summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp6655
1 files changed, 6655 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
new file mode 100644
index 0000000..35ea0bb
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
@@ -0,0 +1,6655 @@
+//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the SelectionDAG class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "SDNodeOrdering.h"
+#include "SDNodeDbgValue.h"
+#include "llvm/Constants.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CallingConv.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetSelectionDAGInfo.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Mutex.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+/// makeVTList - Return an instance of the SDVTList struct initialized with the
+/// specified members.
+static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
+ SDVTList Res = {VTs, NumVTs};
+ return Res;
+}
+
+static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unknown FP format");
+ case MVT::f32: return &APFloat::IEEEsingle;
+ case MVT::f64: return &APFloat::IEEEdouble;
+ case MVT::f80: return &APFloat::x87DoubleExtended;
+ case MVT::f128: return &APFloat::IEEEquad;
+ case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
+ }
+}
+
+SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
+
+//===----------------------------------------------------------------------===//
+// ConstantFPSDNode Class
+//===----------------------------------------------------------------------===//
+
+/// isExactlyValue - We don't rely on operator== working on double values, as
+/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+/// As such, this method can be used to do an exact bit-for-bit comparison of
+/// two floating point values.
+bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
+ return getValueAPF().bitwiseIsEqual(V);
+}
+
+bool ConstantFPSDNode::isValueValidForType(EVT VT,
+ const APFloat& Val) {
+ assert(VT.isFloatingPoint() && "Can only convert between FP types");
+
+ // PPC long double cannot be converted to any other type.
+ if (VT == MVT::ppcf128 ||
+ &Val.getSemantics() == &APFloat::PPCDoubleDouble)
+ return false;
+
+ // convert modifies in place, so make a copy.
+ APFloat Val2 = APFloat(Val);
+ bool losesInfo;
+ (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
+ &losesInfo);
+ return !losesInfo;
+}
+
+//===----------------------------------------------------------------------===//
+// ISD Namespace
+//===----------------------------------------------------------------------===//
+
+/// isBuildVectorAllOnes - Return true if the specified node is a
+/// BUILD_VECTOR where all of the elements are ~0 or undef.
+bool ISD::isBuildVectorAllOnes(const SDNode *N) {
+ // Look through a bit convert.
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0).getNode();
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
+
+ unsigned i = 0, e = N->getNumOperands();
+
+ // Skip over all of the undef values.
+ while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
+ ++i;
+
+ // Do not accept an all-undef vector.
+ if (i == e) return false;
+
+ // Do not accept build_vectors that aren't all constants or which have non-~0
+ // elements.
+ SDValue NotZero = N->getOperand(i);
+ if (isa<ConstantSDNode>(NotZero)) {
+ if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
+ return false;
+ } else if (isa<ConstantFPSDNode>(NotZero)) {
+ if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
+ bitcastToAPInt().isAllOnesValue())
+ return false;
+ } else
+ return false;
+
+ // Okay, we have at least one ~0 value, check to see if the rest match or are
+ // undefs.
+ for (++i; i != e; ++i)
+ if (N->getOperand(i) != NotZero &&
+ N->getOperand(i).getOpcode() != ISD::UNDEF)
+ return false;
+ return true;
+}
+
+
+/// isBuildVectorAllZeros - Return true if the specified node is a
+/// BUILD_VECTOR where all of the elements are 0 or undef.
+bool ISD::isBuildVectorAllZeros(const SDNode *N) {
+ // Look through a bit convert.
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0).getNode();
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
+
+ unsigned i = 0, e = N->getNumOperands();
+
+ // Skip over all of the undef values.
+ while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
+ ++i;
+
+ // Do not accept an all-undef vector.
+ if (i == e) return false;
+
+ // Do not accept build_vectors that aren't all constants or which have non-0
+ // elements.
+ SDValue Zero = N->getOperand(i);
+ if (isa<ConstantSDNode>(Zero)) {
+ if (!cast<ConstantSDNode>(Zero)->isNullValue())
+ return false;
+ } else if (isa<ConstantFPSDNode>(Zero)) {
+ if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
+ return false;
+ } else
+ return false;
+
+ // Okay, we have at least one 0 value, check to see if the rest match or are
+ // undefs.
+ for (++i; i != e; ++i)
+ if (N->getOperand(i) != Zero &&
+ N->getOperand(i).getOpcode() != ISD::UNDEF)
+ return false;
+ return true;
+}
+
+/// isScalarToVector - Return true if the specified node is a
+/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
+/// element is not an undef.
+bool ISD::isScalarToVector(const SDNode *N) {
+ if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
+ return true;
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+ if (N->getOperand(0).getOpcode() == ISD::UNDEF)
+ return false;
+ unsigned NumElems = N->getNumOperands();
+ if (NumElems == 1)
+ return false;
+ for (unsigned i = 1; i < NumElems; ++i) {
+ SDValue V = N->getOperand(i);
+ if (V.getOpcode() != ISD::UNDEF)
+ return false;
+ }
+ return true;
+}
+
+/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
+/// when given the operation for (X op Y).
+ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
+ // To perform this operation, we just need to swap the L and G bits of the
+ // operation.
+ unsigned OldL = (Operation >> 2) & 1;
+ unsigned OldG = (Operation >> 1) & 1;
+ return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
+ (OldL << 1) | // New G bit
+ (OldG << 2)); // New L bit.
+}
+
+/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
+/// 'op' is a valid SetCC operation.
+ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
+ unsigned Operation = Op;
+ if (isInteger)
+ Operation ^= 7; // Flip L, G, E bits, but not U.
+ else
+ Operation ^= 15; // Flip all of the condition bits.
+
+ if (Operation > ISD::SETTRUE2)
+ Operation &= ~8; // Don't let N and U bits get set.
+
+ return ISD::CondCode(Operation);
+}
+
+
+/// isSignedOp - For an integer comparison, return 1 if the comparison is a
+/// signed operation and 2 if the result is an unsigned comparison. Return zero
+/// if the operation does not depend on the sign of the input (setne and seteq).
+static int isSignedOp(ISD::CondCode Opcode) {
+ switch (Opcode) {
+ default: llvm_unreachable("Illegal integer setcc operation!");
+ case ISD::SETEQ:
+ case ISD::SETNE: return 0;
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETGT:
+ case ISD::SETGE: return 1;
+ case ISD::SETULT:
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ case ISD::SETUGE: return 2;
+ }
+}
+
+/// getSetCCOrOperation - Return the result of a logical OR between different
+/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
+/// returns SETCC_INVALID if it is not possible to represent the resultant
+/// comparison.
+ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
+ bool isInteger) {
+ if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
+ // Cannot fold a signed integer setcc with an unsigned integer setcc.
+ return ISD::SETCC_INVALID;
+
+ unsigned Op = Op1 | Op2; // Combine all of the condition bits.
+
+ // If the N and U bits get set then the resultant comparison DOES suddenly
+ // care about orderedness, and is true when ordered.
+ if (Op > ISD::SETTRUE2)
+ Op &= ~16; // Clear the U bit if the N bit is set.
+
+ // Canonicalize illegal integer setcc's.
+ if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
+ Op = ISD::SETNE;
+
+ return ISD::CondCode(Op);
+}
+
+/// getSetCCAndOperation - Return the result of a logical AND between different
+/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
+/// function returns zero if it is not possible to represent the resultant
+/// comparison.
+ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
+ bool isInteger) {
+ if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
+ // Cannot fold a signed setcc with an unsigned setcc.
+ return ISD::SETCC_INVALID;
+
+ // Combine all of the condition bits.
+ ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
+
+ // Canonicalize illegal integer setcc's.
+ if (isInteger) {
+ switch (Result) {
+ default: break;
+ case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
+ case ISD::SETOEQ: // SETEQ & SETU[LG]E
+ case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
+ case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
+ case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
+ }
+ }
+
+ return Result;
+}
+
+//===----------------------------------------------------------------------===//
+// SDNode Profile Support
+//===----------------------------------------------------------------------===//
+
+/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
+///
+static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
+ ID.AddInteger(OpC);
+}
+
+/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
+/// solely with their pointer.
+static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
+ ID.AddPointer(VTList.VTs);
+}
+
+/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
+///
+static void AddNodeIDOperands(FoldingSetNodeID &ID,
+ const SDValue *Ops, unsigned NumOps) {
+ for (; NumOps; --NumOps, ++Ops) {
+ ID.AddPointer(Ops->getNode());
+ ID.AddInteger(Ops->getResNo());
+ }
+}
+
+/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
+///
+static void AddNodeIDOperands(FoldingSetNodeID &ID,
+ const SDUse *Ops, unsigned NumOps) {
+ for (; NumOps; --NumOps, ++Ops) {
+ ID.AddPointer(Ops->getNode());
+ ID.AddInteger(Ops->getResNo());
+ }
+}
+
+static void AddNodeIDNode(FoldingSetNodeID &ID,
+ unsigned short OpC, SDVTList VTList,
+ const SDValue *OpList, unsigned N) {
+ AddNodeIDOpcode(ID, OpC);
+ AddNodeIDValueTypes(ID, VTList);
+ AddNodeIDOperands(ID, OpList, N);
+}
+
+/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
+/// the NodeID data.
+static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
+ switch (N->getOpcode()) {
+ case ISD::TargetExternalSymbol:
+ case ISD::ExternalSymbol:
+ llvm_unreachable("Should only be used on nodes with operands");
+ default: break; // Normal nodes don't need extra info.
+ case ISD::TargetConstant:
+ case ISD::Constant:
+ ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
+ break;
+ case ISD::TargetConstantFP:
+ case ISD::ConstantFP: {
+ ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
+ break;
+ }
+ case ISD::TargetGlobalAddress:
+ case ISD::GlobalAddress:
+ case ISD::TargetGlobalTLSAddress:
+ case ISD::GlobalTLSAddress: {
+ const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
+ ID.AddPointer(GA->getGlobal());
+ ID.AddInteger(GA->getOffset());
+ ID.AddInteger(GA->getTargetFlags());
+ break;
+ }
+ case ISD::BasicBlock:
+ ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
+ break;
+ case ISD::Register:
+ ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
+ break;
+
+ case ISD::SRCVALUE:
+ ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
+ break;
+ case ISD::FrameIndex:
+ case ISD::TargetFrameIndex:
+ ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
+ break;
+ case ISD::JumpTable:
+ case ISD::TargetJumpTable:
+ ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
+ ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
+ break;
+ case ISD::ConstantPool:
+ case ISD::TargetConstantPool: {
+ const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
+ ID.AddInteger(CP->getAlignment());
+ ID.AddInteger(CP->getOffset());
+ if (CP->isMachineConstantPoolEntry())
+ CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
+ else
+ ID.AddPointer(CP->getConstVal());
+ ID.AddInteger(CP->getTargetFlags());
+ break;
+ }
+ case ISD::LOAD: {
+ const LoadSDNode *LD = cast<LoadSDNode>(N);
+ ID.AddInteger(LD->getMemoryVT().getRawBits());
+ ID.AddInteger(LD->getRawSubclassData());
+ break;
+ }
+ case ISD::STORE: {
+ const StoreSDNode *ST = cast<StoreSDNode>(N);
+ ID.AddInteger(ST->getMemoryVT().getRawBits());
+ ID.AddInteger(ST->getRawSubclassData());
+ break;
+ }
+ case ISD::ATOMIC_CMP_SWAP:
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX: {
+ const AtomicSDNode *AT = cast<AtomicSDNode>(N);
+ ID.AddInteger(AT->getMemoryVT().getRawBits());
+ ID.AddInteger(AT->getRawSubclassData());
+ break;
+ }
+ case ISD::VECTOR_SHUFFLE: {
+ const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+ for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
+ i != e; ++i)
+ ID.AddInteger(SVN->getMaskElt(i));
+ break;
+ }
+ case ISD::TargetBlockAddress:
+ case ISD::BlockAddress: {
+ ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
+ ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
+ break;
+ }
+ } // end switch (N->getOpcode())
+}
+
+/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
+/// data.
+static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
+ AddNodeIDOpcode(ID, N->getOpcode());
+ // Add the return value info.
+ AddNodeIDValueTypes(ID, N->getVTList());
+ // Add the operand info.
+ AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
+
+ // Handle SDNode leafs with special info.
+ AddNodeIDCustom(ID, N);
+}
+
+/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
+/// the CSE map that carries volatility, temporalness, indexing mode, and
+/// extension/truncation information.
+///
+static inline unsigned
+encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
+ bool isNonTemporal) {
+ assert((ConvType & 3) == ConvType &&
+ "ConvType may not require more than 2 bits!");
+ assert((AM & 7) == AM &&
+ "AM may not require more than 3 bits!");
+ return ConvType |
+ (AM << 2) |
+ (isVolatile << 5) |
+ (isNonTemporal << 6);
+}
+
+//===----------------------------------------------------------------------===//
+// SelectionDAG Class
+//===----------------------------------------------------------------------===//
+
+/// doNotCSE - Return true if CSE should not be performed for this node.
+static bool doNotCSE(SDNode *N) {
+ if (N->getValueType(0) == MVT::Glue)
+ return true; // Never CSE anything that produces a flag.
+
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::HANDLENODE:
+ case ISD::EH_LABEL:
+ return true; // Never CSE these nodes.
+ }
+
+ // Check that remaining values produced are not flags.
+ for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
+ if (N->getValueType(i) == MVT::Glue)
+ return true; // Never CSE anything that produces a flag.
+
+ return false;
+}
+
+/// RemoveDeadNodes - This method deletes all unreachable nodes in the
+/// SelectionDAG.
+void SelectionDAG::RemoveDeadNodes() {
+ // Create a dummy node (which is not added to allnodes), that adds a reference
+ // to the root node, preventing it from being deleted.
+ HandleSDNode Dummy(getRoot());
+
+ SmallVector<SDNode*, 128> DeadNodes;
+
+ // Add all obviously-dead nodes to the DeadNodes worklist.
+ for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
+ if (I->use_empty())
+ DeadNodes.push_back(I);
+
+ RemoveDeadNodes(DeadNodes);
+
+ // If the root changed (e.g. it was a dead load, update the root).
+ setRoot(Dummy.getValue());
+}
+
+/// RemoveDeadNodes - This method deletes the unreachable nodes in the
+/// given list, and any nodes that become unreachable as a result.
+void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
+ DAGUpdateListener *UpdateListener) {
+
+ // Process the worklist, deleting the nodes and adding their uses to the
+ // worklist.
+ while (!DeadNodes.empty()) {
+ SDNode *N = DeadNodes.pop_back_val();
+
+ if (UpdateListener)
+ UpdateListener->NodeDeleted(N, 0);
+
+ // Take the node out of the appropriate CSE map.
+ RemoveNodeFromCSEMaps(N);
+
+ // Next, brutally remove the operand list. This is safe to do, as there are
+ // no cycles in the graph.
+ for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
+ SDUse &Use = *I++;
+ SDNode *Operand = Use.getNode();
+ Use.set(SDValue());
+
+ // Now that we removed this operand, see if there are no uses of it left.
+ if (Operand->use_empty())
+ DeadNodes.push_back(Operand);
+ }
+
+ DeallocateNode(N);
+ }
+}
+
+void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
+ SmallVector<SDNode*, 16> DeadNodes(1, N);
+ RemoveDeadNodes(DeadNodes, UpdateListener);
+}
+
+void SelectionDAG::DeleteNode(SDNode *N) {
+ // First take this out of the appropriate CSE map.
+ RemoveNodeFromCSEMaps(N);
+
+ // Finally, remove uses due to operands of this node, remove from the
+ // AllNodes list, and delete the node.
+ DeleteNodeNotInCSEMaps(N);
+}
+
+void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
+ assert(N != AllNodes.begin() && "Cannot delete the entry node!");
+ assert(N->use_empty() && "Cannot delete a node that is not dead!");
+
+ // Drop all of the operands and decrement used node's use counts.
+ N->DropOperands();
+
+ DeallocateNode(N);
+}
+
+void SelectionDAG::DeallocateNode(SDNode *N) {
+ if (N->OperandsNeedDelete)
+ delete[] N->OperandList;
+
+ // Set the opcode to DELETED_NODE to help catch bugs when node
+ // memory is reallocated.
+ N->NodeType = ISD::DELETED_NODE;
+
+ NodeAllocator.Deallocate(AllNodes.remove(N));
+
+ // Remove the ordering of this node.
+ Ordering->remove(N);
+
+ // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
+ ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
+ for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
+ DbgVals[i]->setIsInvalidated();
+}
+
+/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
+/// correspond to it. This is useful when we're about to delete or repurpose
+/// the node. We don't want future request for structurally identical nodes
+/// to return N anymore.
+bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
+ bool Erased = false;
+ switch (N->getOpcode()) {
+ case ISD::HANDLENODE: return false; // noop.
+ case ISD::CONDCODE:
+ assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
+ "Cond code doesn't exist!");
+ Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
+ CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
+ break;
+ case ISD::ExternalSymbol:
+ Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
+ break;
+ case ISD::TargetExternalSymbol: {
+ ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
+ Erased = TargetExternalSymbols.erase(
+ std::pair<std::string,unsigned char>(ESN->getSymbol(),
+ ESN->getTargetFlags()));
+ break;
+ }
+ case ISD::VALUETYPE: {
+ EVT VT = cast<VTSDNode>(N)->getVT();
+ if (VT.isExtended()) {
+ Erased = ExtendedValueTypeNodes.erase(VT);
+ } else {
+ Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
+ ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
+ }
+ break;
+ }
+ default:
+ // Remove it from the CSE Map.
+ assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
+ assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
+ Erased = CSEMap.RemoveNode(N);
+ break;
+ }
+#ifndef NDEBUG
+ // Verify that the node was actually in one of the CSE maps, unless it has a
+ // flag result (which cannot be CSE'd) or is one of the special cases that are
+ // not subject to CSE.
+ if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
+ !N->isMachineOpcode() && !doNotCSE(N)) {
+ N->dump(this);
+ dbgs() << "\n";
+ llvm_unreachable("Node is not in map!");
+ }
+#endif
+ return Erased;
+}
+
+/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
+/// maps and modified in place. Add it back to the CSE maps, unless an identical
+/// node already exists, in which case transfer all its users to the existing
+/// node. This transfer can potentially trigger recursive merging.
+///
+void
+SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
+ DAGUpdateListener *UpdateListener) {
+ // For node types that aren't CSE'd, just act as if no identical node
+ // already exists.
+ if (!doNotCSE(N)) {
+ SDNode *Existing = CSEMap.GetOrInsertNode(N);
+ if (Existing != N) {
+ // If there was already an existing matching node, use ReplaceAllUsesWith
+ // to replace the dead one with the existing one. This can cause
+ // recursive merging of other unrelated nodes down the line.
+ ReplaceAllUsesWith(N, Existing, UpdateListener);
+
+ // N is now dead. Inform the listener if it exists and delete it.
+ if (UpdateListener)
+ UpdateListener->NodeDeleted(N, Existing);
+ DeleteNodeNotInCSEMaps(N);
+ return;
+ }
+ }
+
+ // If the node doesn't already exist, we updated it. Inform a listener if
+ // it exists.
+ if (UpdateListener)
+ UpdateListener->NodeUpdated(N);
+}
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified. If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take. If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
+ void *&InsertPos) {
+ if (doNotCSE(N))
+ return 0;
+
+ SDValue Ops[] = { Op };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
+ AddNodeIDCustom(ID, N);
+ SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+ return Node;
+}
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified. If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take. If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
+ SDValue Op1, SDValue Op2,
+ void *&InsertPos) {
+ if (doNotCSE(N))
+ return 0;
+
+ SDValue Ops[] = { Op1, Op2 };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
+ AddNodeIDCustom(ID, N);
+ SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+ return Node;
+}
+
+
+/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
+/// were replaced with those specified. If this node is never memoized,
+/// return null, otherwise return a pointer to the slot it would take. If a
+/// node already exists with these operands, the slot will be non-null.
+SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
+ const SDValue *Ops,unsigned NumOps,
+ void *&InsertPos) {
+ if (doNotCSE(N))
+ return 0;
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
+ AddNodeIDCustom(ID, N);
+ SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
+ return Node;
+}
+
+#ifndef NDEBUG
+/// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid.
+static void VerifyNodeCommon(SDNode *N) {
+ switch (N->getOpcode()) {
+ default:
+ break;
+ case ISD::BUILD_PAIR: {
+ EVT VT = N->getValueType(0);
+ assert(N->getNumValues() == 1 && "Too many results!");
+ assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
+ "Wrong return type!");
+ assert(N->getNumOperands() == 2 && "Wrong number of operands!");
+ assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
+ "Mismatched operand types!");
+ assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
+ "Wrong operand type!");
+ assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
+ "Wrong return type size");
+ break;
+ }
+ case ISD::BUILD_VECTOR: {
+ assert(N->getNumValues() == 1 && "Too many results!");
+ assert(N->getValueType(0).isVector() && "Wrong return type!");
+ assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
+ "Wrong number of operands!");
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
+ assert((I->getValueType() == EltVT ||
+ (EltVT.isInteger() && I->getValueType().isInteger() &&
+ EltVT.bitsLE(I->getValueType()))) &&
+ "Wrong operand type!");
+ break;
+ }
+ }
+}
+
+/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
+static void VerifySDNode(SDNode *N) {
+ // The SDNode allocators cannot be used to allocate nodes with fields that are
+ // not present in an SDNode!
+ assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
+ assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
+ assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
+ assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
+ assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
+ assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
+ assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
+ assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
+ assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
+ assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
+ assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
+ assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
+ assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
+ assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
+ assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
+ assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
+ assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
+ assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
+ assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
+
+ VerifyNodeCommon(N);
+}
+
+/// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is
+/// invalid.
+static void VerifyMachineNode(SDNode *N) {
+ // The MachineNode allocators cannot be used to allocate nodes with fields
+ // that are not present in a MachineNode!
+ // Currently there are no such nodes.
+
+ VerifyNodeCommon(N);
+}
+#endif // NDEBUG
+
+/// getEVTAlignment - Compute the default alignment value for the
+/// given type.
+///
+unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
+ const Type *Ty = VT == MVT::iPTR ?
+ PointerType::get(Type::getInt8Ty(*getContext()), 0) :
+ VT.getTypeForEVT(*getContext());
+
+ return TLI.getTargetData()->getABITypeAlignment(Ty);
+}
+
+// EntryNode could meaningfully have debug info if we can find it...
+SelectionDAG::SelectionDAG(const TargetMachine &tm)
+ : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
+ EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
+ Root(getEntryNode()), Ordering(0) {
+ AllNodes.push_back(&EntryNode);
+ Ordering = new SDNodeOrdering();
+ DbgInfo = new SDDbgInfo();
+}
+
+void SelectionDAG::init(MachineFunction &mf) {
+ MF = &mf;
+ Context = &mf.getFunction()->getContext();
+}
+
+SelectionDAG::~SelectionDAG() {
+ allnodes_clear();
+ delete Ordering;
+ delete DbgInfo;
+}
+
+void SelectionDAG::allnodes_clear() {
+ assert(&*AllNodes.begin() == &EntryNode);
+ AllNodes.remove(AllNodes.begin());
+ while (!AllNodes.empty())
+ DeallocateNode(AllNodes.begin());
+}
+
+void SelectionDAG::clear() {
+ allnodes_clear();
+ OperandAllocator.Reset();
+ CSEMap.clear();
+
+ ExtendedValueTypeNodes.clear();
+ ExternalSymbols.clear();
+ TargetExternalSymbols.clear();
+ std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
+ static_cast<CondCodeSDNode*>(0));
+ std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
+ static_cast<SDNode*>(0));
+
+ EntryNode.UseList = 0;
+ AllNodes.push_back(&EntryNode);
+ Root = getEntryNode();
+ Ordering->clear();
+ DbgInfo->clear();
+}
+
+SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
+ return VT.bitsGT(Op.getValueType()) ?
+ getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
+ getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
+ return VT.bitsGT(Op.getValueType()) ?
+ getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
+ getNode(ISD::TRUNCATE, DL, VT, Op);
+}
+
+SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
+ assert(!VT.isVector() &&
+ "getZeroExtendInReg should use the vector element type instead of "
+ "the vector type!");
+ if (Op.getValueType() == VT) return Op;
+ unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+ APInt Imm = APInt::getLowBitsSet(BitWidth,
+ VT.getSizeInBits());
+ return getNode(ISD::AND, DL, Op.getValueType(), Op,
+ getConstant(Imm, Op.getValueType()));
+}
+
+/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
+///
+SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
+ EVT EltVT = VT.getScalarType();
+ SDValue NegOne =
+ getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
+ return getNode(ISD::XOR, DL, VT, Val, NegOne);
+}
+
+SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
+ EVT EltVT = VT.getScalarType();
+ assert((EltVT.getSizeInBits() >= 64 ||
+ (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
+ "getConstant with a uint64_t value that doesn't fit in the type!");
+ return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
+}
+
+SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
+ return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
+}
+
+SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
+ assert(VT.isInteger() && "Cannot create FP integer constant!");
+
+ EVT EltVT = VT.getScalarType();
+ assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
+ "APInt size does not match type size!");
+
+ unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
+ ID.AddPointer(&Val);
+ void *IP = 0;
+ SDNode *N = NULL;
+ if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
+ if (!VT.isVector())
+ return SDValue(N, 0);
+
+ if (!N) {
+ N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ }
+
+ SDValue Result(N, 0);
+ if (VT.isVector()) {
+ SmallVector<SDValue, 8> Ops;
+ Ops.assign(VT.getVectorNumElements(), Result);
+ Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
+ }
+ return Result;
+}
+
+SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
+ return getConstant(Val, TLI.getPointerTy(), isTarget);
+}
+
+
+SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
+ return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
+}
+
+SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
+ assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
+
+ EVT EltVT = VT.getScalarType();
+
+ // Do the map lookup using the actual bit pattern for the floating point
+ // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
+ // we don't have issues with SNANs.
+ unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
+ ID.AddPointer(&V);
+ void *IP = 0;
+ SDNode *N = NULL;
+ if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
+ if (!VT.isVector())
+ return SDValue(N, 0);
+
+ if (!N) {
+ N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ }
+
+ SDValue Result(N, 0);
+ if (VT.isVector()) {
+ SmallVector<SDValue, 8> Ops;
+ Ops.assign(VT.getVectorNumElements(), Result);
+ // FIXME DebugLoc info might be appropriate here
+ Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
+ }
+ return Result;
+}
+
+SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
+ EVT EltVT = VT.getScalarType();
+ if (EltVT==MVT::f32)
+ return getConstantFP(APFloat((float)Val), VT, isTarget);
+ else if (EltVT==MVT::f64)
+ return getConstantFP(APFloat(Val), VT, isTarget);
+ else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
+ bool ignored;
+ APFloat apf = APFloat(Val);
+ apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
+ &ignored);
+ return getConstantFP(apf, VT, isTarget);
+ } else {
+ assert(0 && "Unsupported type in getConstantFP");
+ return SDValue();
+ }
+}
+
+SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
+ EVT VT, int64_t Offset,
+ bool isTargetGA,
+ unsigned char TargetFlags) {
+ assert((TargetFlags == 0 || isTargetGA) &&
+ "Cannot set target flags on target-independent globals");
+
+ // Truncate (with sign-extension) the offset value to the pointer size.
+ EVT PTy = TLI.getPointerTy();
+ unsigned BitWidth = PTy.getSizeInBits();
+ if (BitWidth < 64)
+ Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
+
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ if (!GVar) {
+ // If GV is an alias then use the aliasee for determining thread-localness.
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
+ GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
+ }
+
+ unsigned Opc;
+ if (GVar && GVar->isThreadLocal())
+ Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
+ else
+ Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+ ID.AddPointer(GV);
+ ID.AddInteger(Offset);
+ ID.AddInteger(TargetFlags);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
+ Offset, TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
+ unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+ ID.AddInteger(FI);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
+ unsigned char TargetFlags) {
+ assert((TargetFlags == 0 || isTarget) &&
+ "Cannot set target flags on target-independent jump tables");
+ unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+ ID.AddInteger(JTI);
+ ID.AddInteger(TargetFlags);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
+ TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
+ unsigned Alignment, int Offset,
+ bool isTarget,
+ unsigned char TargetFlags) {
+ assert((TargetFlags == 0 || isTarget) &&
+ "Cannot set target flags on target-independent globals");
+ if (Alignment == 0)
+ Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
+ unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+ ID.AddInteger(Alignment);
+ ID.AddInteger(Offset);
+ ID.AddPointer(C);
+ ID.AddInteger(TargetFlags);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
+ Alignment, TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+
+SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
+ unsigned Alignment, int Offset,
+ bool isTarget,
+ unsigned char TargetFlags) {
+ assert((TargetFlags == 0 || isTarget) &&
+ "Cannot set target flags on target-independent globals");
+ if (Alignment == 0)
+ Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
+ unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+ ID.AddInteger(Alignment);
+ ID.AddInteger(Offset);
+ C->AddSelectionDAGCSEId(ID);
+ ID.AddInteger(TargetFlags);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
+ Alignment, TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
+ ID.AddPointer(MBB);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getValueType(EVT VT) {
+ if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
+ ValueTypeNodes.size())
+ ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
+
+ SDNode *&N = VT.isExtended() ?
+ ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
+
+ if (N) return SDValue(N, 0);
+ N = new (NodeAllocator) VTSDNode(VT);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
+ SDNode *&N = ExternalSymbols[Sym];
+ if (N) return SDValue(N, 0);
+ N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
+ unsigned char TargetFlags) {
+ SDNode *&N =
+ TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
+ TargetFlags)];
+ if (N) return SDValue(N, 0);
+ N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
+ if ((unsigned)Cond >= CondCodeNodes.size())
+ CondCodeNodes.resize(Cond+1);
+
+ if (CondCodeNodes[Cond] == 0) {
+ CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
+ CondCodeNodes[Cond] = N;
+ AllNodes.push_back(N);
+ }
+
+ return SDValue(CondCodeNodes[Cond], 0);
+}
+
+// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
+// the shuffle mask M that point at N1 to point at N2, and indices that point
+// N2 to point at N1.
+static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
+ std::swap(N1, N2);
+ int NElts = M.size();
+ for (int i = 0; i != NElts; ++i) {
+ if (M[i] >= NElts)
+ M[i] -= NElts;
+ else if (M[i] >= 0)
+ M[i] += NElts;
+ }
+}
+
+SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
+ SDValue N2, const int *Mask) {
+ assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
+ assert(VT.isVector() && N1.getValueType().isVector() &&
+ "Vector Shuffle VTs must be a vectors");
+ assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
+ && "Vector Shuffle VTs must have same element type");
+
+ // Canonicalize shuffle undef, undef -> undef
+ if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
+ return getUNDEF(VT);
+
+ // Validate that all indices in Mask are within the range of the elements
+ // input to the shuffle.
+ unsigned NElts = VT.getVectorNumElements();
+ SmallVector<int, 8> MaskVec;
+ for (unsigned i = 0; i != NElts; ++i) {
+ assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
+ MaskVec.push_back(Mask[i]);
+ }
+
+ // Canonicalize shuffle v, v -> v, undef
+ if (N1 == N2) {
+ N2 = getUNDEF(VT);
+ for (unsigned i = 0; i != NElts; ++i)
+ if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
+ }
+
+ // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
+ if (N1.getOpcode() == ISD::UNDEF)
+ commuteShuffle(N1, N2, MaskVec);
+
+ // Canonicalize all index into lhs, -> shuffle lhs, undef
+ // Canonicalize all index into rhs, -> shuffle rhs, undef
+ bool AllLHS = true, AllRHS = true;
+ bool N2Undef = N2.getOpcode() == ISD::UNDEF;
+ for (unsigned i = 0; i != NElts; ++i) {
+ if (MaskVec[i] >= (int)NElts) {
+ if (N2Undef)
+ MaskVec[i] = -1;
+ else
+ AllLHS = false;
+ } else if (MaskVec[i] >= 0) {
+ AllRHS = false;
+ }
+ }
+ if (AllLHS && AllRHS)
+ return getUNDEF(VT);
+ if (AllLHS && !N2Undef)
+ N2 = getUNDEF(VT);
+ if (AllRHS) {
+ N1 = getUNDEF(VT);
+ commuteShuffle(N1, N2, MaskVec);
+ }
+
+ // If Identity shuffle, or all shuffle in to undef, return that node.
+ bool AllUndef = true;
+ bool Identity = true;
+ for (unsigned i = 0; i != NElts; ++i) {
+ if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
+ if (MaskVec[i] >= 0) AllUndef = false;
+ }
+ if (Identity && NElts == N1.getValueType().getVectorNumElements())
+ return N1;
+ if (AllUndef)
+ return getUNDEF(VT);
+
+ FoldingSetNodeID ID;
+ SDValue Ops[2] = { N1, N2 };
+ AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
+ for (unsigned i = 0; i != NElts; ++i)
+ ID.AddInteger(MaskVec[i]);
+
+ void* IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ // Allocate the mask array for the node out of the BumpPtrAllocator, since
+ // SDNode doesn't have access to it. This memory will be "leaked" when
+ // the node is deallocated, but recovered when the NodeAllocator is released.
+ int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
+ memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
+
+ ShuffleVectorSDNode *N =
+ new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
+ SDValue Val, SDValue DTy,
+ SDValue STy, SDValue Rnd, SDValue Sat,
+ ISD::CvtCode Code) {
+ // If the src and dest types are the same and the conversion is between
+ // integer types of the same sign or two floats, no conversion is necessary.
+ if (DTy == STy &&
+ (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
+ return Val;
+
+ FoldingSetNodeID ID;
+ SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
+ AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
+ void* IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
+ Code);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
+ ID.AddInteger(RegNo);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
+ FoldingSetNodeID ID;
+ SDValue Ops[] = { Root };
+ AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
+ ID.AddPointer(Label);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+
+SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
+ bool isTarget,
+ unsigned char TargetFlags) {
+ unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
+ ID.AddPointer(BA);
+ ID.AddInteger(TargetFlags);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getSrcValue(const Value *V) {
+ assert((!V || V->getType()->isPointerTy()) &&
+ "SrcValue is not a pointer?");
+
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
+ ID.AddPointer(V);
+
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
+SDValue SelectionDAG::getMDNode(const MDNode *MD) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
+ ID.AddPointer(MD);
+
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+
+/// getShiftAmountOperand - Return the specified value casted to
+/// the target's desired shift amount type.
+SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
+ EVT OpTy = Op.getValueType();
+ MVT ShTy = TLI.getShiftAmountTy(LHSTy);
+ if (OpTy == ShTy || OpTy.isVector()) return Op;
+
+ ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
+ return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
+}
+
+/// CreateStackTemporary - Create a stack temporary, suitable for holding the
+/// specified value type.
+SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
+ MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
+ unsigned ByteSize = VT.getStoreSize();
+ const Type *Ty = VT.getTypeForEVT(*getContext());
+ unsigned StackAlign =
+ std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
+
+ int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
+ return getFrameIndex(FrameIdx, TLI.getPointerTy());
+}
+
+/// CreateStackTemporary - Create a stack temporary suitable for holding
+/// either of the specified value types.
+SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
+ unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
+ VT2.getStoreSizeInBits())/8;
+ const Type *Ty1 = VT1.getTypeForEVT(*getContext());
+ const Type *Ty2 = VT2.getTypeForEVT(*getContext());
+ const TargetData *TD = TLI.getTargetData();
+ unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
+ TD->getPrefTypeAlignment(Ty2));
+
+ MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
+ int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
+ return getFrameIndex(FrameIdx, TLI.getPointerTy());
+}
+
+SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
+ SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
+ // These setcc operations always fold.
+ switch (Cond) {
+ default: break;
+ case ISD::SETFALSE:
+ case ISD::SETFALSE2: return getConstant(0, VT);
+ case ISD::SETTRUE:
+ case ISD::SETTRUE2: return getConstant(1, VT);
+
+ case ISD::SETOEQ:
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETONE:
+ case ISD::SETO:
+ case ISD::SETUO:
+ case ISD::SETUEQ:
+ case ISD::SETUNE:
+ assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
+ break;
+ }
+
+ if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
+ const APInt &C2 = N2C->getAPIntValue();
+ if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
+ const APInt &C1 = N1C->getAPIntValue();
+
+ switch (Cond) {
+ default: llvm_unreachable("Unknown integer setcc!");
+ case ISD::SETEQ: return getConstant(C1 == C2, VT);
+ case ISD::SETNE: return getConstant(C1 != C2, VT);
+ case ISD::SETULT: return getConstant(C1.ult(C2), VT);
+ case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
+ case ISD::SETULE: return getConstant(C1.ule(C2), VT);
+ case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
+ case ISD::SETLT: return getConstant(C1.slt(C2), VT);
+ case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
+ case ISD::SETLE: return getConstant(C1.sle(C2), VT);
+ case ISD::SETGE: return getConstant(C1.sge(C2), VT);
+ }
+ }
+ }
+ if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
+ if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
+ // No compile time operations on this type yet.
+ if (N1C->getValueType(0) == MVT::ppcf128)
+ return SDValue();
+
+ APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
+ switch (Cond) {
+ default: break;
+ case ISD::SETEQ: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ // fall through
+ case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
+ case ISD::SETNE: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ // fall through
+ case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpLessThan, VT);
+ case ISD::SETLT: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ // fall through
+ case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
+ case ISD::SETGT: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ // fall through
+ case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
+ case ISD::SETLE: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ // fall through
+ case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
+ R==APFloat::cmpEqual, VT);
+ case ISD::SETGE: if (R==APFloat::cmpUnordered)
+ return getUNDEF(VT);
+ // fall through
+ case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpEqual, VT);
+ case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
+ case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
+ case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
+ R==APFloat::cmpEqual, VT);
+ case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
+ case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
+ R==APFloat::cmpLessThan, VT);
+ case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
+ R==APFloat::cmpUnordered, VT);
+ case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
+ case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
+ }
+ } else {
+ // Ensure that the constant occurs on the RHS.
+ return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
+ }
+ }
+
+ // Could not fold it.
+ return SDValue();
+}
+
+/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
+/// use this predicate to simplify operations downstream.
+bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
+ // This predicate is not safe for vector operations.
+ if (Op.getValueType().isVector())
+ return false;
+
+ unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+ return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
+}
+
+/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
+/// this predicate to simplify operations downstream. Mask is known to be zero
+/// for bits that V cannot have.
+bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
+ unsigned Depth) const {
+ APInt KnownZero, KnownOne;
+ ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ return (KnownZero & Mask) == Mask;
+}
+
+/// ComputeMaskedBits - Determine which of the bits specified in Mask are
+/// known to be either zero or one and return them in the KnownZero/KnownOne
+/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
+/// processing.
+void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
+ APInt &KnownZero, APInt &KnownOne,
+ unsigned Depth) const {
+ unsigned BitWidth = Mask.getBitWidth();
+ assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
+ "Mask size mismatches value type size!");
+
+ KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
+ if (Depth == 6 || Mask == 0)
+ return; // Limit search depth.
+
+ APInt KnownZero2, KnownOne2;
+
+ switch (Op.getOpcode()) {
+ case ISD::Constant:
+ // We know all of the bits for a constant!
+ KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
+ KnownZero = ~KnownOne & Mask;
+ return;
+ case ISD::AND:
+ // If either the LHS or the RHS are Zero, the result is zero.
+ ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+ ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
+ KnownZero2, KnownOne2, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ KnownOne &= KnownOne2;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ KnownZero |= KnownZero2;
+ return;
+ case ISD::OR:
+ ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+ ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
+ KnownZero2, KnownOne2, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ KnownZero &= KnownZero2;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ KnownOne |= KnownOne2;
+ return;
+ case ISD::XOR: {
+ ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+ ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
+ KnownZero = KnownZeroOut;
+ return;
+ }
+ case ISD::MUL: {
+ APInt Mask2 = APInt::getAllOnesValue(BitWidth);
+ ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
+ ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If low bits are zero in either operand, output low known-0 bits.
+ // Also compute a conserative estimate for high known-0 bits.
+ // More trickiness is possible, but this is sufficient for the
+ // interesting case of alignment computation.
+ KnownOne.clearAllBits();
+ unsigned TrailZ = KnownZero.countTrailingOnes() +
+ KnownZero2.countTrailingOnes();
+ unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
+ KnownZero2.countLeadingOnes(),
+ BitWidth) - BitWidth;
+
+ TrailZ = std::min(TrailZ, BitWidth);
+ LeadZ = std::min(LeadZ, BitWidth);
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
+ APInt::getHighBitsSet(BitWidth, LeadZ);
+ KnownZero &= Mask;
+ return;
+ }
+ case ISD::UDIV: {
+ // For the purposes of computing leading zeros we can conservatively
+ // treat a udiv as a logical right shift by the power of 2 known to
+ // be less than the denominator.
+ APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+ ComputeMaskedBits(Op.getOperand(0),
+ AllOnes, KnownZero2, KnownOne2, Depth+1);
+ unsigned LeadZ = KnownZero2.countLeadingOnes();
+
+ KnownOne2.clearAllBits();
+ KnownZero2.clearAllBits();
+ ComputeMaskedBits(Op.getOperand(1),
+ AllOnes, KnownZero2, KnownOne2, Depth+1);
+ unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
+ if (RHSUnknownLeadingOnes != BitWidth)
+ LeadZ = std::min(BitWidth,
+ LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
+
+ KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
+ return;
+ }
+ case ISD::SELECT:
+ ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
+ ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ return;
+ case ISD::SELECT_CC:
+ ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
+ ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ return;
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO:
+ if (Op.getResNo() != 1)
+ return;
+ // The boolean result conforms to getBooleanContents. Fall through.
+ case ISD::SETCC:
+ // If we know the result of a setcc has the top bits zero, use this info.
+ if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
+ BitWidth > 1)
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
+ return;
+ case ISD::SHL:
+ // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ unsigned ShAmt = SA->getZExtValue();
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ return;
+
+ ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
+ KnownZero, KnownOne, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero <<= ShAmt;
+ KnownOne <<= ShAmt;
+ // low bits known zero.
+ KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
+ }
+ return;
+ case ISD::SRL:
+ // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ unsigned ShAmt = SA->getZExtValue();
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ return;
+
+ ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
+ KnownZero, KnownOne, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.lshr(ShAmt);
+ KnownOne = KnownOne.lshr(ShAmt);
+
+ APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
+ KnownZero |= HighBits; // High bits known zero.
+ }
+ return;
+ case ISD::SRA:
+ if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ unsigned ShAmt = SA->getZExtValue();
+
+ // If the shift count is an invalid immediate, don't do anything.
+ if (ShAmt >= BitWidth)
+ return;
+
+ APInt InDemandedMask = (Mask << ShAmt);
+ // If any of the demanded bits are produced by the sign extension, we also
+ // demand the input sign bit.
+ APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
+ if (HighBits.getBoolValue())
+ InDemandedMask |= APInt::getSignBit(BitWidth);
+
+ ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.lshr(ShAmt);
+ KnownOne = KnownOne.lshr(ShAmt);
+
+ // Handle the sign bits.
+ APInt SignBit = APInt::getSignBit(BitWidth);
+ SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
+
+ if (KnownZero.intersects(SignBit)) {
+ KnownZero |= HighBits; // New bits are known zero.
+ } else if (KnownOne.intersects(SignBit)) {
+ KnownOne |= HighBits; // New bits are known one.
+ }
+ }
+ return;
+ case ISD::SIGN_EXTEND_INREG: {
+ EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ unsigned EBits = EVT.getScalarType().getSizeInBits();
+
+ // Sign extension. Compute the demanded bits in the result that are not
+ // present in the input.
+ APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
+
+ APInt InSignBit = APInt::getSignBit(EBits);
+ APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
+
+ // If the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ InSignBit = InSignBit.zext(BitWidth);
+ if (NewBits.getBoolValue())
+ InputDemandedBits |= InSignBit;
+
+ ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
+ KnownZero, KnownOne, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+ if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
+ KnownZero |= NewBits;
+ KnownOne &= ~NewBits;
+ } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
+ KnownOne |= NewBits;
+ KnownZero &= ~NewBits;
+ } else { // Input sign bit unknown
+ KnownZero &= ~NewBits;
+ KnownOne &= ~NewBits;
+ }
+ return;
+ }
+ case ISD::CTTZ:
+ case ISD::CTLZ:
+ case ISD::CTPOP: {
+ unsigned LowBits = Log2_32(BitWidth)+1;
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ KnownOne.clearAllBits();
+ return;
+ }
+ case ISD::LOAD: {
+ if (ISD::isZEXTLoad(Op.getNode())) {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ EVT VT = LD->getMemoryVT();
+ unsigned MemBits = VT.getScalarType().getSizeInBits();
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
+ }
+ return;
+ }
+ case ISD::ZERO_EXTEND: {
+ EVT InVT = Op.getOperand(0).getValueType();
+ unsigned InBits = InVT.getScalarType().getSizeInBits();
+ APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
+ APInt InMask = Mask.trunc(InBits);
+ KnownZero = KnownZero.trunc(InBits);
+ KnownOne = KnownOne.trunc(InBits);
+ ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+ KnownZero |= NewBits;
+ return;
+ }
+ case ISD::SIGN_EXTEND: {
+ EVT InVT = Op.getOperand(0).getValueType();
+ unsigned InBits = InVT.getScalarType().getSizeInBits();
+ APInt InSignBit = APInt::getSignBit(InBits);
+ APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
+ APInt InMask = Mask.trunc(InBits);
+
+ // If any of the sign extended bits are demanded, we know that the sign
+ // bit is demanded. Temporarily set this bit in the mask for our callee.
+ if (NewBits.getBoolValue())
+ InMask |= InSignBit;
+
+ KnownZero = KnownZero.trunc(InBits);
+ KnownOne = KnownOne.trunc(InBits);
+ ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
+
+ // Note if the sign bit is known to be zero or one.
+ bool SignBitKnownZero = KnownZero.isNegative();
+ bool SignBitKnownOne = KnownOne.isNegative();
+ assert(!(SignBitKnownZero && SignBitKnownOne) &&
+ "Sign bit can't be known to be both zero and one!");
+
+ // If the sign bit wasn't actually demanded by our caller, we don't
+ // want it set in the KnownZero and KnownOne result values. Reset the
+ // mask and reapply it to the result values.
+ InMask = Mask.trunc(InBits);
+ KnownZero &= InMask;
+ KnownOne &= InMask;
+
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+
+ // If the sign bit is known zero or one, the top bits match.
+ if (SignBitKnownZero)
+ KnownZero |= NewBits;
+ else if (SignBitKnownOne)
+ KnownOne |= NewBits;
+ return;
+ }
+ case ISD::ANY_EXTEND: {
+ EVT InVT = Op.getOperand(0).getValueType();
+ unsigned InBits = InVT.getScalarType().getSizeInBits();
+ APInt InMask = Mask.trunc(InBits);
+ KnownZero = KnownZero.trunc(InBits);
+ KnownOne = KnownOne.trunc(InBits);
+ ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
+ return;
+ }
+ case ISD::TRUNCATE: {
+ EVT InVT = Op.getOperand(0).getValueType();
+ unsigned InBits = InVT.getScalarType().getSizeInBits();
+ APInt InMask = Mask.zext(InBits);
+ KnownZero = KnownZero.zext(InBits);
+ KnownOne = KnownOne.zext(InBits);
+ ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = KnownZero.trunc(BitWidth);
+ KnownOne = KnownOne.trunc(BitWidth);
+ break;
+ }
+ case ISD::AssertZext: {
+ EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
+ ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
+ KnownOne, Depth+1);
+ KnownZero |= (~InMask) & Mask;
+ return;
+ }
+ case ISD::FGETSIGN:
+ // All bits are zero except the low bit.
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
+ return;
+
+ case ISD::SUB: {
+ if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
+ // We know that the top bits of C-X are clear if X contains less bits
+ // than C (i.e. no wrap-around can happen). For example, 20-X is
+ // positive if we can prove that X is >= 0 and < 16.
+ if (CLHS->getAPIntValue().isNonNegative()) {
+ unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
+ // NLZ can't be BitWidth with no sign bit
+ APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
+ ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
+ Depth+1);
+
+ // If all of the MaskV bits are known to be zero, then we know the
+ // output top bits are zero, because we now know that the output is
+ // from [0-C].
+ if ((KnownZero2 & MaskV) == MaskV) {
+ unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
+ // Top bits known zero.
+ KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
+ }
+ }
+ }
+ }
+ // fall through
+ case ISD::ADD:
+ case ISD::ADDE: {
+ // Output known-0 bits are known if clear or set in both the low clear bits
+ // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
+ // low 3 bits clear.
+ APInt Mask2 = APInt::getLowBitsSet(BitWidth,
+ BitWidth - Mask.countLeadingZeros());
+ ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
+
+ ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ KnownZeroOut = std::min(KnownZeroOut,
+ KnownZero2.countTrailingOnes());
+
+ if (Op.getOpcode() == ISD::ADD) {
+ KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
+ return;
+ }
+
+ // With ADDE, a carry bit may be added in, so we can only use this
+ // information if we know (at least) that the low two bits are clear. We
+ // then return to the caller that the low bit is unknown but that other bits
+ // are known zero.
+ if (KnownZeroOut >= 2) // ADDE
+ KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
+ return;
+ }
+ case ISD::SREM:
+ if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ const APInt &RA = Rem->getAPIntValue().abs();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = RA - 1;
+ APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
+ ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
+
+ // The low bits of the first operand are unchanged by the srem.
+ KnownZero = KnownZero2 & LowBits;
+ KnownOne = KnownOne2 & LowBits;
+
+ // If the first operand is non-negative or has all low bits zero, then
+ // the upper bits are all zero.
+ if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
+ KnownZero |= ~LowBits;
+
+ // If the first operand is negative and not all low bits are zero, then
+ // the upper bits are all one.
+ if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
+ KnownOne |= ~LowBits;
+
+ KnownZero &= Mask;
+ KnownOne &= Mask;
+
+ assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
+ }
+ }
+ return;
+ case ISD::UREM: {
+ if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ const APInt &RA = Rem->getAPIntValue();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = (RA - 1);
+ APInt Mask2 = LowBits & Mask;
+ KnownZero |= ~LowBits & Mask;
+ ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
+ assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
+ break;
+ }
+ }
+
+ // Since the result is less than or equal to either operand, any leading
+ // zero bits in either operand must also exist in the result.
+ APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+ ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
+ Depth+1);
+ ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
+ Depth+1);
+
+ uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
+ KnownZero2.countLeadingOnes());
+ KnownOne.clearAllBits();
+ KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
+ return;
+ }
+ case ISD::FrameIndex:
+ case ISD::TargetFrameIndex:
+ if (unsigned Align = InferPtrAlignment(Op)) {
+ // The low bits are known zero if the pointer is aligned.
+ KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
+ return;
+ }
+ break;
+
+ default:
+ if (Op.getOpcode() < ISD::BUILTIN_OP_END)
+ break;
+ // Fallthrough
+ case ISD::INTRINSIC_WO_CHAIN:
+ case ISD::INTRINSIC_W_CHAIN:
+ case ISD::INTRINSIC_VOID:
+ // Allow the target to implement this method for its nodes.
+ TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
+ Depth);
+ return;
+ }
+}
+
+/// ComputeNumSignBits - Return the number of times the sign bit of the
+/// register is replicated into the other bits. We know that at least 1 bit
+/// is always equal to the sign bit (itself), but other cases can give us
+/// information. For example, immediately after an "SRA X, 2", we know that
+/// the top 3 bits are all equal to each other, so we return 3.
+unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
+ EVT VT = Op.getValueType();
+ assert(VT.isInteger() && "Invalid VT!");
+ unsigned VTBits = VT.getScalarType().getSizeInBits();
+ unsigned Tmp, Tmp2;
+ unsigned FirstAnswer = 1;
+
+ if (Depth == 6)
+ return 1; // Limit search depth.
+
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::AssertSext:
+ Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
+ return VTBits-Tmp+1;
+ case ISD::AssertZext:
+ Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
+ return VTBits-Tmp;
+
+ case ISD::Constant: {
+ const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
+ return Val.getNumSignBits();
+ }
+
+ case ISD::SIGN_EXTEND:
+ Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
+ return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
+
+ case ISD::SIGN_EXTEND_INREG:
+ // Max of the input and what this extends.
+ Tmp =
+ cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
+ Tmp = VTBits-Tmp+1;
+
+ Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ return std::max(Tmp, Tmp2);
+
+ case ISD::SRA:
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ // SRA X, C -> adds C sign bits.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Tmp += C->getZExtValue();
+ if (Tmp > VTBits) Tmp = VTBits;
+ }
+ return Tmp;
+ case ISD::SHL:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ // shl destroys sign bits.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (C->getZExtValue() >= VTBits || // Bad shift.
+ C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
+ return Tmp - C->getZExtValue();
+ }
+ break;
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: // NOT is handled here.
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+ FirstAnswer = std::min(Tmp, Tmp2);
+ // We computed what we know about the sign bits as our first
+ // answer. Now proceed to the generic code that uses
+ // ComputeMaskedBits, and pick whichever answer is better.
+ }
+ break;
+
+ case ISD::SELECT:
+ Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+ Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
+ return std::min(Tmp, Tmp2);
+
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO:
+ if (Op.getResNo() != 1)
+ break;
+ // The boolean result conforms to getBooleanContents. Fall through.
+ case ISD::SETCC:
+ // If setcc returns 0/-1, all bits are sign bits.
+ if (TLI.getBooleanContents() ==
+ TargetLowering::ZeroOrNegativeOneBooleanContent)
+ return VTBits;
+ break;
+ case ISD::ROTL:
+ case ISD::ROTR:
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ unsigned RotAmt = C->getZExtValue() & (VTBits-1);
+
+ // Handle rotate right by N like a rotate left by 32-N.
+ if (Op.getOpcode() == ISD::ROTR)
+ RotAmt = (VTBits-RotAmt) & (VTBits-1);
+
+ // If we aren't rotating out all of the known-in sign bits, return the
+ // number that are left. This handles rotl(sext(x), 1) for example.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (Tmp > RotAmt+1) return Tmp-RotAmt;
+ }
+ break;
+ case ISD::ADD:
+ // Add can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+
+ // Special case decrementing a value (ADD X, -1):
+ if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
+ if (CRHS->isAllOnesValue()) {
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getAllOnesValue(VTBits);
+ ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
+
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((KnownZero | APInt(VTBits, 1)) == Mask)
+ return VTBits;
+
+ // If we are subtracting one from a positive number, there is no carry
+ // out of the result.
+ if (KnownZero.isNegative())
+ return Tmp;
+ }
+
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+ if (Tmp2 == 1) return 1;
+ return std::min(Tmp, Tmp2)-1;
+ break;
+
+ case ISD::SUB:
+ Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
+ if (Tmp2 == 1) return 1;
+
+ // Handle NEG.
+ if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
+ if (CLHS->isNullValue()) {
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getAllOnesValue(VTBits);
+ ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((KnownZero | APInt(VTBits, 1)) == Mask)
+ return VTBits;
+
+ // If the input is known to be positive (the sign bit is known clear),
+ // the output of the NEG has the same number of sign bits as the input.
+ if (KnownZero.isNegative())
+ return Tmp2;
+
+ // Otherwise, we treat this like a SUB.
+ }
+
+ // Sub can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+ return std::min(Tmp, Tmp2)-1;
+ break;
+ case ISD::TRUNCATE:
+ // FIXME: it's tricky to do anything useful for this, but it is an important
+ // case for targets like X86.
+ break;
+ }
+
+ // Handle LOADX separately here. EXTLOAD case will fallthrough.
+ if (Op.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ unsigned ExtType = LD->getExtensionType();
+ switch (ExtType) {
+ default: break;
+ case ISD::SEXTLOAD: // '17' bits known
+ Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
+ return VTBits-Tmp+1;
+ case ISD::ZEXTLOAD: // '16' bits known
+ Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
+ return VTBits-Tmp;
+ }
+ }
+
+ // Allow the target to implement this method for its nodes.
+ if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
+ Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ Op.getOpcode() == ISD::INTRINSIC_VOID) {
+ unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
+ if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
+ }
+
+ // Finally, if we can prove that the top bits of the result are 0's or 1's,
+ // use this information.
+ APInt KnownZero, KnownOne;
+ APInt Mask = APInt::getAllOnesValue(VTBits);
+ ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
+
+ if (KnownZero.isNegative()) { // sign bit is 0
+ Mask = KnownZero;
+ } else if (KnownOne.isNegative()) { // sign bit is 1;
+ Mask = KnownOne;
+ } else {
+ // Nothing known.
+ return FirstAnswer;
+ }
+
+ // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
+ // the number of identical bits in the top of the input value.
+ Mask = ~Mask;
+ Mask <<= Mask.getBitWidth()-VTBits;
+ // Return # leading zeros. We use 'min' here in case Val was zero before
+ // shifting. We don't want to return '64' as for an i32 "0".
+ return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
+}
+
+/// isBaseWithConstantOffset - Return true if the specified operand is an
+/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
+/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
+/// semantics as an ADD. This handles the equivalence:
+/// X|Cst == X+Cst iff X&Cst = 0.
+bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
+ if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
+ !isa<ConstantSDNode>(Op.getOperand(1)))
+ return false;
+
+ if (Op.getOpcode() == ISD::OR &&
+ !MaskedValueIsZero(Op.getOperand(0),
+ cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
+ return false;
+
+ return true;
+}
+
+
+bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
+ // If we're told that NaNs won't happen, assume they won't.
+ if (NoNaNsFPMath)
+ return true;
+
+ // If the value is a constant, we can obviously see if it is a NaN or not.
+ if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
+ return !C->getValueAPF().isNaN();
+
+ // TODO: Recognize more cases here.
+
+ return false;
+}
+
+bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
+ // If the value is a constant, we can obviously see if it is a zero or not.
+ if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
+ return !C->isZero();
+
+ // TODO: Recognize more cases here.
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::OR:
+ if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
+ return !C->isNullValue();
+ break;
+ }
+
+ return false;
+}
+
+bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
+ // Check the obvious case.
+ if (A == B) return true;
+
+ // For for negative and positive zero.
+ if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
+ if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
+ if (CA->isZero() && CB->isZero()) return true;
+
+ // Otherwise they may not be equal.
+ return false;
+}
+
+/// getNode - Gets or creates the specified node.
+///
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
+ CSEMap.InsertNode(N, IP);
+
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifySDNode(N);
+#endif
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
+ EVT VT, SDValue Operand) {
+ // Constant fold unary operations with an integer constant operand.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
+ const APInt &Val = C->getAPIntValue();
+ switch (Opcode) {
+ default: break;
+ case ISD::SIGN_EXTEND:
+ return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::TRUNCATE:
+ return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
+ case ISD::UINT_TO_FP:
+ case ISD::SINT_TO_FP: {
+ // No compile time operations on ppcf128.
+ if (VT == MVT::ppcf128) break;
+ APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
+ (void)apf.convertFromAPInt(Val,
+ Opcode==ISD::SINT_TO_FP,
+ APFloat::rmNearestTiesToEven);
+ return getConstantFP(apf, VT);
+ }
+ case ISD::BITCAST:
+ if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
+ return getConstantFP(Val.bitsToFloat(), VT);
+ else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
+ return getConstantFP(Val.bitsToDouble(), VT);
+ break;
+ case ISD::BSWAP:
+ return getConstant(Val.byteSwap(), VT);
+ case ISD::CTPOP:
+ return getConstant(Val.countPopulation(), VT);
+ case ISD::CTLZ:
+ return getConstant(Val.countLeadingZeros(), VT);
+ case ISD::CTTZ:
+ return getConstant(Val.countTrailingZeros(), VT);
+ }
+ }
+
+ // Constant fold unary operations with a floating point constant operand.
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
+ APFloat V = C->getValueAPF(); // make copy
+ if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
+ switch (Opcode) {
+ case ISD::FNEG:
+ V.changeSign();
+ return getConstantFP(V, VT);
+ case ISD::FABS:
+ V.clearSign();
+ return getConstantFP(V, VT);
+ case ISD::FP_ROUND:
+ case ISD::FP_EXTEND: {
+ bool ignored;
+ // This can return overflow, underflow, or inexact; we don't care.
+ // FIXME need to be more flexible about rounding mode.
+ (void)V.convert(*EVTToAPFloatSemantics(VT),
+ APFloat::rmNearestTiesToEven, &ignored);
+ return getConstantFP(V, VT);
+ }
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: {
+ integerPart x[2];
+ bool ignored;
+ assert(integerPartWidth >= 64);
+ // FIXME need to be more flexible about rounding mode.
+ APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
+ Opcode==ISD::FP_TO_SINT,
+ APFloat::rmTowardZero, &ignored);
+ if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
+ break;
+ APInt api(VT.getSizeInBits(), 2, x);
+ return getConstant(api, VT);
+ }
+ case ISD::BITCAST:
+ if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
+ return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
+ else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
+ return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
+ break;
+ }
+ }
+ }
+
+ unsigned OpOpcode = Operand.getNode()->getOpcode();
+ switch (Opcode) {
+ case ISD::TokenFactor:
+ case ISD::MERGE_VALUES:
+ case ISD::CONCAT_VECTORS:
+ return Operand; // Factor, merge or concat of one node? No need.
+ case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
+ case ISD::FP_EXTEND:
+ assert(VT.isFloatingPoint() &&
+ Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
+ if (Operand.getValueType() == VT) return Operand; // noop conversion.
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ if (Operand.getOpcode() == ISD::UNDEF)
+ return getUNDEF(VT);
+ break;
+ case ISD::SIGN_EXTEND:
+ assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+ "Invalid SIGN_EXTEND!");
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
+ "Invalid sext node, dst < src!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
+ return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
+ else if (OpOpcode == ISD::UNDEF)
+ // sext(undef) = 0, because the top bits will all be the same.
+ return getConstant(0, VT);
+ break;
+ case ISD::ZERO_EXTEND:
+ assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+ "Invalid ZERO_EXTEND!");
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
+ "Invalid zext node, dst < src!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
+ return getNode(ISD::ZERO_EXTEND, DL, VT,
+ Operand.getNode()->getOperand(0));
+ else if (OpOpcode == ISD::UNDEF)
+ // zext(undef) = 0, because the top bits will be zero.
+ return getConstant(0, VT);
+ break;
+ case ISD::ANY_EXTEND:
+ assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+ "Invalid ANY_EXTEND!");
+ if (Operand.getValueType() == VT) return Operand; // noop extension
+ assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
+ "Invalid anyext node, dst < src!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+
+ if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
+ OpOpcode == ISD::ANY_EXTEND)
+ // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
+ return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
+ else if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+
+ // (ext (trunx x)) -> x
+ if (OpOpcode == ISD::TRUNCATE) {
+ SDValue OpOp = Operand.getNode()->getOperand(0);
+ if (OpOp.getValueType() == VT)
+ return OpOp;
+ }
+ break;
+ case ISD::TRUNCATE:
+ assert(VT.isInteger() && Operand.getValueType().isInteger() &&
+ "Invalid TRUNCATE!");
+ if (Operand.getValueType() == VT) return Operand; // noop truncate
+ assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
+ "Invalid truncate node, src < dst!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() ==
+ Operand.getValueType().getVectorNumElements()) &&
+ "Vector element count mismatch!");
+ if (OpOpcode == ISD::TRUNCATE)
+ return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
+ else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
+ OpOpcode == ISD::ANY_EXTEND) {
+ // If the source is smaller than the dest, we still need an extend.
+ if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
+ .bitsLT(VT.getScalarType()))
+ return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
+ else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
+ return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
+ else
+ return Operand.getNode()->getOperand(0);
+ }
+ break;
+ case ISD::BITCAST:
+ // Basic sanity checking.
+ assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
+ && "Cannot BITCAST between types of different sizes!");
+ if (VT == Operand.getValueType()) return Operand; // noop conversion.
+ if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
+ return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+ break;
+ case ISD::SCALAR_TO_VECTOR:
+ assert(VT.isVector() && !Operand.getValueType().isVector() &&
+ (VT.getVectorElementType() == Operand.getValueType() ||
+ (VT.getVectorElementType().isInteger() &&
+ Operand.getValueType().isInteger() &&
+ VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
+ "Illegal SCALAR_TO_VECTOR node!");
+ if (OpOpcode == ISD::UNDEF)
+ return getUNDEF(VT);
+ // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
+ if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
+ isa<ConstantSDNode>(Operand.getOperand(1)) &&
+ Operand.getConstantOperandVal(1) == 0 &&
+ Operand.getOperand(0).getValueType() == VT)
+ return Operand.getOperand(0);
+ break;
+ case ISD::FNEG:
+ // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
+ if (UnsafeFPMath && OpOpcode == ISD::FSUB)
+ return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
+ Operand.getNode()->getOperand(0));
+ if (OpOpcode == ISD::FNEG) // --X -> X
+ return Operand.getNode()->getOperand(0);
+ break;
+ case ISD::FABS:
+ if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
+ return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
+ break;
+ }
+
+ SDNode *N;
+ SDVTList VTs = getVTList(VT);
+ if (VT != MVT::Glue) { // Don't CSE flag producing nodes
+ FoldingSetNodeID ID;
+ SDValue Ops[1] = { Operand };
+ AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
+ }
+
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifySDNode(N);
+#endif
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
+ EVT VT,
+ ConstantSDNode *Cst1,
+ ConstantSDNode *Cst2) {
+ const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
+
+ switch (Opcode) {
+ case ISD::ADD: return getConstant(C1 + C2, VT);
+ case ISD::SUB: return getConstant(C1 - C2, VT);
+ case ISD::MUL: return getConstant(C1 * C2, VT);
+ case ISD::UDIV:
+ if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
+ break;
+ case ISD::UREM:
+ if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
+ break;
+ case ISD::SDIV:
+ if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
+ break;
+ case ISD::SREM:
+ if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
+ break;
+ case ISD::AND: return getConstant(C1 & C2, VT);
+ case ISD::OR: return getConstant(C1 | C2, VT);
+ case ISD::XOR: return getConstant(C1 ^ C2, VT);
+ case ISD::SHL: return getConstant(C1 << C2, VT);
+ case ISD::SRL: return getConstant(C1.lshr(C2), VT);
+ case ISD::SRA: return getConstant(C1.ashr(C2), VT);
+ case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
+ case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
+ default: break;
+ }
+
+ return SDValue();
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+ SDValue N1, SDValue N2) {
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
+ switch (Opcode) {
+ default: break;
+ case ISD::TokenFactor:
+ assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
+ N2.getValueType() == MVT::Other && "Invalid token factor!");
+ // Fold trivial token factors.
+ if (N1.getOpcode() == ISD::EntryToken) return N2;
+ if (N2.getOpcode() == ISD::EntryToken) return N1;
+ if (N1 == N2) return N1;
+ break;
+ case ISD::CONCAT_VECTORS:
+ // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
+ // one big BUILD_VECTOR.
+ if (N1.getOpcode() == ISD::BUILD_VECTOR &&
+ N2.getOpcode() == ISD::BUILD_VECTOR) {
+ SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
+ N1.getNode()->op_end());
+ Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
+ return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
+ }
+ break;
+ case ISD::AND:
+ assert(VT.isInteger() && "This operator does not apply to FP types!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
+ // worth handling here.
+ if (N2C && N2C->isNullValue())
+ return N2;
+ if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
+ return N1;
+ break;
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::ADD:
+ case ISD::SUB:
+ assert(VT.isInteger() && "This operator does not apply to FP types!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
+ // it's worth handling here.
+ if (N2C && N2C->isNullValue())
+ return N1;
+ break;
+ case ISD::UDIV:
+ case ISD::UREM:
+ case ISD::MULHU:
+ case ISD::MULHS:
+ case ISD::MUL:
+ case ISD::SDIV:
+ case ISD::SREM:
+ assert(VT.isInteger() && "This operator does not apply to FP types!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ break;
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM:
+ if (UnsafeFPMath) {
+ if (Opcode == ISD::FADD) {
+ // 0+x --> x
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
+ if (CFP->getValueAPF().isZero())
+ return N2;
+ // x+0 --> x
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
+ if (CFP->getValueAPF().isZero())
+ return N1;
+ } else if (Opcode == ISD::FSUB) {
+ // x-0 --> x
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
+ if (CFP->getValueAPF().isZero())
+ return N1;
+ }
+ }
+ assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
+ assert(N1.getValueType() == N2.getValueType() &&
+ N1.getValueType() == VT && "Binary operator types must match!");
+ break;
+ case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
+ assert(N1.getValueType() == VT &&
+ N1.getValueType().isFloatingPoint() &&
+ N2.getValueType().isFloatingPoint() &&
+ "Invalid FCOPYSIGN!");
+ break;
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::ROTL:
+ case ISD::ROTR:
+ assert(VT == N1.getValueType() &&
+ "Shift operators return type must be the same as their first arg");
+ assert(VT.isInteger() && N2.getValueType().isInteger() &&
+ "Shifts only work on integers");
+ // Verify that the shift amount VT is bit enough to hold valid shift
+ // amounts. This catches things like trying to shift an i1024 value by an
+ // i8, which is easy to fall into in generic code that uses
+ // TLI.getShiftAmount().
+ assert(N2.getValueType().getSizeInBits() >=
+ Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
+ "Invalid use of small shift amount with oversized value!");
+
+ // Always fold shifts of i1 values so the code generator doesn't need to
+ // handle them. Since we know the size of the shift has to be less than the
+ // size of the value, the shift/rotate count is guaranteed to be zero.
+ if (VT == MVT::i1)
+ return N1;
+ if (N2C && N2C->isNullValue())
+ return N1;
+ break;
+ case ISD::FP_ROUND_INREG: {
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
+ assert(VT == N1.getValueType() && "Not an inreg round!");
+ assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
+ "Cannot FP_ROUND_INREG integer types");
+ assert(EVT.isVector() == VT.isVector() &&
+ "FP_ROUND_INREG type should be vector iff the operand "
+ "type is vector!");
+ assert((!EVT.isVector() ||
+ EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
+ "Vector element counts must match in FP_ROUND_INREG");
+ assert(EVT.bitsLE(VT) && "Not rounding down!");
+ if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
+ break;
+ }
+ case ISD::FP_ROUND:
+ assert(VT.isFloatingPoint() &&
+ N1.getValueType().isFloatingPoint() &&
+ VT.bitsLE(N1.getValueType()) &&
+ isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
+ if (N1.getValueType() == VT) return N1; // noop conversion.
+ break;
+ case ISD::AssertSext:
+ case ISD::AssertZext: {
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
+ assert(VT == N1.getValueType() && "Not an inreg extend!");
+ assert(VT.isInteger() && EVT.isInteger() &&
+ "Cannot *_EXTEND_INREG FP types");
+ assert(!EVT.isVector() &&
+ "AssertSExt/AssertZExt type should be the vector element type "
+ "rather than the vector type!");
+ assert(EVT.bitsLE(VT) && "Not extending!");
+ if (VT == EVT) return N1; // noop assertion.
+ break;
+ }
+ case ISD::SIGN_EXTEND_INREG: {
+ EVT EVT = cast<VTSDNode>(N2)->getVT();
+ assert(VT == N1.getValueType() && "Not an inreg extend!");
+ assert(VT.isInteger() && EVT.isInteger() &&
+ "Cannot *_EXTEND_INREG FP types");
+ assert(EVT.isVector() == VT.isVector() &&
+ "SIGN_EXTEND_INREG type should be vector iff the operand "
+ "type is vector!");
+ assert((!EVT.isVector() ||
+ EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
+ "Vector element counts must match in SIGN_EXTEND_INREG");
+ assert(EVT.bitsLE(VT) && "Not extending!");
+ if (EVT == VT) return N1; // Not actually extending
+
+ if (N1C) {
+ APInt Val = N1C->getAPIntValue();
+ unsigned FromBits = EVT.getScalarType().getSizeInBits();
+ Val <<= Val.getBitWidth()-FromBits;
+ Val = Val.ashr(Val.getBitWidth()-FromBits);
+ return getConstant(Val, VT);
+ }
+ break;
+ }
+ case ISD::EXTRACT_VECTOR_ELT:
+ // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
+ if (N1.getOpcode() == ISD::UNDEF)
+ return getUNDEF(VT);
+
+ // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
+ // expanding copies of large vectors from registers.
+ if (N2C &&
+ N1.getOpcode() == ISD::CONCAT_VECTORS &&
+ N1.getNumOperands() > 0) {
+ unsigned Factor =
+ N1.getOperand(0).getValueType().getVectorNumElements();
+ return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
+ N1.getOperand(N2C->getZExtValue() / Factor),
+ getConstant(N2C->getZExtValue() % Factor,
+ N2.getValueType()));
+ }
+
+ // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
+ // expanding large vector constants.
+ if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
+ SDValue Elt = N1.getOperand(N2C->getZExtValue());
+ EVT VEltTy = N1.getValueType().getVectorElementType();
+ if (Elt.getValueType() != VEltTy) {
+ // If the vector element type is not legal, the BUILD_VECTOR operands
+ // are promoted and implicitly truncated. Make that explicit here.
+ Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
+ }
+ if (VT != VEltTy) {
+ // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
+ // result is implicitly extended.
+ Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
+ }
+ return Elt;
+ }
+
+ // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
+ // operations are lowered to scalars.
+ if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
+ // If the indices are the same, return the inserted element else
+ // if the indices are known different, extract the element from
+ // the original vector.
+ SDValue N1Op2 = N1.getOperand(2);
+ ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
+
+ if (N1Op2C && N2C) {
+ if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
+ if (VT == N1.getOperand(1).getValueType())
+ return N1.getOperand(1);
+ else
+ return getSExtOrTrunc(N1.getOperand(1), DL, VT);
+ }
+
+ return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
+ }
+ }
+ break;
+ case ISD::EXTRACT_ELEMENT:
+ assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
+ assert(!N1.getValueType().isVector() && !VT.isVector() &&
+ (N1.getValueType().isInteger() == VT.isInteger()) &&
+ "Wrong types for EXTRACT_ELEMENT!");
+
+ // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
+ // 64-bit integers into 32-bit parts. Instead of building the extract of
+ // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
+ if (N1.getOpcode() == ISD::BUILD_PAIR)
+ return N1.getOperand(N2C->getZExtValue());
+
+ // EXTRACT_ELEMENT of a constant int is also very common.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
+ unsigned ElementSize = VT.getSizeInBits();
+ unsigned Shift = ElementSize * N2C->getZExtValue();
+ APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
+ return getConstant(ShiftedVal.trunc(ElementSize), VT);
+ }
+ break;
+ case ISD::EXTRACT_SUBVECTOR: {
+ SDValue Index = N2;
+ if (VT.isSimple() && N1.getValueType().isSimple()) {
+ assert(VT.isVector() && N1.getValueType().isVector() &&
+ "Extract subvector VTs must be a vectors!");
+ assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
+ "Extract subvector VTs must have the same element type!");
+ assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
+ "Extract subvector must be from larger vector to smaller vector!");
+
+ if (isa<ConstantSDNode>(Index.getNode())) {
+ assert((VT.getVectorNumElements() +
+ cast<ConstantSDNode>(Index.getNode())->getZExtValue()
+ <= N1.getValueType().getVectorNumElements())
+ && "Extract subvector overflow!");
+ }
+
+ // Trivial extraction.
+ if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
+ return N1;
+ }
+ break;
+ }
+ }
+
+ if (N1C) {
+ if (N2C) {
+ SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
+ if (SV.getNode()) return SV;
+ } else { // Cannonicalize constant to RHS if commutative
+ if (isCommutativeBinOp(Opcode)) {
+ std::swap(N1C, N2C);
+ std::swap(N1, N2);
+ }
+ }
+ }
+
+ // Constant fold FP operations.
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
+ ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
+ if (N1CFP) {
+ if (!N2CFP && isCommutativeBinOp(Opcode)) {
+ // Cannonicalize constant to RHS if commutative
+ std::swap(N1CFP, N2CFP);
+ std::swap(N1, N2);
+ } else if (N2CFP && VT != MVT::ppcf128) {
+ APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
+ APFloat::opStatus s;
+ switch (Opcode) {
+ case ISD::FADD:
+ s = V1.add(V2, APFloat::rmNearestTiesToEven);
+ if (s != APFloat::opInvalidOp)
+ return getConstantFP(V1, VT);
+ break;
+ case ISD::FSUB:
+ s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
+ if (s!=APFloat::opInvalidOp)
+ return getConstantFP(V1, VT);
+ break;
+ case ISD::FMUL:
+ s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
+ if (s!=APFloat::opInvalidOp)
+ return getConstantFP(V1, VT);
+ break;
+ case ISD::FDIV:
+ s = V1.divide(V2, APFloat::rmNearestTiesToEven);
+ if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
+ return getConstantFP(V1, VT);
+ break;
+ case ISD::FREM :
+ s = V1.mod(V2, APFloat::rmNearestTiesToEven);
+ if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
+ return getConstantFP(V1, VT);
+ break;
+ case ISD::FCOPYSIGN:
+ V1.copySign(V2);
+ return getConstantFP(V1, VT);
+ default: break;
+ }
+ }
+ }
+
+ // Canonicalize an UNDEF to the RHS, even over a constant.
+ if (N1.getOpcode() == ISD::UNDEF) {
+ if (isCommutativeBinOp(Opcode)) {
+ std::swap(N1, N2);
+ } else {
+ switch (Opcode) {
+ case ISD::FP_ROUND_INREG:
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::SUB:
+ case ISD::FSUB:
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::SRA:
+ return N1; // fold op(undef, arg2) -> undef
+ case ISD::UDIV:
+ case ISD::SDIV:
+ case ISD::UREM:
+ case ISD::SREM:
+ case ISD::SRL:
+ case ISD::SHL:
+ if (!VT.isVector())
+ return getConstant(0, VT); // fold op(undef, arg2) -> 0
+ // For vectors, we can't easily build an all zero vector, just return
+ // the LHS.
+ return N2;
+ }
+ }
+ }
+
+ // Fold a bunch of operators when the RHS is undef.
+ if (N2.getOpcode() == ISD::UNDEF) {
+ switch (Opcode) {
+ case ISD::XOR:
+ if (N1.getOpcode() == ISD::UNDEF)
+ // Handle undef ^ undef -> 0 special case. This is a common
+ // idiom (misuse).
+ return getConstant(0, VT);
+ // fallthrough
+ case ISD::ADD:
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUB:
+ case ISD::UDIV:
+ case ISD::SDIV:
+ case ISD::UREM:
+ case ISD::SREM:
+ return N2; // fold op(arg1, undef) -> undef
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM:
+ if (UnsafeFPMath)
+ return N2;
+ break;
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::SRL:
+ case ISD::SHL:
+ if (!VT.isVector())
+ return getConstant(0, VT); // fold op(arg1, undef) -> 0
+ // For vectors, we can't easily build an all zero vector, just return
+ // the LHS.
+ return N1;
+ case ISD::OR:
+ if (!VT.isVector())
+ return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
+ // For vectors, we can't easily build an all one vector, just return
+ // the LHS.
+ return N1;
+ case ISD::SRA:
+ return N1;
+ }
+ }
+
+ // Memoize this node if possible.
+ SDNode *N;
+ SDVTList VTs = getVTList(VT);
+ if (VT != MVT::Glue) {
+ SDValue Ops[] = { N1, N2 };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
+ }
+
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifySDNode(N);
+#endif
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+ SDValue N1, SDValue N2, SDValue N3) {
+ // Perform various simplifications.
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+ switch (Opcode) {
+ case ISD::CONCAT_VECTORS:
+ // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
+ // one big BUILD_VECTOR.
+ if (N1.getOpcode() == ISD::BUILD_VECTOR &&
+ N2.getOpcode() == ISD::BUILD_VECTOR &&
+ N3.getOpcode() == ISD::BUILD_VECTOR) {
+ SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
+ N1.getNode()->op_end());
+ Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
+ Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
+ return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
+ }
+ break;
+ case ISD::SETCC: {
+ // Use FoldSetCC to simplify SETCC's.
+ SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
+ if (Simp.getNode()) return Simp;
+ break;
+ }
+ case ISD::SELECT:
+ if (N1C) {
+ if (N1C->getZExtValue())
+ return N2; // select true, X, Y -> X
+ else
+ return N3; // select false, X, Y -> Y
+ }
+
+ if (N2 == N3) return N2; // select C, X, X -> X
+ break;
+ case ISD::VECTOR_SHUFFLE:
+ llvm_unreachable("should use getVectorShuffle constructor!");
+ break;
+ case ISD::INSERT_SUBVECTOR: {
+ SDValue Index = N3;
+ if (VT.isSimple() && N1.getValueType().isSimple()
+ && N2.getValueType().isSimple()) {
+ assert(VT.isVector() && N1.getValueType().isVector() &&
+ N2.getValueType().isVector() &&
+ "Insert subvector VTs must be a vectors");
+ assert(VT == N1.getValueType() &&
+ "Dest and insert subvector source types must match!");
+ assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
+ "Insert subvector must be from smaller vector to larger vector!");
+ if (isa<ConstantSDNode>(Index.getNode())) {
+ assert((N2.getValueType().getVectorNumElements() +
+ cast<ConstantSDNode>(Index.getNode())->getZExtValue()
+ <= VT.getVectorNumElements())
+ && "Insert subvector overflow!");
+ }
+
+ // Trivial insertion.
+ if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
+ return N2;
+ }
+ break;
+ }
+ case ISD::BITCAST:
+ // Fold bit_convert nodes from a type to themselves.
+ if (N1.getValueType() == VT)
+ return N1;
+ break;
+ }
+
+ // Memoize node if it doesn't produce a flag.
+ SDNode *N;
+ SDVTList VTs = getVTList(VT);
+ if (VT != MVT::Glue) {
+ SDValue Ops[] = { N1, N2, N3 };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
+ }
+
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifySDNode(N);
+#endif
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+ SDValue N1, SDValue N2, SDValue N3,
+ SDValue N4) {
+ SDValue Ops[] = { N1, N2, N3, N4 };
+ return getNode(Opcode, DL, VT, Ops, 4);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+ SDValue N1, SDValue N2, SDValue N3,
+ SDValue N4, SDValue N5) {
+ SDValue Ops[] = { N1, N2, N3, N4, N5 };
+ return getNode(Opcode, DL, VT, Ops, 5);
+}
+
+/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
+/// the incoming stack arguments to be loaded from the stack.
+SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
+ SmallVector<SDValue, 8> ArgChains;
+
+ // Include the original chain at the beginning of the list. When this is
+ // used by target LowerCall hooks, this helps legalize find the
+ // CALLSEQ_BEGIN node.
+ ArgChains.push_back(Chain);
+
+ // Add a chain value for each stack argument.
+ for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
+ UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
+ if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
+ if (FI->getIndex() < 0)
+ ArgChains.push_back(SDValue(L, 1));
+
+ // Build a tokenfactor for all the chains.
+ return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
+ &ArgChains[0], ArgChains.size());
+}
+
+/// SplatByte - Distribute ByteVal over NumBits bits.
+static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
+ APInt Val = APInt(NumBits, ByteVal);
+ unsigned Shift = 8;
+ for (unsigned i = NumBits; i > 8; i >>= 1) {
+ Val = (Val << Shift) | Val;
+ Shift <<= 1;
+ }
+ return Val;
+}
+
+/// getMemsetValue - Vectorized representation of the memset value
+/// operand.
+static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
+ DebugLoc dl) {
+ assert(Value.getOpcode() != ISD::UNDEF);
+
+ unsigned NumBits = VT.getScalarType().getSizeInBits();
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
+ APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
+ if (VT.isInteger())
+ return DAG.getConstant(Val, VT);
+ return DAG.getConstantFP(APFloat(Val), VT);
+ }
+
+ Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
+ if (NumBits > 8) {
+ // Use a multiplication with 0x010101... to extend the input to the
+ // required length.
+ APInt Magic = SplatByte(NumBits, 0x01);
+ Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
+ }
+
+ return Value;
+}
+
+/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
+/// used when a memcpy is turned into a memset when the source is a constant
+/// string ptr.
+static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
+ const TargetLowering &TLI,
+ std::string &Str, unsigned Offset) {
+ // Handle vector with all elements zero.
+ if (Str.empty()) {
+ if (VT.isInteger())
+ return DAG.getConstant(0, VT);
+ else if (VT == MVT::f32 || VT == MVT::f64)
+ return DAG.getConstantFP(0.0, VT);
+ else if (VT.isVector()) {
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
+ return DAG.getNode(ISD::BITCAST, dl, VT,
+ DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
+ EltVT, NumElts)));
+ } else
+ llvm_unreachable("Expected type!");
+ }
+
+ assert(!VT.isVector() && "Can't handle vector type here!");
+ unsigned NumBits = VT.getSizeInBits();
+ unsigned MSB = NumBits / 8;
+ uint64_t Val = 0;
+ if (TLI.isLittleEndian())
+ Offset = Offset + MSB - 1;
+ for (unsigned i = 0; i != MSB; ++i) {
+ Val = (Val << 8) | (unsigned char)Str[Offset];
+ Offset += TLI.isLittleEndian() ? -1 : 1;
+ }
+ return DAG.getConstant(Val, VT);
+}
+
+/// getMemBasePlusOffset - Returns base and offset node for the
+///
+static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
+ SelectionDAG &DAG) {
+ EVT VT = Base.getValueType();
+ return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
+ VT, Base, DAG.getConstant(Offset, VT));
+}
+
+/// isMemSrcFromString - Returns true if memcpy source is a string constant.
+///
+static bool isMemSrcFromString(SDValue Src, std::string &Str) {
+ unsigned SrcDelta = 0;
+ GlobalAddressSDNode *G = NULL;
+ if (Src.getOpcode() == ISD::GlobalAddress)
+ G = cast<GlobalAddressSDNode>(Src);
+ else if (Src.getOpcode() == ISD::ADD &&
+ Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
+ Src.getOperand(1).getOpcode() == ISD::Constant) {
+ G = cast<GlobalAddressSDNode>(Src.getOperand(0));
+ SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
+ }
+ if (!G)
+ return false;
+
+ const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
+ if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
+ return true;
+
+ return false;
+}
+
+/// FindOptimalMemOpLowering - Determines the optimial series memory ops
+/// to replace the memset / memcpy. Return true if the number of memory ops
+/// is below the threshold. It returns the types of the sequence of
+/// memory ops to perform memset / memcpy by reference.
+static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
+ unsigned Limit, uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool NonScalarIntSafe,
+ bool MemcpyStrSrc,
+ SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
+ "Expecting memcpy / memset source to meet alignment requirement!");
+ // If 'SrcAlign' is zero, that means the memory operation does not need to
+ // load the value, i.e. memset or memcpy from constant string. Otherwise,
+ // it's the inferred alignment of the source. 'DstAlign', on the other hand,
+ // is the specified alignment of the memory operation. If it is zero, that
+ // means it's possible to change the alignment of the destination.
+ // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
+ // not need to be loaded.
+ EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
+ NonScalarIntSafe, MemcpyStrSrc,
+ DAG.getMachineFunction());
+
+ if (VT == MVT::Other) {
+ if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
+ TLI.allowsUnalignedMemoryAccesses(VT)) {
+ VT = TLI.getPointerTy();
+ } else {
+ switch (DstAlign & 7) {
+ case 0: VT = MVT::i64; break;
+ case 4: VT = MVT::i32; break;
+ case 2: VT = MVT::i16; break;
+ default: VT = MVT::i8; break;
+ }
+ }
+
+ MVT LVT = MVT::i64;
+ while (!TLI.isTypeLegal(LVT))
+ LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
+ assert(LVT.isInteger());
+
+ if (VT.bitsGT(LVT))
+ VT = LVT;
+ }
+
+ unsigned NumMemOps = 0;
+ while (Size != 0) {
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ while (VTSize > Size) {
+ // For now, only use non-vector load / store's for the left-over pieces.
+ if (VT.isVector() || VT.isFloatingPoint()) {
+ VT = MVT::i64;
+ while (!TLI.isTypeLegal(VT))
+ VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
+ VTSize = VT.getSizeInBits() / 8;
+ } else {
+ // This can result in a type that is not legal on the target, e.g.
+ // 1 or 2 bytes on PPC.
+ VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
+ VTSize >>= 1;
+ }
+ }
+
+ if (++NumMemOps > Limit)
+ return false;
+ MemOps.push_back(VT);
+ Size -= VTSize;
+ }
+
+ return true;
+}
+
+static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
+ SDValue Chain, SDValue Dst,
+ SDValue Src, uint64_t Size,
+ unsigned Align, bool isVol,
+ bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+ // Turn a memcpy of undef to nop.
+ if (Src.getOpcode() == ISD::UNDEF)
+ return Chain;
+
+ // Expand memcpy to a series of load and store ops if the size operand falls
+ // below a certain threshold.
+ // TODO: In the AlwaysInline case, if the size is big then generate a loop
+ // rather than maybe a humongous number of loads and stores.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ std::vector<EVT> MemOps;
+ bool DstAlignCanChange = false;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
+ if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
+ DstAlignCanChange = true;
+ unsigned SrcAlign = DAG.InferPtrAlignment(Src);
+ if (Align > SrcAlign)
+ SrcAlign = Align;
+ std::string Str;
+ bool CopyFromStr = isMemSrcFromString(Src, Str);
+ bool isZeroStr = CopyFromStr && Str.empty();
+ unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
+
+ if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
+ (DstAlignCanChange ? 0 : Align),
+ (isZeroStr ? 0 : SrcAlign),
+ true, CopyFromStr, DAG, TLI))
+ return SDValue();
+
+ if (DstAlignCanChange) {
+ const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
+ unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
+ if (NewAlign > Align) {
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI->setObjectAlignment(FI->getIndex(), NewAlign);
+ Align = NewAlign;
+ }
+ }
+
+ SmallVector<SDValue, 8> OutChains;
+ unsigned NumMemOps = MemOps.size();
+ uint64_t SrcOff = 0, DstOff = 0;
+ for (unsigned i = 0; i != NumMemOps; ++i) {
+ EVT VT = MemOps[i];
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ SDValue Value, Store;
+
+ if (CopyFromStr &&
+ (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
+ // It's unlikely a store of a vector immediate can be done in a single
+ // instruction. It would require a load from a constantpool first.
+ // We only handle zero vectors here.
+ // FIXME: Handle other cases where store of vector immediate is done in
+ // a single instruction.
+ Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
+ Store = DAG.getStore(Chain, dl, Value,
+ getMemBasePlusOffset(Dst, DstOff, DAG),
+ DstPtrInfo.getWithOffset(DstOff), isVol,
+ false, Align);
+ } else {
+ // The type might not be legal for the target. This should only happen
+ // if the type is smaller than a legal type, as on PPC, so the right
+ // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
+ // to Load/Store if NVT==VT.
+ // FIXME does the case above also need this?
+ EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
+ assert(NVT.bitsGE(VT));
+ Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
+ getMemBasePlusOffset(Src, SrcOff, DAG),
+ SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
+ MinAlign(SrcAlign, SrcOff));
+ Store = DAG.getTruncStore(Chain, dl, Value,
+ getMemBasePlusOffset(Dst, DstOff, DAG),
+ DstPtrInfo.getWithOffset(DstOff), VT, isVol,
+ false, Align);
+ }
+ OutChains.push_back(Store);
+ SrcOff += VTSize;
+ DstOff += VTSize;
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &OutChains[0], OutChains.size());
+}
+
+static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
+ SDValue Chain, SDValue Dst,
+ SDValue Src, uint64_t Size,
+ unsigned Align, bool isVol,
+ bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+ // Turn a memmove of undef to nop.
+ if (Src.getOpcode() == ISD::UNDEF)
+ return Chain;
+
+ // Expand memmove to a series of load and store ops if the size operand falls
+ // below a certain threshold.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ std::vector<EVT> MemOps;
+ bool DstAlignCanChange = false;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
+ if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
+ DstAlignCanChange = true;
+ unsigned SrcAlign = DAG.InferPtrAlignment(Src);
+ if (Align > SrcAlign)
+ SrcAlign = Align;
+ unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
+
+ if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
+ (DstAlignCanChange ? 0 : Align),
+ SrcAlign, true, false, DAG, TLI))
+ return SDValue();
+
+ if (DstAlignCanChange) {
+ const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
+ unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
+ if (NewAlign > Align) {
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI->setObjectAlignment(FI->getIndex(), NewAlign);
+ Align = NewAlign;
+ }
+ }
+
+ uint64_t SrcOff = 0, DstOff = 0;
+ SmallVector<SDValue, 8> LoadValues;
+ SmallVector<SDValue, 8> LoadChains;
+ SmallVector<SDValue, 8> OutChains;
+ unsigned NumMemOps = MemOps.size();
+ for (unsigned i = 0; i < NumMemOps; i++) {
+ EVT VT = MemOps[i];
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ SDValue Value, Store;
+
+ Value = DAG.getLoad(VT, dl, Chain,
+ getMemBasePlusOffset(Src, SrcOff, DAG),
+ SrcPtrInfo.getWithOffset(SrcOff), isVol,
+ false, SrcAlign);
+ LoadValues.push_back(Value);
+ LoadChains.push_back(Value.getValue(1));
+ SrcOff += VTSize;
+ }
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &LoadChains[0], LoadChains.size());
+ OutChains.clear();
+ for (unsigned i = 0; i < NumMemOps; i++) {
+ EVT VT = MemOps[i];
+ unsigned VTSize = VT.getSizeInBits() / 8;
+ SDValue Value, Store;
+
+ Store = DAG.getStore(Chain, dl, LoadValues[i],
+ getMemBasePlusOffset(Dst, DstOff, DAG),
+ DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
+ OutChains.push_back(Store);
+ DstOff += VTSize;
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &OutChains[0], OutChains.size());
+}
+
+static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
+ SDValue Chain, SDValue Dst,
+ SDValue Src, uint64_t Size,
+ unsigned Align, bool isVol,
+ MachinePointerInfo DstPtrInfo) {
+ // Turn a memset of undef to nop.
+ if (Src.getOpcode() == ISD::UNDEF)
+ return Chain;
+
+ // Expand memset to a series of load/store ops if the size operand
+ // falls below a certain threshold.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ std::vector<EVT> MemOps;
+ bool DstAlignCanChange = false;
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool OptSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
+ if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
+ DstAlignCanChange = true;
+ bool NonScalarIntSafe =
+ isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
+ if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
+ Size, (DstAlignCanChange ? 0 : Align), 0,
+ NonScalarIntSafe, false, DAG, TLI))
+ return SDValue();
+
+ if (DstAlignCanChange) {
+ const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
+ unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
+ if (NewAlign > Align) {
+ // Give the stack frame object a larger alignment if needed.
+ if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
+ MFI->setObjectAlignment(FI->getIndex(), NewAlign);
+ Align = NewAlign;
+ }
+ }
+
+ SmallVector<SDValue, 8> OutChains;
+ uint64_t DstOff = 0;
+ unsigned NumMemOps = MemOps.size();
+
+ // Find the largest store and generate the bit pattern for it.
+ EVT LargestVT = MemOps[0];
+ for (unsigned i = 1; i < NumMemOps; i++)
+ if (MemOps[i].bitsGT(LargestVT))
+ LargestVT = MemOps[i];
+ SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
+
+ for (unsigned i = 0; i < NumMemOps; i++) {
+ EVT VT = MemOps[i];
+
+ // If this store is smaller than the largest store see whether we can get
+ // the smaller value for free with a truncate.
+ SDValue Value = MemSetValue;
+ if (VT.bitsLT(LargestVT)) {
+ if (!LargestVT.isVector() && !VT.isVector() &&
+ TLI.isTruncateFree(LargestVT, VT))
+ Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
+ else
+ Value = getMemsetValue(Src, VT, DAG, dl);
+ }
+ assert(Value.getValueType() == VT && "Value with wrong type.");
+ SDValue Store = DAG.getStore(Chain, dl, Value,
+ getMemBasePlusOffset(Dst, DstOff, DAG),
+ DstPtrInfo.getWithOffset(DstOff),
+ isVol, false, Align);
+ OutChains.push_back(Store);
+ DstOff += VT.getSizeInBits() / 8;
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &OutChains[0], OutChains.size());
+}
+
+SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
+ SDValue Src, SDValue Size,
+ unsigned Align, bool isVol, bool AlwaysInline,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+
+ // Check to see if we should lower the memcpy to loads and stores first.
+ // For cases within the target-specified limits, this is the best choice.
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (ConstantSize) {
+ // Memcpy with size zero? Just return the original chain.
+ if (ConstantSize->isNullValue())
+ return Chain;
+
+ SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
+ ConstantSize->getZExtValue(),Align,
+ isVol, false, DstPtrInfo, SrcPtrInfo);
+ if (Result.getNode())
+ return Result;
+ }
+
+ // Then check to see if we should lower the memcpy with target-specific
+ // code. If the target chooses to do this, this is the next best.
+ SDValue Result =
+ TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
+ isVol, AlwaysInline,
+ DstPtrInfo, SrcPtrInfo);
+ if (Result.getNode())
+ return Result;
+
+ // If we really need inline code and the target declined to provide it,
+ // use a (potentially long) sequence of loads and stores.
+ if (AlwaysInline) {
+ assert(ConstantSize && "AlwaysInline requires a constant size!");
+ return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
+ ConstantSize->getZExtValue(), Align, isVol,
+ true, DstPtrInfo, SrcPtrInfo);
+ }
+
+ // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
+ // memcpy is not guaranteed to be safe. libc memcpys aren't required to
+ // respect volatile, so they may do things like read or write memory
+ // beyond the given memory regions. But fixing this isn't easy, and most
+ // people don't care.
+
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
+ Entry.Node = Dst; Args.push_back(Entry);
+ Entry.Node = Src; Args.push_back(Entry);
+ Entry.Node = Size; Args.push_back(Entry);
+ // FIXME: pass in DebugLoc
+ std::pair<SDValue,SDValue> CallResult =
+ TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+ false, false, false, false, 0,
+ TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
+ /*isReturnValueUsed=*/false,
+ getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
+ TLI.getPointerTy()),
+ Args, *this, dl);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
+ SDValue Src, SDValue Size,
+ unsigned Align, bool isVol,
+ MachinePointerInfo DstPtrInfo,
+ MachinePointerInfo SrcPtrInfo) {
+
+ // Check to see if we should lower the memmove to loads and stores first.
+ // For cases within the target-specified limits, this is the best choice.
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (ConstantSize) {
+ // Memmove with size zero? Just return the original chain.
+ if (ConstantSize->isNullValue())
+ return Chain;
+
+ SDValue Result =
+ getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
+ ConstantSize->getZExtValue(), Align, isVol,
+ false, DstPtrInfo, SrcPtrInfo);
+ if (Result.getNode())
+ return Result;
+ }
+
+ // Then check to see if we should lower the memmove with target-specific
+ // code. If the target chooses to do this, this is the next best.
+ SDValue Result =
+ TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
+ DstPtrInfo, SrcPtrInfo);
+ if (Result.getNode())
+ return Result;
+
+ // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
+ // not be safe. See memcpy above for more details.
+
+ // Emit a library call.
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
+ Entry.Node = Dst; Args.push_back(Entry);
+ Entry.Node = Src; Args.push_back(Entry);
+ Entry.Node = Size; Args.push_back(Entry);
+ // FIXME: pass in DebugLoc
+ std::pair<SDValue,SDValue> CallResult =
+ TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+ false, false, false, false, 0,
+ TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
+ /*isReturnValueUsed=*/false,
+ getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
+ TLI.getPointerTy()),
+ Args, *this, dl);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
+ SDValue Src, SDValue Size,
+ unsigned Align, bool isVol,
+ MachinePointerInfo DstPtrInfo) {
+
+ // Check to see if we should lower the memset to stores first.
+ // For cases within the target-specified limits, this is the best choice.
+ ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
+ if (ConstantSize) {
+ // Memset with size zero? Just return the original chain.
+ if (ConstantSize->isNullValue())
+ return Chain;
+
+ SDValue Result =
+ getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
+ Align, isVol, DstPtrInfo);
+
+ if (Result.getNode())
+ return Result;
+ }
+
+ // Then check to see if we should lower the memset with target-specific
+ // code. If the target chooses to do this, this is the next best.
+ SDValue Result =
+ TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
+ DstPtrInfo);
+ if (Result.getNode())
+ return Result;
+
+ // Emit a library call.
+ const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ Entry.Node = Dst; Entry.Ty = IntPtrTy;
+ Args.push_back(Entry);
+ // Extend or truncate the argument to be an i32 value for the call.
+ if (Src.getValueType().bitsGT(MVT::i32))
+ Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
+ else
+ Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
+ Entry.Node = Src;
+ Entry.Ty = Type::getInt32Ty(*getContext());
+ Entry.isSExt = true;
+ Args.push_back(Entry);
+ Entry.Node = Size;
+ Entry.Ty = IntPtrTy;
+ Entry.isSExt = false;
+ Args.push_back(Entry);
+ // FIXME: pass in DebugLoc
+ std::pair<SDValue,SDValue> CallResult =
+ TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
+ false, false, false, false, 0,
+ TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
+ /*isReturnValueUsed=*/false,
+ getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
+ TLI.getPointerTy()),
+ Args, *this, dl);
+ return CallResult.second;
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+ SDValue Chain, SDValue Ptr, SDValue Cmp,
+ SDValue Swp, MachinePointerInfo PtrInfo,
+ unsigned Alignment) {
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(MemVT);
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ // For now, atomics are considered to be volatile always.
+ Flags |= MachineMemOperand::MOVolatile;
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
+
+ return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+ SDValue Chain,
+ SDValue Ptr, SDValue Cmp,
+ SDValue Swp, MachineMemOperand *MMO) {
+ assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
+ assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
+
+ EVT VT = Cmp.getValueType();
+
+ SDVTList VTs = getVTList(VT, MVT::Other);
+ FoldingSetNodeID ID;
+ ID.AddInteger(MemVT.getRawBits());
+ SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
+ AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
+ void* IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<AtomicSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
+ Ptr, Cmp, Swp, MMO);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+ SDValue Chain,
+ SDValue Ptr, SDValue Val,
+ const Value* PtrVal,
+ unsigned Alignment) {
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(MemVT);
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
+
+ // For now, atomics are considered to be volatile always.
+ Flags |= MachineMemOperand::MOVolatile;
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
+ MemVT.getStoreSize(), Alignment);
+
+ return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
+}
+
+SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
+ SDValue Chain,
+ SDValue Ptr, SDValue Val,
+ MachineMemOperand *MMO) {
+ assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
+ Opcode == ISD::ATOMIC_LOAD_SUB ||
+ Opcode == ISD::ATOMIC_LOAD_AND ||
+ Opcode == ISD::ATOMIC_LOAD_OR ||
+ Opcode == ISD::ATOMIC_LOAD_XOR ||
+ Opcode == ISD::ATOMIC_LOAD_NAND ||
+ Opcode == ISD::ATOMIC_LOAD_MIN ||
+ Opcode == ISD::ATOMIC_LOAD_MAX ||
+ Opcode == ISD::ATOMIC_LOAD_UMIN ||
+ Opcode == ISD::ATOMIC_LOAD_UMAX ||
+ Opcode == ISD::ATOMIC_SWAP) &&
+ "Invalid Atomic Op");
+
+ EVT VT = Val.getValueType();
+
+ SDVTList VTs = getVTList(VT, MVT::Other);
+ FoldingSetNodeID ID;
+ ID.AddInteger(MemVT.getRawBits());
+ SDValue Ops[] = {Chain, Ptr, Val};
+ AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
+ void* IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<AtomicSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
+ Ptr, Val, MMO);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+/// getMergeValues - Create a MERGE_VALUES node from the given operands.
+SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
+ DebugLoc dl) {
+ if (NumOps == 1)
+ return Ops[0];
+
+ SmallVector<EVT, 4> VTs;
+ VTs.reserve(NumOps);
+ for (unsigned i = 0; i < NumOps; ++i)
+ VTs.push_back(Ops[i].getValueType());
+ return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
+ Ops, NumOps);
+}
+
+SDValue
+SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
+ const EVT *VTs, unsigned NumVTs,
+ const SDValue *Ops, unsigned NumOps,
+ EVT MemVT, MachinePointerInfo PtrInfo,
+ unsigned Align, bool Vol,
+ bool ReadMem, bool WriteMem) {
+ return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
+ MemVT, PtrInfo, Align, Vol,
+ ReadMem, WriteMem);
+}
+
+SDValue
+SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
+ const SDValue *Ops, unsigned NumOps,
+ EVT MemVT, MachinePointerInfo PtrInfo,
+ unsigned Align, bool Vol,
+ bool ReadMem, bool WriteMem) {
+ if (Align == 0) // Ensure that codegen never sees alignment 0
+ Align = getEVTAlignment(MemVT);
+
+ MachineFunction &MF = getMachineFunction();
+ unsigned Flags = 0;
+ if (WriteMem)
+ Flags |= MachineMemOperand::MOStore;
+ if (ReadMem)
+ Flags |= MachineMemOperand::MOLoad;
+ if (Vol)
+ Flags |= MachineMemOperand::MOVolatile;
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
+
+ return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
+}
+
+SDValue
+SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
+ const SDValue *Ops, unsigned NumOps,
+ EVT MemVT, MachineMemOperand *MMO) {
+ assert((Opcode == ISD::INTRINSIC_VOID ||
+ Opcode == ISD::INTRINSIC_W_CHAIN ||
+ Opcode == ISD::PREFETCH ||
+ (Opcode <= INT_MAX &&
+ (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
+ "Opcode is not a memory-accessing opcode!");
+
+ // Memoize the node unless it returns a flag.
+ MemIntrinsicSDNode *N;
+ if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+
+ N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
+ MemVT, MMO);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
+ MemVT, MMO);
+ }
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
+/// MachinePointerInfo record from it. This is particularly useful because the
+/// code generator has many cases where it doesn't bother passing in a
+/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
+static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
+ // If this is FI+Offset, we can model it.
+ if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
+ return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
+
+ // If this is (FI+Offset1)+Offset2, we can model it.
+ if (Ptr.getOpcode() != ISD::ADD ||
+ !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
+ !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
+ return MachinePointerInfo();
+
+ int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+ return MachinePointerInfo::getFixedStack(FI, Offset+
+ cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
+}
+
+/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
+/// MachinePointerInfo record from it. This is particularly useful because the
+/// code generator has many cases where it doesn't bother passing in a
+/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
+static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
+ // If the 'Offset' value isn't a constant, we can't handle this.
+ if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
+ return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
+ if (OffsetOp.getOpcode() == ISD::UNDEF)
+ return InferPointerInfo(Ptr);
+ return MachinePointerInfo();
+}
+
+
+SDValue
+SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
+ EVT VT, DebugLoc dl, SDValue Chain,
+ SDValue Ptr, SDValue Offset,
+ MachinePointerInfo PtrInfo, EVT MemVT,
+ bool isVolatile, bool isNonTemporal,
+ unsigned Alignment, const MDNode *TBAAInfo) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(VT);
+
+ unsigned Flags = MachineMemOperand::MOLoad;
+ if (isVolatile)
+ Flags |= MachineMemOperand::MOVolatile;
+ if (isNonTemporal)
+ Flags |= MachineMemOperand::MONonTemporal;
+
+ // If we don't have a PtrInfo, infer the trivial frame index case to simplify
+ // clients.
+ if (PtrInfo.V == 0)
+ PtrInfo = InferPointerInfo(Ptr, Offset);
+
+ MachineFunction &MF = getMachineFunction();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
+ TBAAInfo);
+ return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
+}
+
+SDValue
+SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
+ EVT VT, DebugLoc dl, SDValue Chain,
+ SDValue Ptr, SDValue Offset, EVT MemVT,
+ MachineMemOperand *MMO) {
+ if (VT == MemVT) {
+ ExtType = ISD::NON_EXTLOAD;
+ } else if (ExtType == ISD::NON_EXTLOAD) {
+ assert(VT == MemVT && "Non-extending load from different memory type!");
+ } else {
+ // Extending load.
+ assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
+ "Should only be an extending load, not truncating!");
+ assert(VT.isInteger() == MemVT.isInteger() &&
+ "Cannot convert from FP to Int or Int -> FP!");
+ assert(VT.isVector() == MemVT.isVector() &&
+ "Cannot use trunc store to convert to or from a vector!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
+ "Cannot use trunc store to change the number of vector elements!");
+ }
+
+ bool Indexed = AM != ISD::UNINDEXED;
+ assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
+ "Unindexed load with an offset!");
+
+ SDVTList VTs = Indexed ?
+ getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
+ SDValue Ops[] = { Chain, Ptr, Offset };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
+ ID.AddInteger(MemVT.getRawBits());
+ ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
+ MMO->isNonTemporal()));
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<LoadSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
+ MemVT, MMO);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
+ SDValue Chain, SDValue Ptr,
+ MachinePointerInfo PtrInfo,
+ bool isVolatile, bool isNonTemporal,
+ unsigned Alignment, const MDNode *TBAAInfo) {
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
+ PtrInfo, VT, isVolatile, isNonTemporal, Alignment, TBAAInfo);
+}
+
+SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
+ SDValue Chain, SDValue Ptr,
+ MachinePointerInfo PtrInfo, EVT MemVT,
+ bool isVolatile, bool isNonTemporal,
+ unsigned Alignment, const MDNode *TBAAInfo) {
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
+ PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment,
+ TBAAInfo);
+}
+
+
+SDValue
+SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
+ SDValue Offset, ISD::MemIndexedMode AM) {
+ LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
+ assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
+ "Load is already a indexed load!");
+ return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
+ LD->getChain(), Base, Offset, LD->getPointerInfo(),
+ LD->getMemoryVT(),
+ LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
+}
+
+SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
+ SDValue Ptr, MachinePointerInfo PtrInfo,
+ bool isVolatile, bool isNonTemporal,
+ unsigned Alignment, const MDNode *TBAAInfo) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(Val.getValueType());
+
+ unsigned Flags = MachineMemOperand::MOStore;
+ if (isVolatile)
+ Flags |= MachineMemOperand::MOVolatile;
+ if (isNonTemporal)
+ Flags |= MachineMemOperand::MONonTemporal;
+
+ if (PtrInfo.V == 0)
+ PtrInfo = InferPointerInfo(Ptr);
+
+ MachineFunction &MF = getMachineFunction();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrInfo, Flags,
+ Val.getValueType().getStoreSize(), Alignment,
+ TBAAInfo);
+
+ return getStore(Chain, dl, Val, Ptr, MMO);
+}
+
+SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
+ SDValue Ptr, MachineMemOperand *MMO) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ EVT VT = Val.getValueType();
+ SDVTList VTs = getVTList(MVT::Other);
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ SDValue Ops[] = { Chain, Val, Ptr, Undef };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
+ ID.AddInteger(VT.getRawBits());
+ ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
+ MMO->isNonTemporal()));
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<StoreSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
+ false, VT, MMO);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
+ SDValue Ptr, MachinePointerInfo PtrInfo,
+ EVT SVT,bool isVolatile, bool isNonTemporal,
+ unsigned Alignment,
+ const MDNode *TBAAInfo) {
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ if (Alignment == 0) // Ensure that codegen never sees alignment 0
+ Alignment = getEVTAlignment(SVT);
+
+ unsigned Flags = MachineMemOperand::MOStore;
+ if (isVolatile)
+ Flags |= MachineMemOperand::MOVolatile;
+ if (isNonTemporal)
+ Flags |= MachineMemOperand::MONonTemporal;
+
+ if (PtrInfo.V == 0)
+ PtrInfo = InferPointerInfo(Ptr);
+
+ MachineFunction &MF = getMachineFunction();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
+ TBAAInfo);
+
+ return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
+}
+
+SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
+ SDValue Ptr, EVT SVT,
+ MachineMemOperand *MMO) {
+ EVT VT = Val.getValueType();
+
+ assert(Chain.getValueType() == MVT::Other &&
+ "Invalid chain type");
+ if (VT == SVT)
+ return getStore(Chain, dl, Val, Ptr, MMO);
+
+ assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
+ "Should only be a truncating store, not extending!");
+ assert(VT.isInteger() == SVT.isInteger() &&
+ "Can't do FP-INT conversion!");
+ assert(VT.isVector() == SVT.isVector() &&
+ "Cannot use trunc store to convert to or from a vector!");
+ assert((!VT.isVector() ||
+ VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
+ "Cannot use trunc store to change the number of vector elements!");
+
+ SDVTList VTs = getVTList(MVT::Other);
+ SDValue Undef = getUNDEF(Ptr.getValueType());
+ SDValue Ops[] = { Chain, Val, Ptr, Undef };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
+ ID.AddInteger(SVT.getRawBits());
+ ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
+ MMO->isNonTemporal()));
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
+ cast<StoreSDNode>(E)->refineAlignment(MMO);
+ return SDValue(E, 0);
+ }
+ SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
+ true, SVT, MMO);
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue
+SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
+ SDValue Offset, ISD::MemIndexedMode AM) {
+ StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
+ assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
+ "Store is already a indexed store!");
+ SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
+ SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
+ ID.AddInteger(ST->getMemoryVT().getRawBits());
+ ID.AddInteger(ST->getRawSubclassData());
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
+ ST->isTruncatingStore(),
+ ST->getMemoryVT(),
+ ST->getMemOperand());
+ CSEMap.InsertNode(N, IP);
+ AllNodes.push_back(N);
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
+ SDValue Chain, SDValue Ptr,
+ SDValue SV,
+ unsigned Align) {
+ SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
+ return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+ const SDUse *Ops, unsigned NumOps) {
+ switch (NumOps) {
+ case 0: return getNode(Opcode, DL, VT);
+ case 1: return getNode(Opcode, DL, VT, Ops[0]);
+ case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
+ case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
+ default: break;
+ }
+
+ // Copy from an SDUse array into an SDValue array for use with
+ // the regular getNode logic.
+ SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
+ return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
+ const SDValue *Ops, unsigned NumOps) {
+ switch (NumOps) {
+ case 0: return getNode(Opcode, DL, VT);
+ case 1: return getNode(Opcode, DL, VT, Ops[0]);
+ case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
+ case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
+ default: break;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case ISD::SELECT_CC: {
+ assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
+ assert(Ops[0].getValueType() == Ops[1].getValueType() &&
+ "LHS and RHS of condition must have same type!");
+ assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+ "True and False arms of SelectCC must have same type!");
+ assert(Ops[2].getValueType() == VT &&
+ "select_cc node must be of same type as true and false value!");
+ break;
+ }
+ case ISD::BR_CC: {
+ assert(NumOps == 5 && "BR_CC takes 5 operands!");
+ assert(Ops[2].getValueType() == Ops[3].getValueType() &&
+ "LHS/RHS of comparison should match types!");
+ break;
+ }
+ }
+
+ // Memoize nodes.
+ SDNode *N;
+ SDVTList VTs = getVTList(VT);
+
+ if (VT != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
+ void *IP = 0;
+
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
+ CSEMap.InsertNode(N, IP);
+ } else {
+ N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
+ }
+
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifySDNode(N);
+#endif
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
+ const std::vector<EVT> &ResultTys,
+ const SDValue *Ops, unsigned NumOps) {
+ return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
+ Ops, NumOps);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
+ const EVT *VTs, unsigned NumVTs,
+ const SDValue *Ops, unsigned NumOps) {
+ if (NumVTs == 1)
+ return getNode(Opcode, DL, VTs[0], Ops, NumOps);
+ return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+ const SDValue *Ops, unsigned NumOps) {
+ if (VTList.NumVTs == 1)
+ return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
+
+#if 0
+ switch (Opcode) {
+ // FIXME: figure out how to safely handle things like
+ // int foo(int x) { return 1 << (x & 255); }
+ // int bar() { return foo(256); }
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS:
+ case ISD::SHL_PARTS:
+ if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
+ return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
+ else if (N3.getOpcode() == ISD::AND)
+ if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
+ // If the and is only masking out bits that cannot effect the shift,
+ // eliminate the and.
+ unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
+ if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
+ return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
+ }
+ break;
+ }
+#endif
+
+ // Memoize the node unless it returns a flag.
+ SDNode *N;
+ if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return SDValue(E, 0);
+
+ if (NumOps == 1) {
+ N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
+ } else if (NumOps == 2) {
+ N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
+ } else if (NumOps == 3) {
+ N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
+ Ops[2]);
+ } else {
+ N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
+ }
+ CSEMap.InsertNode(N, IP);
+ } else {
+ if (NumOps == 1) {
+ N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
+ } else if (NumOps == 2) {
+ N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
+ } else if (NumOps == 3) {
+ N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
+ Ops[2]);
+ } else {
+ N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
+ }
+ }
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifySDNode(N);
+#endif
+ return SDValue(N, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
+ return getNode(Opcode, DL, VTList, 0, 0);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+ SDValue N1) {
+ SDValue Ops[] = { N1 };
+ return getNode(Opcode, DL, VTList, Ops, 1);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+ SDValue N1, SDValue N2) {
+ SDValue Ops[] = { N1, N2 };
+ return getNode(Opcode, DL, VTList, Ops, 2);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+ SDValue N1, SDValue N2, SDValue N3) {
+ SDValue Ops[] = { N1, N2, N3 };
+ return getNode(Opcode, DL, VTList, Ops, 3);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+ SDValue N1, SDValue N2, SDValue N3,
+ SDValue N4) {
+ SDValue Ops[] = { N1, N2, N3, N4 };
+ return getNode(Opcode, DL, VTList, Ops, 4);
+}
+
+SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
+ SDValue N1, SDValue N2, SDValue N3,
+ SDValue N4, SDValue N5) {
+ SDValue Ops[] = { N1, N2, N3, N4, N5 };
+ return getNode(Opcode, DL, VTList, Ops, 5);
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT) {
+ return makeVTList(SDNode::getValueTypeList(VT), 1);
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
+ for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
+ E = VTList.rend(); I != E; ++I)
+ if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
+ return *I;
+
+ EVT *Array = Allocator.Allocate<EVT>(2);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ SDVTList Result = makeVTList(Array, 2);
+ VTList.push_back(Result);
+ return Result;
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
+ for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
+ E = VTList.rend(); I != E; ++I)
+ if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
+ I->VTs[2] == VT3)
+ return *I;
+
+ EVT *Array = Allocator.Allocate<EVT>(3);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ Array[2] = VT3;
+ SDVTList Result = makeVTList(Array, 3);
+ VTList.push_back(Result);
+ return Result;
+}
+
+SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
+ for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
+ E = VTList.rend(); I != E; ++I)
+ if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
+ I->VTs[2] == VT3 && I->VTs[3] == VT4)
+ return *I;
+
+ EVT *Array = Allocator.Allocate<EVT>(4);
+ Array[0] = VT1;
+ Array[1] = VT2;
+ Array[2] = VT3;
+ Array[3] = VT4;
+ SDVTList Result = makeVTList(Array, 4);
+ VTList.push_back(Result);
+ return Result;
+}
+
+SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
+ switch (NumVTs) {
+ case 0: llvm_unreachable("Cannot have nodes without results!");
+ case 1: return getVTList(VTs[0]);
+ case 2: return getVTList(VTs[0], VTs[1]);
+ case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
+ case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
+ default: break;
+ }
+
+ for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
+ E = VTList.rend(); I != E; ++I) {
+ if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
+ continue;
+
+ bool NoMatch = false;
+ for (unsigned i = 2; i != NumVTs; ++i)
+ if (VTs[i] != I->VTs[i]) {
+ NoMatch = true;
+ break;
+ }
+ if (!NoMatch)
+ return *I;
+ }
+
+ EVT *Array = Allocator.Allocate<EVT>(NumVTs);
+ std::copy(VTs, VTs+NumVTs, Array);
+ SDVTList Result = makeVTList(Array, NumVTs);
+ VTList.push_back(Result);
+ return Result;
+}
+
+
+/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
+/// specified operands. If the resultant node already exists in the DAG,
+/// this does not modify the specified node, instead it returns the node that
+/// already exists. If the resultant node does not exist in the DAG, the
+/// input node is returned. As a degenerate case, if you specify the same
+/// input operands as the node already has, the input node is returned.
+SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
+ assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
+
+ // Check to see if there is no change.
+ if (Op == N->getOperand(0)) return N;
+
+ // See if the modified node already exists.
+ void *InsertPos = 0;
+ if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
+ return Existing;
+
+ // Nope it doesn't. Remove the node from its current place in the maps.
+ if (InsertPos)
+ if (!RemoveNodeFromCSEMaps(N))
+ InsertPos = 0;
+
+ // Now we update the operands.
+ N->OperandList[0].set(Op);
+
+ // If this gets put into a CSE map, add it.
+ if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+ return N;
+}
+
+SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
+ assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
+
+ // Check to see if there is no change.
+ if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
+ return N; // No operands changed, just return the input node.
+
+ // See if the modified node already exists.
+ void *InsertPos = 0;
+ if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
+ return Existing;
+
+ // Nope it doesn't. Remove the node from its current place in the maps.
+ if (InsertPos)
+ if (!RemoveNodeFromCSEMaps(N))
+ InsertPos = 0;
+
+ // Now we update the operands.
+ if (N->OperandList[0] != Op1)
+ N->OperandList[0].set(Op1);
+ if (N->OperandList[1] != Op2)
+ N->OperandList[1].set(Op2);
+
+ // If this gets put into a CSE map, add it.
+ if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+ return N;
+}
+
+SDNode *SelectionDAG::
+UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return UpdateNodeOperands(N, Ops, 3);
+}
+
+SDNode *SelectionDAG::
+UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
+ SDValue Op3, SDValue Op4) {
+ SDValue Ops[] = { Op1, Op2, Op3, Op4 };
+ return UpdateNodeOperands(N, Ops, 4);
+}
+
+SDNode *SelectionDAG::
+UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
+ SDValue Op3, SDValue Op4, SDValue Op5) {
+ SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
+ return UpdateNodeOperands(N, Ops, 5);
+}
+
+SDNode *SelectionDAG::
+UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
+ assert(N->getNumOperands() == NumOps &&
+ "Update with wrong number of operands");
+
+ // Check to see if there is no change.
+ bool AnyChange = false;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ if (Ops[i] != N->getOperand(i)) {
+ AnyChange = true;
+ break;
+ }
+ }
+
+ // No operands changed, just return the input node.
+ if (!AnyChange) return N;
+
+ // See if the modified node already exists.
+ void *InsertPos = 0;
+ if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
+ return Existing;
+
+ // Nope it doesn't. Remove the node from its current place in the maps.
+ if (InsertPos)
+ if (!RemoveNodeFromCSEMaps(N))
+ InsertPos = 0;
+
+ // Now we update the operands.
+ for (unsigned i = 0; i != NumOps; ++i)
+ if (N->OperandList[i] != Ops[i])
+ N->OperandList[i].set(Ops[i]);
+
+ // If this gets put into a CSE map, add it.
+ if (InsertPos) CSEMap.InsertNode(N, InsertPos);
+ return N;
+}
+
+/// DropOperands - Release the operands and set this node to have
+/// zero operands.
+void SDNode::DropOperands() {
+ // Unlike the code in MorphNodeTo that does this, we don't need to
+ // watch for dead nodes here.
+ for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
+ SDUse &Use = *I++;
+ Use.set(SDValue());
+ }
+}
+
+/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
+/// machine opcode.
+///
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT) {
+ SDVTList VTs = getVTList(VT);
+ return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT, SDValue Op1) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT, SDValue Op1,
+ SDValue Op2) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT, SDValue Op1,
+ SDValue Op2, SDValue Op3) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT, const SDValue *Ops,
+ unsigned NumOps) {
+ SDVTList VTs = getVTList(VT);
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2, const SDValue *Ops,
+ unsigned NumOps) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2, EVT VT3,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2, EVT VT3, EVT VT4,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2,
+ SDValue Op1) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2,
+ SDValue Op1, SDValue Op2) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1, Op2 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2,
+ SDValue Op1, SDValue Op2,
+ SDValue Op3) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ EVT VT1, EVT VT2, EVT VT3,
+ SDValue Op1, SDValue Op2,
+ SDValue Op3) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
+}
+
+SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
+ SDVTList VTs, const SDValue *Ops,
+ unsigned NumOps) {
+ N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
+ // Reset the NodeID to -1.
+ N->setNodeId(-1);
+ return N;
+}
+
+/// MorphNodeTo - This *mutates* the specified node to have the specified
+/// return type, opcode, and operands.
+///
+/// Note that MorphNodeTo returns the resultant node. If there is already a
+/// node of the specified opcode and operands, it returns that node instead of
+/// the current one. Note that the DebugLoc need not be the same.
+///
+/// Using MorphNodeTo is faster than creating a new node and swapping it in
+/// with ReplaceAllUsesWith both because it often avoids allocating a new
+/// node, and because it doesn't require CSE recalculation for any of
+/// the node's users.
+///
+SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
+ SDVTList VTs, const SDValue *Ops,
+ unsigned NumOps) {
+ // If an identical node already exists, use it.
+ void *IP = 0;
+ if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
+ if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return ON;
+ }
+
+ if (!RemoveNodeFromCSEMaps(N))
+ IP = 0;
+
+ // Start the morphing.
+ N->NodeType = Opc;
+ N->ValueList = VTs.VTs;
+ N->NumValues = VTs.NumVTs;
+
+ // Clear the operands list, updating used nodes to remove this from their
+ // use list. Keep track of any operands that become dead as a result.
+ SmallPtrSet<SDNode*, 16> DeadNodeSet;
+ for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
+ SDUse &Use = *I++;
+ SDNode *Used = Use.getNode();
+ Use.set(SDValue());
+ if (Used->use_empty())
+ DeadNodeSet.insert(Used);
+ }
+
+ if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
+ // Initialize the memory references information.
+ MN->setMemRefs(0, 0);
+ // If NumOps is larger than the # of operands we can have in a
+ // MachineSDNode, reallocate the operand list.
+ if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
+ if (MN->OperandsNeedDelete)
+ delete[] MN->OperandList;
+ if (NumOps > array_lengthof(MN->LocalOperands))
+ // We're creating a final node that will live unmorphed for the
+ // remainder of the current SelectionDAG iteration, so we can allocate
+ // the operands directly out of a pool with no recycling metadata.
+ MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
+ Ops, NumOps);
+ else
+ MN->InitOperands(MN->LocalOperands, Ops, NumOps);
+ MN->OperandsNeedDelete = false;
+ } else
+ MN->InitOperands(MN->OperandList, Ops, NumOps);
+ } else {
+ // If NumOps is larger than the # of operands we currently have, reallocate
+ // the operand list.
+ if (NumOps > N->NumOperands) {
+ if (N->OperandsNeedDelete)
+ delete[] N->OperandList;
+ N->InitOperands(new SDUse[NumOps], Ops, NumOps);
+ N->OperandsNeedDelete = true;
+ } else
+ N->InitOperands(N->OperandList, Ops, NumOps);
+ }
+
+ // Delete any nodes that are still dead after adding the uses for the
+ // new operands.
+ if (!DeadNodeSet.empty()) {
+ SmallVector<SDNode *, 16> DeadNodes;
+ for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
+ E = DeadNodeSet.end(); I != E; ++I)
+ if ((*I)->use_empty())
+ DeadNodes.push_back(*I);
+ RemoveDeadNodes(DeadNodes);
+ }
+
+ if (IP)
+ CSEMap.InsertNode(N, IP); // Memoize the new node.
+ return N;
+}
+
+
+/// getMachineNode - These are used for target selectors to create a new node
+/// with specified return type(s), MachineInstr opcode, and operands.
+///
+/// Note that getMachineNode returns the resultant node. If there is already a
+/// node of the specified opcode and operands, it returns that node instead of
+/// the current one.
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
+ SDVTList VTs = getVTList(VT);
+ return getMachineNode(Opcode, dl, VTs, 0, 0);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+ SDValue Op1, SDValue Op2) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+ SDValue Op1, SDValue Op2, SDValue Op3) {
+ SDVTList VTs = getVTList(VT);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(VT);
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ return getMachineNode(Opcode, dl, VTs, 0, 0);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, SDValue Op1) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1, Op2 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, SDValue Op1,
+ SDValue Op2, SDValue Op3) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(VT1, VT2);
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ SDValue Op1, SDValue Op2) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ SDValue Ops[] = { Op1, Op2 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ SDValue Op1, SDValue Op2, SDValue Op3) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ SDValue Ops[] = { Op1, Op2, Op3 };
+ return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ EVT VT1, EVT VT2, EVT VT3,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3);
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
+ EVT VT2, EVT VT3, EVT VT4,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
+ const std::vector<EVT> &ResultTys,
+ const SDValue *Ops, unsigned NumOps) {
+ SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
+ return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
+}
+
+MachineSDNode *
+SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
+ const SDValue *Ops, unsigned NumOps) {
+ bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
+ MachineSDNode *N;
+ void *IP = 0;
+
+ if (DoCSE) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
+ IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return cast<MachineSDNode>(E);
+ }
+
+ // Allocate a new MachineSDNode.
+ N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
+
+ // Initialize the operands list.
+ if (NumOps > array_lengthof(N->LocalOperands))
+ // We're creating a final node that will live unmorphed for the
+ // remainder of the current SelectionDAG iteration, so we can allocate
+ // the operands directly out of a pool with no recycling metadata.
+ N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
+ Ops, NumOps);
+ else
+ N->InitOperands(N->LocalOperands, Ops, NumOps);
+ N->OperandsNeedDelete = false;
+
+ if (DoCSE)
+ CSEMap.InsertNode(N, IP);
+
+ AllNodes.push_back(N);
+#ifndef NDEBUG
+ VerifyMachineNode(N);
+#endif
+ return N;
+}
+
+/// getTargetExtractSubreg - A convenience function for creating
+/// TargetOpcode::EXTRACT_SUBREG nodes.
+SDValue
+SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
+ SDValue Operand) {
+ SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
+ SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
+ VT, Operand, SRIdxVal);
+ return SDValue(Subreg, 0);
+}
+
+/// getTargetInsertSubreg - A convenience function for creating
+/// TargetOpcode::INSERT_SUBREG nodes.
+SDValue
+SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
+ SDValue Operand, SDValue Subreg) {
+ SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
+ SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
+ VT, Operand, Subreg, SRIdxVal);
+ return SDValue(Result, 0);
+}
+
+/// getNodeIfExists - Get the specified node if it's already available, or
+/// else return NULL.
+SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
+ const SDValue *Ops, unsigned NumOps) {
+ if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
+ FoldingSetNodeID ID;
+ AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
+ void *IP = 0;
+ if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
+ return E;
+ }
+ return NULL;
+}
+
+/// getDbgValue - Creates a SDDbgValue node.
+///
+SDDbgValue *
+SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
+ DebugLoc DL, unsigned O) {
+ return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
+}
+
+SDDbgValue *
+SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
+ DebugLoc DL, unsigned O) {
+ return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
+}
+
+SDDbgValue *
+SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
+ DebugLoc DL, unsigned O) {
+ return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
+}
+
+namespace {
+
+/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
+/// pointed to by a use iterator is deleted, increment the use iterator
+/// so that it doesn't dangle.
+///
+/// This class also manages a "downlink" DAGUpdateListener, to forward
+/// messages to ReplaceAllUsesWith's callers.
+///
+class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
+ SelectionDAG::DAGUpdateListener *DownLink;
+ SDNode::use_iterator &UI;
+ SDNode::use_iterator &UE;
+
+ virtual void NodeDeleted(SDNode *N, SDNode *E) {
+ // Increment the iterator as needed.
+ while (UI != UE && N == *UI)
+ ++UI;
+
+ // Then forward the message.
+ if (DownLink) DownLink->NodeDeleted(N, E);
+ }
+
+ virtual void NodeUpdated(SDNode *N) {
+ // Just forward the message.
+ if (DownLink) DownLink->NodeUpdated(N);
+ }
+
+public:
+ RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
+ SDNode::use_iterator &ui,
+ SDNode::use_iterator &ue)
+ : DownLink(dl), UI(ui), UE(ue) {}
+};
+
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version assumes From has a single result value.
+///
+void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
+ DAGUpdateListener *UpdateListener) {
+ SDNode *From = FromN.getNode();
+ assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
+ "Cannot replace with this method!");
+ assert(From != To.getNode() && "Cannot replace uses of with self");
+
+ // Iterate over all the existing uses of From. New uses will be added
+ // to the beginning of the use list, which we avoid visiting.
+ // This specifically avoids visiting uses of From that arise while the
+ // replacement is happening, because any such uses would be the result
+ // of CSE: If an existing node looks like From after one of its operands
+ // is replaced by To, we don't want to replace of all its users with To
+ // too. See PR3018 for more info.
+ SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+ RAUWUpdateListener Listener(UpdateListener, UI, UE);
+ while (UI != UE) {
+ SDNode *User = *UI;
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(User);
+
+ // A user can appear in a use list multiple times, and when this
+ // happens the uses are usually next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ SDUse &Use = UI.getUse();
+ ++UI;
+ Use.set(To);
+ } while (UI != UE && *UI == User);
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User, &Listener);
+ }
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version assumes that for each value of From, there is a
+/// corresponding value in To in the same position with the same type.
+///
+void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
+ DAGUpdateListener *UpdateListener) {
+#ifndef NDEBUG
+ for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
+ assert((!From->hasAnyUseOfValue(i) ||
+ From->getValueType(i) == To->getValueType(i)) &&
+ "Cannot use this version of ReplaceAllUsesWith!");
+#endif
+
+ // Handle the trivial case.
+ if (From == To)
+ return;
+
+ // Iterate over just the existing users of From. See the comments in
+ // the ReplaceAllUsesWith above.
+ SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+ RAUWUpdateListener Listener(UpdateListener, UI, UE);
+ while (UI != UE) {
+ SDNode *User = *UI;
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(User);
+
+ // A user can appear in a use list multiple times, and when this
+ // happens the uses are usually next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ SDUse &Use = UI.getUse();
+ ++UI;
+ Use.setNode(To);
+ } while (UI != UE && *UI == User);
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User, &Listener);
+ }
+}
+
+/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
+/// This can cause recursive merging of nodes in the DAG.
+///
+/// This version can replace From with any result values. To must match the
+/// number and types of values returned by From.
+void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
+ const SDValue *To,
+ DAGUpdateListener *UpdateListener) {
+ if (From->getNumValues() == 1) // Handle the simple case efficiently.
+ return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
+
+ // Iterate over just the existing users of From. See the comments in
+ // the ReplaceAllUsesWith above.
+ SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
+ RAUWUpdateListener Listener(UpdateListener, UI, UE);
+ while (UI != UE) {
+ SDNode *User = *UI;
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(User);
+
+ // A user can appear in a use list multiple times, and when this
+ // happens the uses are usually next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ SDUse &Use = UI.getUse();
+ const SDValue &ToOp = To[Use.getResNo()];
+ ++UI;
+ Use.set(ToOp);
+ } while (UI != UE && *UI == User);
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User, &Listener);
+ }
+}
+
+/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
+/// uses of other values produced by From.getNode() alone. The Deleted
+/// vector is handled the same way as for ReplaceAllUsesWith.
+void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
+ DAGUpdateListener *UpdateListener){
+ // Handle the really simple, really trivial case efficiently.
+ if (From == To) return;
+
+ // Handle the simple, trivial, case efficiently.
+ if (From.getNode()->getNumValues() == 1) {
+ ReplaceAllUsesWith(From, To, UpdateListener);
+ return;
+ }
+
+ // Iterate over just the existing users of From. See the comments in
+ // the ReplaceAllUsesWith above.
+ SDNode::use_iterator UI = From.getNode()->use_begin(),
+ UE = From.getNode()->use_end();
+ RAUWUpdateListener Listener(UpdateListener, UI, UE);
+ while (UI != UE) {
+ SDNode *User = *UI;
+ bool UserRemovedFromCSEMaps = false;
+
+ // A user can appear in a use list multiple times, and when this
+ // happens the uses are usually next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ SDUse &Use = UI.getUse();
+
+ // Skip uses of different values from the same node.
+ if (Use.getResNo() != From.getResNo()) {
+ ++UI;
+ continue;
+ }
+
+ // If this node hasn't been modified yet, it's still in the CSE maps,
+ // so remove its old self from the CSE maps.
+ if (!UserRemovedFromCSEMaps) {
+ RemoveNodeFromCSEMaps(User);
+ UserRemovedFromCSEMaps = true;
+ }
+
+ ++UI;
+ Use.set(To);
+ } while (UI != UE && *UI == User);
+
+ // We are iterating over all uses of the From node, so if a use
+ // doesn't use the specific value, no changes are made.
+ if (!UserRemovedFromCSEMaps)
+ continue;
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User, &Listener);
+ }
+}
+
+namespace {
+ /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
+ /// to record information about a use.
+ struct UseMemo {
+ SDNode *User;
+ unsigned Index;
+ SDUse *Use;
+ };
+
+ /// operator< - Sort Memos by User.
+ bool operator<(const UseMemo &L, const UseMemo &R) {
+ return (intptr_t)L.User < (intptr_t)R.User;
+ }
+}
+
+/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
+/// uses of other values produced by From.getNode() alone. The same value
+/// may appear in both the From and To list. The Deleted vector is
+/// handled the same way as for ReplaceAllUsesWith.
+void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
+ const SDValue *To,
+ unsigned Num,
+ DAGUpdateListener *UpdateListener){
+ // Handle the simple, trivial case efficiently.
+ if (Num == 1)
+ return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
+
+ // Read up all the uses and make records of them. This helps
+ // processing new uses that are introduced during the
+ // replacement process.
+ SmallVector<UseMemo, 4> Uses;
+ for (unsigned i = 0; i != Num; ++i) {
+ unsigned FromResNo = From[i].getResNo();
+ SDNode *FromNode = From[i].getNode();
+ for (SDNode::use_iterator UI = FromNode->use_begin(),
+ E = FromNode->use_end(); UI != E; ++UI) {
+ SDUse &Use = UI.getUse();
+ if (Use.getResNo() == FromResNo) {
+ UseMemo Memo = { *UI, i, &Use };
+ Uses.push_back(Memo);
+ }
+ }
+ }
+
+ // Sort the uses, so that all the uses from a given User are together.
+ std::sort(Uses.begin(), Uses.end());
+
+ for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
+ UseIndex != UseIndexEnd; ) {
+ // We know that this user uses some value of From. If it is the right
+ // value, update it.
+ SDNode *User = Uses[UseIndex].User;
+
+ // This node is about to morph, remove its old self from the CSE maps.
+ RemoveNodeFromCSEMaps(User);
+
+ // The Uses array is sorted, so all the uses for a given User
+ // are next to each other in the list.
+ // To help reduce the number of CSE recomputations, process all
+ // the uses of this user that we can find this way.
+ do {
+ unsigned i = Uses[UseIndex].Index;
+ SDUse &Use = *Uses[UseIndex].Use;
+ ++UseIndex;
+
+ Use.set(To[i]);
+ } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
+
+ // Now that we have modified User, add it back to the CSE maps. If it
+ // already exists there, recursively merge the results together.
+ AddModifiedNodeToCSEMaps(User, UpdateListener);
+ }
+}
+
+/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
+/// based on their topological order. It returns the maximum id and a vector
+/// of the SDNodes* in assigned order by reference.
+unsigned SelectionDAG::AssignTopologicalOrder() {
+
+ unsigned DAGSize = 0;
+
+ // SortedPos tracks the progress of the algorithm. Nodes before it are
+ // sorted, nodes after it are unsorted. When the algorithm completes
+ // it is at the end of the list.
+ allnodes_iterator SortedPos = allnodes_begin();
+
+ // Visit all the nodes. Move nodes with no operands to the front of
+ // the list immediately. Annotate nodes that do have operands with their
+ // operand count. Before we do this, the Node Id fields of the nodes
+ // may contain arbitrary values. After, the Node Id fields for nodes
+ // before SortedPos will contain the topological sort index, and the
+ // Node Id fields for nodes At SortedPos and after will contain the
+ // count of outstanding operands.
+ for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
+ SDNode *N = I++;
+ checkForCycles(N);
+ unsigned Degree = N->getNumOperands();
+ if (Degree == 0) {
+ // A node with no uses, add it to the result array immediately.
+ N->setNodeId(DAGSize++);
+ allnodes_iterator Q = N;
+ if (Q != SortedPos)
+ SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
+ assert(SortedPos != AllNodes.end() && "Overran node list");
+ ++SortedPos;
+ } else {
+ // Temporarily use the Node Id as scratch space for the degree count.
+ N->setNodeId(Degree);
+ }
+ }
+
+ // Visit all the nodes. As we iterate, moves nodes into sorted order,
+ // such that by the time the end is reached all nodes will be sorted.
+ for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
+ SDNode *N = I;
+ checkForCycles(N);
+ // N is in sorted position, so all its uses have one less operand
+ // that needs to be sorted.
+ for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ UI != UE; ++UI) {
+ SDNode *P = *UI;
+ unsigned Degree = P->getNodeId();
+ assert(Degree != 0 && "Invalid node degree");
+ --Degree;
+ if (Degree == 0) {
+ // All of P's operands are sorted, so P may sorted now.
+ P->setNodeId(DAGSize++);
+ if (P != SortedPos)
+ SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
+ assert(SortedPos != AllNodes.end() && "Overran node list");
+ ++SortedPos;
+ } else {
+ // Update P's outstanding operand count.
+ P->setNodeId(Degree);
+ }
+ }
+ if (I == SortedPos) {
+#ifndef NDEBUG
+ SDNode *S = ++I;
+ dbgs() << "Overran sorted position:\n";
+ S->dumprFull();
+#endif
+ llvm_unreachable(0);
+ }
+ }
+
+ assert(SortedPos == AllNodes.end() &&
+ "Topological sort incomplete!");
+ assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
+ "First node in topological sort is not the entry token!");
+ assert(AllNodes.front().getNodeId() == 0 &&
+ "First node in topological sort has non-zero id!");
+ assert(AllNodes.front().getNumOperands() == 0 &&
+ "First node in topological sort has operands!");
+ assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
+ "Last node in topologic sort has unexpected id!");
+ assert(AllNodes.back().use_empty() &&
+ "Last node in topologic sort has users!");
+ assert(DAGSize == allnodes_size() && "Node count mismatch!");
+ return DAGSize;
+}
+
+/// AssignOrdering - Assign an order to the SDNode.
+void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
+ assert(SD && "Trying to assign an order to a null node!");
+ Ordering->add(SD, Order);
+}
+
+/// GetOrdering - Get the order for the SDNode.
+unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
+ assert(SD && "Trying to get the order of a null node!");
+ return Ordering->getOrder(SD);
+}
+
+/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
+/// value is produced by SD.
+void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
+ DbgInfo->add(DB, SD, isParameter);
+ if (SD)
+ SD->setHasDebugValue(true);
+}
+
+/// TransferDbgValues - Transfer SDDbgValues.
+void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
+ if (From == To || !From.getNode()->getHasDebugValue())
+ return;
+ SDNode *FromNode = From.getNode();
+ SDNode *ToNode = To.getNode();
+ ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
+ SmallVector<SDDbgValue *, 2> ClonedDVs;
+ for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
+ I != E; ++I) {
+ SDDbgValue *Dbg = *I;
+ if (Dbg->getKind() == SDDbgValue::SDNODE) {
+ SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
+ Dbg->getOffset(), Dbg->getDebugLoc(),
+ Dbg->getOrder());
+ ClonedDVs.push_back(Clone);
+ }
+ }
+ for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
+ E = ClonedDVs.end(); I != E; ++I)
+ AddDbgValue(*I, ToNode, false);
+}
+
+//===----------------------------------------------------------------------===//
+// SDNode Class
+//===----------------------------------------------------------------------===//
+
+HandleSDNode::~HandleSDNode() {
+ DropOperands();
+}
+
+GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
+ const GlobalValue *GA,
+ EVT VT, int64_t o, unsigned char TF)
+ : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
+ TheGlobal = GA;
+}
+
+MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
+ MachineMemOperand *mmo)
+ : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
+ SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
+ MMO->isNonTemporal());
+ assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
+ assert(isNonTemporal() == MMO->isNonTemporal() &&
+ "Non-temporal encoding error!");
+ assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
+}
+
+MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
+ const SDValue *Ops, unsigned NumOps, EVT memvt,
+ MachineMemOperand *mmo)
+ : SDNode(Opc, dl, VTs, Ops, NumOps),
+ MemoryVT(memvt), MMO(mmo) {
+ SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
+ MMO->isNonTemporal());
+ assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
+ assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
+}
+
+/// Profile - Gather unique data for the node.
+///
+void SDNode::Profile(FoldingSetNodeID &ID) const {
+ AddNodeIDNode(ID, this);
+}
+
+namespace {
+ struct EVTArray {
+ std::vector<EVT> VTs;
+
+ EVTArray() {
+ VTs.reserve(MVT::LAST_VALUETYPE);
+ for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
+ VTs.push_back(MVT((MVT::SimpleValueType)i));
+ }
+ };
+}
+
+static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
+static ManagedStatic<EVTArray> SimpleVTArray;
+static ManagedStatic<sys::SmartMutex<true> > VTMutex;
+
+/// getValueTypeList - Return a pointer to the specified value type.
+///
+const EVT *SDNode::getValueTypeList(EVT VT) {
+ if (VT.isExtended()) {
+ sys::SmartScopedLock<true> Lock(*VTMutex);
+ return &(*EVTs->insert(VT).first);
+ } else {
+ assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
+ "Value type out of range!");
+ return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
+ }
+}
+
+/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
+/// indicated value. This method ignores uses of other values defined by this
+/// operation.
+bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
+ assert(Value < getNumValues() && "Bad value!");
+
+ // TODO: Only iterate over uses of a given value of the node
+ for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
+ if (UI.getUse().getResNo() == Value) {
+ if (NUses == 0)
+ return false;
+ --NUses;
+ }
+ }
+
+ // Found exactly the right number of uses?
+ return NUses == 0;
+}
+
+
+/// hasAnyUseOfValue - Return true if there are any use of the indicated
+/// value. This method ignores uses of other values defined by this operation.
+bool SDNode::hasAnyUseOfValue(unsigned Value) const {
+ assert(Value < getNumValues() && "Bad value!");
+
+ for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
+ if (UI.getUse().getResNo() == Value)
+ return true;
+
+ return false;
+}
+
+
+/// isOnlyUserOf - Return true if this node is the only use of N.
+///
+bool SDNode::isOnlyUserOf(SDNode *N) const {
+ bool Seen = false;
+ for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
+ SDNode *User = *I;
+ if (User == this)
+ Seen = true;
+ else
+ return false;
+ }
+
+ return Seen;
+}
+
+/// isOperand - Return true if this node is an operand of N.
+///
+bool SDValue::isOperandOf(SDNode *N) const {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (*this == N->getOperand(i))
+ return true;
+ return false;
+}
+
+bool SDNode::isOperandOf(SDNode *N) const {
+ for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
+ if (this == N->OperandList[i].getNode())
+ return true;
+ return false;
+}
+
+/// reachesChainWithoutSideEffects - Return true if this operand (which must
+/// be a chain) reaches the specified operand without crossing any
+/// side-effecting instructions on any chain path. In practice, this looks
+/// through token factors and non-volatile loads. In order to remain efficient,
+/// this only looks a couple of nodes in, it does not do an exhaustive search.
+bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
+ unsigned Depth) const {
+ if (*this == Dest) return true;
+
+ // Don't search too deeply, we just want to be able to see through
+ // TokenFactor's etc.
+ if (Depth == 0) return false;
+
+ // If this is a token factor, all inputs to the TF happen in parallel. If any
+ // of the operands of the TF does not reach dest, then we cannot do the xform.
+ if (getOpcode() == ISD::TokenFactor) {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
+ return false;
+ return true;
+ }
+
+ // Loads don't have side effects, look through them.
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
+ if (!Ld->isVolatile())
+ return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
+ }
+ return false;
+}
+
+/// hasPredecessor - Return true if N is a predecessor of this node.
+/// N is either an operand of this node, or can be reached by recursively
+/// traversing up the operands.
+/// NOTE: This is an expensive method. Use it carefully.
+bool SDNode::hasPredecessor(const SDNode *N) const {
+ SmallPtrSet<const SDNode *, 32> Visited;
+ SmallVector<const SDNode *, 16> Worklist;
+ return hasPredecessorHelper(N, Visited, Worklist);
+}
+
+bool SDNode::hasPredecessorHelper(const SDNode *N,
+ SmallPtrSet<const SDNode *, 32> &Visited,
+ SmallVector<const SDNode *, 16> &Worklist) const {
+ if (Visited.empty()) {
+ Worklist.push_back(this);
+ } else {
+ // Take a look in the visited set. If we've already encountered this node
+ // we needn't search further.
+ if (Visited.count(N))
+ return true;
+ }
+
+ // Haven't visited N yet. Continue the search.
+ while (!Worklist.empty()) {
+ const SDNode *M = Worklist.pop_back_val();
+ for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
+ SDNode *Op = M->getOperand(i).getNode();
+ if (Visited.insert(Op))
+ Worklist.push_back(Op);
+ if (Op == N)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
+ assert(Num < NumOperands && "Invalid child # of SDNode!");
+ return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
+}
+
+std::string SDNode::getOperationName(const SelectionDAG *G) const {
+ switch (getOpcode()) {
+ default:
+ if (getOpcode() < ISD::BUILTIN_OP_END)
+ return "<<Unknown DAG Node>>";
+ if (isMachineOpcode()) {
+ if (G)
+ if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
+ if (getMachineOpcode() < TII->getNumOpcodes())
+ return TII->get(getMachineOpcode()).getName();
+ return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
+ }
+ if (G) {
+ const TargetLowering &TLI = G->getTargetLoweringInfo();
+ const char *Name = TLI.getTargetNodeName(getOpcode());
+ if (Name) return Name;
+ return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
+ }
+ return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
+
+#ifndef NDEBUG
+ case ISD::DELETED_NODE:
+ return "<<Deleted Node!>>";
+#endif
+ case ISD::PREFETCH: return "Prefetch";
+ case ISD::MEMBARRIER: return "MemBarrier";
+ case ISD::ATOMIC_CMP_SWAP: return "AtomicCmpSwap";
+ case ISD::ATOMIC_SWAP: return "AtomicSwap";
+ case ISD::ATOMIC_LOAD_ADD: return "AtomicLoadAdd";
+ case ISD::ATOMIC_LOAD_SUB: return "AtomicLoadSub";
+ case ISD::ATOMIC_LOAD_AND: return "AtomicLoadAnd";
+ case ISD::ATOMIC_LOAD_OR: return "AtomicLoadOr";
+ case ISD::ATOMIC_LOAD_XOR: return "AtomicLoadXor";
+ case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
+ case ISD::ATOMIC_LOAD_MIN: return "AtomicLoadMin";
+ case ISD::ATOMIC_LOAD_MAX: return "AtomicLoadMax";
+ case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
+ case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
+ case ISD::PCMARKER: return "PCMarker";
+ case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
+ case ISD::SRCVALUE: return "SrcValue";
+ case ISD::MDNODE_SDNODE: return "MDNode";
+ case ISD::EntryToken: return "EntryToken";
+ case ISD::TokenFactor: return "TokenFactor";
+ case ISD::AssertSext: return "AssertSext";
+ case ISD::AssertZext: return "AssertZext";
+
+ case ISD::BasicBlock: return "BasicBlock";
+ case ISD::VALUETYPE: return "ValueType";
+ case ISD::Register: return "Register";
+
+ case ISD::Constant: return "Constant";
+ case ISD::ConstantFP: return "ConstantFP";
+ case ISD::GlobalAddress: return "GlobalAddress";
+ case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
+ case ISD::FrameIndex: return "FrameIndex";
+ case ISD::JumpTable: return "JumpTable";
+ case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
+ case ISD::RETURNADDR: return "RETURNADDR";
+ case ISD::FRAMEADDR: return "FRAMEADDR";
+ case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
+ case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
+ case ISD::LSDAADDR: return "LSDAADDR";
+ case ISD::EHSELECTION: return "EHSELECTION";
+ case ISD::EH_RETURN: return "EH_RETURN";
+ case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
+ case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
+ case ISD::EH_SJLJ_DISPATCHSETUP: return "EH_SJLJ_DISPATCHSETUP";
+ case ISD::ConstantPool: return "ConstantPool";
+ case ISD::ExternalSymbol: return "ExternalSymbol";
+ case ISD::BlockAddress: return "BlockAddress";
+ case ISD::INTRINSIC_WO_CHAIN:
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
+ unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
+ if (IID < Intrinsic::num_intrinsics)
+ return Intrinsic::getName((Intrinsic::ID)IID);
+ else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
+ return TII->getName(IID);
+ llvm_unreachable("Invalid intrinsic ID");
+ }
+
+ case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
+ case ISD::TargetConstant: return "TargetConstant";
+ case ISD::TargetConstantFP:return "TargetConstantFP";
+ case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
+ case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
+ case ISD::TargetFrameIndex: return "TargetFrameIndex";
+ case ISD::TargetJumpTable: return "TargetJumpTable";
+ case ISD::TargetConstantPool: return "TargetConstantPool";
+ case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
+ case ISD::TargetBlockAddress: return "TargetBlockAddress";
+
+ case ISD::CopyToReg: return "CopyToReg";
+ case ISD::CopyFromReg: return "CopyFromReg";
+ case ISD::UNDEF: return "undef";
+ case ISD::MERGE_VALUES: return "merge_values";
+ case ISD::INLINEASM: return "inlineasm";
+ case ISD::EH_LABEL: return "eh_label";
+ case ISD::HANDLENODE: return "handlenode";
+
+ // Unary operators
+ case ISD::FABS: return "fabs";
+ case ISD::FNEG: return "fneg";
+ case ISD::FSQRT: return "fsqrt";
+ case ISD::FSIN: return "fsin";
+ case ISD::FCOS: return "fcos";
+ case ISD::FTRUNC: return "ftrunc";
+ case ISD::FFLOOR: return "ffloor";
+ case ISD::FCEIL: return "fceil";
+ case ISD::FRINT: return "frint";
+ case ISD::FNEARBYINT: return "fnearbyint";
+ case ISD::FEXP: return "fexp";
+ case ISD::FEXP2: return "fexp2";
+ case ISD::FLOG: return "flog";
+ case ISD::FLOG2: return "flog2";
+ case ISD::FLOG10: return "flog10";
+
+ // Binary operators
+ case ISD::ADD: return "add";
+ case ISD::SUB: return "sub";
+ case ISD::MUL: return "mul";
+ case ISD::MULHU: return "mulhu";
+ case ISD::MULHS: return "mulhs";
+ case ISD::SDIV: return "sdiv";
+ case ISD::UDIV: return "udiv";
+ case ISD::SREM: return "srem";
+ case ISD::UREM: return "urem";
+ case ISD::SMUL_LOHI: return "smul_lohi";
+ case ISD::UMUL_LOHI: return "umul_lohi";
+ case ISD::SDIVREM: return "sdivrem";
+ case ISD::UDIVREM: return "udivrem";
+ case ISD::AND: return "and";
+ case ISD::OR: return "or";
+ case ISD::XOR: return "xor";
+ case ISD::SHL: return "shl";
+ case ISD::SRA: return "sra";
+ case ISD::SRL: return "srl";
+ case ISD::ROTL: return "rotl";
+ case ISD::ROTR: return "rotr";
+ case ISD::FADD: return "fadd";
+ case ISD::FSUB: return "fsub";
+ case ISD::FMUL: return "fmul";
+ case ISD::FDIV: return "fdiv";
+ case ISD::FMA: return "fma";
+ case ISD::FREM: return "frem";
+ case ISD::FCOPYSIGN: return "fcopysign";
+ case ISD::FGETSIGN: return "fgetsign";
+ case ISD::FPOW: return "fpow";
+
+ case ISD::FPOWI: return "fpowi";
+ case ISD::SETCC: return "setcc";
+ case ISD::VSETCC: return "vsetcc";
+ case ISD::SELECT: return "select";
+ case ISD::SELECT_CC: return "select_cc";
+ case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
+ case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
+ case ISD::CONCAT_VECTORS: return "concat_vectors";
+ case ISD::INSERT_SUBVECTOR: return "insert_subvector";
+ case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
+ case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
+ case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
+ case ISD::CARRY_FALSE: return "carry_false";
+ case ISD::ADDC: return "addc";
+ case ISD::ADDE: return "adde";
+ case ISD::SADDO: return "saddo";
+ case ISD::UADDO: return "uaddo";
+ case ISD::SSUBO: return "ssubo";
+ case ISD::USUBO: return "usubo";
+ case ISD::SMULO: return "smulo";
+ case ISD::UMULO: return "umulo";
+ case ISD::SUBC: return "subc";
+ case ISD::SUBE: return "sube";
+ case ISD::SHL_PARTS: return "shl_parts";
+ case ISD::SRA_PARTS: return "sra_parts";
+ case ISD::SRL_PARTS: return "srl_parts";
+
+ // Conversion operators.
+ case ISD::SIGN_EXTEND: return "sign_extend";
+ case ISD::ZERO_EXTEND: return "zero_extend";
+ case ISD::ANY_EXTEND: return "any_extend";
+ case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
+ case ISD::TRUNCATE: return "truncate";
+ case ISD::FP_ROUND: return "fp_round";
+ case ISD::FLT_ROUNDS_: return "flt_rounds";
+ case ISD::FP_ROUND_INREG: return "fp_round_inreg";
+ case ISD::FP_EXTEND: return "fp_extend";
+
+ case ISD::SINT_TO_FP: return "sint_to_fp";
+ case ISD::UINT_TO_FP: return "uint_to_fp";
+ case ISD::FP_TO_SINT: return "fp_to_sint";
+ case ISD::FP_TO_UINT: return "fp_to_uint";
+ case ISD::BITCAST: return "bitcast";
+ case ISD::FP16_TO_FP32: return "fp16_to_fp32";
+ case ISD::FP32_TO_FP16: return "fp32_to_fp16";
+
+ case ISD::CONVERT_RNDSAT: {
+ switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
+ default: llvm_unreachable("Unknown cvt code!");
+ case ISD::CVT_FF: return "cvt_ff";
+ case ISD::CVT_FS: return "cvt_fs";
+ case ISD::CVT_FU: return "cvt_fu";
+ case ISD::CVT_SF: return "cvt_sf";
+ case ISD::CVT_UF: return "cvt_uf";
+ case ISD::CVT_SS: return "cvt_ss";
+ case ISD::CVT_SU: return "cvt_su";
+ case ISD::CVT_US: return "cvt_us";
+ case ISD::CVT_UU: return "cvt_uu";
+ }
+ }
+
+ // Control flow instructions
+ case ISD::BR: return "br";
+ case ISD::BRIND: return "brind";
+ case ISD::BR_JT: return "br_jt";
+ case ISD::BRCOND: return "brcond";
+ case ISD::BR_CC: return "br_cc";
+ case ISD::CALLSEQ_START: return "callseq_start";
+ case ISD::CALLSEQ_END: return "callseq_end";
+
+ // Other operators
+ case ISD::LOAD: return "load";
+ case ISD::STORE: return "store";
+ case ISD::VAARG: return "vaarg";
+ case ISD::VACOPY: return "vacopy";
+ case ISD::VAEND: return "vaend";
+ case ISD::VASTART: return "vastart";
+ case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
+ case ISD::EXTRACT_ELEMENT: return "extract_element";
+ case ISD::BUILD_PAIR: return "build_pair";
+ case ISD::STACKSAVE: return "stacksave";
+ case ISD::STACKRESTORE: return "stackrestore";
+ case ISD::TRAP: return "trap";
+
+ // Bit manipulation
+ case ISD::BSWAP: return "bswap";
+ case ISD::CTPOP: return "ctpop";
+ case ISD::CTTZ: return "cttz";
+ case ISD::CTLZ: return "ctlz";
+
+ // Trampolines
+ case ISD::TRAMPOLINE: return "trampoline";
+
+ case ISD::CONDCODE:
+ switch (cast<CondCodeSDNode>(this)->get()) {
+ default: llvm_unreachable("Unknown setcc condition!");
+ case ISD::SETOEQ: return "setoeq";
+ case ISD::SETOGT: return "setogt";
+ case ISD::SETOGE: return "setoge";
+ case ISD::SETOLT: return "setolt";
+ case ISD::SETOLE: return "setole";
+ case ISD::SETONE: return "setone";
+
+ case ISD::SETO: return "seto";
+ case ISD::SETUO: return "setuo";
+ case ISD::SETUEQ: return "setue";
+ case ISD::SETUGT: return "setugt";
+ case ISD::SETUGE: return "setuge";
+ case ISD::SETULT: return "setult";
+ case ISD::SETULE: return "setule";
+ case ISD::SETUNE: return "setune";
+
+ case ISD::SETEQ: return "seteq";
+ case ISD::SETGT: return "setgt";
+ case ISD::SETGE: return "setge";
+ case ISD::SETLT: return "setlt";
+ case ISD::SETLE: return "setle";
+ case ISD::SETNE: return "setne";
+ }
+ }
+}
+
+const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
+ switch (AM) {
+ default:
+ return "";
+ case ISD::PRE_INC:
+ return "<pre-inc>";
+ case ISD::PRE_DEC:
+ return "<pre-dec>";
+ case ISD::POST_INC:
+ return "<post-inc>";
+ case ISD::POST_DEC:
+ return "<post-dec>";
+ }
+}
+
+std::string ISD::ArgFlagsTy::getArgFlagsString() {
+ std::string S = "< ";
+
+ if (isZExt())
+ S += "zext ";
+ if (isSExt())
+ S += "sext ";
+ if (isInReg())
+ S += "inreg ";
+ if (isSRet())
+ S += "sret ";
+ if (isByVal())
+ S += "byval ";
+ if (isNest())
+ S += "nest ";
+ if (getByValAlign())
+ S += "byval-align:" + utostr(getByValAlign()) + " ";
+ if (getOrigAlign())
+ S += "orig-align:" + utostr(getOrigAlign()) + " ";
+ if (getByValSize())
+ S += "byval-size:" + utostr(getByValSize()) + " ";
+ return S + ">";
+}
+
+void SDNode::dump() const { dump(0); }
+void SDNode::dump(const SelectionDAG *G) const {
+ print(dbgs(), G);
+ dbgs() << '\n';
+}
+
+void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
+ OS << (void*)this << ": ";
+
+ for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
+ if (i) OS << ",";
+ if (getValueType(i) == MVT::Other)
+ OS << "ch";
+ else
+ OS << getValueType(i).getEVTString();
+ }
+ OS << " = " << getOperationName(G);
+}
+
+void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
+ if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
+ if (!MN->memoperands_empty()) {
+ OS << "<";
+ OS << "Mem:";
+ for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
+ e = MN->memoperands_end(); i != e; ++i) {
+ OS << **i;
+ if (llvm::next(i) != e)
+ OS << " ";
+ }
+ OS << ">";
+ }
+ } else if (const ShuffleVectorSDNode *SVN =
+ dyn_cast<ShuffleVectorSDNode>(this)) {
+ OS << "<";
+ for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
+ int Idx = SVN->getMaskElt(i);
+ if (i) OS << ",";
+ if (Idx < 0)
+ OS << "u";
+ else
+ OS << Idx;
+ }
+ OS << ">";
+ } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
+ OS << '<' << CSDN->getAPIntValue() << '>';
+ } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
+ if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
+ OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
+ else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
+ OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
+ else {
+ OS << "<APFloat(";
+ CSDN->getValueAPF().bitcastToAPInt().dump();
+ OS << ")>";
+ }
+ } else if (const GlobalAddressSDNode *GADN =
+ dyn_cast<GlobalAddressSDNode>(this)) {
+ int64_t offset = GADN->getOffset();
+ OS << '<';
+ WriteAsOperand(OS, GADN->getGlobal());
+ OS << '>';
+ if (offset > 0)
+ OS << " + " << offset;
+ else
+ OS << " " << offset;
+ if (unsigned int TF = GADN->getTargetFlags())
+ OS << " [TF=" << TF << ']';
+ } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
+ OS << "<" << FIDN->getIndex() << ">";
+ } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
+ OS << "<" << JTDN->getIndex() << ">";
+ if (unsigned int TF = JTDN->getTargetFlags())
+ OS << " [TF=" << TF << ']';
+ } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
+ int offset = CP->getOffset();
+ if (CP->isMachineConstantPoolEntry())
+ OS << "<" << *CP->getMachineCPVal() << ">";
+ else
+ OS << "<" << *CP->getConstVal() << ">";
+ if (offset > 0)
+ OS << " + " << offset;
+ else
+ OS << " " << offset;
+ if (unsigned int TF = CP->getTargetFlags())
+ OS << " [TF=" << TF << ']';
+ } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
+ OS << "<";
+ const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
+ if (LBB)
+ OS << LBB->getName() << " ";
+ OS << (const void*)BBDN->getBasicBlock() << ">";
+ } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
+ OS << ' ' << PrintReg(R->getReg(), G ? G->getTarget().getRegisterInfo() :0);
+ } else if (const ExternalSymbolSDNode *ES =
+ dyn_cast<ExternalSymbolSDNode>(this)) {
+ OS << "'" << ES->getSymbol() << "'";
+ if (unsigned int TF = ES->getTargetFlags())
+ OS << " [TF=" << TF << ']';
+ } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
+ if (M->getValue())
+ OS << "<" << M->getValue() << ">";
+ else
+ OS << "<null>";
+ } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
+ if (MD->getMD())
+ OS << "<" << MD->getMD() << ">";
+ else
+ OS << "<null>";
+ } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
+ OS << ":" << N->getVT().getEVTString();
+ }
+ else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
+ OS << "<" << *LD->getMemOperand();
+
+ bool doExt = true;
+ switch (LD->getExtensionType()) {
+ default: doExt = false; break;
+ case ISD::EXTLOAD: OS << ", anyext"; break;
+ case ISD::SEXTLOAD: OS << ", sext"; break;
+ case ISD::ZEXTLOAD: OS << ", zext"; break;
+ }
+ if (doExt)
+ OS << " from " << LD->getMemoryVT().getEVTString();
+
+ const char *AM = getIndexedModeName(LD->getAddressingMode());
+ if (*AM)
+ OS << ", " << AM;
+
+ OS << ">";
+ } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
+ OS << "<" << *ST->getMemOperand();
+
+ if (ST->isTruncatingStore())
+ OS << ", trunc to " << ST->getMemoryVT().getEVTString();
+
+ const char *AM = getIndexedModeName(ST->getAddressingMode());
+ if (*AM)
+ OS << ", " << AM;
+
+ OS << ">";
+ } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
+ OS << "<" << *M->getMemOperand() << ">";
+ } else if (const BlockAddressSDNode *BA =
+ dyn_cast<BlockAddressSDNode>(this)) {
+ OS << "<";
+ WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
+ OS << ", ";
+ WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
+ OS << ">";
+ if (unsigned int TF = BA->getTargetFlags())
+ OS << " [TF=" << TF << ']';
+ }
+
+ if (G)
+ if (unsigned Order = G->GetOrdering(this))
+ OS << " [ORD=" << Order << ']';
+
+ if (getNodeId() != -1)
+ OS << " [ID=" << getNodeId() << ']';
+
+ DebugLoc dl = getDebugLoc();
+ if (G && !dl.isUnknown()) {
+ DIScope
+ Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
+ OS << " dbg:";
+ // Omit the directory, since it's usually long and uninteresting.
+ if (Scope.Verify())
+ OS << Scope.getFilename();
+ else
+ OS << "<unknown>";
+ OS << ':' << dl.getLine();
+ if (dl.getCol() != 0)
+ OS << ':' << dl.getCol();
+ }
+}
+
+void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
+ print_types(OS, G);
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ if (i) OS << ", "; else OS << " ";
+ OS << (void*)getOperand(i).getNode();
+ if (unsigned RN = getOperand(i).getResNo())
+ OS << ":" << RN;
+ }
+ print_details(OS, G);
+}
+
+static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
+ const SelectionDAG *G, unsigned depth,
+ unsigned indent)
+{
+ if (depth == 0)
+ return;
+
+ OS.indent(indent);
+
+ N->print(OS, G);
+
+ if (depth < 1)
+ return;
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ // Don't follow chain operands.
+ if (N->getOperand(i).getValueType() == MVT::Other)
+ continue;
+ OS << '\n';
+ printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
+ }
+}
+
+void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
+ unsigned depth) const {
+ printrWithDepthHelper(OS, this, G, depth, 0);
+}
+
+void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
+ // Don't print impossibly deep things.
+ printrWithDepth(OS, G, 10);
+}
+
+void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
+ printrWithDepth(dbgs(), G, depth);
+}
+
+void SDNode::dumprFull(const SelectionDAG *G) const {
+ // Don't print impossibly deep things.
+ dumprWithDepth(G, 10);
+}
+
+static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (N->getOperand(i).getNode()->hasOneUse())
+ DumpNodes(N->getOperand(i).getNode(), indent+2, G);
+ else
+ dbgs() << "\n" << std::string(indent+2, ' ')
+ << (void*)N->getOperand(i).getNode() << ": <multiple use>";
+
+
+ dbgs() << "\n";
+ dbgs().indent(indent);
+ N->dump(G);
+}
+
+SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
+ assert(N->getNumValues() == 1 &&
+ "Can't unroll a vector with multiple results!");
+
+ EVT VT = N->getValueType(0);
+ unsigned NE = VT.getVectorNumElements();
+ EVT EltVT = VT.getVectorElementType();
+ DebugLoc dl = N->getDebugLoc();
+
+ SmallVector<SDValue, 8> Scalars;
+ SmallVector<SDValue, 4> Operands(N->getNumOperands());
+
+ // If ResNE is 0, fully unroll the vector op.
+ if (ResNE == 0)
+ ResNE = NE;
+ else if (NE > ResNE)
+ NE = ResNE;
+
+ unsigned i;
+ for (i= 0; i != NE; ++i) {
+ for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
+ SDValue Operand = N->getOperand(j);
+ EVT OperandVT = Operand.getValueType();
+ if (OperandVT.isVector()) {
+ // A vector operand; extract a single element.
+ EVT OperandEltVT = OperandVT.getVectorElementType();
+ Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ OperandEltVT,
+ Operand,
+ getConstant(i, TLI.getPointerTy()));
+ } else {
+ // A scalar operand; just use it as is.
+ Operands[j] = Operand;
+ }
+ }
+
+ switch (N->getOpcode()) {
+ default:
+ Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
+ &Operands[0], Operands.size()));
+ break;
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::ROTL:
+ case ISD::ROTR:
+ Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
+ getShiftAmountOperand(Operands[0].getValueType(),
+ Operands[1])));
+ break;
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::FP_ROUND_INREG: {
+ EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
+ Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
+ Operands[0],
+ getValueType(ExtVT)));
+ }
+ }
+ }
+
+ for (; i < ResNE; ++i)
+ Scalars.push_back(getUNDEF(EltVT));
+
+ return getNode(ISD::BUILD_VECTOR, dl,
+ EVT::getVectorVT(*getContext(), EltVT, ResNE),
+ &Scalars[0], Scalars.size());
+}
+
+
+/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
+/// location that is 'Dist' units away from the location that the 'Base' load
+/// is loading from.
+bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
+ unsigned Bytes, int Dist) const {
+ if (LD->getChain() != Base->getChain())
+ return false;
+ EVT VT = LD->getValueType(0);
+ if (VT.getSizeInBits() / 8 != Bytes)
+ return false;
+
+ SDValue Loc = LD->getOperand(1);
+ SDValue BaseLoc = Base->getOperand(1);
+ if (Loc.getOpcode() == ISD::FrameIndex) {
+ if (BaseLoc.getOpcode() != ISD::FrameIndex)
+ return false;
+ const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
+ int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
+ int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
+ int FS = MFI->getObjectSize(FI);
+ int BFS = MFI->getObjectSize(BFI);
+ if (FS != BFS || FS != (int)Bytes) return false;
+ return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
+ }
+
+ // Handle X+C
+ if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
+ cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
+ return true;
+
+ const GlobalValue *GV1 = NULL;
+ const GlobalValue *GV2 = NULL;
+ int64_t Offset1 = 0;
+ int64_t Offset2 = 0;
+ bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
+ bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
+ if (isGA1 && isGA2 && GV1 == GV2)
+ return Offset1 == (Offset2 + Dist*Bytes);
+ return false;
+}
+
+
+/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
+/// it cannot be inferred.
+unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
+ // If this is a GlobalAddress + cst, return the alignment.
+ const GlobalValue *GV;
+ int64_t GVOffset = 0;
+ if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
+ // If GV has specified alignment, then use it. Otherwise, use the preferred
+ // alignment.
+ unsigned Align = GV->getAlignment();
+ if (!Align) {
+ if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
+ if (GVar->hasInitializer()) {
+ const TargetData *TD = TLI.getTargetData();
+ Align = TD->getPreferredAlignment(GVar);
+ }
+ }
+ }
+ return MinAlign(Align, GVOffset);
+ }
+
+ // If this is a direct reference to a stack slot, use information about the
+ // stack slot's alignment.
+ int FrameIdx = 1 << 31;
+ int64_t FrameOffset = 0;
+ if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
+ FrameIdx = FI->getIndex();
+ } else if (isBaseWithConstantOffset(Ptr) &&
+ isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
+ // Handle FI+Cst
+ FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+ FrameOffset = Ptr.getConstantOperandVal(1);
+ }
+
+ if (FrameIdx != (1 << 31)) {
+ const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
+ unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
+ FrameOffset);
+ return FIInfoAlign;
+ }
+
+ return 0;
+}
+
+void SelectionDAG::dump() const {
+ dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
+
+ for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
+ I != E; ++I) {
+ const SDNode *N = I;
+ if (!N->hasOneUse() && N != getRoot().getNode())
+ DumpNodes(N, 2, this);
+ }
+
+ if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
+
+ dbgs() << "\n\n";
+}
+
+void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
+ print_types(OS, G);
+ print_details(OS, G);
+}
+
+typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
+static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
+ const SelectionDAG *G, VisitedSDNodeSet &once) {
+ if (!once.insert(N)) // If we've been here before, return now.
+ return;
+
+ // Dump the current SDNode, but don't end the line yet.
+ OS << std::string(indent, ' ');
+ N->printr(OS, G);
+
+ // Having printed this SDNode, walk the children:
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ const SDNode *child = N->getOperand(i).getNode();
+
+ if (i) OS << ",";
+ OS << " ";
+
+ if (child->getNumOperands() == 0) {
+ // This child has no grandchildren; print it inline right here.
+ child->printr(OS, G);
+ once.insert(child);
+ } else { // Just the address. FIXME: also print the child's opcode.
+ OS << (void*)child;
+ if (unsigned RN = N->getOperand(i).getResNo())
+ OS << ":" << RN;
+ }
+ }
+
+ OS << "\n";
+
+ // Dump children that have grandchildren on their own line(s).
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ const SDNode *child = N->getOperand(i).getNode();
+ DumpNodesr(OS, child, indent+2, G, once);
+ }
+}
+
+void SDNode::dumpr() const {
+ VisitedSDNodeSet once;
+ DumpNodesr(dbgs(), this, 0, 0, once);
+}
+
+void SDNode::dumpr(const SelectionDAG *G) const {
+ VisitedSDNodeSet once;
+ DumpNodesr(dbgs(), this, 0, G, once);
+}
+
+
+// getAddressSpace - Return the address space this GlobalAddress belongs to.
+unsigned GlobalAddressSDNode::getAddressSpace() const {
+ return getGlobal()->getType()->getAddressSpace();
+}
+
+
+const Type *ConstantPoolSDNode::getType() const {
+ if (isMachineConstantPoolEntry())
+ return Val.MachineCPVal->getType();
+ return Val.ConstVal->getType();
+}
+
+bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
+ APInt &SplatUndef,
+ unsigned &SplatBitSize,
+ bool &HasAnyUndefs,
+ unsigned MinSplatBits,
+ bool isBigEndian) {
+ EVT VT = getValueType(0);
+ assert(VT.isVector() && "Expected a vector type");
+ unsigned sz = VT.getSizeInBits();
+ if (MinSplatBits > sz)
+ return false;
+
+ SplatValue = APInt(sz, 0);
+ SplatUndef = APInt(sz, 0);
+
+ // Get the bits. Bits with undefined values (when the corresponding element
+ // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
+ // in SplatValue. If any of the values are not constant, give up and return
+ // false.
+ unsigned int nOps = getNumOperands();
+ assert(nOps > 0 && "isConstantSplat has 0-size build vector");
+ unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
+
+ for (unsigned j = 0; j < nOps; ++j) {
+ unsigned i = isBigEndian ? nOps-1-j : j;
+ SDValue OpVal = getOperand(i);
+ unsigned BitPos = j * EltBitSize;
+
+ if (OpVal.getOpcode() == ISD::UNDEF)
+ SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
+ else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
+ SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
+ zextOrTrunc(sz) << BitPos;
+ else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
+ SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
+ else
+ return false;
+ }
+
+ // The build_vector is all constants or undefs. Find the smallest element
+ // size that splats the vector.
+
+ HasAnyUndefs = (SplatUndef != 0);
+ while (sz > 8) {
+
+ unsigned HalfSize = sz / 2;
+ APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
+ APInt LowValue = SplatValue.trunc(HalfSize);
+ APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
+ APInt LowUndef = SplatUndef.trunc(HalfSize);
+
+ // If the two halves do not match (ignoring undef bits), stop here.
+ if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
+ MinSplatBits > HalfSize)
+ break;
+
+ SplatValue = HighValue | LowValue;
+ SplatUndef = HighUndef & LowUndef;
+
+ sz = HalfSize;
+ }
+
+ SplatBitSize = sz;
+ return true;
+}
+
+bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
+ // Find the first non-undef value in the shuffle mask.
+ unsigned i, e;
+ for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
+ /* search */;
+
+ assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
+
+ // Make sure all remaining elements are either undef or the same as the first
+ // non-undef value.
+ for (int Idx = Mask[i]; i != e; ++i)
+ if (Mask[i] >= 0 && Mask[i] != Idx)
+ return false;
+ return true;
+}
+
+#ifdef XDEBUG
+static void checkForCyclesHelper(const SDNode *N,
+ SmallPtrSet<const SDNode*, 32> &Visited,
+ SmallPtrSet<const SDNode*, 32> &Checked) {
+ // If this node has already been checked, don't check it again.
+ if (Checked.count(N))
+ return;
+
+ // If a node has already been visited on this depth-first walk, reject it as
+ // a cycle.
+ if (!Visited.insert(N)) {
+ dbgs() << "Offending node:\n";
+ N->dumprFull();
+ errs() << "Detected cycle in SelectionDAG\n";
+ abort();
+ }
+
+ for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
+
+ Checked.insert(N);
+ Visited.erase(N);
+}
+#endif
+
+void llvm::checkForCycles(const llvm::SDNode *N) {
+#ifdef XDEBUG
+ assert(N && "Checking nonexistant SDNode");
+ SmallPtrSet<const SDNode*, 32> visited;
+ SmallPtrSet<const SDNode*, 32> checked;
+ checkForCyclesHelper(N, visited, checked);
+#endif
+}
+
+void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
+ checkForCycles(DAG->getRoot().getNode());
+}
OpenPOWER on IntegriCloud