summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp1070
1 files changed, 1070 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
new file mode 100644
index 0000000..f61f631
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp
@@ -0,0 +1,1070 @@
+//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SelectionDAG::LegalizeVectors method.
+//
+// The vector legalizer looks for vector operations which might need to be
+// scalarized and legalizes them. This is a separate step from Legalize because
+// scalarizing can introduce illegal types. For example, suppose we have an
+// ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
+// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
+// operation, which introduces nodes with the illegal type i64 which must be
+// expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
+// the operation must be unrolled, which introduces nodes with the illegal
+// type i8 which must be promoted.
+//
+// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
+// or operations that happen to take a vector which are custom-lowered;
+// the legalization for such operations never produces nodes
+// with illegal types, so it's okay to put off legalizing them until
+// SelectionDAG::Legalize runs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+namespace {
+class VectorLegalizer {
+ SelectionDAG& DAG;
+ const TargetLowering &TLI;
+ bool Changed; // Keep track of whether anything changed
+
+ /// For nodes that are of legal width, and that have more than one use, this
+ /// map indicates what regularized operand to use. This allows us to avoid
+ /// legalizing the same thing more than once.
+ SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
+
+ /// \brief Adds a node to the translation cache.
+ void AddLegalizedOperand(SDValue From, SDValue To) {
+ LegalizedNodes.insert(std::make_pair(From, To));
+ // If someone requests legalization of the new node, return itself.
+ if (From != To)
+ LegalizedNodes.insert(std::make_pair(To, To));
+ }
+
+ /// \brief Legalizes the given node.
+ SDValue LegalizeOp(SDValue Op);
+
+ /// \brief Assuming the node is legal, "legalize" the results.
+ SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
+
+ /// \brief Implements unrolling a VSETCC.
+ SDValue UnrollVSETCC(SDValue Op);
+
+ /// \brief Implement expand-based legalization of vector operations.
+ ///
+ /// This is just a high-level routine to dispatch to specific code paths for
+ /// operations to legalize them.
+ SDValue Expand(SDValue Op);
+
+ /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
+ /// FSUB isn't legal.
+ ///
+ /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
+ /// SINT_TO_FLOAT and SHR on vectors isn't legal.
+ SDValue ExpandUINT_TO_FLOAT(SDValue Op);
+
+ /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
+ SDValue ExpandSEXTINREG(SDValue Op);
+
+ /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
+ ///
+ /// Shuffles the low lanes of the operand into place and bitcasts to the proper
+ /// type. The contents of the bits in the extended part of each element are
+ /// undef.
+ SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
+
+ /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
+ ///
+ /// Shuffles the low lanes of the operand into place, bitcasts to the proper
+ /// type, then shifts left and arithmetic shifts right to introduce a sign
+ /// extension.
+ SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
+
+ /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
+ ///
+ /// Shuffles the low lanes of the operand into place and blends zeros into
+ /// the remaining lanes, finally bitcasting to the proper type.
+ SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
+
+ /// \brief Expand bswap of vectors into a shuffle if legal.
+ SDValue ExpandBSWAP(SDValue Op);
+
+ /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
+ /// supported by the target.
+ SDValue ExpandVSELECT(SDValue Op);
+ SDValue ExpandSELECT(SDValue Op);
+ SDValue ExpandLoad(SDValue Op);
+ SDValue ExpandStore(SDValue Op);
+ SDValue ExpandFNEG(SDValue Op);
+ SDValue ExpandBITREVERSE(SDValue Op);
+ SDValue ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op);
+
+ /// \brief Implements vector promotion.
+ ///
+ /// This is essentially just bitcasting the operands to a different type and
+ /// bitcasting the result back to the original type.
+ SDValue Promote(SDValue Op);
+
+ /// \brief Implements [SU]INT_TO_FP vector promotion.
+ ///
+ /// This is a [zs]ext of the input operand to the next size up.
+ SDValue PromoteINT_TO_FP(SDValue Op);
+
+ /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
+ ///
+ /// It is promoted to the next size up integer type. The result is then
+ /// truncated back to the original type.
+ SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
+
+public:
+ /// \brief Begin legalizer the vector operations in the DAG.
+ bool Run();
+ VectorLegalizer(SelectionDAG& dag) :
+ DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
+};
+
+bool VectorLegalizer::Run() {
+ // Before we start legalizing vector nodes, check if there are any vectors.
+ bool HasVectors = false;
+ for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+ E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
+ // Check if the values of the nodes contain vectors. We don't need to check
+ // the operands because we are going to check their values at some point.
+ for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
+ J != E; ++J)
+ HasVectors |= J->isVector();
+
+ // If we found a vector node we can start the legalization.
+ if (HasVectors)
+ break;
+ }
+
+ // If this basic block has no vectors then no need to legalize vectors.
+ if (!HasVectors)
+ return false;
+
+ // The legalize process is inherently a bottom-up recursive process (users
+ // legalize their uses before themselves). Given infinite stack space, we
+ // could just start legalizing on the root and traverse the whole graph. In
+ // practice however, this causes us to run out of stack space on large basic
+ // blocks. To avoid this problem, compute an ordering of the nodes where each
+ // node is only legalized after all of its operands are legalized.
+ DAG.AssignTopologicalOrder();
+ for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+ E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
+ LegalizeOp(SDValue(&*I, 0));
+
+ // Finally, it's possible the root changed. Get the new root.
+ SDValue OldRoot = DAG.getRoot();
+ assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
+ DAG.setRoot(LegalizedNodes[OldRoot]);
+
+ LegalizedNodes.clear();
+
+ // Remove dead nodes now.
+ DAG.RemoveDeadNodes();
+
+ return Changed;
+}
+
+SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
+ // Generic legalization: just pass the operand through.
+ for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
+ AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
+ return Result.getValue(Op.getResNo());
+}
+
+SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
+ // Note that LegalizeOp may be reentered even from single-use nodes, which
+ // means that we always must cache transformed nodes.
+ DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
+ if (I != LegalizedNodes.end()) return I->second;
+
+ SDNode* Node = Op.getNode();
+
+ // Legalize the operands
+ SmallVector<SDValue, 8> Ops;
+ for (const SDValue &Op : Node->op_values())
+ Ops.push_back(LegalizeOp(Op));
+
+ SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
+
+ bool HasVectorValue = false;
+ if (Op.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
+ switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
+ LD->getMemoryVT())) {
+ default: llvm_unreachable("This action is not supported yet!");
+ case TargetLowering::Legal:
+ return TranslateLegalizeResults(Op, Result);
+ case TargetLowering::Custom:
+ if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
+ if (Lowered == Result)
+ return TranslateLegalizeResults(Op, Lowered);
+ Changed = true;
+ if (Lowered->getNumValues() != Op->getNumValues()) {
+ // This expanded to something other than the load. Assume the
+ // lowering code took care of any chain values, and just handle the
+ // returned value.
+ assert(Result.getValue(1).use_empty() &&
+ "There are still live users of the old chain!");
+ return LegalizeOp(Lowered);
+ }
+ return TranslateLegalizeResults(Op, Lowered);
+ }
+ case TargetLowering::Expand:
+ Changed = true;
+ return LegalizeOp(ExpandLoad(Op));
+ }
+ } else if (Op.getOpcode() == ISD::STORE) {
+ StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
+ EVT StVT = ST->getMemoryVT();
+ MVT ValVT = ST->getValue().getSimpleValueType();
+ if (StVT.isVector() && ST->isTruncatingStore())
+ switch (TLI.getTruncStoreAction(ValVT, StVT)) {
+ default: llvm_unreachable("This action is not supported yet!");
+ case TargetLowering::Legal:
+ return TranslateLegalizeResults(Op, Result);
+ case TargetLowering::Custom: {
+ SDValue Lowered = TLI.LowerOperation(Result, DAG);
+ Changed = Lowered != Result;
+ return TranslateLegalizeResults(Op, Lowered);
+ }
+ case TargetLowering::Expand:
+ Changed = true;
+ return LegalizeOp(ExpandStore(Op));
+ }
+ } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
+ HasVectorValue = true;
+
+ for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
+ J != E;
+ ++J)
+ HasVectorValue |= J->isVector();
+ if (!HasVectorValue)
+ return TranslateLegalizeResults(Op, Result);
+
+ EVT QueryType;
+ switch (Op.getOpcode()) {
+ default:
+ return TranslateLegalizeResults(Op, Result);
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM:
+ case ISD::SDIVREM:
+ case ISD::UDIVREM:
+ case ISD::FADD:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::ROTL:
+ case ISD::ROTR:
+ case ISD::BSWAP:
+ case ISD::BITREVERSE:
+ case ISD::CTLZ:
+ case ISD::CTTZ:
+ case ISD::CTLZ_ZERO_UNDEF:
+ case ISD::CTTZ_ZERO_UNDEF:
+ case ISD::CTPOP:
+ case ISD::SELECT:
+ case ISD::VSELECT:
+ case ISD::SELECT_CC:
+ case ISD::SETCC:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ case ISD::TRUNCATE:
+ case ISD::SIGN_EXTEND:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::FNEG:
+ case ISD::FABS:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+ case ISD::FMINNAN:
+ case ISD::FMAXNAN:
+ case ISD::FCOPYSIGN:
+ case ISD::FSQRT:
+ case ISD::FSIN:
+ case ISD::FCOS:
+ case ISD::FPOWI:
+ case ISD::FPOW:
+ case ISD::FLOG:
+ case ISD::FLOG2:
+ case ISD::FLOG10:
+ case ISD::FEXP:
+ case ISD::FEXP2:
+ case ISD::FCEIL:
+ case ISD::FTRUNC:
+ case ISD::FRINT:
+ case ISD::FNEARBYINT:
+ case ISD::FROUND:
+ case ISD::FFLOOR:
+ case ISD::FP_ROUND:
+ case ISD::FP_EXTEND:
+ case ISD::FMA:
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ case ISD::SMIN:
+ case ISD::SMAX:
+ case ISD::UMIN:
+ case ISD::UMAX:
+ QueryType = Node->getValueType(0);
+ break;
+ case ISD::FP_ROUND_INREG:
+ QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
+ break;
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ QueryType = Node->getOperand(0).getValueType();
+ break;
+ case ISD::MSCATTER:
+ QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
+ break;
+ case ISD::MSTORE:
+ QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
+ break;
+ }
+
+ switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
+ default: llvm_unreachable("This action is not supported yet!");
+ case TargetLowering::Promote:
+ Result = Promote(Op);
+ Changed = true;
+ break;
+ case TargetLowering::Legal:
+ break;
+ case TargetLowering::Custom: {
+ SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
+ if (Tmp1.getNode()) {
+ Result = Tmp1;
+ break;
+ }
+ // FALL THROUGH
+ }
+ case TargetLowering::Expand:
+ Result = Expand(Op);
+ }
+
+ // Make sure that the generated code is itself legal.
+ if (Result != Op) {
+ Result = LegalizeOp(Result);
+ Changed = true;
+ }
+
+ // Note that LegalizeOp may be reentered even from single-use nodes, which
+ // means that we always must cache transformed nodes.
+ AddLegalizedOperand(Op, Result);
+ return Result;
+}
+
+SDValue VectorLegalizer::Promote(SDValue Op) {
+ // For a few operations there is a specific concept for promotion based on
+ // the operand's type.
+ switch (Op.getOpcode()) {
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ // "Promote" the operation by extending the operand.
+ return PromoteINT_TO_FP(Op);
+ case ISD::FP_TO_UINT:
+ case ISD::FP_TO_SINT:
+ // Promote the operation by extending the operand.
+ return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
+ }
+
+ // There are currently two cases of vector promotion:
+ // 1) Bitcasting a vector of integers to a different type to a vector of the
+ // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
+ // 2) Extending a vector of floats to a vector of the same number of larger
+ // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
+ MVT VT = Op.getSimpleValueType();
+ assert(Op.getNode()->getNumValues() == 1 &&
+ "Can't promote a vector with multiple results!");
+ MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
+ SDLoc dl(Op);
+ SmallVector<SDValue, 4> Operands(Op.getNumOperands());
+
+ for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
+ if (Op.getOperand(j).getValueType().isVector())
+ if (Op.getOperand(j)
+ .getValueType()
+ .getVectorElementType()
+ .isFloatingPoint() &&
+ NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
+ Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
+ else
+ Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
+ else
+ Operands[j] = Op.getOperand(j);
+ }
+
+ Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
+ if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
+ (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
+ NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
+ return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
+ else
+ return DAG.getNode(ISD::BITCAST, dl, VT, Op);
+}
+
+SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
+ // INT_TO_FP operations may require the input operand be promoted even
+ // when the type is otherwise legal.
+ EVT VT = Op.getOperand(0).getValueType();
+ assert(Op.getNode()->getNumValues() == 1 &&
+ "Can't promote a vector with multiple results!");
+
+ // Normal getTypeToPromoteTo() doesn't work here, as that will promote
+ // by widening the vector w/ the same element width and twice the number
+ // of elements. We want the other way around, the same number of elements,
+ // each twice the width.
+ //
+ // Increase the bitwidth of the element to the next pow-of-two
+ // (which is greater than 8 bits).
+
+ EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
+ assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
+ SDLoc dl(Op);
+ SmallVector<SDValue, 4> Operands(Op.getNumOperands());
+
+ unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
+ ISD::SIGN_EXTEND;
+ for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
+ if (Op.getOperand(j).getValueType().isVector())
+ Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
+ else
+ Operands[j] = Op.getOperand(j);
+ }
+
+ return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
+}
+
+// For FP_TO_INT we promote the result type to a vector type with wider
+// elements and then truncate the result. This is different from the default
+// PromoteVector which uses bitcast to promote thus assumning that the
+// promoted vector type has the same overall size.
+SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
+ assert(Op.getNode()->getNumValues() == 1 &&
+ "Can't promote a vector with multiple results!");
+ EVT VT = Op.getValueType();
+
+ EVT NewVT;
+ unsigned NewOpc;
+ while (1) {
+ NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
+ assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
+ if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
+ NewOpc = ISD::FP_TO_SINT;
+ break;
+ }
+ if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
+ NewOpc = ISD::FP_TO_UINT;
+ break;
+ }
+ }
+
+ SDLoc loc(Op);
+ SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
+}
+
+
+SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
+ SDLoc dl(Op);
+ LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
+ SDValue Chain = LD->getChain();
+ SDValue BasePTR = LD->getBasePtr();
+ EVT SrcVT = LD->getMemoryVT();
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+
+ SmallVector<SDValue, 8> Vals;
+ SmallVector<SDValue, 8> LoadChains;
+ unsigned NumElem = SrcVT.getVectorNumElements();
+
+ EVT SrcEltVT = SrcVT.getScalarType();
+ EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
+
+ if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
+ // When elements in a vector is not byte-addressable, we cannot directly
+ // load each element by advancing pointer, which could only address bytes.
+ // Instead, we load all significant words, mask bits off, and concatenate
+ // them to form each element. Finally, they are extended to destination
+ // scalar type to build the destination vector.
+ EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
+
+ assert(WideVT.isRound() &&
+ "Could not handle the sophisticated case when the widest integer is"
+ " not power of 2.");
+ assert(WideVT.bitsGE(SrcEltVT) &&
+ "Type is not legalized?");
+
+ unsigned WideBytes = WideVT.getStoreSize();
+ unsigned Offset = 0;
+ unsigned RemainingBytes = SrcVT.getStoreSize();
+ SmallVector<SDValue, 8> LoadVals;
+
+ while (RemainingBytes > 0) {
+ SDValue ScalarLoad;
+ unsigned LoadBytes = WideBytes;
+
+ if (RemainingBytes >= LoadBytes) {
+ ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
+ LD->getPointerInfo().getWithOffset(Offset),
+ LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(),
+ MinAlign(LD->getAlignment(), Offset),
+ LD->getAAInfo());
+ } else {
+ EVT LoadVT = WideVT;
+ while (RemainingBytes < LoadBytes) {
+ LoadBytes >>= 1; // Reduce the load size by half.
+ LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
+ }
+ ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
+ LD->getPointerInfo().getWithOffset(Offset),
+ LoadVT, LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ MinAlign(LD->getAlignment(), Offset),
+ LD->getAAInfo());
+ }
+
+ RemainingBytes -= LoadBytes;
+ Offset += LoadBytes;
+ BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
+ DAG.getConstant(LoadBytes, dl,
+ BasePTR.getValueType()));
+
+ LoadVals.push_back(ScalarLoad.getValue(0));
+ LoadChains.push_back(ScalarLoad.getValue(1));
+ }
+
+ // Extract bits, pack and extend/trunc them into destination type.
+ unsigned SrcEltBits = SrcEltVT.getSizeInBits();
+ SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);
+
+ unsigned BitOffset = 0;
+ unsigned WideIdx = 0;
+ unsigned WideBits = WideVT.getSizeInBits();
+
+ for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
+ SDValue Lo, Hi, ShAmt;
+
+ if (BitOffset < WideBits) {
+ ShAmt = DAG.getConstant(
+ BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
+ Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
+ Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
+ }
+
+ BitOffset += SrcEltBits;
+ if (BitOffset >= WideBits) {
+ WideIdx++;
+ BitOffset -= WideBits;
+ if (BitOffset > 0) {
+ ShAmt = DAG.getConstant(
+ SrcEltBits - BitOffset, dl,
+ TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
+ Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
+ Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
+ }
+ }
+
+ if (Hi.getNode())
+ Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
+
+ switch (ExtType) {
+ default: llvm_unreachable("Unknown extended-load op!");
+ case ISD::EXTLOAD:
+ Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
+ break;
+ case ISD::ZEXTLOAD:
+ Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
+ break;
+ case ISD::SEXTLOAD:
+ ShAmt =
+ DAG.getConstant(WideBits - SrcEltBits, dl,
+ TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
+ Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
+ Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
+ Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
+ break;
+ }
+ Vals.push_back(Lo);
+ }
+ } else {
+ unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
+
+ for (unsigned Idx=0; Idx<NumElem; Idx++) {
+ SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
+ Op.getNode()->getValueType(0).getScalarType(),
+ Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
+ SrcVT.getScalarType(),
+ LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
+ MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
+
+ BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
+ DAG.getConstant(Stride, dl, BasePTR.getValueType()));
+
+ Vals.push_back(ScalarLoad.getValue(0));
+ LoadChains.push_back(ScalarLoad.getValue(1));
+ }
+ }
+
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
+ SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
+ Op.getNode()->getValueType(0), Vals);
+
+ AddLegalizedOperand(Op.getValue(0), Value);
+ AddLegalizedOperand(Op.getValue(1), NewChain);
+
+ return (Op.getResNo() ? NewChain : Value);
+}
+
+SDValue VectorLegalizer::ExpandStore(SDValue Op) {
+ SDLoc dl(Op);
+ StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
+ SDValue Chain = ST->getChain();
+ SDValue BasePTR = ST->getBasePtr();
+ SDValue Value = ST->getValue();
+ EVT StVT = ST->getMemoryVT();
+
+ unsigned Alignment = ST->getAlignment();
+ bool isVolatile = ST->isVolatile();
+ bool isNonTemporal = ST->isNonTemporal();
+ AAMDNodes AAInfo = ST->getAAInfo();
+
+ unsigned NumElem = StVT.getVectorNumElements();
+ // The type of the data we want to save
+ EVT RegVT = Value.getValueType();
+ EVT RegSclVT = RegVT.getScalarType();
+ // The type of data as saved in memory.
+ EVT MemSclVT = StVT.getScalarType();
+
+ // Cast floats into integers
+ unsigned ScalarSize = MemSclVT.getSizeInBits();
+
+ // Round odd types to the next pow of two.
+ if (!isPowerOf2_32(ScalarSize))
+ ScalarSize = NextPowerOf2(ScalarSize);
+
+ // Store Stride in bytes
+ unsigned Stride = ScalarSize/8;
+ // Extract each of the elements from the original vector
+ // and save them into memory individually.
+ SmallVector<SDValue, 8> Stores;
+ for (unsigned Idx = 0; Idx < NumElem; Idx++) {
+ SDValue Ex = DAG.getNode(
+ ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value,
+ DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
+
+ // This scalar TruncStore may be illegal, but we legalize it later.
+ SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
+ ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
+ isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
+ AAInfo);
+
+ BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
+ DAG.getConstant(Stride, dl, BasePTR.getValueType()));
+
+ Stores.push_back(Store);
+ }
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
+ AddLegalizedOperand(Op, TF);
+ return TF;
+}
+
+SDValue VectorLegalizer::Expand(SDValue Op) {
+ switch (Op->getOpcode()) {
+ case ISD::SIGN_EXTEND_INREG:
+ return ExpandSEXTINREG(Op);
+ case ISD::ANY_EXTEND_VECTOR_INREG:
+ return ExpandANY_EXTEND_VECTOR_INREG(Op);
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
+ case ISD::ZERO_EXTEND_VECTOR_INREG:
+ return ExpandZERO_EXTEND_VECTOR_INREG(Op);
+ case ISD::BSWAP:
+ return ExpandBSWAP(Op);
+ case ISD::VSELECT:
+ return ExpandVSELECT(Op);
+ case ISD::SELECT:
+ return ExpandSELECT(Op);
+ case ISD::UINT_TO_FP:
+ return ExpandUINT_TO_FLOAT(Op);
+ case ISD::FNEG:
+ return ExpandFNEG(Op);
+ case ISD::SETCC:
+ return UnrollVSETCC(Op);
+ case ISD::BITREVERSE:
+ return ExpandBITREVERSE(Op);
+ case ISD::CTLZ_ZERO_UNDEF:
+ case ISD::CTTZ_ZERO_UNDEF:
+ return ExpandCTLZ_CTTZ_ZERO_UNDEF(Op);
+ default:
+ return DAG.UnrollVectorOp(Op.getNode());
+ }
+}
+
+SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
+ // Lower a select instruction where the condition is a scalar and the
+ // operands are vectors. Lower this select to VSELECT and implement it
+ // using XOR AND OR. The selector bit is broadcasted.
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+
+ SDValue Mask = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue Op2 = Op.getOperand(2);
+
+ assert(VT.isVector() && !Mask.getValueType().isVector()
+ && Op1.getValueType() == Op2.getValueType() && "Invalid type");
+
+ unsigned NumElem = VT.getVectorNumElements();
+
+ // If we can't even use the basic vector operations of
+ // AND,OR,XOR, we will have to scalarize the op.
+ // Notice that the operation may be 'promoted' which means that it is
+ // 'bitcasted' to another type which is handled.
+ // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
+ if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
+ TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
+ TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
+ TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ // Generate a mask operand.
+ EVT MaskTy = VT.changeVectorElementTypeToInteger();
+
+ // What is the size of each element in the vector mask.
+ EVT BitTy = MaskTy.getScalarType();
+
+ Mask = DAG.getSelect(DL, BitTy, Mask,
+ DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
+ BitTy),
+ DAG.getConstant(0, DL, BitTy));
+
+ // Broadcast the mask so that the entire vector is all-one or all zero.
+ SmallVector<SDValue, 8> Ops(NumElem, Mask);
+ Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
+
+ // Bitcast the operands to be the same type as the mask.
+ // This is needed when we select between FP types because
+ // the mask is a vector of integers.
+ Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
+ Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
+
+ SDValue AllOnes = DAG.getConstant(
+ APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
+ SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
+
+ Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
+ Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
+ SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
+ return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
+}
+
+SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
+ EVT VT = Op.getValueType();
+
+ // Make sure that the SRA and SHL instructions are available.
+ if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
+ TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ SDLoc DL(Op);
+ EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
+
+ unsigned BW = VT.getScalarType().getSizeInBits();
+ unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
+ SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
+
+ Op = Op.getOperand(0);
+ Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
+ return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
+}
+
+// Generically expand a vector anyext in register to a shuffle of the relevant
+// lanes into the appropriate locations, with other lanes left undef.
+SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ int NumElements = VT.getVectorNumElements();
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ int NumSrcElements = SrcVT.getVectorNumElements();
+
+ // Build a base mask of undef shuffles.
+ SmallVector<int, 16> ShuffleMask;
+ ShuffleMask.resize(NumSrcElements, -1);
+
+ // Place the extended lanes into the correct locations.
+ int ExtLaneScale = NumSrcElements / NumElements;
+ int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
+ for (int i = 0; i < NumElements; ++i)
+ ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
+
+ return DAG.getNode(
+ ISD::BITCAST, DL, VT,
+ DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
+}
+
+SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+
+ // First build an any-extend node which can be legalized above when we
+ // recurse through it.
+ Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
+
+ // Now we need sign extend. Do this by shifting the elements. Even if these
+ // aren't legal operations, they have a better chance of being legalized
+ // without full scalarization than the sign extension does.
+ unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
+ unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
+ SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
+ return DAG.getNode(ISD::SRA, DL, VT,
+ DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
+ ShiftAmount);
+}
+
+// Generically expand a vector zext in register to a shuffle of the relevant
+// lanes into the appropriate locations, a blend of zero into the high bits,
+// and a bitcast to the wider element type.
+SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ int NumElements = VT.getVectorNumElements();
+ SDValue Src = Op.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ int NumSrcElements = SrcVT.getVectorNumElements();
+
+ // Build up a zero vector to blend into this one.
+ EVT SrcScalarVT = SrcVT.getScalarType();
+ SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT);
+ SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
+ SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
+
+ // Shuffle the incoming lanes into the correct position, and pull all other
+ // lanes from the zero vector.
+ SmallVector<int, 16> ShuffleMask;
+ ShuffleMask.reserve(NumSrcElements);
+ for (int i = 0; i < NumSrcElements; ++i)
+ ShuffleMask.push_back(i);
+
+ int ExtLaneScale = NumSrcElements / NumElements;
+ int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
+ for (int i = 0; i < NumElements; ++i)
+ ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
+
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
+}
+
+SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
+ EVT VT = Op.getValueType();
+
+ // Generate a byte wise shuffle mask for the BSWAP.
+ SmallVector<int, 16> ShuffleMask;
+ int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
+ for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
+ for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
+ ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
+
+ EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
+
+ // Only emit a shuffle if the mask is legal.
+ if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ SDLoc DL(Op);
+ Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
+ Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
+ ShuffleMask.data());
+ return DAG.getNode(ISD::BITCAST, DL, VT, Op);
+}
+
+SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
+ EVT VT = Op.getValueType();
+
+ // If we have the scalar operation, it's probably cheaper to unroll it.
+ if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ // If we have the appropriate vector bit operations, it is better to use them
+ // than unrolling and expanding each component.
+ if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
+ !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
+ !TLI.isOperationLegalOrCustom(ISD::AND, VT) ||
+ !TLI.isOperationLegalOrCustom(ISD::OR, VT))
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ // Let LegalizeDAG handle this later.
+ return Op;
+}
+
+SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
+ // Implement VSELECT in terms of XOR, AND, OR
+ // on platforms which do not support blend natively.
+ SDLoc DL(Op);
+
+ SDValue Mask = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue Op2 = Op.getOperand(2);
+
+ EVT VT = Mask.getValueType();
+
+ // If we can't even use the basic vector operations of
+ // AND,OR,XOR, we will have to scalarize the op.
+ // Notice that the operation may be 'promoted' which means that it is
+ // 'bitcasted' to another type which is handled.
+ // This operation also isn't safe with AND, OR, XOR when the boolean
+ // type is 0/1 as we need an all ones vector constant to mask with.
+ // FIXME: Sign extend 1 to all ones if thats legal on the target.
+ if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
+ TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
+ TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
+ TLI.getBooleanContents(Op1.getValueType()) !=
+ TargetLowering::ZeroOrNegativeOneBooleanContent)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ // If the mask and the type are different sizes, unroll the vector op. This
+ // can occur when getSetCCResultType returns something that is different in
+ // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
+ if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ // Bitcast the operands to be the same type as the mask.
+ // This is needed when we select between FP types because
+ // the mask is a vector of integers.
+ Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
+ Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
+
+ SDValue AllOnes = DAG.getConstant(
+ APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
+ SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
+
+ Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
+ Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
+ SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
+ return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
+}
+
+SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
+ EVT VT = Op.getOperand(0).getValueType();
+ SDLoc DL(Op);
+
+ // Make sure that the SINT_TO_FP and SRL instructions are available.
+ if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
+ TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ EVT SVT = VT.getScalarType();
+ assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
+ "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
+
+ unsigned BW = SVT.getSizeInBits();
+ SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);
+
+ // Constants to clear the upper part of the word.
+ // Notice that we can also use SHL+SHR, but using a constant is slightly
+ // faster on x86.
+ uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
+ SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
+
+ // Two to the power of half-word-size.
+ SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());
+
+ // Clear upper part of LO, lower HI
+ SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
+ SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
+
+ // Convert hi and lo to floats
+ // Convert the hi part back to the upper values
+ // TODO: Can any fast-math-flags be set on these nodes?
+ SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
+ fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
+ SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
+
+ // Add the two halves
+ return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
+}
+
+
+SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
+ if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
+ SDLoc DL(Op);
+ SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
+ // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
+ return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
+ Zero, Op.getOperand(0));
+ }
+ return DAG.UnrollVectorOp(Op.getNode());
+}
+
+SDValue VectorLegalizer::ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op) {
+ // If the non-ZERO_UNDEF version is supported we can let LegalizeDAG handle.
+ unsigned Opc = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ? ISD::CTLZ : ISD::CTTZ;
+ if (TLI.isOperationLegalOrCustom(Opc, Op.getValueType()))
+ return Op;
+
+ // Otherwise go ahead and unroll.
+ return DAG.UnrollVectorOp(Op.getNode());
+}
+
+SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
+ EVT VT = Op.getValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+ EVT EltVT = VT.getVectorElementType();
+ SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
+ EVT TmpEltVT = LHS.getValueType().getVectorElementType();
+ SDLoc dl(Op);
+ SmallVector<SDValue, 8> Ops(NumElems);
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue LHSElem = DAG.getNode(
+ ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
+ DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
+ SDValue RHSElem = DAG.getNode(
+ ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
+ DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
+ Ops[i] = DAG.getNode(ISD::SETCC, dl,
+ TLI.getSetCCResultType(DAG.getDataLayout(),
+ *DAG.getContext(), TmpEltVT),
+ LHSElem, RHSElem, CC);
+ Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
+ DAG.getConstant(APInt::getAllOnesValue
+ (EltVT.getSizeInBits()), dl, EltVT),
+ DAG.getConstant(0, dl, EltVT));
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+}
+
+}
+
+bool SelectionDAG::LegalizeVectors() {
+ return VectorLegalizer(*this).Run();
+}
OpenPOWER on IntegriCloud