diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp | 3199 |
1 files changed, 3199 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp new file mode 100644 index 0000000..62a37a5 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/LegalizeDAG.cpp @@ -0,0 +1,3199 @@ +//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the SelectionDAG::Legalize method. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/Target/TargetFrameInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/LLVMContext.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/SmallPtrSet.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and +/// hacks on it until the target machine can handle it. This involves +/// eliminating value sizes the machine cannot handle (promoting small sizes to +/// large sizes or splitting up large values into small values) as well as +/// eliminating operations the machine cannot handle. +/// +/// This code also does a small amount of optimization and recognition of idioms +/// as part of its processing. For example, if a target does not support a +/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this +/// will attempt merge setcc and brc instructions into brcc's. +/// +namespace { +class SelectionDAGLegalize { + const TargetMachine &TM; + const TargetLowering &TLI; + SelectionDAG &DAG; + CodeGenOpt::Level OptLevel; + + // Libcall insertion helpers. + + /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been + /// legalized. We use this to ensure that calls are properly serialized + /// against each other, including inserted libcalls. + SDValue LastCALLSEQ_END; + + /// IsLegalizingCall - This member is used *only* for purposes of providing + /// helpful assertions that a libcall isn't created while another call is + /// being legalized (which could lead to non-serialized call sequences). + bool IsLegalizingCall; + + enum LegalizeAction { + Legal, // The target natively supports this operation. + Promote, // This operation should be executed in a larger type. + Expand // Try to expand this to other ops, otherwise use a libcall. + }; + + /// ValueTypeActions - This is a bitvector that contains two bits for each + /// value type, where the two bits correspond to the LegalizeAction enum. + /// This can be queried with "getTypeAction(VT)". + TargetLowering::ValueTypeActionImpl ValueTypeActions; + + /// LegalizedNodes - For nodes that are of legal width, and that have more + /// than one use, this map indicates what regularized operand to use. This + /// allows us to avoid legalizing the same thing more than once. + DenseMap<SDValue, SDValue> LegalizedNodes; + + void AddLegalizedOperand(SDValue From, SDValue To) { + LegalizedNodes.insert(std::make_pair(From, To)); + // If someone requests legalization of the new node, return itself. + if (From != To) + LegalizedNodes.insert(std::make_pair(To, To)); + } + +public: + SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol); + + /// getTypeAction - Return how we should legalize values of this type, either + /// it is already legal or we need to expand it into multiple registers of + /// smaller integer type, or we need to promote it to a larger type. + LegalizeAction getTypeAction(EVT VT) const { + return + (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT); + } + + /// isTypeLegal - Return true if this type is legal on this target. + /// + bool isTypeLegal(EVT VT) const { + return getTypeAction(VT) == Legal; + } + + void LegalizeDAG(); + +private: + /// LegalizeOp - We know that the specified value has a legal type. + /// Recursively ensure that the operands have legal types, then return the + /// result. + SDValue LegalizeOp(SDValue O); + + SDValue OptimizeFloatStore(StoreSDNode *ST); + + /// PerformInsertVectorEltInMemory - Some target cannot handle a variable + /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it + /// is necessary to spill the vector being inserted into to memory, perform + /// the insert there, and then read the result back. + SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, + SDValue Idx, DebugLoc dl); + SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, + SDValue Idx, DebugLoc dl); + + /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which + /// performs the same shuffe in terms of order or result bytes, but on a type + /// whose vector element type is narrower than the original shuffle type. + /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> + SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, + SDValue N1, SDValue N2, + SmallVectorImpl<int> &Mask) const; + + bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, + SmallPtrSet<SDNode*, 32> &NodesLeadingTo); + + void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, + DebugLoc dl); + + SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); + SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, + RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, + RTLIB::Libcall Call_PPCF128); + SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, + RTLIB::Libcall Call_I8, + RTLIB::Libcall Call_I16, + RTLIB::Libcall Call_I32, + RTLIB::Libcall Call_I64, + RTLIB::Libcall Call_I128); + + SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl); + SDValue ExpandBUILD_VECTOR(SDNode *Node); + SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); + void ExpandDYNAMIC_STACKALLOC(SDNode *Node, + SmallVectorImpl<SDValue> &Results); + SDValue ExpandFCOPYSIGN(SDNode *Node); + SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, + DebugLoc dl); + SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, + DebugLoc dl); + SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, + DebugLoc dl); + + SDValue ExpandBSWAP(SDValue Op, DebugLoc dl); + SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl); + + SDValue ExpandExtractFromVectorThroughStack(SDValue Op); + SDValue ExpandVectorBuildThroughStack(SDNode* Node); + + void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); + void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results); +}; +} + +/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which +/// performs the same shuffe in terms of order or result bytes, but on a type +/// whose vector element type is narrower than the original shuffle type. +/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> +SDValue +SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl, + SDValue N1, SDValue N2, + SmallVectorImpl<int> &Mask) const { + unsigned NumMaskElts = VT.getVectorNumElements(); + unsigned NumDestElts = NVT.getVectorNumElements(); + unsigned NumEltsGrowth = NumDestElts / NumMaskElts; + + assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); + + if (NumEltsGrowth == 1) + return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); + + SmallVector<int, 8> NewMask; + for (unsigned i = 0; i != NumMaskElts; ++i) { + int Idx = Mask[i]; + for (unsigned j = 0; j != NumEltsGrowth; ++j) { + if (Idx < 0) + NewMask.push_back(-1); + else + NewMask.push_back(Idx * NumEltsGrowth + j); + } + } + assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); + assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); + return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); +} + +SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, + CodeGenOpt::Level ol) + : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()), + DAG(dag), OptLevel(ol), + ValueTypeActions(TLI.getValueTypeActions()) { + assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && + "Too many value types for ValueTypeActions to hold!"); +} + +void SelectionDAGLegalize::LegalizeDAG() { + LastCALLSEQ_END = DAG.getEntryNode(); + IsLegalizingCall = false; + + // The legalize process is inherently a bottom-up recursive process (users + // legalize their uses before themselves). Given infinite stack space, we + // could just start legalizing on the root and traverse the whole graph. In + // practice however, this causes us to run out of stack space on large basic + // blocks. To avoid this problem, compute an ordering of the nodes where each + // node is only legalized after all of its operands are legalized. + DAG.AssignTopologicalOrder(); + for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), + E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) + LegalizeOp(SDValue(I, 0)); + + // Finally, it's possible the root changed. Get the new root. + SDValue OldRoot = DAG.getRoot(); + assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); + DAG.setRoot(LegalizedNodes[OldRoot]); + + LegalizedNodes.clear(); + + // Remove dead nodes now. + DAG.RemoveDeadNodes(); +} + + +/// FindCallEndFromCallStart - Given a chained node that is part of a call +/// sequence, find the CALLSEQ_END node that terminates the call sequence. +static SDNode *FindCallEndFromCallStart(SDNode *Node) { + if (Node->getOpcode() == ISD::CALLSEQ_END) + return Node; + if (Node->use_empty()) + return 0; // No CallSeqEnd + + // The chain is usually at the end. + SDValue TheChain(Node, Node->getNumValues()-1); + if (TheChain.getValueType() != MVT::Other) { + // Sometimes it's at the beginning. + TheChain = SDValue(Node, 0); + if (TheChain.getValueType() != MVT::Other) { + // Otherwise, hunt for it. + for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) + if (Node->getValueType(i) == MVT::Other) { + TheChain = SDValue(Node, i); + break; + } + + // Otherwise, we walked into a node without a chain. + if (TheChain.getValueType() != MVT::Other) + return 0; + } + } + + for (SDNode::use_iterator UI = Node->use_begin(), + E = Node->use_end(); UI != E; ++UI) { + + // Make sure to only follow users of our token chain. + SDNode *User = *UI; + for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) + if (User->getOperand(i) == TheChain) + if (SDNode *Result = FindCallEndFromCallStart(User)) + return Result; + } + return 0; +} + +/// FindCallStartFromCallEnd - Given a chained node that is part of a call +/// sequence, find the CALLSEQ_START node that initiates the call sequence. +static SDNode *FindCallStartFromCallEnd(SDNode *Node) { + assert(Node && "Didn't find callseq_start for a call??"); + if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; + + assert(Node->getOperand(0).getValueType() == MVT::Other && + "Node doesn't have a token chain argument!"); + return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); +} + +/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to +/// see if any uses can reach Dest. If no dest operands can get to dest, +/// legalize them, legalize ourself, and return false, otherwise, return true. +/// +/// Keep track of the nodes we fine that actually do lead to Dest in +/// NodesLeadingTo. This avoids retraversing them exponential number of times. +/// +bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, + SmallPtrSet<SDNode*, 32> &NodesLeadingTo) { + if (N == Dest) return true; // N certainly leads to Dest :) + + // If we've already processed this node and it does lead to Dest, there is no + // need to reprocess it. + if (NodesLeadingTo.count(N)) return true; + + // If the first result of this node has been already legalized, then it cannot + // reach N. + if (LegalizedNodes.count(SDValue(N, 0))) return false; + + // Okay, this node has not already been legalized. Check and legalize all + // operands. If none lead to Dest, then we can legalize this node. + bool OperandsLeadToDest = false; + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + OperandsLeadToDest |= // If an operand leads to Dest, so do we. + LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); + + if (OperandsLeadToDest) { + NodesLeadingTo.insert(N); + return true; + } + + // Okay, this node looks safe, legalize it and return false. + LegalizeOp(SDValue(N, 0)); + return false; +} + +/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or +/// a load from the constant pool. +static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, + SelectionDAG &DAG, const TargetLowering &TLI) { + bool Extend = false; + DebugLoc dl = CFP->getDebugLoc(); + + // If a FP immediate is precise when represented as a float and if the + // target can do an extending load from float to double, we put it into + // the constant pool as a float, even if it's is statically typed as a + // double. This shrinks FP constants and canonicalizes them for targets where + // an FP extending load is the same cost as a normal load (such as on the x87 + // fp stack or PPC FP unit). + EVT VT = CFP->getValueType(0); + ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); + if (!UseCP) { + assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); + return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), + (VT == MVT::f64) ? MVT::i64 : MVT::i32); + } + + EVT OrigVT = VT; + EVT SVT = VT; + while (SVT != MVT::f32) { + SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); + if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && + // Only do this if the target has a native EXTLOAD instruction from + // smaller type. + TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && + TLI.ShouldShrinkFPConstant(OrigVT)) { + const Type *SType = SVT.getTypeForEVT(*DAG.getContext()); + LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); + VT = SVT; + Extend = true; + } + } + + SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); + unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + if (Extend) + return DAG.getExtLoad(ISD::EXTLOAD, dl, + OrigVT, DAG.getEntryNode(), + CPIdx, PseudoSourceValue::getConstantPool(), + 0, VT, false, false, Alignment); + return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, + PseudoSourceValue::getConstantPool(), 0, false, false, + Alignment); +} + +/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. +static +SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, + const TargetLowering &TLI) { + SDValue Chain = ST->getChain(); + SDValue Ptr = ST->getBasePtr(); + SDValue Val = ST->getValue(); + EVT VT = Val.getValueType(); + int Alignment = ST->getAlignment(); + int SVOffset = ST->getSrcValueOffset(); + DebugLoc dl = ST->getDebugLoc(); + if (ST->getMemoryVT().isFloatingPoint() || + ST->getMemoryVT().isVector()) { + EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); + if (TLI.isTypeLegal(intVT)) { + // Expand to a bitconvert of the value to the integer type of the + // same size, then a (misaligned) int store. + // FIXME: Does not handle truncating floating point stores! + SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val); + return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(), + SVOffset, ST->isVolatile(), ST->isNonTemporal(), + Alignment); + } else { + // Do a (aligned) store to a stack slot, then copy from the stack slot + // to the final destination using (unaligned) integer loads and stores. + EVT StoredVT = ST->getMemoryVT(); + EVT RegVT = + TLI.getRegisterType(*DAG.getContext(), + EVT::getIntegerVT(*DAG.getContext(), + StoredVT.getSizeInBits())); + unsigned StoredBytes = StoredVT.getSizeInBits() / 8; + unsigned RegBytes = RegVT.getSizeInBits() / 8; + unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; + + // Make sure the stack slot is also aligned for the register type. + SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); + + // Perform the original store, only redirected to the stack slot. + SDValue Store = DAG.getTruncStore(Chain, dl, + Val, StackPtr, NULL, 0, StoredVT, + false, false, 0); + SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); + SmallVector<SDValue, 8> Stores; + unsigned Offset = 0; + + // Do all but one copies using the full register width. + for (unsigned i = 1; i < NumRegs; i++) { + // Load one integer register's worth from the stack slot. + SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0, + false, false, 0); + // Store it to the final location. Remember the store. + Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, + ST->getSrcValue(), SVOffset + Offset, + ST->isVolatile(), ST->isNonTemporal(), + MinAlign(ST->getAlignment(), Offset))); + // Increment the pointers. + Offset += RegBytes; + StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, + Increment); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + } + + // The last store may be partial. Do a truncating store. On big-endian + // machines this requires an extending load from the stack slot to ensure + // that the bits are in the right place. + EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), + 8 * (StoredBytes - Offset)); + + // Load from the stack slot. + SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, + NULL, 0, MemVT, false, false, 0); + + Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, + ST->getSrcValue(), SVOffset + Offset, + MemVT, ST->isVolatile(), + ST->isNonTemporal(), + MinAlign(ST->getAlignment(), Offset))); + // The order of the stores doesn't matter - say it with a TokenFactor. + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], + Stores.size()); + } + } + assert(ST->getMemoryVT().isInteger() && + !ST->getMemoryVT().isVector() && + "Unaligned store of unknown type."); + // Get the half-size VT + EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); + int NumBits = NewStoredVT.getSizeInBits(); + int IncrementSize = NumBits / 8; + + // Divide the stored value in two parts. + SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); + SDValue Lo = Val; + SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); + + // Store the two parts + SDValue Store1, Store2; + Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr, + ST->getSrcValue(), SVOffset, NewStoredVT, + ST->isVolatile(), ST->isNonTemporal(), Alignment); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, TLI.getPointerTy())); + Alignment = MinAlign(Alignment, IncrementSize); + Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr, + ST->getSrcValue(), SVOffset + IncrementSize, + NewStoredVT, ST->isVolatile(), ST->isNonTemporal(), + Alignment); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); +} + +/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. +static +SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, + const TargetLowering &TLI) { + int SVOffset = LD->getSrcValueOffset(); + SDValue Chain = LD->getChain(); + SDValue Ptr = LD->getBasePtr(); + EVT VT = LD->getValueType(0); + EVT LoadedVT = LD->getMemoryVT(); + DebugLoc dl = LD->getDebugLoc(); + if (VT.isFloatingPoint() || VT.isVector()) { + EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); + if (TLI.isTypeLegal(intVT)) { + // Expand to a (misaligned) integer load of the same size, + // then bitconvert to floating point or vector. + SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(), + SVOffset, LD->isVolatile(), + LD->isNonTemporal(), LD->getAlignment()); + SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad); + if (VT.isFloatingPoint() && LoadedVT != VT) + Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result); + + SDValue Ops[] = { Result, Chain }; + return DAG.getMergeValues(Ops, 2, dl); + } else { + // Copy the value to a (aligned) stack slot using (unaligned) integer + // loads and stores, then do a (aligned) load from the stack slot. + EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); + unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; + unsigned RegBytes = RegVT.getSizeInBits() / 8; + unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; + + // Make sure the stack slot is also aligned for the register type. + SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); + + SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); + SmallVector<SDValue, 8> Stores; + SDValue StackPtr = StackBase; + unsigned Offset = 0; + + // Do all but one copies using the full register width. + for (unsigned i = 1; i < NumRegs; i++) { + // Load one integer register's worth from the original location. + SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(), + SVOffset + Offset, LD->isVolatile(), + LD->isNonTemporal(), + MinAlign(LD->getAlignment(), Offset)); + // Follow the load with a store to the stack slot. Remember the store. + Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, + NULL, 0, false, false, 0)); + // Increment the pointers. + Offset += RegBytes; + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, + Increment); + } + + // The last copy may be partial. Do an extending load. + EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), + 8 * (LoadedBytes - Offset)); + SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, + LD->getSrcValue(), SVOffset + Offset, + MemVT, LD->isVolatile(), + LD->isNonTemporal(), + MinAlign(LD->getAlignment(), Offset)); + // Follow the load with a store to the stack slot. Remember the store. + // On big-endian machines this requires a truncating store to ensure + // that the bits end up in the right place. + Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, + NULL, 0, MemVT, false, false, 0)); + + // The order of the stores doesn't matter - say it with a TokenFactor. + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0], + Stores.size()); + + // Finally, perform the original load only redirected to the stack slot. + Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, + NULL, 0, LoadedVT, false, false, 0); + + // Callers expect a MERGE_VALUES node. + SDValue Ops[] = { Load, TF }; + return DAG.getMergeValues(Ops, 2, dl); + } + } + assert(LoadedVT.isInteger() && !LoadedVT.isVector() && + "Unaligned load of unsupported type."); + + // Compute the new VT that is half the size of the old one. This is an + // integer MVT. + unsigned NumBits = LoadedVT.getSizeInBits(); + EVT NewLoadedVT; + NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); + NumBits >>= 1; + + unsigned Alignment = LD->getAlignment(); + unsigned IncrementSize = NumBits / 8; + ISD::LoadExtType HiExtType = LD->getExtensionType(); + + // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. + if (HiExtType == ISD::NON_EXTLOAD) + HiExtType = ISD::ZEXTLOAD; + + // Load the value in two parts + SDValue Lo, Hi; + if (TLI.isLittleEndian()) { + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), + SVOffset, NewLoadedVT, LD->isVolatile(), + LD->isNonTemporal(), Alignment); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, TLI.getPointerTy())); + Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), + SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), + LD->isNonTemporal(), MinAlign(Alignment, IncrementSize)); + } else { + Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(), + SVOffset, NewLoadedVT, LD->isVolatile(), + LD->isNonTemporal(), Alignment); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, TLI.getPointerTy())); + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(), + SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), + LD->isNonTemporal(), MinAlign(Alignment, IncrementSize)); + } + + // aggregate the two parts + SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); + SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); + Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); + + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + SDValue Ops[] = { Result, TF }; + return DAG.getMergeValues(Ops, 2, dl); +} + +/// PerformInsertVectorEltInMemory - Some target cannot handle a variable +/// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it +/// is necessary to spill the vector being inserted into to memory, perform +/// the insert there, and then read the result back. +SDValue SelectionDAGLegalize:: +PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, + DebugLoc dl) { + SDValue Tmp1 = Vec; + SDValue Tmp2 = Val; + SDValue Tmp3 = Idx; + + // If the target doesn't support this, we have to spill the input vector + // to a temporary stack slot, update the element, then reload it. This is + // badness. We could also load the value into a vector register (either + // with a "move to register" or "extload into register" instruction, then + // permute it into place, if the idx is a constant and if the idx is + // supported by the target. + EVT VT = Tmp1.getValueType(); + EVT EltVT = VT.getVectorElementType(); + EVT IdxVT = Tmp3.getValueType(); + EVT PtrVT = TLI.getPointerTy(); + SDValue StackPtr = DAG.CreateStackTemporary(VT); + + int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); + + // Store the vector. + SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr, + PseudoSourceValue::getFixedStack(SPFI), 0, + false, false, 0); + + // Truncate or zero extend offset to target pointer type. + unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; + Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3); + // Add the offset to the index. + unsigned EltSize = EltVT.getSizeInBits()/8; + Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); + SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); + // Store the scalar value. + Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, + PseudoSourceValue::getFixedStack(SPFI), 0, EltVT, + false, false, 0); + // Load the updated vector. + return DAG.getLoad(VT, dl, Ch, StackPtr, + PseudoSourceValue::getFixedStack(SPFI), 0, + false, false, 0); +} + + +SDValue SelectionDAGLegalize:: +ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) { + if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { + // SCALAR_TO_VECTOR requires that the type of the value being inserted + // match the element type of the vector being created, except for + // integers in which case the inserted value can be over width. + EVT EltVT = Vec.getValueType().getVectorElementType(); + if (Val.getValueType() == EltVT || + (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { + SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + Vec.getValueType(), Val); + + unsigned NumElts = Vec.getValueType().getVectorNumElements(); + // We generate a shuffle of InVec and ScVec, so the shuffle mask + // should be 0,1,2,3,4,5... with the appropriate element replaced with + // elt 0 of the RHS. + SmallVector<int, 8> ShufOps; + for (unsigned i = 0; i != NumElts; ++i) + ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); + + return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, + &ShufOps[0]); + } + } + return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); +} + +SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { + // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' + // FIXME: We shouldn't do this for TargetConstantFP's. + // FIXME: move this to the DAG Combiner! Note that we can't regress due + // to phase ordering between legalized code and the dag combiner. This + // probably means that we need to integrate dag combiner and legalizer + // together. + // We generally can't do this one for long doubles. + SDValue Tmp1 = ST->getChain(); + SDValue Tmp2 = ST->getBasePtr(); + SDValue Tmp3; + int SVOffset = ST->getSrcValueOffset(); + unsigned Alignment = ST->getAlignment(); + bool isVolatile = ST->isVolatile(); + bool isNonTemporal = ST->isNonTemporal(); + DebugLoc dl = ST->getDebugLoc(); + if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { + if (CFP->getValueType(0) == MVT::f32 && + getTypeAction(MVT::i32) == Legal) { + Tmp3 = DAG.getConstant(CFP->getValueAPF(). + bitcastToAPInt().zextOrTrunc(32), + MVT::i32); + return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), + SVOffset, isVolatile, isNonTemporal, Alignment); + } else if (CFP->getValueType(0) == MVT::f64) { + // If this target supports 64-bit registers, do a single 64-bit store. + if (getTypeAction(MVT::i64) == Legal) { + Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). + zextOrTrunc(64), MVT::i64); + return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), + SVOffset, isVolatile, isNonTemporal, Alignment); + } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { + // Otherwise, if the target supports 32-bit registers, use 2 32-bit + // stores. If the target supports neither 32- nor 64-bits, this + // xform is certainly not worth it. + const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); + SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); + SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); + if (TLI.isBigEndian()) std::swap(Lo, Hi); + + Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(), + SVOffset, isVolatile, isNonTemporal, Alignment); + Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, + DAG.getIntPtrConstant(4)); + Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, + isVolatile, isNonTemporal, MinAlign(Alignment, 4U)); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); + } + } + } + return SDValue(); +} + +/// LegalizeOp - We know that the specified value has a legal type, and +/// that its operands are legal. Now ensure that the operation itself +/// is legal, recursively ensuring that the operands' operations remain +/// legal. +SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { + if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. + return Op; + + SDNode *Node = Op.getNode(); + DebugLoc dl = Node->getDebugLoc(); + + for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) + assert(getTypeAction(Node->getValueType(i)) == Legal && + "Unexpected illegal type!"); + + for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) + assert((isTypeLegal(Node->getOperand(i).getValueType()) || + Node->getOperand(i).getOpcode() == ISD::TargetConstant) && + "Unexpected illegal type!"); + + // Note that LegalizeOp may be reentered even from single-use nodes, which + // means that we always must cache transformed nodes. + DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); + if (I != LegalizedNodes.end()) return I->second; + + SDValue Tmp1, Tmp2, Tmp3, Tmp4; + SDValue Result = Op; + bool isCustom = false; + + // Figure out the correct action; the way to query this varies by opcode + TargetLowering::LegalizeAction Action; + bool SimpleFinishLegalizing = true; + switch (Node->getOpcode()) { + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_VOID: + case ISD::VAARG: + case ISD::STACKSAVE: + Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); + break; + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + case ISD::EXTRACT_VECTOR_ELT: + Action = TLI.getOperationAction(Node->getOpcode(), + Node->getOperand(0).getValueType()); + break; + case ISD::FP_ROUND_INREG: + case ISD::SIGN_EXTEND_INREG: { + EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); + Action = TLI.getOperationAction(Node->getOpcode(), InnerType); + break; + } + case ISD::SELECT_CC: + case ISD::SETCC: + case ISD::BR_CC: { + unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : + Node->getOpcode() == ISD::SETCC ? 2 : 1; + unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; + EVT OpVT = Node->getOperand(CompareOperand).getValueType(); + ISD::CondCode CCCode = + cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); + Action = TLI.getCondCodeAction(CCCode, OpVT); + if (Action == TargetLowering::Legal) { + if (Node->getOpcode() == ISD::SELECT_CC) + Action = TLI.getOperationAction(Node->getOpcode(), + Node->getValueType(0)); + else + Action = TLI.getOperationAction(Node->getOpcode(), OpVT); + } + break; + } + case ISD::LOAD: + case ISD::STORE: + // FIXME: Model these properly. LOAD and STORE are complicated, and + // STORE expects the unlegalized operand in some cases. + SimpleFinishLegalizing = false; + break; + case ISD::CALLSEQ_START: + case ISD::CALLSEQ_END: + // FIXME: This shouldn't be necessary. These nodes have special properties + // dealing with the recursive nature of legalization. Removing this + // special case should be done as part of making LegalizeDAG non-recursive. + SimpleFinishLegalizing = false; + break; + case ISD::EXTRACT_ELEMENT: + case ISD::FLT_ROUNDS_: + case ISD::SADDO: + case ISD::SSUBO: + case ISD::UADDO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: + case ISD::FPOWI: + case ISD::MERGE_VALUES: + case ISD::EH_RETURN: + case ISD::FRAME_TO_ARGS_OFFSET: + // These operations lie about being legal: when they claim to be legal, + // they should actually be expanded. + Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); + if (Action == TargetLowering::Legal) + Action = TargetLowering::Expand; + break; + case ISD::TRAMPOLINE: + case ISD::FRAMEADDR: + case ISD::RETURNADDR: + // These operations lie about being legal: when they claim to be legal, + // they should actually be custom-lowered. + Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); + if (Action == TargetLowering::Legal) + Action = TargetLowering::Custom; + break; + case ISD::BUILD_VECTOR: + // A weird case: legalization for BUILD_VECTOR never legalizes the + // operands! + // FIXME: This really sucks... changing it isn't semantically incorrect, + // but it massively pessimizes the code for floating-point BUILD_VECTORs + // because ConstantFP operands get legalized into constant pool loads + // before the BUILD_VECTOR code can see them. It doesn't usually bite, + // though, because BUILD_VECTORS usually get lowered into other nodes + // which get legalized properly. + SimpleFinishLegalizing = false; + break; + default: + if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { + Action = TargetLowering::Legal; + } else { + Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); + } + break; + } + + if (SimpleFinishLegalizing) { + SmallVector<SDValue, 8> Ops, ResultVals; + for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) + Ops.push_back(LegalizeOp(Node->getOperand(i))); + switch (Node->getOpcode()) { + default: break; + case ISD::BR: + case ISD::BRIND: + case ISD::BR_JT: + case ISD::BR_CC: + case ISD::BRCOND: + // Branches tweak the chain to include LastCALLSEQ_END + Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0], + LastCALLSEQ_END); + Ops[0] = LegalizeOp(Ops[0]); + LastCALLSEQ_END = DAG.getEntryNode(); + break; + case ISD::SHL: + case ISD::SRL: + case ISD::SRA: + case ISD::ROTL: + case ISD::ROTR: + // Legalizing shifts/rotates requires adjusting the shift amount + // to the appropriate width. + if (!Ops[1].getValueType().isVector()) + Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1])); + break; + case ISD::SRL_PARTS: + case ISD::SRA_PARTS: + case ISD::SHL_PARTS: + // Legalizing shifts/rotates requires adjusting the shift amount + // to the appropriate width. + if (!Ops[2].getValueType().isVector()) + Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2])); + break; + } + + Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(), + Ops.size()); + switch (Action) { + case TargetLowering::Legal: + for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) + ResultVals.push_back(Result.getValue(i)); + break; + case TargetLowering::Custom: + // FIXME: The handling for custom lowering with multiple results is + // a complete mess. + Tmp1 = TLI.LowerOperation(Result, DAG); + if (Tmp1.getNode()) { + for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { + if (e == 1) + ResultVals.push_back(Tmp1); + else + ResultVals.push_back(Tmp1.getValue(i)); + } + break; + } + + // FALL THROUGH + case TargetLowering::Expand: + ExpandNode(Result.getNode(), ResultVals); + break; + case TargetLowering::Promote: + PromoteNode(Result.getNode(), ResultVals); + break; + } + if (!ResultVals.empty()) { + for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) { + if (ResultVals[i] != SDValue(Node, i)) + ResultVals[i] = LegalizeOp(ResultVals[i]); + AddLegalizedOperand(SDValue(Node, i), ResultVals[i]); + } + return ResultVals[Op.getResNo()]; + } + } + + switch (Node->getOpcode()) { + default: +#ifndef NDEBUG + dbgs() << "NODE: "; + Node->dump( &DAG); + dbgs() << "\n"; +#endif + assert(0 && "Do not know how to legalize this operator!"); + + case ISD::BUILD_VECTOR: + switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { + default: assert(0 && "This action is not supported yet!"); + case TargetLowering::Custom: + Tmp3 = TLI.LowerOperation(Result, DAG); + if (Tmp3.getNode()) { + Result = Tmp3; + break; + } + // FALLTHROUGH + case TargetLowering::Expand: + Result = ExpandBUILD_VECTOR(Result.getNode()); + break; + } + break; + case ISD::CALLSEQ_START: { + SDNode *CallEnd = FindCallEndFromCallStart(Node); + + // Recursively Legalize all of the inputs of the call end that do not lead + // to this call start. This ensures that any libcalls that need be inserted + // are inserted *before* the CALLSEQ_START. + {SmallPtrSet<SDNode*, 32> NodesLeadingTo; + for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) + LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, + NodesLeadingTo); + } + + // Now that we legalized all of the inputs (which may have inserted + // libcalls) create the new CALLSEQ_START node. + Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. + + // Merge in the last call, to ensure that this call start after the last + // call ended. + if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { + Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + Tmp1, LastCALLSEQ_END); + Tmp1 = LegalizeOp(Tmp1); + } + + // Do not try to legalize the target-specific arguments (#1+). + if (Tmp1 != Node->getOperand(0)) { + SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); + Ops[0] = Tmp1; + Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); + } + + // Remember that the CALLSEQ_START is legalized. + AddLegalizedOperand(Op.getValue(0), Result); + if (Node->getNumValues() == 2) // If this has a flag result, remember it. + AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); + + // Now that the callseq_start and all of the non-call nodes above this call + // sequence have been legalized, legalize the call itself. During this + // process, no libcalls can/will be inserted, guaranteeing that no calls + // can overlap. + assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); + // Note that we are selecting this call! + LastCALLSEQ_END = SDValue(CallEnd, 0); + IsLegalizingCall = true; + + // Legalize the call, starting from the CALLSEQ_END. + LegalizeOp(LastCALLSEQ_END); + assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); + return Result; + } + case ISD::CALLSEQ_END: + // If the CALLSEQ_START node hasn't been legalized first, legalize it. This + // will cause this node to be legalized as well as handling libcalls right. + if (LastCALLSEQ_END.getNode() != Node) { + LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); + DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); + assert(I != LegalizedNodes.end() && + "Legalizing the call start should have legalized this node!"); + return I->second; + } + + // Otherwise, the call start has been legalized and everything is going + // according to plan. Just legalize ourselves normally here. + Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. + // Do not try to legalize the target-specific arguments (#1+), except for + // an optional flag input. + if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ + if (Tmp1 != Node->getOperand(0)) { + SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); + Ops[0] = Tmp1; + Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); + } + } else { + Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); + if (Tmp1 != Node->getOperand(0) || + Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { + SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end()); + Ops[0] = Tmp1; + Ops.back() = Tmp2; + Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); + } + } + assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); + // This finishes up call legalization. + IsLegalizingCall = false; + + // If the CALLSEQ_END node has a flag, remember that we legalized it. + AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); + if (Node->getNumValues() == 2) + AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); + return Result.getValue(Op.getResNo()); + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(Node); + Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. + Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. + + ISD::LoadExtType ExtType = LD->getExtensionType(); + if (ExtType == ISD::NON_EXTLOAD) { + EVT VT = Node->getValueType(0); + Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); + Tmp3 = Result.getValue(0); + Tmp4 = Result.getValue(1); + + switch (TLI.getOperationAction(Node->getOpcode(), VT)) { + default: assert(0 && "This action is not supported yet!"); + case TargetLowering::Legal: + // If this is an unaligned load and the target doesn't support it, + // expand it. + if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { + const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); + unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); + if (LD->getAlignment() < ABIAlignment){ + Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), + DAG, TLI); + Tmp3 = Result.getOperand(0); + Tmp4 = Result.getOperand(1); + Tmp3 = LegalizeOp(Tmp3); + Tmp4 = LegalizeOp(Tmp4); + } + } + break; + case TargetLowering::Custom: + Tmp1 = TLI.LowerOperation(Tmp3, DAG); + if (Tmp1.getNode()) { + Tmp3 = LegalizeOp(Tmp1); + Tmp4 = LegalizeOp(Tmp1.getValue(1)); + } + break; + case TargetLowering::Promote: { + // Only promote a load of vector type to another. + assert(VT.isVector() && "Cannot promote this load!"); + // Change base type to a different vector type. + EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); + + Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(), + LD->getSrcValueOffset(), + LD->isVolatile(), LD->isNonTemporal(), + LD->getAlignment()); + Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1)); + Tmp4 = LegalizeOp(Tmp1.getValue(1)); + break; + } + } + // Since loads produce two values, make sure to remember that we + // legalized both of them. + AddLegalizedOperand(SDValue(Node, 0), Tmp3); + AddLegalizedOperand(SDValue(Node, 1), Tmp4); + return Op.getResNo() ? Tmp4 : Tmp3; + } else { + EVT SrcVT = LD->getMemoryVT(); + unsigned SrcWidth = SrcVT.getSizeInBits(); + int SVOffset = LD->getSrcValueOffset(); + unsigned Alignment = LD->getAlignment(); + bool isVolatile = LD->isVolatile(); + bool isNonTemporal = LD->isNonTemporal(); + + if (SrcWidth != SrcVT.getStoreSizeInBits() && + // Some targets pretend to have an i1 loading operation, and actually + // load an i8. This trick is correct for ZEXTLOAD because the top 7 + // bits are guaranteed to be zero; it helps the optimizers understand + // that these bits are zero. It is also useful for EXTLOAD, since it + // tells the optimizers that those bits are undefined. It would be + // nice to have an effective generic way of getting these benefits... + // Until such a way is found, don't insist on promoting i1 here. + (SrcVT != MVT::i1 || + TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { + // Promote to a byte-sized load if not loading an integral number of + // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. + unsigned NewWidth = SrcVT.getStoreSizeInBits(); + EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); + SDValue Ch; + + // The extra bits are guaranteed to be zero, since we stored them that + // way. A zext load from NVT thus automatically gives zext from SrcVT. + + ISD::LoadExtType NewExtType = + ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; + + Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), + Tmp1, Tmp2, LD->getSrcValue(), SVOffset, + NVT, isVolatile, isNonTemporal, Alignment); + + Ch = Result.getValue(1); // The chain. + + if (ExtType == ISD::SEXTLOAD) + // Having the top bits zero doesn't help when sign extending. + Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, + Result.getValueType(), + Result, DAG.getValueType(SrcVT)); + else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) + // All the top bits are guaranteed to be zero - inform the optimizers. + Result = DAG.getNode(ISD::AssertZext, dl, + Result.getValueType(), Result, + DAG.getValueType(SrcVT)); + + Tmp1 = LegalizeOp(Result); + Tmp2 = LegalizeOp(Ch); + } else if (SrcWidth & (SrcWidth - 1)) { + // If not loading a power-of-2 number of bits, expand as two loads. + assert(!SrcVT.isVector() && "Unsupported extload!"); + unsigned RoundWidth = 1 << Log2_32(SrcWidth); + assert(RoundWidth < SrcWidth); + unsigned ExtraWidth = SrcWidth - RoundWidth; + assert(ExtraWidth < RoundWidth); + assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && + "Load size not an integral number of bytes!"); + EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); + EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); + SDValue Lo, Hi, Ch; + unsigned IncrementSize; + + if (TLI.isLittleEndian()) { + // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) + // Load the bottom RoundWidth bits. + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, + Node->getValueType(0), Tmp1, Tmp2, + LD->getSrcValue(), SVOffset, RoundVT, isVolatile, + isNonTemporal, Alignment); + + // Load the remaining ExtraWidth bits. + IncrementSize = RoundWidth / 8; + Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, + DAG.getIntPtrConstant(IncrementSize)); + Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, + LD->getSrcValue(), SVOffset + IncrementSize, + ExtraVT, isVolatile, isNonTemporal, + MinAlign(Alignment, IncrementSize)); + + // Build a factor node to remember that this load is independent of the + // other one. + Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + // Move the top bits to the right place. + Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, + DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); + + // Join the hi and lo parts. + Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); + } else { + // Big endian - avoid unaligned loads. + // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 + // Load the top RoundWidth bits. + Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2, + LD->getSrcValue(), SVOffset, RoundVT, isVolatile, + isNonTemporal, Alignment); + + // Load the remaining ExtraWidth bits. + IncrementSize = RoundWidth / 8; + Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, + DAG.getIntPtrConstant(IncrementSize)); + Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, + Node->getValueType(0), Tmp1, Tmp2, + LD->getSrcValue(), SVOffset + IncrementSize, + ExtraVT, isVolatile, isNonTemporal, + MinAlign(Alignment, IncrementSize)); + + // Build a factor node to remember that this load is independent of the + // other one. + Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + // Move the top bits to the right place. + Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi, + DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); + + // Join the hi and lo parts. + Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); + } + + Tmp1 = LegalizeOp(Result); + Tmp2 = LegalizeOp(Ch); + } else { + switch (TLI.getLoadExtAction(ExtType, SrcVT)) { + default: assert(0 && "This action is not supported yet!"); + case TargetLowering::Custom: + isCustom = true; + // FALLTHROUGH + case TargetLowering::Legal: + Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); + Tmp1 = Result.getValue(0); + Tmp2 = Result.getValue(1); + + if (isCustom) { + Tmp3 = TLI.LowerOperation(Result, DAG); + if (Tmp3.getNode()) { + Tmp1 = LegalizeOp(Tmp3); + Tmp2 = LegalizeOp(Tmp3.getValue(1)); + } + } else { + // If this is an unaligned load and the target doesn't support it, + // expand it. + if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) { + const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext()); + unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); + if (LD->getAlignment() < ABIAlignment){ + Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()), + DAG, TLI); + Tmp1 = Result.getOperand(0); + Tmp2 = Result.getOperand(1); + Tmp1 = LegalizeOp(Tmp1); + Tmp2 = LegalizeOp(Tmp2); + } + } + } + break; + case TargetLowering::Expand: + // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND + // f128 = EXTLOAD {f32,f64} too + if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 || + Node->getValueType(0) == MVT::f128)) || + (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) { + SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(), + LD->getSrcValueOffset(), + LD->isVolatile(), LD->isNonTemporal(), + LD->getAlignment()); + Result = DAG.getNode(ISD::FP_EXTEND, dl, + Node->getValueType(0), Load); + Tmp1 = LegalizeOp(Result); // Relegalize new nodes. + Tmp2 = LegalizeOp(Load.getValue(1)); + break; + } + assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); + // Turn the unsupported load into an EXTLOAD followed by an explicit + // zero/sign extend inreg. + Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0), + Tmp1, Tmp2, LD->getSrcValue(), + LD->getSrcValueOffset(), SrcVT, + LD->isVolatile(), LD->isNonTemporal(), + LD->getAlignment()); + SDValue ValRes; + if (ExtType == ISD::SEXTLOAD) + ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, + Result.getValueType(), + Result, DAG.getValueType(SrcVT)); + else + ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT); + Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. + Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. + break; + } + } + + // Since loads produce two values, make sure to remember that we legalized + // both of them. + AddLegalizedOperand(SDValue(Node, 0), Tmp1); + AddLegalizedOperand(SDValue(Node, 1), Tmp2); + return Op.getResNo() ? Tmp2 : Tmp1; + } + } + case ISD::STORE: { + StoreSDNode *ST = cast<StoreSDNode>(Node); + Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. + Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. + int SVOffset = ST->getSrcValueOffset(); + unsigned Alignment = ST->getAlignment(); + bool isVolatile = ST->isVolatile(); + bool isNonTemporal = ST->isNonTemporal(); + + if (!ST->isTruncatingStore()) { + if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { + Result = SDValue(OptStore, 0); + break; + } + + { + Tmp3 = LegalizeOp(ST->getValue()); + Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, + ST->getOffset()); + + EVT VT = Tmp3.getValueType(); + switch (TLI.getOperationAction(ISD::STORE, VT)) { + default: assert(0 && "This action is not supported yet!"); + case TargetLowering::Legal: + // If this is an unaligned store and the target doesn't support it, + // expand it. + if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { + const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); + unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); + if (ST->getAlignment() < ABIAlignment) + Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), + DAG, TLI); + } + break; + case TargetLowering::Custom: + Tmp1 = TLI.LowerOperation(Result, DAG); + if (Tmp1.getNode()) Result = Tmp1; + break; + case TargetLowering::Promote: + assert(VT.isVector() && "Unknown legal promote case!"); + Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl, + TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); + Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, + ST->getSrcValue(), SVOffset, isVolatile, + isNonTemporal, Alignment); + break; + } + break; + } + } else { + Tmp3 = LegalizeOp(ST->getValue()); + + EVT StVT = ST->getMemoryVT(); + unsigned StWidth = StVT.getSizeInBits(); + + if (StWidth != StVT.getStoreSizeInBits()) { + // Promote to a byte-sized store with upper bits zero if not + // storing an integral number of bytes. For example, promote + // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) + EVT NVT = EVT::getIntegerVT(*DAG.getContext(), + StVT.getStoreSizeInBits()); + Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT); + Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), + SVOffset, NVT, isVolatile, isNonTemporal, + Alignment); + } else if (StWidth & (StWidth - 1)) { + // If not storing a power-of-2 number of bits, expand as two stores. + assert(!StVT.isVector() && "Unsupported truncstore!"); + unsigned RoundWidth = 1 << Log2_32(StWidth); + assert(RoundWidth < StWidth); + unsigned ExtraWidth = StWidth - RoundWidth; + assert(ExtraWidth < RoundWidth); + assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && + "Store size not an integral number of bytes!"); + EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); + EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); + SDValue Lo, Hi; + unsigned IncrementSize; + + if (TLI.isLittleEndian()) { + // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) + // Store the bottom RoundWidth bits. + Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), + SVOffset, RoundVT, + isVolatile, isNonTemporal, Alignment); + + // Store the remaining ExtraWidth bits. + IncrementSize = RoundWidth / 8; + Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, + DAG.getIntPtrConstant(IncrementSize)); + Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, + DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); + Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), + SVOffset + IncrementSize, ExtraVT, isVolatile, + isNonTemporal, + MinAlign(Alignment, IncrementSize)); + } else { + // Big endian - avoid unaligned stores. + // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X + // Store the top RoundWidth bits. + Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3, + DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); + Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), + SVOffset, RoundVT, isVolatile, isNonTemporal, + Alignment); + + // Store the remaining ExtraWidth bits. + IncrementSize = RoundWidth / 8; + Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2, + DAG.getIntPtrConstant(IncrementSize)); + Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), + SVOffset + IncrementSize, ExtraVT, isVolatile, + isNonTemporal, + MinAlign(Alignment, IncrementSize)); + } + + // The order of the stores doesn't matter. + Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); + } else { + if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || + Tmp2 != ST->getBasePtr()) + Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, + ST->getOffset()); + + switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { + default: assert(0 && "This action is not supported yet!"); + case TargetLowering::Legal: + // If this is an unaligned store and the target doesn't support it, + // expand it. + if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) { + const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext()); + unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty); + if (ST->getAlignment() < ABIAlignment) + Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()), + DAG, TLI); + } + break; + case TargetLowering::Custom: + Result = TLI.LowerOperation(Result, DAG); + break; + case Expand: + // TRUNCSTORE:i16 i32 -> STORE i16 + assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); + Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3); + Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(), + SVOffset, isVolatile, isNonTemporal, + Alignment); + break; + } + } + } + break; + } + } + assert(Result.getValueType() == Op.getValueType() && + "Bad legalization!"); + + // Make sure that the generated code is itself legal. + if (Result != Op) + Result = LegalizeOp(Result); + + // Note that LegalizeOp may be reentered even from single-use nodes, which + // means that we always must cache transformed nodes. + AddLegalizedOperand(Op, Result); + return Result; +} + +SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { + SDValue Vec = Op.getOperand(0); + SDValue Idx = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + // Store the value to a temporary stack slot, then LOAD the returned part. + SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); + SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0, + false, false, 0); + + // Add the offset to the index. + unsigned EltSize = + Vec.getValueType().getVectorElementType().getSizeInBits()/8; + Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, + DAG.getConstant(EltSize, Idx.getValueType())); + + if (Idx.getValueType().bitsGT(TLI.getPointerTy())) + Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx); + else + Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx); + + StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); + + if (Op.getValueType().isVector()) + return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0, + false, false, 0); + else + return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, + NULL, 0, Vec.getValueType().getVectorElementType(), + false, false, 0); +} + +SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { + // We can't handle this case efficiently. Allocate a sufficiently + // aligned object on the stack, store each element into it, then load + // the result as a vector. + // Create the stack frame object. + EVT VT = Node->getValueType(0); + EVT EltVT = VT.getVectorElementType(); + DebugLoc dl = Node->getDebugLoc(); + SDValue FIPtr = DAG.CreateStackTemporary(VT); + int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); + const Value *SV = PseudoSourceValue::getFixedStack(FI); + + // Emit a store of each element to the stack slot. + SmallVector<SDValue, 8> Stores; + unsigned TypeByteSize = EltVT.getSizeInBits() / 8; + // Store (in the right endianness) the elements to memory. + for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { + // Ignore undef elements. + if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; + + unsigned Offset = TypeByteSize*i; + + SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); + Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); + + // If the destination vector element type is narrower than the source + // element type, only store the bits necessary. + if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { + Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, + Node->getOperand(i), Idx, SV, Offset, + EltVT, false, false, 0)); + } else + Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, + Node->getOperand(i), Idx, SV, Offset, + false, false, 0)); + } + + SDValue StoreChain; + if (!Stores.empty()) // Not all undef elements? + StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &Stores[0], Stores.size()); + else + StoreChain = DAG.getEntryNode(); + + // Result is a load from the stack slot. + return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0); +} + +SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) { + DebugLoc dl = Node->getDebugLoc(); + SDValue Tmp1 = Node->getOperand(0); + SDValue Tmp2 = Node->getOperand(1); + + // Get the sign bit of the RHS. First obtain a value that has the same + // sign as the sign bit, i.e. negative if and only if the sign bit is 1. + SDValue SignBit; + EVT FloatVT = Tmp2.getValueType(); + EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits()); + if (isTypeLegal(IVT)) { + // Convert to an integer with the same sign bit. + SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2); + } else { + // Store the float to memory, then load the sign part out as an integer. + MVT LoadTy = TLI.getPointerTy(); + // First create a temporary that is aligned for both the load and store. + SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); + // Then store the float to it. + SDValue Ch = + DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, NULL, 0, + false, false, 0); + if (TLI.isBigEndian()) { + assert(FloatVT.isByteSized() && "Unsupported floating point type!"); + // Load out a legal integer with the same sign bit as the float. + SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, NULL, 0, false, false, 0); + } else { // Little endian + SDValue LoadPtr = StackPtr; + // The float may be wider than the integer we are going to load. Advance + // the pointer so that the loaded integer will contain the sign bit. + unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits(); + unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8; + LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(), + LoadPtr, DAG.getIntPtrConstant(ByteOffset)); + // Load a legal integer containing the sign bit. + SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, NULL, 0, false, false, 0); + // Move the sign bit to the top bit of the loaded integer. + unsigned BitShift = LoadTy.getSizeInBits() - + (FloatVT.getSizeInBits() - 8 * ByteOffset); + assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?"); + if (BitShift) + SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit, + DAG.getConstant(BitShift,TLI.getShiftAmountTy())); + } + } + // Now get the sign bit proper, by seeing whether the value is negative. + SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()), + SignBit, DAG.getConstant(0, SignBit.getValueType()), + ISD::SETLT); + // Get the absolute value of the result. + SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1); + // Select between the nabs and abs value based on the sign bit of + // the input. + return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit, + DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal), + AbsVal); +} + +void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, + SmallVectorImpl<SDValue> &Results) { + unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); + assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" + " not tell us which reg is the stack pointer!"); + DebugLoc dl = Node->getDebugLoc(); + EVT VT = Node->getValueType(0); + SDValue Tmp1 = SDValue(Node, 0); + SDValue Tmp2 = SDValue(Node, 1); + SDValue Tmp3 = Node->getOperand(2); + SDValue Chain = Tmp1.getOperand(0); + + // Chain the dynamic stack allocation so that it doesn't modify the stack + // pointer when other instructions are using the stack. + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); + + SDValue Size = Tmp2.getOperand(1); + SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); + Chain = SP.getValue(1); + unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); + unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); + if (Align > StackAlign) + SP = DAG.getNode(ISD::AND, dl, VT, SP, + DAG.getConstant(-(uint64_t)Align, VT)); + Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value + Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain + + Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), + DAG.getIntPtrConstant(0, true), SDValue()); + + Results.push_back(Tmp1); + Results.push_back(Tmp2); +} + +/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and +/// condition code CC on the current target. This routine expands SETCC with +/// illegal condition code into AND / OR of multiple SETCC values. +void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, + SDValue &LHS, SDValue &RHS, + SDValue &CC, + DebugLoc dl) { + EVT OpVT = LHS.getValueType(); + ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); + switch (TLI.getCondCodeAction(CCCode, OpVT)) { + default: assert(0 && "Unknown condition code action!"); + case TargetLowering::Legal: + // Nothing to do. + break; + case TargetLowering::Expand: { + ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; + unsigned Opc = 0; + switch (CCCode) { + default: assert(0 && "Don't know how to expand this condition!"); + case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; + case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; + case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; + case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; + case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; + case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; + case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; + case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; + case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; + case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; + case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; + case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; + // FIXME: Implement more expansions. + } + + SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); + SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); + LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); + RHS = SDValue(); + CC = SDValue(); + break; + } + } +} + +/// EmitStackConvert - Emit a store/load combination to the stack. This stores +/// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does +/// a load from the stack slot to DestVT, extending it if needed. +/// The resultant code need not be legal. +SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, + EVT SlotVT, + EVT DestVT, + DebugLoc dl) { + // Create the stack frame object. + unsigned SrcAlign = + TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType(). + getTypeForEVT(*DAG.getContext())); + SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); + + FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); + int SPFI = StackPtrFI->getIndex(); + const Value *SV = PseudoSourceValue::getFixedStack(SPFI); + + unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); + unsigned SlotSize = SlotVT.getSizeInBits(); + unsigned DestSize = DestVT.getSizeInBits(); + const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); + unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType); + + // Emit a store to the stack slot. Use a truncstore if the input value is + // later than DestVT. + SDValue Store; + + if (SrcSize > SlotSize) + Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, + SV, 0, SlotVT, false, false, SrcAlign); + else { + assert(SrcSize == SlotSize && "Invalid store"); + Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, + SV, 0, false, false, SrcAlign); + } + + // Result is a load from the stack slot. + if (SlotSize == DestSize) + return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false, + DestAlign); + + assert(SlotSize < DestSize && "Unknown extension!"); + return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT, + false, false, DestAlign); +} + +SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { + DebugLoc dl = Node->getDebugLoc(); + // Create a vector sized/aligned stack slot, store the value to element #0, + // then load the whole vector back out. + SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); + + FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); + int SPFI = StackPtrFI->getIndex(); + + SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0), + StackPtr, + PseudoSourceValue::getFixedStack(SPFI), 0, + Node->getValueType(0).getVectorElementType(), + false, false, 0); + return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr, + PseudoSourceValue::getFixedStack(SPFI), 0, + false, false, 0); +} + + +/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't +/// support the operation, but do support the resultant vector type. +SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { + unsigned NumElems = Node->getNumOperands(); + SDValue Value1, Value2; + DebugLoc dl = Node->getDebugLoc(); + EVT VT = Node->getValueType(0); + EVT OpVT = Node->getOperand(0).getValueType(); + EVT EltVT = VT.getVectorElementType(); + + // If the only non-undef value is the low element, turn this into a + // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. + bool isOnlyLowElement = true; + bool MoreThanTwoValues = false; + bool isConstant = true; + for (unsigned i = 0; i < NumElems; ++i) { + SDValue V = Node->getOperand(i); + if (V.getOpcode() == ISD::UNDEF) + continue; + if (i > 0) + isOnlyLowElement = false; + if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) + isConstant = false; + + if (!Value1.getNode()) { + Value1 = V; + } else if (!Value2.getNode()) { + if (V != Value1) + Value2 = V; + } else if (V != Value1 && V != Value2) { + MoreThanTwoValues = true; + } + } + + if (!Value1.getNode()) + return DAG.getUNDEF(VT); + + if (isOnlyLowElement) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); + + // If all elements are constants, create a load from the constant pool. + if (isConstant) { + std::vector<Constant*> CV; + for (unsigned i = 0, e = NumElems; i != e; ++i) { + if (ConstantFPSDNode *V = + dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { + CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); + } else if (ConstantSDNode *V = + dyn_cast<ConstantSDNode>(Node->getOperand(i))) { + if (OpVT==EltVT) + CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); + else { + // If OpVT and EltVT don't match, EltVT is not legal and the + // element values have been promoted/truncated earlier. Undo this; + // we don't want a v16i8 to become a v16i32 for example. + const ConstantInt *CI = V->getConstantIntValue(); + CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), + CI->getZExtValue())); + } + } else { + assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); + const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); + CV.push_back(UndefValue::get(OpNTy)); + } + } + Constant *CP = ConstantVector::get(CV); + SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); + unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, + PseudoSourceValue::getConstantPool(), 0, + false, false, Alignment); + } + + if (!MoreThanTwoValues) { + SmallVector<int, 8> ShuffleVec(NumElems, -1); + for (unsigned i = 0; i < NumElems; ++i) { + SDValue V = Node->getOperand(i); + if (V.getOpcode() == ISD::UNDEF) + continue; + ShuffleVec[i] = V == Value1 ? 0 : NumElems; + } + if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { + // Get the splatted value into the low element of a vector register. + SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); + SDValue Vec2; + if (Value2.getNode()) + Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); + else + Vec2 = DAG.getUNDEF(VT); + + // Return shuffle(LowValVec, undef, <0,0,0,0>) + return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); + } + } + + // Otherwise, we can't handle this case efficiently. + return ExpandVectorBuildThroughStack(Node); +} + +// ExpandLibCall - Expand a node into a call to a libcall. If the result value +// does not fit into a register, return the lo part and set the hi part to the +// by-reg argument. If it does fit into a single register, return the result +// and leave the Hi part unset. +SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, + bool isSigned) { + assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); + // The input chain to this libcall is the entry node of the function. + // Legalizing the call will automatically add the previous call to the + // dependence. + SDValue InChain = DAG.getEntryNode(); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { + EVT ArgVT = Node->getOperand(i).getValueType(); + const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; + Entry.isSExt = isSigned; + Entry.isZExt = !isSigned; + Args.push_back(Entry); + } + SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), + TLI.getPointerTy()); + + // Splice the libcall in wherever FindInputOutputChains tells us to. + const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); + std::pair<SDValue, SDValue> CallInfo = + TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, + 0, TLI.getLibcallCallingConv(LC), false, + /*isReturnValueUsed=*/true, + Callee, Args, DAG, Node->getDebugLoc()); + + // Legalize the call sequence, starting with the chain. This will advance + // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that + // was added by LowerCallTo (guaranteeing proper serialization of calls). + LegalizeOp(CallInfo.second); + return CallInfo.first; +} + +SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, + RTLIB::Libcall Call_F32, + RTLIB::Libcall Call_F64, + RTLIB::Libcall Call_F80, + RTLIB::Libcall Call_PPCF128) { + RTLIB::Libcall LC; + switch (Node->getValueType(0).getSimpleVT().SimpleTy) { + default: assert(0 && "Unexpected request for libcall!"); + case MVT::f32: LC = Call_F32; break; + case MVT::f64: LC = Call_F64; break; + case MVT::f80: LC = Call_F80; break; + case MVT::ppcf128: LC = Call_PPCF128; break; + } + return ExpandLibCall(LC, Node, false); +} + +SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, + RTLIB::Libcall Call_I8, + RTLIB::Libcall Call_I16, + RTLIB::Libcall Call_I32, + RTLIB::Libcall Call_I64, + RTLIB::Libcall Call_I128) { + RTLIB::Libcall LC; + switch (Node->getValueType(0).getSimpleVT().SimpleTy) { + default: assert(0 && "Unexpected request for libcall!"); + case MVT::i8: LC = Call_I8; break; + case MVT::i16: LC = Call_I16; break; + case MVT::i32: LC = Call_I32; break; + case MVT::i64: LC = Call_I64; break; + case MVT::i128: LC = Call_I128; break; + } + return ExpandLibCall(LC, Node, isSigned); +} + +/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a +/// INT_TO_FP operation of the specified operand when the target requests that +/// we expand it. At this point, we know that the result and operand types are +/// legal for the target. +SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, + SDValue Op0, + EVT DestVT, + DebugLoc dl) { + if (Op0.getValueType() == MVT::i32) { + // simple 32-bit [signed|unsigned] integer to float/double expansion + + // Get the stack frame index of a 8 byte buffer. + SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); + + // word offset constant for Hi/Lo address computation + SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); + // set up Hi and Lo (into buffer) address based on endian + SDValue Hi = StackSlot; + SDValue Lo = DAG.getNode(ISD::ADD, dl, + TLI.getPointerTy(), StackSlot, WordOff); + if (TLI.isLittleEndian()) + std::swap(Hi, Lo); + + // if signed map to unsigned space + SDValue Op0Mapped; + if (isSigned) { + // constant used to invert sign bit (signed to unsigned mapping) + SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); + Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); + } else { + Op0Mapped = Op0; + } + // store the lo of the constructed double - based on integer input + SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, + Op0Mapped, Lo, NULL, 0, + false, false, 0); + // initial hi portion of constructed double + SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); + // store the hi of the constructed double - biased exponent + SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0, + false, false, 0); + // load the constructed double + SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0, + false, false, 0); + // FP constant to bias correct the final result + SDValue Bias = DAG.getConstantFP(isSigned ? + BitsToDouble(0x4330000080000000ULL) : + BitsToDouble(0x4330000000000000ULL), + MVT::f64); + // subtract the bias + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); + // final result + SDValue Result; + // handle final rounding + if (DestVT == MVT::f64) { + // do nothing + Result = Sub; + } else if (DestVT.bitsLT(MVT::f64)) { + Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, + DAG.getIntPtrConstant(0)); + } else if (DestVT.bitsGT(MVT::f64)) { + Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); + } + return Result; + } + assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); + // Code below here assumes !isSigned without checking again. + + // Implementation of unsigned i64 to f64 following the algorithm in + // __floatundidf in compiler_rt. This implementation has the advantage + // of performing rounding correctly, both in the default rounding mode + // and in all alternate rounding modes. + // TODO: Generalize this for use with other types. + if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { + SDValue TwoP52 = + DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64); + SDValue TwoP84PlusTwoP52 = + DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64); + SDValue TwoP84 = + DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64); + + SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); + SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, + DAG.getConstant(32, MVT::i64)); + SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); + SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); + SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr); + SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr); + SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52); + return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); + } + + // Implementation of unsigned i64 to f32. This implementation has the + // advantage of performing rounding correctly. + // TODO: Generalize this for use with other types. + if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { + EVT SHVT = TLI.getShiftAmountTy(); + + SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, + DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64)); + SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, + DAG.getConstant(UINT64_C(0x800), MVT::i64)); + SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, + DAG.getConstant(UINT64_C(0x7ff), MVT::i64)); + SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), + And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE); + SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0); + SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64), + Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64), + ISD::SETUGE); + SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0); + + SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, + DAG.getConstant(32, SHVT)); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); + SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); + SDValue TwoP32 = + DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64); + SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); + SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); + SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); + SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); + return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, + DAG.getIntPtrConstant(0)); + + } + + SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); + + SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()), + Op0, DAG.getConstant(0, Op0.getValueType()), + ISD::SETLT); + SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); + SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), + SignSet, Four, Zero); + + // If the sign bit of the integer is set, the large number will be treated + // as a negative number. To counteract this, the dynamic code adds an + // offset depending on the data type. + uint64_t FF; + switch (Op0.getValueType().getSimpleVT().SimpleTy) { + default: assert(0 && "Unsupported integer type!"); + case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) + case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) + case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) + case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) + } + if (TLI.isLittleEndian()) FF <<= 32; + Constant *FudgeFactor = ConstantInt::get( + Type::getInt64Ty(*DAG.getContext()), FF); + + SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); + unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset); + Alignment = std::min(Alignment, 4u); + SDValue FudgeInReg; + if (DestVT == MVT::f32) + FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx, + PseudoSourceValue::getConstantPool(), 0, + false, false, Alignment); + else { + FudgeInReg = + LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, + DAG.getEntryNode(), CPIdx, + PseudoSourceValue::getConstantPool(), 0, + MVT::f32, false, false, Alignment)); + } + + return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); +} + +/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a +/// *INT_TO_FP operation of the specified operand when the target requests that +/// we promote it. At this point, we know that the result and operand types are +/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP +/// operation that takes a larger input. +SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, + EVT DestVT, + bool isSigned, + DebugLoc dl) { + // First step, figure out the appropriate *INT_TO_FP operation to use. + EVT NewInTy = LegalOp.getValueType(); + + unsigned OpToUse = 0; + + // Scan for the appropriate larger type to use. + while (1) { + NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); + assert(NewInTy.isInteger() && "Ran out of possibilities!"); + + // If the target supports SINT_TO_FP of this type, use it. + if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { + OpToUse = ISD::SINT_TO_FP; + break; + } + if (isSigned) continue; + + // If the target supports UINT_TO_FP of this type, use it. + if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { + OpToUse = ISD::UINT_TO_FP; + break; + } + + // Otherwise, try a larger type. + } + + // Okay, we found the operation and type to use. Zero extend our input to the + // desired type then run the operation on it. + return DAG.getNode(OpToUse, dl, DestVT, + DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, + dl, NewInTy, LegalOp)); +} + +/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a +/// FP_TO_*INT operation of the specified operand when the target requests that +/// we promote it. At this point, we know that the result and operand types are +/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT +/// operation that returns a larger result. +SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, + EVT DestVT, + bool isSigned, + DebugLoc dl) { + // First step, figure out the appropriate FP_TO*INT operation to use. + EVT NewOutTy = DestVT; + + unsigned OpToUse = 0; + + // Scan for the appropriate larger type to use. + while (1) { + NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); + assert(NewOutTy.isInteger() && "Ran out of possibilities!"); + + if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { + OpToUse = ISD::FP_TO_SINT; + break; + } + + if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { + OpToUse = ISD::FP_TO_UINT; + break; + } + + // Otherwise, try a larger type. + } + + + // Okay, we found the operation and type to use. + SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); + + // Truncate the result of the extended FP_TO_*INT operation to the desired + // size. + return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); +} + +/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. +/// +SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) { + EVT VT = Op.getValueType(); + EVT SHVT = TLI.getShiftAmountTy(); + SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; + switch (VT.getSimpleVT().SimpleTy) { + default: assert(0 && "Unhandled Expand type in BSWAP!"); + case MVT::i16: + Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); + Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); + return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); + case MVT::i32: + Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); + Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT)); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); + Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); + return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); + case MVT::i64: + Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT)); + Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT)); + Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT)); + Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT)); + Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT)); + Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT)); + Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT)); + Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT)); + Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); + Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); + Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); + Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); + Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); + Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); + Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); + Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); + Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); + Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); + Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); + return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); + } +} + +/// ExpandBitCount - Expand the specified bitcount instruction into operations. +/// +SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, + DebugLoc dl) { + switch (Opc) { + default: assert(0 && "Cannot expand this yet!"); + case ISD::CTPOP: { + static const uint64_t mask[6] = { + 0x5555555555555555ULL, 0x3333333333333333ULL, + 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, + 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL + }; + EVT VT = Op.getValueType(); + EVT ShVT = TLI.getShiftAmountTy(); + unsigned len = VT.getSizeInBits(); + for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { + //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) + unsigned EltSize = VT.isVector() ? + VT.getVectorElementType().getSizeInBits() : len; + SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT); + SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); + Op = DAG.getNode(ISD::ADD, dl, VT, + DAG.getNode(ISD::AND, dl, VT, Op, Tmp2), + DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3), + Tmp2)); + } + return Op; + } + case ISD::CTLZ: { + // for now, we do this: + // x = x | (x >> 1); + // x = x | (x >> 2); + // ... + // x = x | (x >>16); + // x = x | (x >>32); // for 64-bit input + // return popcount(~x); + // + // but see also: http://www.hackersdelight.org/HDcode/nlz.cc + EVT VT = Op.getValueType(); + EVT ShVT = TLI.getShiftAmountTy(); + unsigned len = VT.getSizeInBits(); + for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { + SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); + Op = DAG.getNode(ISD::OR, dl, VT, Op, + DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); + } + Op = DAG.getNOT(dl, Op, VT); + return DAG.getNode(ISD::CTPOP, dl, VT, Op); + } + case ISD::CTTZ: { + // for now, we use: { return popcount(~x & (x - 1)); } + // unless the target has ctlz but not ctpop, in which case we use: + // { return 32 - nlz(~x & (x-1)); } + // see also http://www.hackersdelight.org/HDcode/ntz.cc + EVT VT = Op.getValueType(); + SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNOT(dl, Op, VT), + DAG.getNode(ISD::SUB, dl, VT, Op, + DAG.getConstant(1, VT))); + // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. + if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && + TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) + return DAG.getNode(ISD::SUB, dl, VT, + DAG.getConstant(VT.getSizeInBits(), VT), + DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); + return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); + } + } +} + +void SelectionDAGLegalize::ExpandNode(SDNode *Node, + SmallVectorImpl<SDValue> &Results) { + DebugLoc dl = Node->getDebugLoc(); + SDValue Tmp1, Tmp2, Tmp3, Tmp4; + switch (Node->getOpcode()) { + case ISD::CTPOP: + case ISD::CTLZ: + case ISD::CTTZ: + Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); + Results.push_back(Tmp1); + break; + case ISD::BSWAP: + Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); + break; + case ISD::FRAMEADDR: + case ISD::RETURNADDR: + case ISD::FRAME_TO_ARGS_OFFSET: + Results.push_back(DAG.getConstant(0, Node->getValueType(0))); + break; + case ISD::FLT_ROUNDS_: + Results.push_back(DAG.getConstant(1, Node->getValueType(0))); + break; + case ISD::EH_RETURN: + case ISD::EH_LABEL: + case ISD::PREFETCH: + case ISD::MEMBARRIER: + case ISD::VAEND: + Results.push_back(Node->getOperand(0)); + break; + case ISD::DYNAMIC_STACKALLOC: + ExpandDYNAMIC_STACKALLOC(Node, Results); + break; + case ISD::MERGE_VALUES: + for (unsigned i = 0; i < Node->getNumValues(); i++) + Results.push_back(Node->getOperand(i)); + break; + case ISD::UNDEF: { + EVT VT = Node->getValueType(0); + if (VT.isInteger()) + Results.push_back(DAG.getConstant(0, VT)); + else { + assert(VT.isFloatingPoint() && "Unknown value type!"); + Results.push_back(DAG.getConstantFP(0, VT)); + } + break; + } + case ISD::TRAP: { + // If this operation is not supported, lower it to 'abort()' call + TargetLowering::ArgListTy Args; + std::pair<SDValue, SDValue> CallResult = + TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()), + false, false, false, false, 0, CallingConv::C, false, + /*isReturnValueUsed=*/true, + DAG.getExternalSymbol("abort", TLI.getPointerTy()), + Args, DAG, dl); + Results.push_back(CallResult.second); + break; + } + case ISD::FP_ROUND: + case ISD::BIT_CONVERT: + Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), + Node->getValueType(0), dl); + Results.push_back(Tmp1); + break; + case ISD::FP_EXTEND: + Tmp1 = EmitStackConvert(Node->getOperand(0), + Node->getOperand(0).getValueType(), + Node->getValueType(0), dl); + Results.push_back(Tmp1); + break; + case ISD::SIGN_EXTEND_INREG: { + // NOTE: we could fall back on load/store here too for targets without + // SAR. However, it is doubtful that any exist. + EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); + EVT VT = Node->getValueType(0); + EVT ShiftAmountTy = TLI.getShiftAmountTy(); + if (VT.isVector()) + ShiftAmountTy = VT; + unsigned BitsDiff = VT.getScalarType().getSizeInBits() - + ExtraVT.getScalarType().getSizeInBits(); + SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy); + Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), + Node->getOperand(0), ShiftCst); + Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); + Results.push_back(Tmp1); + break; + } + case ISD::FP_ROUND_INREG: { + // The only way we can lower this is to turn it into a TRUNCSTORE, + // EXTLOAD pair, targetting a temporary location (a stack slot). + + // NOTE: there is a choice here between constantly creating new stack + // slots and always reusing the same one. We currently always create + // new ones, as reuse may inhibit scheduling. + EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); + Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, + Node->getValueType(0), dl); + Results.push_back(Tmp1); + break; + } + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, + Node->getOperand(0), Node->getValueType(0), dl); + Results.push_back(Tmp1); + break; + case ISD::FP_TO_UINT: { + SDValue True, False; + EVT VT = Node->getOperand(0).getValueType(); + EVT NVT = Node->getValueType(0); + const uint64_t zero[] = {0, 0}; + APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); + APInt x = APInt::getSignBit(NVT.getSizeInBits()); + (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); + Tmp1 = DAG.getConstantFP(apf, VT); + Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), + Node->getOperand(0), + Tmp1, ISD::SETLT); + True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); + False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, + DAG.getNode(ISD::FSUB, dl, VT, + Node->getOperand(0), Tmp1)); + False = DAG.getNode(ISD::XOR, dl, NVT, False, + DAG.getConstant(x, NVT)); + Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False); + Results.push_back(Tmp1); + break; + } + case ISD::VAARG: { + const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); + EVT VT = Node->getValueType(0); + Tmp1 = Node->getOperand(0); + Tmp2 = Node->getOperand(1); + SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0, + false, false, 0); + // Increment the pointer, VAList, to the next vaarg + Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList, + DAG.getConstant(TLI.getTargetData()-> + getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())), + TLI.getPointerTy())); + // Store the incremented VAList to the legalized pointer + Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0, + false, false, 0); + // Load the actual argument out of the pointer VAList + Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0, + false, false, 0)); + Results.push_back(Results[0].getValue(1)); + break; + } + case ISD::VACOPY: { + // This defaults to loading a pointer from the input and storing it to the + // output, returning the chain. + const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue(); + const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue(); + Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0), + Node->getOperand(2), VS, 0, false, false, 0); + Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0, + false, false, 0); + Results.push_back(Tmp1); + break; + } + case ISD::EXTRACT_VECTOR_ELT: + if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) + // This must be an access of the only element. Return it. + Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0), + Node->getOperand(0)); + else + Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); + Results.push_back(Tmp1); + break; + case ISD::EXTRACT_SUBVECTOR: + Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); + break; + case ISD::CONCAT_VECTORS: { + Results.push_back(ExpandVectorBuildThroughStack(Node)); + break; + } + case ISD::SCALAR_TO_VECTOR: + Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); + break; + case ISD::INSERT_VECTOR_ELT: + Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), + Node->getOperand(1), + Node->getOperand(2), dl)); + break; + case ISD::VECTOR_SHUFFLE: { + SmallVector<int, 8> Mask; + cast<ShuffleVectorSDNode>(Node)->getMask(Mask); + + EVT VT = Node->getValueType(0); + EVT EltVT = VT.getVectorElementType(); + if (getTypeAction(EltVT) == Promote) + EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0; i != NumElems; ++i) { + if (Mask[i] < 0) { + Ops.push_back(DAG.getUNDEF(EltVT)); + continue; + } + unsigned Idx = Mask[i]; + if (Idx < NumElems) + Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, + Node->getOperand(0), + DAG.getIntPtrConstant(Idx))); + else + Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, + Node->getOperand(1), + DAG.getIntPtrConstant(Idx - NumElems))); + } + Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size()); + Results.push_back(Tmp1); + break; + } + case ISD::EXTRACT_ELEMENT: { + EVT OpTy = Node->getOperand(0).getValueType(); + if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { + // 1 -> Hi + Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), + DAG.getConstant(OpTy.getSizeInBits()/2, + TLI.getShiftAmountTy())); + Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); + } else { + // 0 -> Lo + Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), + Node->getOperand(0)); + } + Results.push_back(Tmp1); + break; + } + case ISD::STACKSAVE: + // Expand to CopyFromReg if the target set + // StackPointerRegisterToSaveRestore. + if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { + Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, + Node->getValueType(0))); + Results.push_back(Results[0].getValue(1)); + } else { + Results.push_back(DAG.getUNDEF(Node->getValueType(0))); + Results.push_back(Node->getOperand(0)); + } + break; + case ISD::STACKRESTORE: + // Expand to CopyToReg if the target set + // StackPointerRegisterToSaveRestore. + if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { + Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, + Node->getOperand(1))); + } else { + Results.push_back(Node->getOperand(0)); + } + break; + case ISD::FCOPYSIGN: + Results.push_back(ExpandFCOPYSIGN(Node)); + break; + case ISD::FNEG: + // Expand Y = FNEG(X) -> Y = SUB -0.0, X + Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0)); + Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, + Node->getOperand(0)); + Results.push_back(Tmp1); + break; + case ISD::FABS: { + // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). + EVT VT = Node->getValueType(0); + Tmp1 = Node->getOperand(0); + Tmp2 = DAG.getConstantFP(0.0, VT); + Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()), + Tmp1, Tmp2, ISD::SETUGT); + Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1); + Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3); + Results.push_back(Tmp1); + break; + } + case ISD::FSQRT: + Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, + RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128)); + break; + case ISD::FSIN: + Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, + RTLIB::SIN_F80, RTLIB::SIN_PPCF128)); + break; + case ISD::FCOS: + Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, + RTLIB::COS_F80, RTLIB::COS_PPCF128)); + break; + case ISD::FLOG: + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, + RTLIB::LOG_F80, RTLIB::LOG_PPCF128)); + break; + case ISD::FLOG2: + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, + RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128)); + break; + case ISD::FLOG10: + Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, + RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128)); + break; + case ISD::FEXP: + Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, + RTLIB::EXP_F80, RTLIB::EXP_PPCF128)); + break; + case ISD::FEXP2: + Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, + RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128)); + break; + case ISD::FTRUNC: + Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, + RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128)); + break; + case ISD::FFLOOR: + Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, + RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128)); + break; + case ISD::FCEIL: + Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, + RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128)); + break; + case ISD::FRINT: + Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, + RTLIB::RINT_F80, RTLIB::RINT_PPCF128)); + break; + case ISD::FNEARBYINT: + Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, + RTLIB::NEARBYINT_F64, + RTLIB::NEARBYINT_F80, + RTLIB::NEARBYINT_PPCF128)); + break; + case ISD::FPOWI: + Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, + RTLIB::POWI_F80, RTLIB::POWI_PPCF128)); + break; + case ISD::FPOW: + Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, + RTLIB::POW_F80, RTLIB::POW_PPCF128)); + break; + case ISD::FDIV: + Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, + RTLIB::DIV_F80, RTLIB::DIV_PPCF128)); + break; + case ISD::FREM: + Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, + RTLIB::REM_F80, RTLIB::REM_PPCF128)); + break; + case ISD::FP16_TO_FP32: + Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); + break; + case ISD::FP32_TO_FP16: + Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false)); + break; + case ISD::ConstantFP: { + ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); + // Check to see if this FP immediate is already legal. + // If this is a legal constant, turn it into a TargetConstantFP node. + if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) + Results.push_back(SDValue(Node, 0)); + else + Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI)); + break; + } + case ISD::EHSELECTION: { + unsigned Reg = TLI.getExceptionSelectorRegister(); + assert(Reg && "Can't expand to unknown register!"); + Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg, + Node->getValueType(0))); + Results.push_back(Results[0].getValue(1)); + break; + } + case ISD::EXCEPTIONADDR: { + unsigned Reg = TLI.getExceptionAddressRegister(); + assert(Reg && "Can't expand to unknown register!"); + Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg, + Node->getValueType(0))); + Results.push_back(Results[0].getValue(1)); + break; + } + case ISD::SUB: { + EVT VT = Node->getValueType(0); + assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && + TLI.isOperationLegalOrCustom(ISD::XOR, VT) && + "Don't know how to expand this subtraction!"); + Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), + DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT)); + Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT)); + Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); + break; + } + case ISD::UREM: + case ISD::SREM: { + EVT VT = Node->getValueType(0); + SDVTList VTs = DAG.getVTList(VT, VT); + bool isSigned = Node->getOpcode() == ISD::SREM; + unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; + unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; + Tmp2 = Node->getOperand(0); + Tmp3 = Node->getOperand(1); + if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { + Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); + } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { + // X % Y -> X-X/Y*Y + Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); + Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); + Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); + } else if (isSigned) { + Tmp1 = ExpandIntLibCall(Node, true, + RTLIB::SREM_I8, + RTLIB::SREM_I16, RTLIB::SREM_I32, + RTLIB::SREM_I64, RTLIB::SREM_I128); + } else { + Tmp1 = ExpandIntLibCall(Node, false, + RTLIB::UREM_I8, + RTLIB::UREM_I16, RTLIB::UREM_I32, + RTLIB::UREM_I64, RTLIB::UREM_I128); + } + Results.push_back(Tmp1); + break; + } + case ISD::UDIV: + case ISD::SDIV: { + bool isSigned = Node->getOpcode() == ISD::SDIV; + unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; + EVT VT = Node->getValueType(0); + SDVTList VTs = DAG.getVTList(VT, VT); + if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) + Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), + Node->getOperand(1)); + else if (isSigned) + Tmp1 = ExpandIntLibCall(Node, true, + RTLIB::SDIV_I8, + RTLIB::SDIV_I16, RTLIB::SDIV_I32, + RTLIB::SDIV_I64, RTLIB::SDIV_I128); + else + Tmp1 = ExpandIntLibCall(Node, false, + RTLIB::UDIV_I8, + RTLIB::UDIV_I16, RTLIB::UDIV_I32, + RTLIB::UDIV_I64, RTLIB::UDIV_I128); + Results.push_back(Tmp1); + break; + } + case ISD::MULHU: + case ISD::MULHS: { + unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : + ISD::SMUL_LOHI; + EVT VT = Node->getValueType(0); + SDVTList VTs = DAG.getVTList(VT, VT); + assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && + "If this wasn't legal, it shouldn't have been created!"); + Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), + Node->getOperand(1)); + Results.push_back(Tmp1.getValue(1)); + break; + } + case ISD::MUL: { + EVT VT = Node->getValueType(0); + SDVTList VTs = DAG.getVTList(VT, VT); + // See if multiply or divide can be lowered using two-result operations. + // We just need the low half of the multiply; try both the signed + // and unsigned forms. If the target supports both SMUL_LOHI and + // UMUL_LOHI, form a preference by checking which forms of plain + // MULH it supports. + bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); + bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); + bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); + bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); + unsigned OpToUse = 0; + if (HasSMUL_LOHI && !HasMULHS) { + OpToUse = ISD::SMUL_LOHI; + } else if (HasUMUL_LOHI && !HasMULHU) { + OpToUse = ISD::UMUL_LOHI; + } else if (HasSMUL_LOHI) { + OpToUse = ISD::SMUL_LOHI; + } else if (HasUMUL_LOHI) { + OpToUse = ISD::UMUL_LOHI; + } + if (OpToUse) { + Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), + Node->getOperand(1))); + break; + } + Tmp1 = ExpandIntLibCall(Node, false, + RTLIB::MUL_I8, + RTLIB::MUL_I16, RTLIB::MUL_I32, + RTLIB::MUL_I64, RTLIB::MUL_I128); + Results.push_back(Tmp1); + break; + } + case ISD::SADDO: + case ISD::SSUBO: { + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? + ISD::ADD : ISD::SUB, dl, LHS.getValueType(), + LHS, RHS); + Results.push_back(Sum); + EVT OType = Node->getValueType(1); + + SDValue Zero = DAG.getConstant(0, LHS.getValueType()); + + // LHSSign -> LHS >= 0 + // RHSSign -> RHS >= 0 + // SumSign -> Sum >= 0 + // + // Add: + // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) + // Sub: + // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) + // + SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); + SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); + SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, + Node->getOpcode() == ISD::SADDO ? + ISD::SETEQ : ISD::SETNE); + + SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); + SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); + + SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); + Results.push_back(Cmp); + break; + } + case ISD::UADDO: + case ISD::USUBO: { + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? + ISD::ADD : ISD::SUB, dl, LHS.getValueType(), + LHS, RHS); + Results.push_back(Sum); + Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS, + Node->getOpcode () == ISD::UADDO ? + ISD::SETULT : ISD::SETUGT)); + break; + } + case ISD::UMULO: + case ISD::SMULO: { + EVT VT = Node->getValueType(0); + SDValue LHS = Node->getOperand(0); + SDValue RHS = Node->getOperand(1); + SDValue BottomHalf; + SDValue TopHalf; + static const unsigned Ops[2][3] = + { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, + { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; + bool isSigned = Node->getOpcode() == ISD::SMULO; + if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { + BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); + TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); + } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { + BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, + RHS); + TopHalf = BottomHalf.getValue(1); + } else { + // FIXME: We should be able to fall back to a libcall with an illegal + // type in some cases. + // Also, we can fall back to a division in some cases, but that's a big + // performance hit in the general case. + assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), + VT.getSizeInBits() * 2)) && + "Don't know how to expand this operation yet!"); + EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); + LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); + RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); + Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); + BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, + DAG.getIntPtrConstant(0)); + TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, + DAG.getIntPtrConstant(1)); + } + if (isSigned) { + Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy()); + Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); + TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1, + ISD::SETNE); + } else { + TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, + DAG.getConstant(0, VT), ISD::SETNE); + } + Results.push_back(BottomHalf); + Results.push_back(TopHalf); + break; + } + case ISD::BUILD_PAIR: { + EVT PairTy = Node->getValueType(0); + Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); + Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); + Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2, + DAG.getConstant(PairTy.getSizeInBits()/2, + TLI.getShiftAmountTy())); + Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); + break; + } + case ISD::SELECT: + Tmp1 = Node->getOperand(0); + Tmp2 = Node->getOperand(1); + Tmp3 = Node->getOperand(2); + if (Tmp1.getOpcode() == ISD::SETCC) { + Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), + Tmp2, Tmp3, + cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); + } else { + Tmp1 = DAG.getSelectCC(dl, Tmp1, + DAG.getConstant(0, Tmp1.getValueType()), + Tmp2, Tmp3, ISD::SETNE); + } + Results.push_back(Tmp1); + break; + case ISD::BR_JT: { + SDValue Chain = Node->getOperand(0); + SDValue Table = Node->getOperand(1); + SDValue Index = Node->getOperand(2); + + EVT PTy = TLI.getPointerTy(); + + const TargetData &TD = *TLI.getTargetData(); + unsigned EntrySize = + DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); + + Index = DAG.getNode(ISD::MUL, dl, PTy, + Index, DAG.getConstant(EntrySize, PTy)); + SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); + + EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); + SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr, + PseudoSourceValue::getJumpTable(), 0, MemVT, + false, false, 0); + Addr = LD; + if (TM.getRelocationModel() == Reloc::PIC_) { + // For PIC, the sequence is: + // BRIND(load(Jumptable + index) + RelocBase) + // RelocBase can be JumpTable, GOT or some sort of global base. + Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, + TLI.getPICJumpTableRelocBase(Table, DAG)); + } + Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); + Results.push_back(Tmp1); + break; + } + case ISD::BRCOND: + // Expand brcond's setcc into its constituent parts and create a BR_CC + // Node. + Tmp1 = Node->getOperand(0); + Tmp2 = Node->getOperand(1); + if (Tmp2.getOpcode() == ISD::SETCC) { + Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, + Tmp1, Tmp2.getOperand(2), + Tmp2.getOperand(0), Tmp2.getOperand(1), + Node->getOperand(2)); + } else { + Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, + DAG.getCondCode(ISD::SETNE), Tmp2, + DAG.getConstant(0, Tmp2.getValueType()), + Node->getOperand(2)); + } + Results.push_back(Tmp1); + break; + case ISD::SETCC: { + Tmp1 = Node->getOperand(0); + Tmp2 = Node->getOperand(1); + Tmp3 = Node->getOperand(2); + LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl); + + // If we expanded the SETCC into an AND/OR, return the new node + if (Tmp2.getNode() == 0) { + Results.push_back(Tmp1); + break; + } + + // Otherwise, SETCC for the given comparison type must be completely + // illegal; expand it into a SELECT_CC. + EVT VT = Node->getValueType(0); + Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, + DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); + Results.push_back(Tmp1); + break; + } + case ISD::SELECT_CC: { + Tmp1 = Node->getOperand(0); // LHS + Tmp2 = Node->getOperand(1); // RHS + Tmp3 = Node->getOperand(2); // True + Tmp4 = Node->getOperand(3); // False + SDValue CC = Node->getOperand(4); + + LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()), + Tmp1, Tmp2, CC, dl); + + assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!"); + Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); + CC = DAG.getCondCode(ISD::SETNE); + Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2, + Tmp3, Tmp4, CC); + Results.push_back(Tmp1); + break; + } + case ISD::BR_CC: { + Tmp1 = Node->getOperand(0); // Chain + Tmp2 = Node->getOperand(2); // LHS + Tmp3 = Node->getOperand(3); // RHS + Tmp4 = Node->getOperand(1); // CC + + LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()), + Tmp2, Tmp3, Tmp4, dl); + LastCALLSEQ_END = DAG.getEntryNode(); + + assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!"); + Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); + Tmp4 = DAG.getCondCode(ISD::SETNE); + Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2, + Tmp3, Node->getOperand(4)); + Results.push_back(Tmp1); + break; + } + case ISD::GLOBAL_OFFSET_TABLE: + case ISD::GlobalAddress: + case ISD::GlobalTLSAddress: + case ISD::ExternalSymbol: + case ISD::ConstantPool: + case ISD::JumpTable: + case ISD::INTRINSIC_W_CHAIN: + case ISD::INTRINSIC_WO_CHAIN: + case ISD::INTRINSIC_VOID: + // FIXME: Custom lowering for these operations shouldn't return null! + for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) + Results.push_back(SDValue(Node, i)); + break; + } +} +void SelectionDAGLegalize::PromoteNode(SDNode *Node, + SmallVectorImpl<SDValue> &Results) { + EVT OVT = Node->getValueType(0); + if (Node->getOpcode() == ISD::UINT_TO_FP || + Node->getOpcode() == ISD::SINT_TO_FP || + Node->getOpcode() == ISD::SETCC) { + OVT = Node->getOperand(0).getValueType(); + } + EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); + DebugLoc dl = Node->getDebugLoc(); + SDValue Tmp1, Tmp2, Tmp3; + switch (Node->getOpcode()) { + case ISD::CTTZ: + case ISD::CTLZ: + case ISD::CTPOP: + // Zero extend the argument. + Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); + // Perform the larger operation. + Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); + if (Node->getOpcode() == ISD::CTTZ) { + //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) + Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), + Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), + ISD::SETEQ); + Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, + DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); + } else if (Node->getOpcode() == ISD::CTLZ) { + // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) + Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, + DAG.getConstant(NVT.getSizeInBits() - + OVT.getSizeInBits(), NVT)); + } + Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); + break; + case ISD::BSWAP: { + unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); + Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); + Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); + Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1, + DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); + Results.push_back(Tmp1); + break; + } + case ISD::FP_TO_UINT: + case ISD::FP_TO_SINT: + Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), + Node->getOpcode() == ISD::FP_TO_SINT, dl); + Results.push_back(Tmp1); + break; + case ISD::UINT_TO_FP: + case ISD::SINT_TO_FP: + Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), + Node->getOpcode() == ISD::SINT_TO_FP, dl); + Results.push_back(Tmp1); + break; + case ISD::AND: + case ISD::OR: + case ISD::XOR: { + unsigned ExtOp, TruncOp; + if (OVT.isVector()) { + ExtOp = ISD::BIT_CONVERT; + TruncOp = ISD::BIT_CONVERT; + } else { + assert(OVT.isInteger() && "Cannot promote logic operation"); + ExtOp = ISD::ANY_EXTEND; + TruncOp = ISD::TRUNCATE; + } + // Promote each of the values to the new type. + Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); + // Perform the larger operation, then convert back + Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); + Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); + break; + } + case ISD::SELECT: { + unsigned ExtOp, TruncOp; + if (Node->getValueType(0).isVector()) { + ExtOp = ISD::BIT_CONVERT; + TruncOp = ISD::BIT_CONVERT; + } else if (Node->getValueType(0).isInteger()) { + ExtOp = ISD::ANY_EXTEND; + TruncOp = ISD::TRUNCATE; + } else { + ExtOp = ISD::FP_EXTEND; + TruncOp = ISD::FP_ROUND; + } + Tmp1 = Node->getOperand(0); + // Promote each of the values to the new type. + Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); + Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); + // Perform the larger operation, then round down. + Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3); + if (TruncOp != ISD::FP_ROUND) + Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); + else + Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, + DAG.getIntPtrConstant(0)); + Results.push_back(Tmp1); + break; + } + case ISD::VECTOR_SHUFFLE: { + SmallVector<int, 8> Mask; + cast<ShuffleVectorSDNode>(Node)->getMask(Mask); + + // Cast the two input vectors. + Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1)); + + // Convert the shuffle mask to the right # elements. + Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); + Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1); + Results.push_back(Tmp1); + break; + } + case ISD::SETCC: { + unsigned ExtOp = ISD::FP_EXTEND; + if (NVT.isInteger()) { + ISD::CondCode CCCode = + cast<CondCodeSDNode>(Node->getOperand(2))->get(); + ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + } + Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); + Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); + Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), + Tmp1, Tmp2, Node->getOperand(2))); + break; + } + } +} + +// SelectionDAG::Legalize - This is the entry point for the file. +// +void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) { + /// run - This is the main entry point to this class. + /// + SelectionDAGLegalize(*this, OptLevel).LegalizeDAG(); +} + |