diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp | 1473 |
1 files changed, 1473 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp new file mode 100644 index 0000000..683fac6 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp @@ -0,0 +1,1473 @@ +//===-- FastISel.cpp - Implementation of the FastISel class ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the FastISel class. +// +// "Fast" instruction selection is designed to emit very poor code quickly. +// Also, it is not designed to be able to do much lowering, so most illegal +// types (e.g. i64 on 32-bit targets) and operations are not supported. It is +// also not intended to be able to do much optimization, except in a few cases +// where doing optimizations reduces overall compile time. For example, folding +// constants into immediate fields is often done, because it's cheap and it +// reduces the number of instructions later phases have to examine. +// +// "Fast" instruction selection is able to fail gracefully and transfer +// control to the SelectionDAG selector for operations that it doesn't +// support. In many cases, this allows us to avoid duplicating a lot of +// the complicated lowering logic that SelectionDAG currently has. +// +// The intended use for "fast" instruction selection is "-O0" mode +// compilation, where the quality of the generated code is irrelevant when +// weighed against the speed at which the code can be generated. Also, +// at -O0, the LLVM optimizers are not running, and this makes the +// compile time of codegen a much higher portion of the overall compile +// time. Despite its limitations, "fast" instruction selection is able to +// handle enough code on its own to provide noticeable overall speedups +// in -O0 compiles. +// +// Basic operations are supported in a target-independent way, by reading +// the same instruction descriptions that the SelectionDAG selector reads, +// and identifying simple arithmetic operations that can be directly selected +// from simple operators. More complicated operations currently require +// target-specific code. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "isel" +#include "llvm/DebugInfo.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Operator.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Debug.h" +#include "llvm/ADT/Statistic.h" +using namespace llvm; + +STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " + "target-independent selector"); +STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " + "target-specific selector"); +STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); + +/// startNewBlock - Set the current block to which generated machine +/// instructions will be appended, and clear the local CSE map. +/// +void FastISel::startNewBlock() { + LocalValueMap.clear(); + + EmitStartPt = 0; + + // Advance the emit start point past any EH_LABEL instructions. + MachineBasicBlock::iterator + I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end(); + while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) { + EmitStartPt = I; + ++I; + } + LastLocalValue = EmitStartPt; +} + +void FastISel::flushLocalValueMap() { + LocalValueMap.clear(); + LastLocalValue = EmitStartPt; + recomputeInsertPt(); +} + +bool FastISel::hasTrivialKill(const Value *V) const { + // Don't consider constants or arguments to have trivial kills. + const Instruction *I = dyn_cast<Instruction>(V); + if (!I) + return false; + + // No-op casts are trivially coalesced by fast-isel. + if (const CastInst *Cast = dyn_cast<CastInst>(I)) + if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && + !hasTrivialKill(Cast->getOperand(0))) + return false; + + // GEPs with all zero indices are trivially coalesced by fast-isel. + if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) + if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) + return false; + + // Only instructions with a single use in the same basic block are considered + // to have trivial kills. + return I->hasOneUse() && + !(I->getOpcode() == Instruction::BitCast || + I->getOpcode() == Instruction::PtrToInt || + I->getOpcode() == Instruction::IntToPtr) && + cast<Instruction>(*I->use_begin())->getParent() == I->getParent(); +} + +unsigned FastISel::getRegForValue(const Value *V) { + EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); + // Don't handle non-simple values in FastISel. + if (!RealVT.isSimple()) + return 0; + + // Ignore illegal types. We must do this before looking up the value + // in ValueMap because Arguments are given virtual registers regardless + // of whether FastISel can handle them. + MVT VT = RealVT.getSimpleVT(); + if (!TLI.isTypeLegal(VT)) { + // Handle integer promotions, though, because they're common and easy. + if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) + VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); + else + return 0; + } + + // Look up the value to see if we already have a register for it. + unsigned Reg = lookUpRegForValue(V); + if (Reg != 0) + return Reg; + + // In bottom-up mode, just create the virtual register which will be used + // to hold the value. It will be materialized later. + if (isa<Instruction>(V) && + (!isa<AllocaInst>(V) || + !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) + return FuncInfo.InitializeRegForValue(V); + + SavePoint SaveInsertPt = enterLocalValueArea(); + + // Materialize the value in a register. Emit any instructions in the + // local value area. + Reg = materializeRegForValue(V, VT); + + leaveLocalValueArea(SaveInsertPt); + + return Reg; +} + +/// materializeRegForValue - Helper for getRegForValue. This function is +/// called when the value isn't already available in a register and must +/// be materialized with new instructions. +unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { + unsigned Reg = 0; + + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + if (CI->getValue().getActiveBits() <= 64) + Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); + } else if (isa<AllocaInst>(V)) { + Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); + } else if (isa<ConstantPointerNull>(V)) { + // Translate this as an integer zero so that it can be + // local-CSE'd with actual integer zeros. + Reg = + getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); + } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { + if (CF->isNullValue()) { + Reg = TargetMaterializeFloatZero(CF); + } else { + // Try to emit the constant directly. + Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); + } + + if (!Reg) { + // Try to emit the constant by using an integer constant with a cast. + const APFloat &Flt = CF->getValueAPF(); + EVT IntVT = TLI.getPointerTy(); + + uint64_t x[2]; + uint32_t IntBitWidth = IntVT.getSizeInBits(); + bool isExact; + (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, + APFloat::rmTowardZero, &isExact); + if (isExact) { + APInt IntVal(IntBitWidth, x); + + unsigned IntegerReg = + getRegForValue(ConstantInt::get(V->getContext(), IntVal)); + if (IntegerReg != 0) + Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, + IntegerReg, /*Kill=*/false); + } + } + } else if (const Operator *Op = dyn_cast<Operator>(V)) { + if (!SelectOperator(Op, Op->getOpcode())) + if (!isa<Instruction>(Op) || + !TargetSelectInstruction(cast<Instruction>(Op))) + return 0; + Reg = lookUpRegForValue(Op); + } else if (isa<UndefValue>(V)) { + Reg = createResultReg(TLI.getRegClassFor(VT)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(TargetOpcode::IMPLICIT_DEF), Reg); + } + + // If target-independent code couldn't handle the value, give target-specific + // code a try. + if (!Reg && isa<Constant>(V)) + Reg = TargetMaterializeConstant(cast<Constant>(V)); + + // Don't cache constant materializations in the general ValueMap. + // To do so would require tracking what uses they dominate. + if (Reg != 0) { + LocalValueMap[V] = Reg; + LastLocalValue = MRI.getVRegDef(Reg); + } + return Reg; +} + +unsigned FastISel::lookUpRegForValue(const Value *V) { + // Look up the value to see if we already have a register for it. We + // cache values defined by Instructions across blocks, and other values + // only locally. This is because Instructions already have the SSA + // def-dominates-use requirement enforced. + DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); + if (I != FuncInfo.ValueMap.end()) + return I->second; + return LocalValueMap[V]; +} + +/// UpdateValueMap - Update the value map to include the new mapping for this +/// instruction, or insert an extra copy to get the result in a previous +/// determined register. +/// NOTE: This is only necessary because we might select a block that uses +/// a value before we select the block that defines the value. It might be +/// possible to fix this by selecting blocks in reverse postorder. +void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { + if (!isa<Instruction>(I)) { + LocalValueMap[I] = Reg; + return; + } + + unsigned &AssignedReg = FuncInfo.ValueMap[I]; + if (AssignedReg == 0) + // Use the new register. + AssignedReg = Reg; + else if (Reg != AssignedReg) { + // Arrange for uses of AssignedReg to be replaced by uses of Reg. + for (unsigned i = 0; i < NumRegs; i++) + FuncInfo.RegFixups[AssignedReg+i] = Reg+i; + + AssignedReg = Reg; + } +} + +std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { + unsigned IdxN = getRegForValue(Idx); + if (IdxN == 0) + // Unhandled operand. Halt "fast" selection and bail. + return std::pair<unsigned, bool>(0, false); + + bool IdxNIsKill = hasTrivialKill(Idx); + + // If the index is smaller or larger than intptr_t, truncate or extend it. + MVT PtrVT = TLI.getPointerTy(); + EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); + if (IdxVT.bitsLT(PtrVT)) { + IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, + IdxN, IdxNIsKill); + IdxNIsKill = true; + } + else if (IdxVT.bitsGT(PtrVT)) { + IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, + IdxN, IdxNIsKill); + IdxNIsKill = true; + } + return std::pair<unsigned, bool>(IdxN, IdxNIsKill); +} + +void FastISel::recomputeInsertPt() { + if (getLastLocalValue()) { + FuncInfo.InsertPt = getLastLocalValue(); + FuncInfo.MBB = FuncInfo.InsertPt->getParent(); + ++FuncInfo.InsertPt; + } else + FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); + + // Now skip past any EH_LABELs, which must remain at the beginning. + while (FuncInfo.InsertPt != FuncInfo.MBB->end() && + FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) + ++FuncInfo.InsertPt; +} + +void FastISel::removeDeadCode(MachineBasicBlock::iterator I, + MachineBasicBlock::iterator E) { + assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); + while (I != E) { + MachineInstr *Dead = &*I; + ++I; + Dead->eraseFromParent(); + ++NumFastIselDead; + } + recomputeInsertPt(); +} + +FastISel::SavePoint FastISel::enterLocalValueArea() { + MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; + DebugLoc OldDL = DL; + recomputeInsertPt(); + DL = DebugLoc(); + SavePoint SP = { OldInsertPt, OldDL }; + return SP; +} + +void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { + if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) + LastLocalValue = llvm::prior(FuncInfo.InsertPt); + + // Restore the previous insert position. + FuncInfo.InsertPt = OldInsertPt.InsertPt; + DL = OldInsertPt.DL; +} + +/// SelectBinaryOp - Select and emit code for a binary operator instruction, +/// which has an opcode which directly corresponds to the given ISD opcode. +/// +bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { + EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); + if (VT == MVT::Other || !VT.isSimple()) + // Unhandled type. Halt "fast" selection and bail. + return false; + + // We only handle legal types. For example, on x86-32 the instruction + // selector contains all of the 64-bit instructions from x86-64, + // under the assumption that i64 won't be used if the target doesn't + // support it. + if (!TLI.isTypeLegal(VT)) { + // MVT::i1 is special. Allow AND, OR, or XOR because they + // don't require additional zeroing, which makes them easy. + if (VT == MVT::i1 && + (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || + ISDOpcode == ISD::XOR)) + VT = TLI.getTypeToTransformTo(I->getContext(), VT); + else + return false; + } + + // Check if the first operand is a constant, and handle it as "ri". At -O0, + // we don't have anything that canonicalizes operand order. + if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) + if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { + unsigned Op1 = getRegForValue(I->getOperand(1)); + if (Op1 == 0) return false; + + bool Op1IsKill = hasTrivialKill(I->getOperand(1)); + + unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, + Op1IsKill, CI->getZExtValue(), + VT.getSimpleVT()); + if (ResultReg == 0) return false; + + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, ResultReg); + return true; + } + + + unsigned Op0 = getRegForValue(I->getOperand(0)); + if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool Op0IsKill = hasTrivialKill(I->getOperand(0)); + + // Check if the second operand is a constant and handle it appropriately. + if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint64_t Imm = CI->getZExtValue(); + + // Transform "sdiv exact X, 8" -> "sra X, 3". + if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && + cast<BinaryOperator>(I)->isExact() && + isPowerOf2_64(Imm)) { + Imm = Log2_64(Imm); + ISDOpcode = ISD::SRA; + } + + // Transform "urem x, pow2" -> "and x, pow2-1". + if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && + isPowerOf2_64(Imm)) { + --Imm; + ISDOpcode = ISD::AND; + } + + unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, + Op0IsKill, Imm, VT.getSimpleVT()); + if (ResultReg == 0) return false; + + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, ResultReg); + return true; + } + + // Check if the second operand is a constant float. + if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { + unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), + ISDOpcode, Op0, Op0IsKill, CF); + if (ResultReg != 0) { + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, ResultReg); + return true; + } + } + + unsigned Op1 = getRegForValue(I->getOperand(1)); + if (Op1 == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool Op1IsKill = hasTrivialKill(I->getOperand(1)); + + // Now we have both operands in registers. Emit the instruction. + unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), + ISDOpcode, + Op0, Op0IsKill, + Op1, Op1IsKill); + if (ResultReg == 0) + // Target-specific code wasn't able to find a machine opcode for + // the given ISD opcode and type. Halt "fast" selection and bail. + return false; + + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, ResultReg); + return true; +} + +bool FastISel::SelectGetElementPtr(const User *I) { + unsigned N = getRegForValue(I->getOperand(0)); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool NIsKill = hasTrivialKill(I->getOperand(0)); + + // Keep a running tab of the total offset to coalesce multiple N = N + Offset + // into a single N = N + TotalOffset. + uint64_t TotalOffs = 0; + // FIXME: What's a good SWAG number for MaxOffs? + uint64_t MaxOffs = 2048; + Type *Ty = I->getOperand(0)->getType(); + MVT VT = TLI.getPointerTy(); + for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, + E = I->op_end(); OI != E; ++OI) { + const Value *Idx = *OI; + if (StructType *StTy = dyn_cast<StructType>(Ty)) { + unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); + if (Field) { + // N = N + Offset + TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field); + if (TotalOffs >= MaxOffs) { + N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + NIsKill = true; + TotalOffs = 0; + } + } + Ty = StTy->getElementType(Field); + } else { + Ty = cast<SequentialType>(Ty)->getElementType(); + + // If this is a constant subscript, handle it quickly. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { + if (CI->isZero()) continue; + // N = N + Offset + TotalOffs += + TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); + if (TotalOffs >= MaxOffs) { + N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + NIsKill = true; + TotalOffs = 0; + } + continue; + } + if (TotalOffs) { + N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + NIsKill = true; + TotalOffs = 0; + } + + // N = N + Idx * ElementSize; + uint64_t ElementSize = TD.getTypeAllocSize(Ty); + std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); + unsigned IdxN = Pair.first; + bool IdxNIsKill = Pair.second; + if (IdxN == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + if (ElementSize != 1) { + IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); + if (IdxN == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + IdxNIsKill = true; + } + N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + } + } + if (TotalOffs) { + N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + } + + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, N); + return true; +} + +bool FastISel::SelectCall(const User *I) { + const CallInst *Call = cast<CallInst>(I); + + // Handle simple inline asms. + if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { + // Don't attempt to handle constraints. + if (!IA->getConstraintString().empty()) + return false; + + unsigned ExtraInfo = 0; + if (IA->hasSideEffects()) + ExtraInfo |= InlineAsm::Extra_HasSideEffects; + if (IA->isAlignStack()) + ExtraInfo |= InlineAsm::Extra_IsAlignStack; + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(TargetOpcode::INLINEASM)) + .addExternalSymbol(IA->getAsmString().c_str()) + .addImm(ExtraInfo); + return true; + } + + MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); + ComputeUsesVAFloatArgument(*Call, &MMI); + + const Function *F = Call->getCalledFunction(); + if (!F) return false; + + // Handle selected intrinsic function calls. + switch (F->getIntrinsicID()) { + default: break; + // At -O0 we don't care about the lifetime intrinsics. + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + // The donothing intrinsic does, well, nothing. + case Intrinsic::donothing: + return true; + + case Intrinsic::dbg_declare: { + const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); + if (!DIVariable(DI->getVariable()).Verify() || + !FuncInfo.MF->getMMI().hasDebugInfo()) { + DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); + return true; + } + + const Value *Address = DI->getAddress(); + if (!Address || isa<UndefValue>(Address)) { + DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); + return true; + } + + unsigned Reg = 0; + unsigned Offset = 0; + if (const Argument *Arg = dyn_cast<Argument>(Address)) { + // Some arguments' frame index is recorded during argument lowering. + Offset = FuncInfo.getArgumentFrameIndex(Arg); + if (Offset) + Reg = TRI.getFrameRegister(*FuncInfo.MF); + } + if (!Reg) + Reg = lookUpRegForValue(Address); + + // If we have a VLA that has a "use" in a metadata node that's then used + // here but it has no other uses, then we have a problem. E.g., + // + // int foo (const int *x) { + // char a[*x]; + // return 0; + // } + // + // If we assign 'a' a vreg and fast isel later on has to use the selection + // DAG isel, it will want to copy the value to the vreg. However, there are + // no uses, which goes counter to what selection DAG isel expects. + if (!Reg && !Address->use_empty() && isa<Instruction>(Address) && + (!isa<AllocaInst>(Address) || + !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) + Reg = FuncInfo.InitializeRegForValue(Address); + + if (Reg) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, + TII.get(TargetOpcode::DBG_VALUE)) + .addReg(Reg, RegState::Debug).addImm(Offset) + .addMetadata(DI->getVariable()); + else + // We can't yet handle anything else here because it would require + // generating code, thus altering codegen because of debug info. + DEBUG(dbgs() << "Dropping debug info for " << DI); + return true; + } + case Intrinsic::dbg_value: { + // This form of DBG_VALUE is target-independent. + const DbgValueInst *DI = cast<DbgValueInst>(Call); + const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); + const Value *V = DI->getValue(); + if (!V) { + // Currently the optimizer can produce this; insert an undef to + // help debugging. Probably the optimizer should not do this. + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(0U).addImm(DI->getOffset()) + .addMetadata(DI->getVariable()); + } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + if (CI->getBitWidth() > 64) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addCImm(CI).addImm(DI->getOffset()) + .addMetadata(DI->getVariable()); + else + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addImm(CI->getZExtValue()).addImm(DI->getOffset()) + .addMetadata(DI->getVariable()); + } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addFPImm(CF).addImm(DI->getOffset()) + .addMetadata(DI->getVariable()); + } else if (unsigned Reg = lookUpRegForValue(V)) { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Reg, RegState::Debug).addImm(DI->getOffset()) + .addMetadata(DI->getVariable()); + } else { + // We can't yet handle anything else here because it would require + // generating code, thus altering codegen because of debug info. + DEBUG(dbgs() << "Dropping debug info for " << DI); + } + return true; + } + case Intrinsic::objectsize: { + ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); + unsigned long long Res = CI->isZero() ? -1ULL : 0; + Constant *ResCI = ConstantInt::get(Call->getType(), Res); + unsigned ResultReg = getRegForValue(ResCI); + if (ResultReg == 0) + return false; + UpdateValueMap(Call, ResultReg); + return true; + } + } + + // Usually, it does not make sense to initialize a value, + // make an unrelated function call and use the value, because + // it tends to be spilled on the stack. So, we move the pointer + // to the last local value to the beginning of the block, so that + // all the values which have already been materialized, + // appear after the call. It also makes sense to skip intrinsics + // since they tend to be inlined. + if (!isa<IntrinsicInst>(F)) + flushLocalValueMap(); + + // An arbitrary call. Bail. + return false; +} + +bool FastISel::SelectCast(const User *I, unsigned Opcode) { + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + + if (SrcVT == MVT::Other || !SrcVT.isSimple() || + DstVT == MVT::Other || !DstVT.isSimple()) + // Unhandled type. Halt "fast" selection and bail. + return false; + + // Check if the destination type is legal. + if (!TLI.isTypeLegal(DstVT)) + return false; + + // Check if the source operand is legal. + if (!TLI.isTypeLegal(SrcVT)) + return false; + + unsigned InputReg = getRegForValue(I->getOperand(0)); + if (!InputReg) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); + + unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), + DstVT.getSimpleVT(), + Opcode, + InputReg, InputRegIsKill); + if (!ResultReg) + return false; + + UpdateValueMap(I, ResultReg); + return true; +} + +bool FastISel::SelectBitCast(const User *I) { + // If the bitcast doesn't change the type, just use the operand value. + if (I->getType() == I->getOperand(0)->getType()) { + unsigned Reg = getRegForValue(I->getOperand(0)); + if (Reg == 0) + return false; + UpdateValueMap(I, Reg); + return true; + } + + // Bitcasts of other values become reg-reg copies or BITCAST operators. + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + + if (SrcVT == MVT::Other || !SrcVT.isSimple() || + DstVT == MVT::Other || !DstVT.isSimple() || + !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) + // Unhandled type. Halt "fast" selection and bail. + return false; + + unsigned Op0 = getRegForValue(I->getOperand(0)); + if (Op0 == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool Op0IsKill = hasTrivialKill(I->getOperand(0)); + + // First, try to perform the bitcast by inserting a reg-reg copy. + unsigned ResultReg = 0; + if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { + const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); + const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); + // Don't attempt a cross-class copy. It will likely fail. + if (SrcClass == DstClass) { + ResultReg = createResultReg(DstClass); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(Op0); + } + } + + // If the reg-reg copy failed, select a BITCAST opcode. + if (!ResultReg) + ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), + ISD::BITCAST, Op0, Op0IsKill); + + if (!ResultReg) + return false; + + UpdateValueMap(I, ResultReg); + return true; +} + +bool +FastISel::SelectInstruction(const Instruction *I) { + // Just before the terminator instruction, insert instructions to + // feed PHI nodes in successor blocks. + if (isa<TerminatorInst>(I)) + if (!HandlePHINodesInSuccessorBlocks(I->getParent())) + return false; + + DL = I->getDebugLoc(); + + MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; + + // As a special case, don't handle calls to builtin library functions that + // may be translated directly to target instructions. + if (const CallInst *Call = dyn_cast<CallInst>(I)) { + const Function *F = Call->getCalledFunction(); + LibFunc::Func Func; + if (F && !F->hasLocalLinkage() && F->hasName() && + LibInfo->getLibFunc(F->getName(), Func) && + LibInfo->hasOptimizedCodeGen(Func)) + return false; + } + + // First, try doing target-independent selection. + if (SelectOperator(I, I->getOpcode())) { + ++NumFastIselSuccessIndependent; + DL = DebugLoc(); + return true; + } + // Remove dead code. However, ignore call instructions since we've flushed + // the local value map and recomputed the insert point. + if (!isa<CallInst>(I)) { + recomputeInsertPt(); + if (SavedInsertPt != FuncInfo.InsertPt) + removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); + } + + // Next, try calling the target to attempt to handle the instruction. + SavedInsertPt = FuncInfo.InsertPt; + if (TargetSelectInstruction(I)) { + ++NumFastIselSuccessTarget; + DL = DebugLoc(); + return true; + } + // Check for dead code and remove as necessary. + recomputeInsertPt(); + if (SavedInsertPt != FuncInfo.InsertPt) + removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); + + DL = DebugLoc(); + return false; +} + +/// FastEmitBranch - Emit an unconditional branch to the given block, +/// unless it is the immediate (fall-through) successor, and update +/// the CFG. +void +FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { + + if (FuncInfo.MBB->getBasicBlock()->size() > 1 && FuncInfo.MBB->isLayoutSuccessor(MSucc)) { + // For more accurate line information if this is the only instruction + // in the block then emit it, otherwise we have the unconditional + // fall-through case, which needs no instructions. + } else { + // The unconditional branch case. + TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL, + SmallVector<MachineOperand, 0>(), DL); + } + FuncInfo.MBB->addSuccessor(MSucc); +} + +/// SelectFNeg - Emit an FNeg operation. +/// +bool +FastISel::SelectFNeg(const User *I) { + unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); + if (OpReg == 0) return false; + + bool OpRegIsKill = hasTrivialKill(I); + + // If the target has ISD::FNEG, use it. + EVT VT = TLI.getValueType(I->getType()); + unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), + ISD::FNEG, OpReg, OpRegIsKill); + if (ResultReg != 0) { + UpdateValueMap(I, ResultReg); + return true; + } + + // Bitcast the value to integer, twiddle the sign bit with xor, + // and then bitcast it back to floating-point. + if (VT.getSizeInBits() > 64) return false; + EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); + if (!TLI.isTypeLegal(IntVT)) + return false; + + unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), + ISD::BITCAST, OpReg, OpRegIsKill); + if (IntReg == 0) + return false; + + unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, + IntReg, /*Kill=*/true, + UINT64_C(1) << (VT.getSizeInBits()-1), + IntVT.getSimpleVT()); + if (IntResultReg == 0) + return false; + + ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), + ISD::BITCAST, IntResultReg, /*Kill=*/true); + if (ResultReg == 0) + return false; + + UpdateValueMap(I, ResultReg); + return true; +} + +bool +FastISel::SelectExtractValue(const User *U) { + const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); + if (!EVI) + return false; + + // Make sure we only try to handle extracts with a legal result. But also + // allow i1 because it's easy. + EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); + if (!RealVT.isSimple()) + return false; + MVT VT = RealVT.getSimpleVT(); + if (!TLI.isTypeLegal(VT) && VT != MVT::i1) + return false; + + const Value *Op0 = EVI->getOperand(0); + Type *AggTy = Op0->getType(); + + // Get the base result register. + unsigned ResultReg; + DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); + if (I != FuncInfo.ValueMap.end()) + ResultReg = I->second; + else if (isa<Instruction>(Op0)) + ResultReg = FuncInfo.InitializeRegForValue(Op0); + else + return false; // fast-isel can't handle aggregate constants at the moment + + // Get the actual result register, which is an offset from the base register. + unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); + + SmallVector<EVT, 4> AggValueVTs; + ComputeValueVTs(TLI, AggTy, AggValueVTs); + + for (unsigned i = 0; i < VTIndex; i++) + ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); + + UpdateValueMap(EVI, ResultReg); + return true; +} + +bool +FastISel::SelectOperator(const User *I, unsigned Opcode) { + switch (Opcode) { + case Instruction::Add: + return SelectBinaryOp(I, ISD::ADD); + case Instruction::FAdd: + return SelectBinaryOp(I, ISD::FADD); + case Instruction::Sub: + return SelectBinaryOp(I, ISD::SUB); + case Instruction::FSub: + // FNeg is currently represented in LLVM IR as a special case of FSub. + if (BinaryOperator::isFNeg(I)) + return SelectFNeg(I); + return SelectBinaryOp(I, ISD::FSUB); + case Instruction::Mul: + return SelectBinaryOp(I, ISD::MUL); + case Instruction::FMul: + return SelectBinaryOp(I, ISD::FMUL); + case Instruction::SDiv: + return SelectBinaryOp(I, ISD::SDIV); + case Instruction::UDiv: + return SelectBinaryOp(I, ISD::UDIV); + case Instruction::FDiv: + return SelectBinaryOp(I, ISD::FDIV); + case Instruction::SRem: + return SelectBinaryOp(I, ISD::SREM); + case Instruction::URem: + return SelectBinaryOp(I, ISD::UREM); + case Instruction::FRem: + return SelectBinaryOp(I, ISD::FREM); + case Instruction::Shl: + return SelectBinaryOp(I, ISD::SHL); + case Instruction::LShr: + return SelectBinaryOp(I, ISD::SRL); + case Instruction::AShr: + return SelectBinaryOp(I, ISD::SRA); + case Instruction::And: + return SelectBinaryOp(I, ISD::AND); + case Instruction::Or: + return SelectBinaryOp(I, ISD::OR); + case Instruction::Xor: + return SelectBinaryOp(I, ISD::XOR); + + case Instruction::GetElementPtr: + return SelectGetElementPtr(I); + + case Instruction::Br: { + const BranchInst *BI = cast<BranchInst>(I); + + if (BI->isUnconditional()) { + const BasicBlock *LLVMSucc = BI->getSuccessor(0); + MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; + FastEmitBranch(MSucc, BI->getDebugLoc()); + return true; + } + + // Conditional branches are not handed yet. + // Halt "fast" selection and bail. + return false; + } + + case Instruction::Unreachable: + // Nothing to emit. + return true; + + case Instruction::Alloca: + // FunctionLowering has the static-sized case covered. + if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) + return true; + + // Dynamic-sized alloca is not handled yet. + return false; + + case Instruction::Call: + return SelectCall(I); + + case Instruction::BitCast: + return SelectBitCast(I); + + case Instruction::FPToSI: + return SelectCast(I, ISD::FP_TO_SINT); + case Instruction::ZExt: + return SelectCast(I, ISD::ZERO_EXTEND); + case Instruction::SExt: + return SelectCast(I, ISD::SIGN_EXTEND); + case Instruction::Trunc: + return SelectCast(I, ISD::TRUNCATE); + case Instruction::SIToFP: + return SelectCast(I, ISD::SINT_TO_FP); + + case Instruction::IntToPtr: // Deliberate fall-through. + case Instruction::PtrToInt: { + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + if (DstVT.bitsGT(SrcVT)) + return SelectCast(I, ISD::ZERO_EXTEND); + if (DstVT.bitsLT(SrcVT)) + return SelectCast(I, ISD::TRUNCATE); + unsigned Reg = getRegForValue(I->getOperand(0)); + if (Reg == 0) return false; + UpdateValueMap(I, Reg); + return true; + } + + case Instruction::ExtractValue: + return SelectExtractValue(I); + + case Instruction::PHI: + llvm_unreachable("FastISel shouldn't visit PHI nodes!"); + + default: + // Unhandled instruction. Halt "fast" selection and bail. + return false; + } +} + +FastISel::FastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) + : FuncInfo(funcInfo), + MRI(FuncInfo.MF->getRegInfo()), + MFI(*FuncInfo.MF->getFrameInfo()), + MCP(*FuncInfo.MF->getConstantPool()), + TM(FuncInfo.MF->getTarget()), + TD(*TM.getTargetData()), + TII(*TM.getInstrInfo()), + TLI(*TM.getTargetLowering()), + TRI(*TM.getRegisterInfo()), + LibInfo(libInfo) { +} + +FastISel::~FastISel() {} + +unsigned FastISel::FastEmit_(MVT, MVT, + unsigned) { + return 0; +} + +unsigned FastISel::FastEmit_r(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/) { + return 0; +} + +unsigned FastISel::FastEmit_rr(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/, + unsigned /*Op1*/, bool /*Op1IsKill*/) { + return 0; +} + +unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { + return 0; +} + +unsigned FastISel::FastEmit_f(MVT, MVT, + unsigned, const ConstantFP * /*FPImm*/) { + return 0; +} + +unsigned FastISel::FastEmit_ri(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/, + uint64_t /*Imm*/) { + return 0; +} + +unsigned FastISel::FastEmit_rf(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/, + const ConstantFP * /*FPImm*/) { + return 0; +} + +unsigned FastISel::FastEmit_rri(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/, + unsigned /*Op1*/, bool /*Op1IsKill*/, + uint64_t /*Imm*/) { + return 0; +} + +/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries +/// to emit an instruction with an immediate operand using FastEmit_ri. +/// If that fails, it materializes the immediate into a register and try +/// FastEmit_rr instead. +unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, + unsigned Op0, bool Op0IsKill, + uint64_t Imm, MVT ImmType) { + // If this is a multiply by a power of two, emit this as a shift left. + if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { + Opcode = ISD::SHL; + Imm = Log2_64(Imm); + } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { + // div x, 8 -> srl x, 3 + Opcode = ISD::SRL; + Imm = Log2_64(Imm); + } + + // Horrible hack (to be removed), check to make sure shift amounts are + // in-range. + if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && + Imm >= VT.getSizeInBits()) + return 0; + + // First check if immediate type is legal. If not, we can't use the ri form. + unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); + if (ResultReg != 0) + return ResultReg; + unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); + if (MaterialReg == 0) { + // This is a bit ugly/slow, but failing here means falling out of + // fast-isel, which would be very slow. + IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), + VT.getSizeInBits()); + MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); + } + return FastEmit_rr(VT, VT, Opcode, + Op0, Op0IsKill, + MaterialReg, /*Kill=*/true); +} + +unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { + return MRI.createVirtualRegister(RC); +} + +unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, + const TargetRegisterClass* RC) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg); + return ResultReg; +} + +unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + unsigned Op1, bool Op1IsKill) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + unsigned Op1, bool Op1IsKill, + unsigned Op2, bool Op2IsKill) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill) + .addReg(Op2, Op2IsKill * RegState::Kill); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill) + .addReg(Op2, Op2IsKill * RegState::Kill); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + uint64_t Imm) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addImm(Imm); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addImm(Imm); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + uint64_t Imm1, uint64_t Imm2) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addImm(Imm1) + .addImm(Imm2); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addImm(Imm1) + .addImm(Imm2); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + const ConstantFP *FPImm) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addFPImm(FPImm); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addFPImm(FPImm); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + unsigned Op1, bool Op1IsKill, + uint64_t Imm) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill) + .addImm(Imm); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill) + .addImm(Imm); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + unsigned Op1, bool Op1IsKill, + uint64_t Imm1, uint64_t Imm2) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill) + .addImm(Imm1).addImm(Imm2); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill) + .addImm(Imm1).addImm(Imm2); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + uint64_t Imm) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + uint64_t Imm1, uint64_t Imm2) { + unsigned ResultReg = createResultReg(RC); + const MCInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) + .addImm(Imm1).addImm(Imm2); + else { + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), + ResultReg).addReg(II.ImplicitDefs[0]); + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, + unsigned Op0, bool Op0IsKill, + uint32_t Idx) { + unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); + assert(TargetRegisterInfo::isVirtualRegister(Op0) && + "Cannot yet extract from physregs"); + const TargetRegisterClass *RC = MRI.getRegClass(Op0); + MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); + BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, + DL, TII.get(TargetOpcode::COPY), ResultReg) + .addReg(Op0, getKillRegState(Op0IsKill), Idx); + return ResultReg; +} + +/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op +/// with all but the least significant bit set to zero. +unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { + return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); +} + +/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. +/// Emit code to ensure constants are copied into registers when needed. +/// Remember the virtual registers that need to be added to the Machine PHI +/// nodes as input. We cannot just directly add them, because expansion +/// might result in multiple MBB's for one BB. As such, the start of the +/// BB might correspond to a different MBB than the end. +bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { + const TerminatorInst *TI = LLVMBB->getTerminator(); + + SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; + unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); + + // Check successor nodes' PHI nodes that expect a constant to be available + // from this block. + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + const BasicBlock *SuccBB = TI->getSuccessor(succ); + if (!isa<PHINode>(SuccBB->begin())) continue; + MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; + + // If this terminator has multiple identical successors (common for + // switches), only handle each succ once. + if (!SuccsHandled.insert(SuccMBB)) continue; + + MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::const_iterator I = SuccBB->begin(); + const PHINode *PN = dyn_cast<PHINode>(I); ++I) { + + // Ignore dead phi's. + if (PN->use_empty()) continue; + + // Only handle legal types. Two interesting things to note here. First, + // by bailing out early, we may leave behind some dead instructions, + // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its + // own moves. Second, this check is necessary because FastISel doesn't + // use CreateRegs to create registers, so it always creates + // exactly one register for each non-void instruction. + EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); + if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { + // Handle integer promotions, though, because they're common and easy. + if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) + VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); + else { + FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); + return false; + } + } + + const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + + // Set the DebugLoc for the copy. Prefer the location of the operand + // if there is one; use the location of the PHI otherwise. + DL = PN->getDebugLoc(); + if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) + DL = Inst->getDebugLoc(); + + unsigned Reg = getRegForValue(PHIOp); + if (Reg == 0) { + FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); + return false; + } + FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); + DL = DebugLoc(); + } + } + + return true; +} |