + N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), + VTList, Ops); + } + CSEMap.InsertNode(N, IP); + } else { + if (NumOps == 1) { + N = new (NodeAllocator) UnarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTList, Ops[0]); + } else if (NumOps == 2) { + N = new (NodeAllocator) BinarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTList, Ops[0], + Ops[1]); + } else if (NumOps == 3) { + N = new (NodeAllocator) TernarySDNode(Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTList, Ops[0], + Ops[1], Ops[2]); + } else { + N = new (NodeAllocator) SDNode(Opcode, DL.getIROrder(), DL.getDebugLoc(), + VTList, Ops); + } + } + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList) { + return getNode(Opcode, DL, VTList, None); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList, + SDValue N1) { + SDValue Ops[] = { N1 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList, + SDValue N1, SDValue N2) { + SDValue Ops[] = { N1, N2 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList, + SDValue N1, SDValue N2, SDValue N3) { + SDValue Ops[] = { N1, N2, N3 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList, + SDValue N1, SDValue N2, SDValue N3, + SDValue N4) { + SDValue Ops[] = { N1, N2, N3, N4 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDValue SelectionDAG::getNode(unsigned Opcode, SDLoc DL, SDVTList VTList, + SDValue N1, SDValue N2, SDValue N3, + SDValue N4, SDValue N5) { + SDValue Ops[] = { N1, N2, N3, N4, N5 }; + return getNode(Opcode, DL, VTList, Ops); +} + +SDVTList SelectionDAG::getVTList(EVT VT) { + return makeVTList(SDNode::getValueTypeList(VT), 1); +} + +SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) { + FoldingSetNodeID ID; + ID.AddInteger(2U); + ID.AddInteger(VT1.getRawBits()); + ID.AddInteger(VT2.getRawBits()); + + void *IP = nullptr; + SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); + if (!Result) { + EVT *Array = Allocator.Allocate<EVT>(2); + Array[0] = VT1; + Array[1] = VT2; + Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2); + VTListMap.InsertNode(Result, IP); + } + return Result->getSDVTList(); +} + +SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) { + FoldingSetNodeID ID; + ID.AddInteger(3U); + ID.AddInteger(VT1.getRawBits()); + ID.AddInteger(VT2.getRawBits()); + ID.AddInteger(VT3.getRawBits()); + + void *IP = nullptr; + SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); + if (!Result) { + EVT *Array = Allocator.Allocate<EVT>(3); + Array[0] = VT1; + Array[1] = VT2; + Array[2] = VT3; + Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3); + VTListMap.InsertNode(Result, IP); + } + return Result->getSDVTList(); +} + +SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) { + FoldingSetNodeID ID; + ID.AddInteger(4U); + ID.AddInteger(VT1.getRawBits()); + ID.AddInteger(VT2.getRawBits()); + ID.AddInteger(VT3.getRawBits()); + ID.AddInteger(VT4.getRawBits()); + + void *IP = nullptr; + SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); + if (!Result) { + EVT *Array = Allocator.Allocate<EVT>(4); + Array[0] = VT1; + Array[1] = VT2; + Array[2] = VT3; + Array[3] = VT4; + Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4); + VTListMap.InsertNode(Result, IP); + } + return Result->getSDVTList(); +} + +SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) { + unsigned NumVTs = VTs.size(); + FoldingSetNodeID ID; + ID.AddInteger(NumVTs); + for (unsigned index = 0; index < NumVTs; index++) { + ID.AddInteger(VTs[index].getRawBits()); + } + + void *IP = nullptr; + SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP); + if (!Result) { + EVT *Array = Allocator.Allocate<EVT>(NumVTs); + std::copy(VTs.begin(), VTs.end(), Array); + Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs); + VTListMap.InsertNode(Result, IP); + } + return Result->getSDVTList(); +} + + +/// UpdateNodeOperands - *Mutate* the specified node in-place to have the +/// specified operands. If the resultant node already exists in the DAG, +/// this does not modify the specified node, instead it returns the node that +/// already exists. If the resultant node does not exist in the DAG, the +/// input node is returned. As a degenerate case, if you specify the same +/// input operands as the node already has, the input node is returned. +SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) { + assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); + + // Check to see if there is no change. + if (Op == N->getOperand(0)) return N; + + // See if the modified node already exists. + void *InsertPos = nullptr; + if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) + return Existing; + + // Nope it doesn't. Remove the node from its current place in the maps. + if (InsertPos) + if (!RemoveNodeFromCSEMaps(N)) + InsertPos = nullptr; + + // Now we update the operands. + N->OperandList[0].set(Op); + + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return N; +} + +SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) { + assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); + + // Check to see if there is no change. + if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) + return N; // No operands changed, just return the input node. + + // See if the modified node already exists. + void *InsertPos = nullptr; + if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) + return Existing; + + // Nope it doesn't. Remove the node from its current place in the maps. + if (InsertPos) + if (!RemoveNodeFromCSEMaps(N)) + InsertPos = nullptr; + + // Now we update the operands. + if (N->OperandList[0] != Op1) + N->OperandList[0].set(Op1); + if (N->OperandList[1] != Op2) + N->OperandList[1].set(Op2); + + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return N; +} + +SDNode *SelectionDAG:: +UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) { + SDValue Ops[] = { Op1, Op2, Op3 }; + return UpdateNodeOperands(N, Ops); +} + +SDNode *SelectionDAG:: +UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, + SDValue Op3, SDValue Op4) { + SDValue Ops[] = { Op1, Op2, Op3, Op4 }; + return UpdateNodeOperands(N, Ops); +} + +SDNode *SelectionDAG:: +UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, + SDValue Op3, SDValue Op4, SDValue Op5) { + SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 }; + return UpdateNodeOperands(N, Ops); +} + +SDNode *SelectionDAG:: +UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) { + unsigned NumOps = Ops.size(); + assert(N->getNumOperands() == NumOps && + "Update with wrong number of operands"); + + // If no operands changed just return the input node. + if (Ops.empty() || std::equal(Ops.begin(), Ops.end(), N->op_begin())) + return N; + + // See if the modified node already exists. + void *InsertPos = nullptr; + if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos)) + return Existing; + + // Nope it doesn't. Remove the node from its current place in the maps. + if (InsertPos) + if (!RemoveNodeFromCSEMaps(N)) + InsertPos = nullptr; + + // Now we update the operands. + for (unsigned i = 0; i != NumOps; ++i) + if (N->OperandList[i] != Ops[i]) + N->OperandList[i].set(Ops[i]); + + // If this gets put into a CSE map, add it. + if (InsertPos) CSEMap.InsertNode(N, InsertPos); + return N; +} + +/// DropOperands - Release the operands and set this node to have +/// zero operands. +void SDNode::DropOperands() { + // Unlike the code in MorphNodeTo that does this, we don't need to + // watch for dead nodes here. + for (op_iterator I = op_begin(), E = op_end(); I != E; ) { + SDUse &Use = *I++; + Use.set(SDValue()); + } +} + +/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a +/// machine opcode. +/// +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT) { + SDVTList VTs = getVTList(VT); + return SelectNodeTo(N, MachineOpc, VTs, None); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT, SDValue Op1) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT, SDValue Op1, + SDValue Op2) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1, Op2 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT, SDValue Op1, + SDValue Op2, SDValue Op3) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1, Op2, Op3 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT, ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT); + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2); + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2) { + SDVTList VTs = getVTList(VT1, VT2); + return SelectNodeTo(N, MachineOpc, VTs, None); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, EVT VT3, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, EVT VT3, EVT VT4, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2, VT3, VT4); + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, + SDValue Op1) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, + SDValue Op1, SDValue Op2) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1, Op2 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, + SDValue Op1, SDValue Op2, + SDValue Op3) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1, Op2, Op3 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + EVT VT1, EVT VT2, EVT VT3, + SDValue Op1, SDValue Op2, + SDValue Op3) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + SDValue Ops[] = { Op1, Op2, Op3 }; + return SelectNodeTo(N, MachineOpc, VTs, Ops); +} + +SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc, + SDVTList VTs,ArrayRef<SDValue> Ops) { + N = MorphNodeTo(N, ~MachineOpc, VTs, Ops); + // Reset the NodeID to -1. + N->setNodeId(-1); + return N; +} + +/// UpdadeSDLocOnMergedSDNode - If the opt level is -O0 then it throws away +/// the line number information on the merged node since it is not possible to +/// preserve the information that operation is associated with multiple lines. +/// This will make the debugger working better at -O0, were there is a higher +/// probability having other instructions associated with that line. +/// +/// For IROrder, we keep the smaller of the two +SDNode *SelectionDAG::UpdadeSDLocOnMergedSDNode(SDNode *N, SDLoc OLoc) { + DebugLoc NLoc = N->getDebugLoc(); + if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) { + N->setDebugLoc(DebugLoc()); + } + unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder()); + N->setIROrder(Order); + return N; +} + +/// MorphNodeTo - This *mutates* the specified node to have the specified +/// return type, opcode, and operands. +/// +/// Note that MorphNodeTo returns the resultant node. If there is already a +/// node of the specified opcode and operands, it returns that node instead of +/// the current one. Note that the SDLoc need not be the same. +/// +/// Using MorphNodeTo is faster than creating a new node and swapping it in +/// with ReplaceAllUsesWith both because it often avoids allocating a new +/// node, and because it doesn't require CSE recalculation for any of +/// the node's users. +/// +/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG. +/// As a consequence it isn't appropriate to use from within the DAG combiner or +/// the legalizer which maintain worklists that would need to be updated when +/// deleting things. +SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc, + SDVTList VTs, ArrayRef<SDValue> Ops) { + unsigned NumOps = Ops.size(); + // If an identical node already exists, use it. + void *IP = nullptr; + if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opc, VTs, Ops); + if (SDNode *ON = FindNodeOrInsertPos(ID, N->getDebugLoc(), IP)) + return UpdadeSDLocOnMergedSDNode(ON, SDLoc(N)); + } + + if (!RemoveNodeFromCSEMaps(N)) + IP = nullptr; + + // Start the morphing. + N->NodeType = Opc; + N->ValueList = VTs.VTs; + N->NumValues = VTs.NumVTs; + + // Clear the operands list, updating used nodes to remove this from their + // use list. Keep track of any operands that become dead as a result. + SmallPtrSet<SDNode*, 16> DeadNodeSet; + for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) { + SDUse &Use = *I++; + SDNode *Used = Use.getNode(); + Use.set(SDValue()); + if (Used->use_empty()) + DeadNodeSet.insert(Used); + } + + if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) { + // Initialize the memory references information. + MN->setMemRefs(nullptr, nullptr); + // If NumOps is larger than the # of operands we can have in a + // MachineSDNode, reallocate the operand list. + if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) { + if (MN->OperandsNeedDelete) + delete[] MN->OperandList; + if (NumOps > array_lengthof(MN->LocalOperands)) + // We're creating a final node that will live unmorphed for the + // remainder of the current SelectionDAG iteration, so we can allocate + // the operands directly out of a pool with no recycling metadata. + MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps), + Ops.data(), NumOps); + else + MN->InitOperands(MN->LocalOperands, Ops.data(), NumOps); + MN->OperandsNeedDelete = false; + } else + MN->InitOperands(MN->OperandList, Ops.data(), NumOps); + } else { + // If NumOps is larger than the # of operands we currently have, reallocate + // the operand list. + if (NumOps > N->NumOperands) { + if (N->OperandsNeedDelete) + delete[] N->OperandList; + N->InitOperands(new SDUse[NumOps], Ops.data(), NumOps); + N->OperandsNeedDelete = true; + } else + N->InitOperands(N->OperandList, Ops.data(), NumOps); + } + + // Delete any nodes that are still dead after adding the uses for the + // new operands. + if (!DeadNodeSet.empty()) { + SmallVector<SDNode *, 16> DeadNodes; + for (SDNode *N : DeadNodeSet) + if (N->use_empty()) + DeadNodes.push_back(N); + RemoveDeadNodes(DeadNodes); + } + + if (IP) + CSEMap.InsertNode(N, IP); // Memoize the new node. + return N; +} + + +/// getMachineNode - These are used for target selectors to create a new node +/// with specified return type(s), MachineInstr opcode, and operands. +/// +/// Note that getMachineNode returns the resultant node. If there is already a +/// node of the specified opcode and operands, it returns that node instead of +/// the current one. +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT) { + SDVTList VTs = getVTList(VT); + return getMachineNode(Opcode, dl, VTs, None); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, SDValue Op1) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, + SDValue Op1, SDValue Op2) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1, Op2 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, + SDValue Op1, SDValue Op2, SDValue Op3) { + SDVTList VTs = getVTList(VT); + SDValue Ops[] = { Op1, Op2, Op3 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, EVT VT2) { + SDVTList VTs = getVTList(VT1, VT2); + return getMachineNode(Opcode, dl, VTs, None); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, + EVT VT1, EVT VT2, SDValue Op1) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, + EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1, Op2 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, + EVT VT1, EVT VT2, SDValue Op1, + SDValue Op2, SDValue Op3) { + SDVTList VTs = getVTList(VT1, VT2); + SDValue Ops[] = { Op1, Op2, Op3 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, + EVT VT1, EVT VT2, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, + EVT VT1, EVT VT2, EVT VT3, + SDValue Op1, SDValue Op2) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + SDValue Ops[] = { Op1, Op2 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, + EVT VT1, EVT VT2, EVT VT3, + SDValue Op1, SDValue Op2, SDValue Op3) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + SDValue Ops[] = { Op1, Op2, Op3 }; + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, + EVT VT1, EVT VT2, EVT VT3, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2, VT3); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, EVT VT1, + EVT VT2, EVT VT3, EVT VT4, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(VT1, VT2, VT3, VT4); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc dl, + ArrayRef<EVT> ResultTys, + ArrayRef<SDValue> Ops) { + SDVTList VTs = getVTList(ResultTys); + return getMachineNode(Opcode, dl, VTs, Ops); +} + +MachineSDNode * +SelectionDAG::getMachineNode(unsigned Opcode, SDLoc DL, SDVTList VTs, + ArrayRef<SDValue> OpsArray) { + bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue; + MachineSDNode *N; + void *IP = nullptr; + const SDValue *Ops = OpsArray.data(); + unsigned NumOps = OpsArray.size(); + + if (DoCSE) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, ~Opcode, VTs, OpsArray); + IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DL.getDebugLoc(), IP)) { + return cast<MachineSDNode>(UpdadeSDLocOnMergedSDNode(E, DL)); + } + } + + // Allocate a new MachineSDNode. + N = new (NodeAllocator) MachineSDNode(~Opcode, DL.getIROrder(), + DL.getDebugLoc(), VTs); + + // Initialize the operands list. + if (NumOps > array_lengthof(N->LocalOperands)) + // We're creating a final node that will live unmorphed for the + // remainder of the current SelectionDAG iteration, so we can allocate + // the operands directly out of a pool with no recycling metadata. + N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps), + Ops, NumOps); + else + N->InitOperands(N->LocalOperands, Ops, NumOps); + N->OperandsNeedDelete = false; + + if (DoCSE) + CSEMap.InsertNode(N, IP); + + InsertNode(N); + return N; +} + +/// getTargetExtractSubreg - A convenience function for creating +/// TargetOpcode::EXTRACT_SUBREG nodes. +SDValue +SelectionDAG::getTargetExtractSubreg(int SRIdx, SDLoc DL, EVT VT, + SDValue Operand) { + SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); + SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, + VT, Operand, SRIdxVal); + return SDValue(Subreg, 0); +} + +/// getTargetInsertSubreg - A convenience function for creating +/// TargetOpcode::INSERT_SUBREG nodes. +SDValue +SelectionDAG::getTargetInsertSubreg(int SRIdx, SDLoc DL, EVT VT, + SDValue Operand, SDValue Subreg) { + SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32); + SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL, + VT, Operand, Subreg, SRIdxVal); + return SDValue(Result, 0); +} + +/// getNodeIfExists - Get the specified node if it's already available, or +/// else return NULL. +SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList, + ArrayRef<SDValue> Ops, + const SDNodeFlags *Flags) { + if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) { + FoldingSetNodeID ID; + AddNodeIDNode(ID, Opcode, VTList, Ops); + AddNodeIDFlags(ID, Opcode, Flags); + void *IP = nullptr; + if (SDNode *E = FindNodeOrInsertPos(ID, DebugLoc(), IP)) + return E; + } + return nullptr; +} + +/// getDbgValue - Creates a SDDbgValue node. +/// +/// SDNode +SDDbgValue *SelectionDAG::getDbgValue(MDNode *Var, MDNode *Expr, SDNode *N, + unsigned R, bool IsIndirect, uint64_t Off, + DebugLoc DL, unsigned O) { + assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + return new (DbgInfo->getAlloc()) + SDDbgValue(Var, Expr, N, R, IsIndirect, Off, DL, O); +} + +/// Constant +SDDbgValue *SelectionDAG::getConstantDbgValue(MDNode *Var, MDNode *Expr, + const Value *C, uint64_t Off, + DebugLoc DL, unsigned O) { + assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, Off, DL, O); +} + +/// FrameIndex +SDDbgValue *SelectionDAG::getFrameIndexDbgValue(MDNode *Var, MDNode *Expr, + unsigned FI, uint64_t Off, + DebugLoc DL, unsigned O) { + assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, FI, Off, DL, O); +} + +namespace { + +/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node +/// pointed to by a use iterator is deleted, increment the use iterator +/// so that it doesn't dangle. +/// +class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener { + SDNode::use_iterator &UI; + SDNode::use_iterator &UE; + + void NodeDeleted(SDNode *N, SDNode *E) override { + // Increment the iterator as needed. + while (UI != UE && N == *UI) + ++UI; + } + +public: + RAUWUpdateListener(SelectionDAG &d, + SDNode::use_iterator &ui, + SDNode::use_iterator &ue) + : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {} +}; + +} // namespace + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version assumes From has a single result value. +/// +void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) { + SDNode *From = FromN.getNode(); + assert(From->getNumValues() == 1 && FromN.getResNo() == 0 && + "Cannot replace with this method!"); + assert(From != To.getNode() && "Cannot replace uses of with self"); + + // Iterate over all the existing uses of From. New uses will be added + // to the beginning of the use list, which we avoid visiting. + // This specifically avoids visiting uses of From that arise while the + // replacement is happening, because any such uses would be the result + // of CSE: If an existing node looks like From after one of its operands + // is replaced by To, we don't want to replace of all its users with To + // too. See PR3018 for more info. + SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); + RAUWUpdateListener Listener(*this, UI, UE); + while (UI != UE) { + SDNode *User = *UI; + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // A user can appear in a use list multiple times, and when this + // happens the uses are usually next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + SDUse &Use = UI.getUse(); + ++UI; + Use.set(To); + } while (UI != UE && *UI == User); + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } + + // If we just RAUW'd the root, take note. + if (FromN == getRoot()) + setRoot(To); +} + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version assumes that for each value of From, there is a +/// corresponding value in To in the same position with the same type. +/// +void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { +#ifndef NDEBUG + for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) + assert((!From->hasAnyUseOfValue(i) || + From->getValueType(i) == To->getValueType(i)) && + "Cannot use this version of ReplaceAllUsesWith!"); +#endif + + // Handle the trivial case. + if (From == To) + return; + + // Iterate over just the existing users of From. See the comments in + // the ReplaceAllUsesWith above. + SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); + RAUWUpdateListener Listener(*this, UI, UE); + while (UI != UE) { + SDNode *User = *UI; + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // A user can appear in a use list multiple times, and when this + // happens the uses are usually next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + SDUse &Use = UI.getUse(); + ++UI; + Use.setNode(To); + } while (UI != UE && *UI == User); + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } + + // If we just RAUW'd the root, take note. + if (From == getRoot().getNode()) + setRoot(SDValue(To, getRoot().getResNo())); +} + +/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. +/// This can cause recursive merging of nodes in the DAG. +/// +/// This version can replace From with any result values. To must match the +/// number and types of values returned by From. +void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) { + if (From->getNumValues() == 1) // Handle the simple case efficiently. + return ReplaceAllUsesWith(SDValue(From, 0), To[0]); + + // Iterate over just the existing users of From. See the comments in + // the ReplaceAllUsesWith above. + SDNode::use_iterator UI = From->use_begin(), UE = From->use_end(); + RAUWUpdateListener Listener(*this, UI, UE); + while (UI != UE) { + SDNode *User = *UI; + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // A user can appear in a use list multiple times, and when this + // happens the uses are usually next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + SDUse &Use = UI.getUse(); + const SDValue &ToOp = To[Use.getResNo()]; + ++UI; + Use.set(ToOp); + } while (UI != UE && *UI == User); + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } + + // If we just RAUW'd the root, take note. + if (From == getRoot().getNode()) + setRoot(SDValue(To[getRoot().getResNo()])); +} + +/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving +/// uses of other values produced by From.getNode() alone. The Deleted +/// vector is handled the same way as for ReplaceAllUsesWith. +void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){ + // Handle the really simple, really trivial case efficiently. + if (From == To) return; + + // Handle the simple, trivial, case efficiently. + if (From.getNode()->getNumValues() == 1) { + ReplaceAllUsesWith(From, To); + return; + } + + // Iterate over just the existing users of From. See the comments in + // the ReplaceAllUsesWith above. + SDNode::use_iterator UI = From.getNode()->use_begin(), + UE = From.getNode()->use_end(); + RAUWUpdateListener Listener(*this, UI, UE); + while (UI != UE) { + SDNode *User = *UI; + bool UserRemovedFromCSEMaps = false; + + // A user can appear in a use list multiple times, and when this + // happens the uses are usually next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + SDUse &Use = UI.getUse(); + + // Skip uses of different values from the same node. + if (Use.getResNo() != From.getResNo()) { + ++UI; + continue; + } + + // If this node hasn't been modified yet, it's still in the CSE maps, + // so remove its old self from the CSE maps. + if (!UserRemovedFromCSEMaps) { + RemoveNodeFromCSEMaps(User); + UserRemovedFromCSEMaps = true; + } + + ++UI; + Use.set(To); + } while (UI != UE && *UI == User); + + // We are iterating over all uses of the From node, so if a use + // doesn't use the specific value, no changes are made. + if (!UserRemovedFromCSEMaps) + continue; + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } + + // If we just RAUW'd the root, take note. + if (From == getRoot()) + setRoot(To); +} + +namespace { + /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith + /// to record information about a use. + struct UseMemo { + SDNode *User; + unsigned Index; + SDUse *Use; + }; + + /// operator< - Sort Memos by User. + bool operator<(const UseMemo &L, const UseMemo &R) { + return (intptr_t)L.User < (intptr_t)R.User; + } +} // namespace + +/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving +/// uses of other values produced by From.getNode() alone. The same value +/// may appear in both the From and To list. The Deleted vector is +/// handled the same way as for ReplaceAllUsesWith. +void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From, + const SDValue *To, + unsigned Num){ + // Handle the simple, trivial case efficiently. + if (Num == 1) + return ReplaceAllUsesOfValueWith(*From, *To); + + // Read up all the uses and make records of them. This helps + // processing new uses that are introduced during the + // replacement process. + SmallVector<UseMemo, 4> Uses; + for (unsigned i = 0; i != Num; ++i) { + unsigned FromResNo = From[i].getResNo(); + SDNode *FromNode = From[i].getNode(); + for (SDNode::use_iterator UI = FromNode->use_begin(), + E = FromNode->use_end(); UI != E; ++UI) { + SDUse &Use = UI.getUse(); + if (Use.getResNo() == FromResNo) { + UseMemo Memo = { *UI, i, &Use }; + Uses.push_back(Memo); + } + } + } + + // Sort the uses, so that all the uses from a given User are together. + std::sort(Uses.begin(), Uses.end()); + + for (unsigned UseIndex = 0, UseIndexEnd = Uses.size(); + UseIndex != UseIndexEnd; ) { + // We know that this user uses some value of From. If it is the right + // value, update it. + SDNode *User = Uses[UseIndex].User; + + // This node is about to morph, remove its old self from the CSE maps. + RemoveNodeFromCSEMaps(User); + + // The Uses array is sorted, so all the uses for a given User + // are next to each other in the list. + // To help reduce the number of CSE recomputations, process all + // the uses of this user that we can find this way. + do { + unsigned i = Uses[UseIndex].Index; + SDUse &Use = *Uses[UseIndex].Use; + ++UseIndex; + + Use.set(To[i]); + } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User); + + // Now that we have modified User, add it back to the CSE maps. If it + // already exists there, recursively merge the results together. + AddModifiedNodeToCSEMaps(User); + } +} + +/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG +/// based on their topological order. It returns the maximum id and a vector +/// of the SDNodes* in assigned order by reference. +unsigned SelectionDAG::AssignTopologicalOrder() { + + unsigned DAGSize = 0; + + // SortedPos tracks the progress of the algorithm. Nodes before it are + // sorted, nodes after it are unsorted. When the algorithm completes + // it is at the end of the list. + allnodes_iterator SortedPos = allnodes_begin(); + + // Visit all the nodes. Move nodes with no operands to the front of + // the list immediately. Annotate nodes that do have operands with their + // operand count. Before we do this, the Node Id fields of the nodes + // may contain arbitrary values. After, the Node Id fields for nodes + // before SortedPos will contain the topological sort index, and the + // Node Id fields for nodes At SortedPos and after will contain the + // count of outstanding operands. + for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) { + SDNode *N = I++; + checkForCycles(N, this); + unsigned Degree = N->getNumOperands(); + if (Degree == 0) { + // A node with no uses, add it to the result array immediately. + N->setNodeId(DAGSize++); + allnodes_iterator Q = N; + if (Q != SortedPos) + SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q)); + assert(SortedPos != AllNodes.end() && "Overran node list"); + ++SortedPos; + } else { + // Temporarily use the Node Id as scratch space for the degree count. + N->setNodeId(Degree); + } + } + + // Visit all the nodes. As we iterate, move nodes into sorted order, + // such that by the time the end is reached all nodes will be sorted. + for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) { + SDNode *N = I; + checkForCycles(N, this); + // N is in sorted position, so all its uses have one less operand + // that needs to be sorted. + for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); + UI != UE; ++UI) { + SDNode *P = *UI; + unsigned Degree = P->getNodeId(); + assert(Degree != 0 && "Invalid node degree"); + --Degree; + if (Degree == 0) { + // All of P's operands are sorted, so P may sorted now. + P->setNodeId(DAGSize++); + if (P != SortedPos) + SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P)); + assert(SortedPos != AllNodes.end() && "Overran node list"); + ++SortedPos; + } else { + // Update P's outstanding operand count. + P->setNodeId(Degree); + } + } + if (I == SortedPos) { +#ifndef NDEBUG + SDNode *S = ++I; + dbgs() << "Overran sorted position:\n"; + S->dumprFull(this); dbgs() << "\n"; + dbgs() << "Checking if this is due to cycles\n"; + checkForCycles(this, true); +#endif + llvm_unreachable(nullptr); + } + } + + assert(SortedPos == AllNodes.end() && + "Topological sort incomplete!"); + assert(AllNodes.front().getOpcode() == ISD::EntryToken && + "First node in topological sort is not the entry token!"); + assert(AllNodes.front().getNodeId() == 0 && + "First node in topological sort has non-zero id!"); + assert(AllNodes.front().getNumOperands() == 0 && + "First node in topological sort has operands!"); + assert(AllNodes.back().getNodeId() == (int)DAGSize-1 && + "Last node in topologic sort has unexpected id!"); + assert(AllNodes.back().use_empty() && + "Last node in topologic sort has users!"); + assert(DAGSize == allnodes_size() && "Node count mismatch!"); + return DAGSize; +} + +/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the +/// value is produced by SD. +void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) { + if (SD) { + assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue()); + SD->setHasDebugValue(true); + } + DbgInfo->add(DB, SD, isParameter); +} + +/// TransferDbgValues - Transfer SDDbgValues. +void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) { + if (From == To || !From.getNode()->getHasDebugValue()) + return; + SDNode *FromNode = From.getNode(); + SDNode *ToNode = To.getNode(); + ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode); + SmallVector<SDDbgValue *, 2> ClonedDVs; + for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end(); + I != E; ++I) { + SDDbgValue *Dbg = *I; + if (Dbg->getKind() == SDDbgValue::SDNODE) { + SDDbgValue *Clone = + getDbgValue(Dbg->getVariable(), Dbg->getExpression(), ToNode, + To.getResNo(), Dbg->isIndirect(), Dbg->getOffset(), + Dbg->getDebugLoc(), Dbg->getOrder()); + ClonedDVs.push_back(Clone); + } + } + for (SmallVectorImpl<SDDbgValue *>::iterator I = ClonedDVs.begin(), + E = ClonedDVs.end(); I != E; ++I) + AddDbgValue(*I, ToNode, false); +} + +//===----------------------------------------------------------------------===// +// SDNode Class +//===----------------------------------------------------------------------===// + +HandleSDNode::~HandleSDNode() { + DropOperands(); +} + +GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order, + DebugLoc DL, const GlobalValue *GA, + EVT VT, int64_t o, unsigned char TF) + : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) { + TheGlobal = GA; +} + +AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT, + SDValue X, unsigned SrcAS, + unsigned DestAS) + : UnarySDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT), X), + SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {} + +MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs, + EVT memvt, MachineMemOperand *mmo) + : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) { + SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(), + MMO->isNonTemporal(), MMO->isInvariant()); + assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!"); + assert(isNonTemporal() == MMO->isNonTemporal() && + "Non-temporal encoding error!"); + // We check here that the size of the memory operand fits within the size of + // the MMO. This is because the MMO might indicate only a possible address + // range instead of specifying the affected memory addresses precisely. + assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); +} + +MemSDNode::MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs, + ArrayRef<SDValue> Ops, EVT memvt, MachineMemOperand *mmo) + : SDNode(Opc, Order, dl, VTs, Ops), + MemoryVT(memvt), MMO(mmo) { + SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(), + MMO->isNonTemporal(), MMO->isInvariant()); + assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!"); + assert(memvt.getStoreSize() <= MMO->getSize() && "Size mismatch!"); +} + +/// Profile - Gather unique data for the node. +/// +void SDNode::Profile(FoldingSetNodeID &ID) const { + AddNodeIDNode(ID, this); +} + +namespace { + struct EVTArray { + std::vector<EVT> VTs; + + EVTArray() { + VTs.reserve(MVT::LAST_VALUETYPE); + for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i) + VTs.push_back(MVT((MVT::SimpleValueType)i)); + } + }; +} // namespace + +static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs; +static ManagedStatic<EVTArray> SimpleVTArray; +static ManagedStatic<sys::SmartMutex<true> > VTMutex; + +/// getValueTypeList - Return a pointer to the specified value type. +/// +const EVT *SDNode::getValueTypeList(EVT VT) { + if (VT.isExtended()) { + sys::SmartScopedLock<true> Lock(*VTMutex); + return &(*EVTs->insert(VT).first); + } else { + assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE && + "Value type out of range!"); + return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy]; + } +} + +/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the +/// indicated value. This method ignores uses of other values defined by this +/// operation. +bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { + assert(Value < getNumValues() && "Bad value!"); + + // TODO: Only iterate over uses of a given value of the node + for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { + if (UI.getUse().getResNo() == Value) { + if (NUses == 0) + return false; + --NUses; + } + } + + // Found exactly the right number of uses? + return NUses == 0; +} + + +/// hasAnyUseOfValue - Return true if there are any use of the indicated +/// value. This method ignores uses of other values defined by this operation. +bool SDNode::hasAnyUseOfValue(unsigned Value) const { + assert(Value < getNumValues() && "Bad value!"); + + for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) + if (UI.getUse().getResNo() == Value) + return true; + + return false; +} + + +/// isOnlyUserOf - Return true if this node is the only use of N. +/// +bool SDNode::isOnlyUserOf(SDNode *N) const { + bool Seen = false; + for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { + SDNode *User = *I; + if (User == this) + Seen = true; + else + return false; + } + + return Seen; +} + +/// isOperand - Return true if this node is an operand of N. +/// +bool SDValue::isOperandOf(SDNode *N) const { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + if (*this == N->getOperand(i)) + return true; + return false; +} + +bool SDNode::isOperandOf(SDNode *N) const { + for (unsigned i = 0, e = N->NumOperands; i != e; ++i) + if (this == N->OperandList[i].getNode()) + return true; + return false; +} + +/// reachesChainWithoutSideEffects - Return true if this operand (which must +/// be a chain) reaches the specified operand without crossing any +/// side-effecting instructions on any chain path. In practice, this looks +/// through token factors and non-volatile loads. In order to remain efficient, +/// this only looks a couple of nodes in, it does not do an exhaustive search. +bool SDValue::reachesChainWithoutSideEffects(SDValue Dest, + unsigned Depth) const { + if (*this == Dest) return true; + + // Don't search too deeply, we just want to be able to see through + // TokenFactor's etc. + if (Depth == 0) return false; + + // If this is a token factor, all inputs to the TF happen in parallel. If any + // of the operands of the TF does not reach dest, then we cannot do the xform. + if (getOpcode() == ISD::TokenFactor) { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1)) + return false; + return true; + } + + // Loads don't have side effects, look through them. + if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) { + if (!Ld->isVolatile()) + return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1); + } + return false; +} + +/// hasPredecessor - Return true if N is a predecessor of this node. +/// N is either an operand of this node, or can be reached by recursively +/// traversing up the operands. +/// NOTE: This is an expensive method. Use it carefully. +bool SDNode::hasPredecessor(const SDNode *N) const { + SmallPtrSet<const SDNode *, 32> Visited; + SmallVector<const SDNode *, 16> Worklist; + return hasPredecessorHelper(N, Visited, Worklist); +} + +bool +SDNode::hasPredecessorHelper(const SDNode *N, + SmallPtrSetImpl<const SDNode *> &Visited, + SmallVectorImpl<const SDNode *> &Worklist) const { + if (Visited.empty()) { + Worklist.push_back(this); + } else { + // Take a look in the visited set. If we've already encountered this node + // we needn't search further. + if (Visited.count(N)) + return true; + } + + // Haven't visited N yet. Continue the search. + while (!Worklist.empty()) { + const SDNode *M = Worklist.pop_back_val(); + for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { + SDNode *Op = M->getOperand(i).getNode(); + if (Visited.insert(Op).second) + Worklist.push_back(Op); + if (Op == N) + return true; + } + } + + return false; +} + +uint64_t SDNode::getConstantOperandVal(unsigned Num) const { + assert(Num < NumOperands && "Invalid child # of SDNode!"); + return cast<ConstantSDNode>(OperandList[Num])->getZExtValue(); +} + +SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) { + assert(N->getNumValues() == 1 && + "Can't unroll a vector with multiple results!"); + + EVT VT = N->getValueType(0); + unsigned NE = VT.getVectorNumElements(); + EVT EltVT = VT.getVectorElementType(); + SDLoc dl(N); + + SmallVector<SDValue, 8> Scalars; + SmallVector<SDValue, 4> Operands(N->getNumOperands()); + + // If ResNE is 0, fully unroll the vector op. + if (ResNE == 0) + ResNE = NE; + else if (NE > ResNE) + NE = ResNE; + + unsigned i; + for (i= 0; i != NE; ++i) { + for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) { + SDValue Operand = N->getOperand(j); + EVT OperandVT = Operand.getValueType(); + if (OperandVT.isVector()) { + // A vector operand; extract a single element. + EVT OperandEltVT = OperandVT.getVectorElementType(); + Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, + OperandEltVT, + Operand, + getConstant(i, dl, TLI->getVectorIdxTy())); + } else { + // A scalar operand; just use it as is. + Operands[j] = Operand; + } + } + + switch (N->getOpcode()) { + default: + Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands)); + break; + case ISD::VSELECT: + Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands)); + break; + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + case ISD::ROTL: + case ISD::ROTR: + Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0], + getShiftAmountOperand(Operands[0].getValueType(), + Operands[1]))); + break; + case ISD::SIGN_EXTEND_INREG: + case ISD::FP_ROUND_INREG: { + EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType(); + Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, + Operands[0], + getValueType(ExtVT))); + } + } + } + + for (; i < ResNE; ++i) + Scalars.push_back(getUNDEF(EltVT)); + + return getNode(ISD::BUILD_VECTOR, dl, + EVT::getVectorVT(*getContext(), EltVT, ResNE), Scalars); +} + + +/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a +/// location that is 'Dist' units away from the location that the 'Base' load +/// is loading from. +bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, + unsigned Bytes, int Dist) const { + if (LD->getChain() != Base->getChain()) + return false; + EVT VT = LD->getValueType(0); + if (VT.getSizeInBits() / 8 != Bytes) + return false; + + SDValue Loc = LD->getOperand(1); + SDValue BaseLoc = Base->getOperand(1); + if (Loc.getOpcode() == ISD::FrameIndex) { + if (BaseLoc.getOpcode() != ISD::FrameIndex) + return false; + const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo(); + int FI = cast<FrameIndexSDNode>(Loc)->getIndex(); + int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex(); + int FS = MFI->getObjectSize(FI); + int BFS = MFI->getObjectSize(BFI); + if (FS != BFS || FS != (int)Bytes) return false; + return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes); + } + + // Handle X + C. + if (isBaseWithConstantOffset(Loc)) { + int64_t LocOffset = cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue(); + if (Loc.getOperand(0) == BaseLoc) { + // If the base location is a simple address with no offset itself, then + // the second load's first add operand should be the base address. + if (LocOffset == Dist * (int)Bytes) + return true; + } else if (isBaseWithConstantOffset(BaseLoc)) { + // The base location itself has an offset, so subtract that value from the + // second load's offset before comparing to distance * size. + int64_t BOffset = + cast<ConstantSDNode>(BaseLoc.getOperand(1))->getSExtValue(); + if (Loc.getOperand(0) == BaseLoc.getOperand(0)) { + if ((LocOffset - BOffset) == Dist * (int)Bytes) + return true; + } + } + } + const GlobalValue *GV1 = nullptr; + const GlobalValue *GV2 = nullptr; + int64_t Offset1 = 0; + int64_t Offset2 = 0; + bool isGA1 = TLI->isGAPlusOffset(Loc.getNode(), GV1, Offset1); + bool isGA2 = TLI->isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); + if (isGA1 && isGA2 && GV1 == GV2) + return Offset1 == (Offset2 + Dist*Bytes); + return false; +} + + +/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if +/// it cannot be inferred. +unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const { + // If this is a GlobalAddress + cst, return the alignment. + const GlobalValue *GV; + int64_t GVOffset = 0; + if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) { + unsigned PtrWidth = TLI->getPointerTypeSizeInBits(GV->getType()); + APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0); + llvm::computeKnownBits(const_cast<GlobalValue *>(GV), KnownZero, KnownOne, + *TLI->getDataLayout()); + unsigned AlignBits = KnownZero.countTrailingOnes(); + unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0; + if (Align) + return MinAlign(Align, GVOffset); + } + + // If this is a direct reference to a stack slot, use information about the + // stack slot's alignment. + int FrameIdx = 1 << 31; + int64_t FrameOffset = 0; + if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) { + FrameIdx = FI->getIndex(); + } else if (isBaseWithConstantOffset(Ptr) && + isa<FrameIndexSDNode>(Ptr.getOperand(0))) { + // Handle FI+Cst + FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); + FrameOffset = Ptr.getConstantOperandVal(1); + } + + if (FrameIdx != (1 << 31)) { + const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo(); + unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx), + FrameOffset); + return FIInfoAlign; + } + + return 0; +} + +/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type +/// which is split (or expanded) into two not necessarily identical pieces. +std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const { + // Currently all types are split in half. + EVT LoVT, HiVT; + if (!VT.isVector()) { + LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT); + } else { + unsigned NumElements = VT.getVectorNumElements(); + assert(!(NumElements & 1) && "Splitting vector, but not in half!"); + LoVT = HiVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(), + NumElements/2); + } + return std::make_pair(LoVT, HiVT); +} + +/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the +/// low/high part. +std::pair<SDValue, SDValue> +SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, + const EVT &HiVT) { + assert(LoVT.getVectorNumElements() + HiVT.getVectorNumElements() <= + N.getValueType().getVectorNumElements() && + "More vector elements requested than available!"); + SDValue Lo, Hi; + Lo = getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, + getConstant(0, DL, TLI->getVectorIdxTy())); + Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N, + getConstant(LoVT.getVectorNumElements(), DL, + TLI->getVectorIdxTy())); + return std::make_pair(Lo, Hi); +} + +void SelectionDAG::ExtractVectorElements(SDValue Op, + SmallVectorImpl<SDValue> &Args, + unsigned Start, unsigned Count) { + EVT VT = Op.getValueType(); + if (Count == 0) + Count = VT.getVectorNumElements(); + + EVT EltVT = VT.getVectorElementType(); + EVT IdxTy = TLI->getVectorIdxTy(); + SDLoc SL(Op); + for (unsigned i = Start, e = Start + Count; i != e; ++i) { + Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, + Op, getConstant(i, SL, IdxTy))); + } +} + +// getAddressSpace - Return the address space this GlobalAddress belongs to. +unsigned GlobalAddressSDNode::getAddressSpace() const { + return getGlobal()->getType()->getAddressSpace(); +} + + +Type *ConstantPoolSDNode::getType() const { + if (isMachineConstantPoolEntry()) + return Val.MachineCPVal->getType(); + return Val.ConstVal->getType(); +} + +bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, + APInt &SplatUndef, + unsigned &SplatBitSize, + bool &HasAnyUndefs, + unsigned MinSplatBits, + bool isBigEndian) const { + EVT VT = getValueType(0); + assert(VT.isVector() && "Expected a vector type"); + unsigned sz = VT.getSizeInBits(); + if (MinSplatBits > sz) + return false; + + SplatValue = APInt(sz, 0); + SplatUndef = APInt(sz, 0); + + // Get the bits. Bits with undefined values (when the corresponding element + // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared + // in SplatValue. If any of the values are not constant, give up and return + // false. + unsigned int nOps = getNumOperands(); + assert(nOps > 0 && "isConstantSplat has 0-size build vector"); + unsigned EltBitSize = VT.getVectorElementType().getSizeInBits(); + + for (unsigned j = 0; j < nOps; ++j) { + unsigned i = isBigEndian ? nOps-1-j : j; + SDValue OpVal = getOperand(i); + unsigned BitPos = j * EltBitSize; + + if (OpVal.getOpcode() == ISD::UNDEF) + SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize); + else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) + SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize). + zextOrTrunc(sz) << BitPos; + else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) + SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos; + else + return false; + } + + // The build_vector is all constants or undefs. Find the smallest element + // size that splats the vector. + + HasAnyUndefs = (SplatUndef != 0); + while (sz > 8) { + + unsigned HalfSize = sz / 2; + APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize); + APInt LowValue = SplatValue.trunc(HalfSize); + APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize); + APInt LowUndef = SplatUndef.trunc(HalfSize); + + // If the two halves do not match (ignoring undef bits), stop here. + if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) || + MinSplatBits > HalfSize) + break; + + SplatValue = HighValue | LowValue; + SplatUndef = HighUndef & LowUndef; + + sz = HalfSize; + } + + SplatBitSize = sz; + return true; +} + +SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const { + if (UndefElements) { + UndefElements->clear(); + UndefElements->resize(getNumOperands()); + } + SDValue Splatted; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + SDValue Op = getOperand(i); + if (Op.getOpcode() == ISD::UNDEF) { + if (UndefElements) + (*UndefElements)[i] = true; + } else if (!Splatted) { + Splatted = Op; + } else if (Splatted != Op) { + return SDValue(); + } + } + + if (!Splatted) { + assert(getOperand(0).getOpcode() == ISD::UNDEF && + "Can only have a splat without a constant for all undefs."); + return getOperand(0); + } + + return Splatted; +} + +ConstantSDNode * +BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const { + return dyn_cast_or_null<ConstantSDNode>( + getSplatValue(UndefElements).getNode()); +} + +ConstantFPSDNode * +BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const { + return dyn_cast_or_null<ConstantFPSDNode>( + getSplatValue(UndefElements).getNode()); +} + +bool BuildVectorSDNode::isConstant() const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + unsigned Opc = getOperand(i).getOpcode(); + if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP) + return false; + } + return true; +} + +bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) { + // Find the first non-undef value in the shuffle mask. + unsigned i, e; + for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i) + /* search */; + + assert(i != e && "VECTOR_SHUFFLE node with all undef indices!"); + + // Make sure all remaining elements are either undef or the same as the first + // non-undef value. + for (int Idx = Mask[i]; i != e; ++i) + if (Mask[i] >= 0 && Mask[i] != Idx) + return false; + return true; +} + +#ifndef NDEBUG +static void checkForCyclesHelper(const SDNode *N, + SmallPtrSetImpl<const SDNode*> &Visited, + SmallPtrSetImpl<const SDNode*> &Checked, + const llvm::SelectionDAG *DAG) { + // If this node has already been checked, don't check it again. + if (Checked.count(N)) + return; + + // If a node has already been visited on this depth-first walk, reject it as + // a cycle. + if (!Visited.insert(N).second) { + errs() << "Detected cycle in SelectionDAG\n"; + dbgs() << "Offending node:\n"; + N->dumprFull(DAG); dbgs() << "\n"; + abort(); + } + + for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked, DAG); + + Checked.insert(N); + Visited.erase(N); +} +#endif + +void llvm::checkForCycles(const llvm::SDNode *N, + const llvm::SelectionDAG *DAG, + bool force) { +#ifndef NDEBUG + bool check = force; +#ifdef XDEBUG + check = true; +#endif // XDEBUG + if (check) { + assert(N && "Checking nonexistent SDNode"); + SmallPtrSet<const SDNode*, 32> visited; + SmallPtrSet<const SDNode*, 32> checked; + checkForCyclesHelper(N, visited, checked, DAG); + } +#endif // !NDEBUG +} + +void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) { + checkForCycles(DAG->getRoot().getNode(), DAG, force); +} |