diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp | 802 |
1 files changed, 802 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp new file mode 100644 index 0000000..71f07d6 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp @@ -0,0 +1,802 @@ +//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the ScheduleDAG class, which is a base class used by +// scheduling implementation classes. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "pre-RA-sched" +#include "SDNodeDbgValue.h" +#include "ScheduleDAGSDNodes.h" +#include "InstrEmitter.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +STATISTIC(LoadsClustered, "Number of loads clustered together"); + +// This allows latency based scheduler to notice high latency instructions +// without a target itinerary. The choise if number here has more to do with +// balancing scheduler heursitics than with the actual machine latency. +static cl::opt<int> HighLatencyCycles( + "sched-high-latency-cycles", cl::Hidden, cl::init(10), + cl::desc("Roughly estimate the number of cycles that 'long latency'" + "instructions take for targets with no itinerary")); + +ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) + : ScheduleDAG(mf), + InstrItins(mf.getTarget().getInstrItineraryData()) {} + +/// Run - perform scheduling. +/// +void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb, + MachineBasicBlock::iterator insertPos) { + DAG = dag; + ScheduleDAG::Run(bb, insertPos); +} + +/// NewSUnit - Creates a new SUnit and return a ptr to it. +/// +SUnit *ScheduleDAGSDNodes::NewSUnit(SDNode *N) { +#ifndef NDEBUG + const SUnit *Addr = 0; + if (!SUnits.empty()) + Addr = &SUnits[0]; +#endif + SUnits.push_back(SUnit(N, (unsigned)SUnits.size())); + assert((Addr == 0 || Addr == &SUnits[0]) && + "SUnits std::vector reallocated on the fly!"); + SUnits.back().OrigNode = &SUnits.back(); + SUnit *SU = &SUnits.back(); + const TargetLowering &TLI = DAG->getTargetLoweringInfo(); + if (!N || + (N->isMachineOpcode() && + N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) + SU->SchedulingPref = Sched::None; + else + SU->SchedulingPref = TLI.getSchedulingPreference(N); + return SU; +} + +SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { + SUnit *SU = NewSUnit(Old->getNode()); + SU->OrigNode = Old->OrigNode; + SU->Latency = Old->Latency; + SU->isVRegCycle = Old->isVRegCycle; + SU->isCall = Old->isCall; + SU->isCallOp = Old->isCallOp; + SU->isTwoAddress = Old->isTwoAddress; + SU->isCommutable = Old->isCommutable; + SU->hasPhysRegDefs = Old->hasPhysRegDefs; + SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; + SU->isScheduleHigh = Old->isScheduleHigh; + SU->isScheduleLow = Old->isScheduleLow; + SU->SchedulingPref = Old->SchedulingPref; + Old->isCloned = true; + return SU; +} + +/// CheckForPhysRegDependency - Check if the dependency between def and use of +/// a specified operand is a physical register dependency. If so, returns the +/// register and the cost of copying the register. +static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, + const TargetRegisterInfo *TRI, + const TargetInstrInfo *TII, + unsigned &PhysReg, int &Cost) { + if (Op != 2 || User->getOpcode() != ISD::CopyToReg) + return; + + unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) + return; + + unsigned ResNo = User->getOperand(2).getResNo(); + if (Def->isMachineOpcode()) { + const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); + if (ResNo >= II.getNumDefs() && + II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { + PhysReg = Reg; + const TargetRegisterClass *RC = + TRI->getMinimalPhysRegClass(Reg, Def->getValueType(ResNo)); + Cost = RC->getCopyCost(); + } + } +} + +static void AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { + SmallVector<EVT, 4> VTs; + SDNode *GlueDestNode = Glue.getNode(); + + // Don't add glue from a node to itself. + if (GlueDestNode == N) return; + + // Don't add glue to something which already has glue. + if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return; + + for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) + VTs.push_back(N->getValueType(I)); + + if (AddGlue) + VTs.push_back(MVT::Glue); + + SmallVector<SDValue, 4> Ops; + for (unsigned I = 0, E = N->getNumOperands(); I != E; ++I) + Ops.push_back(N->getOperand(I)); + + if (GlueDestNode) + Ops.push_back(Glue); + + SDVTList VTList = DAG->getVTList(&VTs[0], VTs.size()); + MachineSDNode::mmo_iterator Begin = 0, End = 0; + MachineSDNode *MN = dyn_cast<MachineSDNode>(N); + + // Store memory references. + if (MN) { + Begin = MN->memoperands_begin(); + End = MN->memoperands_end(); + } + + DAG->MorphNodeTo(N, N->getOpcode(), VTList, &Ops[0], Ops.size()); + + // Reset the memory references + if (MN) + MN->setMemRefs(Begin, End); +} + +/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. +/// This function finds loads of the same base and different offsets. If the +/// offsets are not far apart (target specific), it add MVT::Glue inputs and +/// outputs to ensure they are scheduled together and in order. This +/// optimization may benefit some targets by improving cache locality. +void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { + SDNode *Chain = 0; + unsigned NumOps = Node->getNumOperands(); + if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) + Chain = Node->getOperand(NumOps-1).getNode(); + if (!Chain) + return; + + // Look for other loads of the same chain. Find loads that are loading from + // the same base pointer and different offsets. + SmallPtrSet<SDNode*, 16> Visited; + SmallVector<int64_t, 4> Offsets; + DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. + bool Cluster = false; + SDNode *Base = Node; + for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); + I != E; ++I) { + SDNode *User = *I; + if (User == Node || !Visited.insert(User)) + continue; + int64_t Offset1, Offset2; + if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || + Offset1 == Offset2) + // FIXME: Should be ok if they addresses are identical. But earlier + // optimizations really should have eliminated one of the loads. + continue; + if (O2SMap.insert(std::make_pair(Offset1, Base)).second) + Offsets.push_back(Offset1); + O2SMap.insert(std::make_pair(Offset2, User)); + Offsets.push_back(Offset2); + if (Offset2 < Offset1) + Base = User; + Cluster = true; + } + + if (!Cluster) + return; + + // Sort them in increasing order. + std::sort(Offsets.begin(), Offsets.end()); + + // Check if the loads are close enough. + SmallVector<SDNode*, 4> Loads; + unsigned NumLoads = 0; + int64_t BaseOff = Offsets[0]; + SDNode *BaseLoad = O2SMap[BaseOff]; + Loads.push_back(BaseLoad); + for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { + int64_t Offset = Offsets[i]; + SDNode *Load = O2SMap[Offset]; + if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) + break; // Stop right here. Ignore loads that are further away. + Loads.push_back(Load); + ++NumLoads; + } + + if (NumLoads == 0) + return; + + // Cluster loads by adding MVT::Glue outputs and inputs. This also + // ensure they are scheduled in order of increasing addresses. + SDNode *Lead = Loads[0]; + AddGlue(Lead, SDValue(0, 0), true, DAG); + + SDValue InGlue = SDValue(Lead, Lead->getNumValues() - 1); + for (unsigned I = 1, E = Loads.size(); I != E; ++I) { + bool OutGlue = I < E - 1; + SDNode *Load = Loads[I]; + + AddGlue(Load, InGlue, OutGlue, DAG); + + if (OutGlue) + InGlue = SDValue(Load, Load->getNumValues() - 1); + + ++LoadsClustered; + } +} + +/// ClusterNodes - Cluster certain nodes which should be scheduled together. +/// +void ScheduleDAGSDNodes::ClusterNodes() { + for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), + E = DAG->allnodes_end(); NI != E; ++NI) { + SDNode *Node = &*NI; + if (!Node || !Node->isMachineOpcode()) + continue; + + unsigned Opc = Node->getMachineOpcode(); + const MCInstrDesc &MCID = TII->get(Opc); + if (MCID.mayLoad()) + // Cluster loads from "near" addresses into combined SUnits. + ClusterNeighboringLoads(Node); + } +} + +void ScheduleDAGSDNodes::BuildSchedUnits() { + // During scheduling, the NodeId field of SDNode is used to map SDNodes + // to their associated SUnits by holding SUnits table indices. A value + // of -1 means the SDNode does not yet have an associated SUnit. + unsigned NumNodes = 0; + for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), + E = DAG->allnodes_end(); NI != E; ++NI) { + NI->setNodeId(-1); + ++NumNodes; + } + + // Reserve entries in the vector for each of the SUnits we are creating. This + // ensure that reallocation of the vector won't happen, so SUnit*'s won't get + // invalidated. + // FIXME: Multiply by 2 because we may clone nodes during scheduling. + // This is a temporary workaround. + SUnits.reserve(NumNodes * 2); + + // Add all nodes in depth first order. + SmallVector<SDNode*, 64> Worklist; + SmallPtrSet<SDNode*, 64> Visited; + Worklist.push_back(DAG->getRoot().getNode()); + Visited.insert(DAG->getRoot().getNode()); + + SmallVector<SUnit*, 8> CallSUnits; + while (!Worklist.empty()) { + SDNode *NI = Worklist.pop_back_val(); + + // Add all operands to the worklist unless they've already been added. + for (unsigned i = 0, e = NI->getNumOperands(); i != e; ++i) + if (Visited.insert(NI->getOperand(i).getNode())) + Worklist.push_back(NI->getOperand(i).getNode()); + + if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. + continue; + + // If this node has already been processed, stop now. + if (NI->getNodeId() != -1) continue; + + SUnit *NodeSUnit = NewSUnit(NI); + + // See if anything is glued to this node, if so, add them to glued + // nodes. Nodes can have at most one glue input and one glue output. Glue + // is required to be the last operand and result of a node. + + // Scan up to find glued preds. + SDNode *N = NI; + while (N->getNumOperands() && + N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { + N = N->getOperand(N->getNumOperands()-1).getNode(); + assert(N->getNodeId() == -1 && "Node already inserted!"); + N->setNodeId(NodeSUnit->NodeNum); + if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) + NodeSUnit->isCall = true; + } + + // Scan down to find any glued succs. + N = NI; + while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { + SDValue GlueVal(N, N->getNumValues()-1); + + // There are either zero or one users of the Glue result. + bool HasGlueUse = false; + for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); + UI != E; ++UI) + if (GlueVal.isOperandOf(*UI)) { + HasGlueUse = true; + assert(N->getNodeId() == -1 && "Node already inserted!"); + N->setNodeId(NodeSUnit->NodeNum); + N = *UI; + if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) + NodeSUnit->isCall = true; + break; + } + if (!HasGlueUse) break; + } + + if (NodeSUnit->isCall) + CallSUnits.push_back(NodeSUnit); + + // Schedule zero-latency TokenFactor below any nodes that may increase the + // schedule height. Otherwise, ancestors of the TokenFactor may appear to + // have false stalls. + if (NI->getOpcode() == ISD::TokenFactor) + NodeSUnit->isScheduleLow = true; + + // If there are glue operands involved, N is now the bottom-most node + // of the sequence of nodes that are glued together. + // Update the SUnit. + NodeSUnit->setNode(N); + assert(N->getNodeId() == -1 && "Node already inserted!"); + N->setNodeId(NodeSUnit->NodeNum); + + // Compute NumRegDefsLeft. This must be done before AddSchedEdges. + InitNumRegDefsLeft(NodeSUnit); + + // Assign the Latency field of NodeSUnit using target-provided information. + ComputeLatency(NodeSUnit); + } + + // Find all call operands. + while (!CallSUnits.empty()) { + SUnit *SU = CallSUnits.pop_back_val(); + for (const SDNode *SUNode = SU->getNode(); SUNode; + SUNode = SUNode->getGluedNode()) { + if (SUNode->getOpcode() != ISD::CopyToReg) + continue; + SDNode *SrcN = SUNode->getOperand(2).getNode(); + if (isPassiveNode(SrcN)) continue; // Not scheduled. + SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; + SrcSU->isCallOp = true; + } + } +} + +void ScheduleDAGSDNodes::AddSchedEdges() { + const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); + + // Check to see if the scheduler cares about latencies. + bool UnitLatencies = ForceUnitLatencies(); + + // Pass 2: add the preds, succs, etc. + for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { + SUnit *SU = &SUnits[su]; + SDNode *MainNode = SU->getNode(); + + if (MainNode->isMachineOpcode()) { + unsigned Opc = MainNode->getMachineOpcode(); + const MCInstrDesc &MCID = TII->get(Opc); + for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { + if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { + SU->isTwoAddress = true; + break; + } + } + if (MCID.isCommutable()) + SU->isCommutable = true; + } + + // Find all predecessors and successors of the group. + for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { + if (N->isMachineOpcode() && + TII->get(N->getMachineOpcode()).getImplicitDefs()) { + SU->hasPhysRegClobbers = true; + unsigned NumUsed = InstrEmitter::CountResults(N); + while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) + --NumUsed; // Skip over unused values at the end. + if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) + SU->hasPhysRegDefs = true; + } + + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + SDNode *OpN = N->getOperand(i).getNode(); + if (isPassiveNode(OpN)) continue; // Not scheduled. + SUnit *OpSU = &SUnits[OpN->getNodeId()]; + assert(OpSU && "Node has no SUnit!"); + if (OpSU == SU) continue; // In the same group. + + EVT OpVT = N->getOperand(i).getValueType(); + assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); + bool isChain = OpVT == MVT::Other; + + unsigned PhysReg = 0; + int Cost = 1; + // Determine if this is a physical register dependency. + CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); + assert((PhysReg == 0 || !isChain) && + "Chain dependence via physreg data?"); + // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler + // emits a copy from the physical register to a virtual register unless + // it requires a cross class copy (cost < 0). That means we are only + // treating "expensive to copy" register dependency as physical register + // dependency. This may change in the future though. + if (Cost >= 0 && !StressSched) + PhysReg = 0; + + // If this is a ctrl dep, latency is 1. + unsigned OpLatency = isChain ? 1 : OpSU->Latency; + // Special-case TokenFactor chains as zero-latency. + if(isChain && OpN->getOpcode() == ISD::TokenFactor) + OpLatency = 0; + + const SDep &dep = SDep(OpSU, isChain ? SDep::Order : SDep::Data, + OpLatency, PhysReg); + if (!isChain && !UnitLatencies) { + ComputeOperandLatency(OpN, N, i, const_cast<SDep &>(dep)); + ST.adjustSchedDependency(OpSU, SU, const_cast<SDep &>(dep)); + } + + if (!SU->addPred(dep) && !dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { + // Multiple register uses are combined in the same SUnit. For example, + // we could have a set of glued nodes with all their defs consumed by + // another set of glued nodes. Register pressure tracking sees this as + // a single use, so to keep pressure balanced we reduce the defs. + // + // We can't tell (without more book-keeping) if this results from + // glued nodes or duplicate operands. As long as we don't reduce + // NumRegDefsLeft to zero, we handle the common cases well. + --OpSU->NumRegDefsLeft; + } + } + } + } +} + +/// BuildSchedGraph - Build the SUnit graph from the selection dag that we +/// are input. This SUnit graph is similar to the SelectionDAG, but +/// excludes nodes that aren't interesting to scheduling, and represents +/// glued together nodes with a single SUnit. +void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { + // Cluster certain nodes which should be scheduled together. + ClusterNodes(); + // Populate the SUnits array. + BuildSchedUnits(); + // Compute all the scheduling dependencies between nodes. + AddSchedEdges(); +} + +// Initialize NumNodeDefs for the current Node's opcode. +void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { + // Check for phys reg copy. + if (!Node) + return; + + if (!Node->isMachineOpcode()) { + if (Node->getOpcode() == ISD::CopyFromReg) + NodeNumDefs = 1; + else + NodeNumDefs = 0; + return; + } + unsigned POpc = Node->getMachineOpcode(); + if (POpc == TargetOpcode::IMPLICIT_DEF) { + // No register need be allocated for this. + NodeNumDefs = 0; + return; + } + unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); + // Some instructions define regs that are not represented in the selection DAG + // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. + NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); + DefIdx = 0; +} + +// Construct a RegDefIter for this SUnit and find the first valid value. +ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, + const ScheduleDAGSDNodes *SD) + : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { + InitNodeNumDefs(); + Advance(); +} + +// Advance to the next valid value defined by the SUnit. +void ScheduleDAGSDNodes::RegDefIter::Advance() { + for (;Node;) { // Visit all glued nodes. + for (;DefIdx < NodeNumDefs; ++DefIdx) { + if (!Node->hasAnyUseOfValue(DefIdx)) + continue; + ValueType = Node->getValueType(DefIdx); + ++DefIdx; + return; // Found a normal regdef. + } + Node = Node->getGluedNode(); + if (Node == NULL) { + return; // No values left to visit. + } + InitNodeNumDefs(); + } +} + +void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { + assert(SU->NumRegDefsLeft == 0 && "expect a new node"); + for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { + assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); + ++SU->NumRegDefsLeft; + } +} + +void ScheduleDAGSDNodes::ComputeLatency(SUnit *SU) { + SDNode *N = SU->getNode(); + + // TokenFactor operands are considered zero latency, and some schedulers + // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero + // whenever node latency is nonzero. + if (N && N->getOpcode() == ISD::TokenFactor) { + SU->Latency = 0; + return; + } + + // Check to see if the scheduler cares about latencies. + if (ForceUnitLatencies()) { + SU->Latency = 1; + return; + } + + if (!InstrItins || InstrItins->isEmpty()) { + if (N && N->isMachineOpcode() && + TII->isHighLatencyDef(N->getMachineOpcode())) + SU->Latency = HighLatencyCycles; + else + SU->Latency = 1; + return; + } + + // Compute the latency for the node. We use the sum of the latencies for + // all nodes glued together into this SUnit. + SU->Latency = 0; + for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) + if (N->isMachineOpcode()) + SU->Latency += TII->getInstrLatency(InstrItins, N); +} + +void ScheduleDAGSDNodes::ComputeOperandLatency(SDNode *Def, SDNode *Use, + unsigned OpIdx, SDep& dep) const{ + // Check to see if the scheduler cares about latencies. + if (ForceUnitLatencies()) + return; + + if (dep.getKind() != SDep::Data) + return; + + unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); + if (Use->isMachineOpcode()) + // Adjust the use operand index by num of defs. + OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); + int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); + if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && + !BB->succ_empty()) { + unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) + // This copy is a liveout value. It is likely coalesced, so reduce the + // latency so not to penalize the def. + // FIXME: need target specific adjustment here? + Latency = (Latency > 1) ? Latency - 1 : 1; + } + if (Latency >= 0) + dep.setLatency(Latency); +} + +void ScheduleDAGSDNodes::dumpNode(const SUnit *SU) const { + if (!SU->getNode()) { + dbgs() << "PHYS REG COPY\n"; + return; + } + + SU->getNode()->dump(DAG); + dbgs() << "\n"; + SmallVector<SDNode *, 4> GluedNodes; + for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) + GluedNodes.push_back(N); + while (!GluedNodes.empty()) { + dbgs() << " "; + GluedNodes.back()->dump(DAG); + dbgs() << "\n"; + GluedNodes.pop_back(); + } +} + +namespace { + struct OrderSorter { + bool operator()(const std::pair<unsigned, MachineInstr*> &A, + const std::pair<unsigned, MachineInstr*> &B) { + return A.first < B.first; + } + }; +} + +/// ProcessSDDbgValues - Process SDDbgValues associated with this node. +static void ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, + InstrEmitter &Emitter, + SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, + DenseMap<SDValue, unsigned> &VRBaseMap, + unsigned Order) { + if (!N->getHasDebugValue()) + return; + + // Opportunistically insert immediate dbg_value uses, i.e. those with source + // order number right after the N. + MachineBasicBlock *BB = Emitter.getBlock(); + MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); + ArrayRef<SDDbgValue*> DVs = DAG->GetDbgValues(N); + for (unsigned i = 0, e = DVs.size(); i != e; ++i) { + if (DVs[i]->isInvalidated()) + continue; + unsigned DVOrder = DVs[i]->getOrder(); + if (!Order || DVOrder == ++Order) { + MachineInstr *DbgMI = Emitter.EmitDbgValue(DVs[i], VRBaseMap); + if (DbgMI) { + Orders.push_back(std::make_pair(DVOrder, DbgMI)); + BB->insert(InsertPos, DbgMI); + } + DVs[i]->setIsInvalidated(); + } + } +} + +// ProcessSourceNode - Process nodes with source order numbers. These are added +// to a vector which EmitSchedule uses to determine how to insert dbg_value +// instructions in the right order. +static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG, + InstrEmitter &Emitter, + DenseMap<SDValue, unsigned> &VRBaseMap, + SmallVector<std::pair<unsigned, MachineInstr*>, 32> &Orders, + SmallSet<unsigned, 8> &Seen) { + unsigned Order = DAG->GetOrdering(N); + if (!Order || !Seen.insert(Order)) { + // Process any valid SDDbgValues even if node does not have any order + // assigned. + ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); + return; + } + + MachineBasicBlock *BB = Emitter.getBlock(); + if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) { + // Did not insert any instruction. + Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); + return; + } + + Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos()))); + ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); +} + + +/// EmitSchedule - Emit the machine code in scheduled order. +MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() { + InstrEmitter Emitter(BB, InsertPos); + DenseMap<SDValue, unsigned> VRBaseMap; + DenseMap<SUnit*, unsigned> CopyVRBaseMap; + SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; + SmallSet<unsigned, 8> Seen; + bool HasDbg = DAG->hasDebugValues(); + + // If this is the first BB, emit byval parameter dbg_value's. + if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { + SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); + SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); + for (; PDI != PDE; ++PDI) { + MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); + if (DbgMI) + BB->insert(InsertPos, DbgMI); + } + } + + for (unsigned i = 0, e = Sequence.size(); i != e; i++) { + SUnit *SU = Sequence[i]; + if (!SU) { + // Null SUnit* is a noop. + EmitNoop(); + continue; + } + + // For pre-regalloc scheduling, create instructions corresponding to the + // SDNode and any glued SDNodes and append them to the block. + if (!SU->getNode()) { + // Emit a copy. + EmitPhysRegCopy(SU, CopyVRBaseMap); + continue; + } + + SmallVector<SDNode *, 4> GluedNodes; + for (SDNode *N = SU->getNode()->getGluedNode(); N; + N = N->getGluedNode()) + GluedNodes.push_back(N); + while (!GluedNodes.empty()) { + SDNode *N = GluedNodes.back(); + Emitter.EmitNode(GluedNodes.back(), SU->OrigNode != SU, SU->isCloned, + VRBaseMap); + // Remember the source order of the inserted instruction. + if (HasDbg) + ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen); + GluedNodes.pop_back(); + } + Emitter.EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, + VRBaseMap); + // Remember the source order of the inserted instruction. + if (HasDbg) + ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, + Seen); + } + + // Insert all the dbg_values which have not already been inserted in source + // order sequence. + if (HasDbg) { + MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); + + // Sort the source order instructions and use the order to insert debug + // values. + std::sort(Orders.begin(), Orders.end(), OrderSorter()); + + SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); + SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); + // Now emit the rest according to source order. + unsigned LastOrder = 0; + for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { + unsigned Order = Orders[i].first; + MachineInstr *MI = Orders[i].second; + // Insert all SDDbgValue's whose order(s) are before "Order". + if (!MI) + continue; + for (; DI != DE && + (*DI)->getOrder() >= LastOrder && (*DI)->getOrder() < Order; ++DI) { + if ((*DI)->isInvalidated()) + continue; + MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); + if (DbgMI) { + if (!LastOrder) + // Insert to start of the BB (after PHIs). + BB->insert(BBBegin, DbgMI); + else { + // Insert at the instruction, which may be in a different + // block, if the block was split by a custom inserter. + MachineBasicBlock::iterator Pos = MI; + MI->getParent()->insert(llvm::next(Pos), DbgMI); + } + } + } + LastOrder = Order; + } + // Add trailing DbgValue's before the terminator. FIXME: May want to add + // some of them before one or more conditional branches? + while (DI != DE) { + MachineBasicBlock *InsertBB = Emitter.getBlock(); + MachineBasicBlock::iterator Pos= Emitter.getBlock()->getFirstTerminator(); + if (!(*DI)->isInvalidated()) { + MachineInstr *DbgMI= Emitter.EmitDbgValue(*DI, VRBaseMap); + if (DbgMI) + InsertBB->insert(Pos, DbgMI); + } + ++DI; + } + } + + BB = Emitter.getBlock(); + InsertPos = Emitter.getInsertPos(); + return BB; +} |