diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp | 1217 |
1 files changed, 1217 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp new file mode 100644 index 0000000..95f4d07 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp @@ -0,0 +1,1217 @@ +//===-- FastISel.cpp - Implementation of the FastISel class ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the FastISel class. +// +// "Fast" instruction selection is designed to emit very poor code quickly. +// Also, it is not designed to be able to do much lowering, so most illegal +// types (e.g. i64 on 32-bit targets) and operations are not supported. It is +// also not intended to be able to do much optimization, except in a few cases +// where doing optimizations reduces overall compile time. For example, folding +// constants into immediate fields is often done, because it's cheap and it +// reduces the number of instructions later phases have to examine. +// +// "Fast" instruction selection is able to fail gracefully and transfer +// control to the SelectionDAG selector for operations that it doesn't +// support. In many cases, this allows us to avoid duplicating a lot of +// the complicated lowering logic that SelectionDAG currently has. +// +// The intended use for "fast" instruction selection is "-O0" mode +// compilation, where the quality of the generated code is irrelevant when +// weighed against the speed at which the code can be generated. Also, +// at -O0, the LLVM optimizers are not running, and this makes the +// compile time of codegen a much higher portion of the overall compile +// time. Despite its limitations, "fast" instruction selection is able to +// handle enough code on its own to provide noticeable overall speedups +// in -O0 compiles. +// +// Basic operations are supported in a target-independent way, by reading +// the same instruction descriptions that the SelectionDAG selector reads, +// and identifying simple arithmetic operations that can be directly selected +// from simple operators. More complicated operations currently require +// target-specific code. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/ErrorHandling.h" +#include "FunctionLoweringInfo.h" +using namespace llvm; + +bool FastISel::hasTrivialKill(const Value *V) const { + // Don't consider constants or arguments to have trivial kills. + const Instruction *I = dyn_cast<Instruction>(V); + if (!I) + return false; + + // No-op casts are trivially coalesced by fast-isel. + if (const CastInst *Cast = dyn_cast<CastInst>(I)) + if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) && + !hasTrivialKill(Cast->getOperand(0))) + return false; + + // Only instructions with a single use in the same basic block are considered + // to have trivial kills. + return I->hasOneUse() && + !(I->getOpcode() == Instruction::BitCast || + I->getOpcode() == Instruction::PtrToInt || + I->getOpcode() == Instruction::IntToPtr) && + cast<Instruction>(I->use_begin())->getParent() == I->getParent(); +} + +unsigned FastISel::getRegForValue(const Value *V) { + EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); + // Don't handle non-simple values in FastISel. + if (!RealVT.isSimple()) + return 0; + + // Ignore illegal types. We must do this before looking up the value + // in ValueMap because Arguments are given virtual registers regardless + // of whether FastISel can handle them. + MVT VT = RealVT.getSimpleVT(); + if (!TLI.isTypeLegal(VT)) { + // Promote MVT::i1 to a legal type though, because it's common and easy. + if (VT == MVT::i1) + VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); + else + return 0; + } + + // Look up the value to see if we already have a register for it. We + // cache values defined by Instructions across blocks, and other values + // only locally. This is because Instructions already have the SSA + // def-dominates-use requirement enforced. + DenseMap<const Value *, unsigned>::iterator I = ValueMap.find(V); + if (I != ValueMap.end()) + return I->second; + unsigned Reg = LocalValueMap[V]; + if (Reg != 0) + return Reg; + + // In bottom-up mode, just create the virtual register which will be used + // to hold the value. It will be materialized later. + if (IsBottomUp) { + Reg = createResultReg(TLI.getRegClassFor(VT)); + if (isa<Instruction>(V)) + ValueMap[V] = Reg; + else + LocalValueMap[V] = Reg; + return Reg; + } + + return materializeRegForValue(V, VT); +} + +/// materializeRegForValue - Helper for getRegForVale. This function is +/// called when the value isn't already available in a register and must +/// be materialized with new instructions. +unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { + unsigned Reg = 0; + + if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + if (CI->getValue().getActiveBits() <= 64) + Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); + } else if (isa<AllocaInst>(V)) { + Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); + } else if (isa<ConstantPointerNull>(V)) { + // Translate this as an integer zero so that it can be + // local-CSE'd with actual integer zeros. + Reg = + getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext()))); + } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { + // Try to emit the constant directly. + Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); + + if (!Reg) { + // Try to emit the constant by using an integer constant with a cast. + const APFloat &Flt = CF->getValueAPF(); + EVT IntVT = TLI.getPointerTy(); + + uint64_t x[2]; + uint32_t IntBitWidth = IntVT.getSizeInBits(); + bool isExact; + (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, + APFloat::rmTowardZero, &isExact); + if (isExact) { + APInt IntVal(IntBitWidth, 2, x); + + unsigned IntegerReg = + getRegForValue(ConstantInt::get(V->getContext(), IntVal)); + if (IntegerReg != 0) + Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, + IntegerReg, /*Kill=*/false); + } + } + } else if (const Operator *Op = dyn_cast<Operator>(V)) { + if (!SelectOperator(Op, Op->getOpcode())) return 0; + Reg = LocalValueMap[Op]; + } else if (isa<UndefValue>(V)) { + Reg = createResultReg(TLI.getRegClassFor(VT)); + BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg); + } + + // If target-independent code couldn't handle the value, give target-specific + // code a try. + if (!Reg && isa<Constant>(V)) + Reg = TargetMaterializeConstant(cast<Constant>(V)); + + // Don't cache constant materializations in the general ValueMap. + // To do so would require tracking what uses they dominate. + if (Reg != 0) + LocalValueMap[V] = Reg; + return Reg; +} + +unsigned FastISel::lookUpRegForValue(const Value *V) { + // Look up the value to see if we already have a register for it. We + // cache values defined by Instructions across blocks, and other values + // only locally. This is because Instructions already have the SSA + // def-dominates-use requirement enforced. + if (ValueMap.count(V)) + return ValueMap[V]; + return LocalValueMap[V]; +} + +/// UpdateValueMap - Update the value map to include the new mapping for this +/// instruction, or insert an extra copy to get the result in a previous +/// determined register. +/// NOTE: This is only necessary because we might select a block that uses +/// a value before we select the block that defines the value. It might be +/// possible to fix this by selecting blocks in reverse postorder. +unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) { + if (!isa<Instruction>(I)) { + LocalValueMap[I] = Reg; + return Reg; + } + + unsigned &AssignedReg = ValueMap[I]; + if (AssignedReg == 0) + AssignedReg = Reg; + else if (Reg != AssignedReg) { + const TargetRegisterClass *RegClass = MRI.getRegClass(Reg); + TII.copyRegToReg(*MBB, MBB->end(), AssignedReg, + Reg, RegClass, RegClass, DL); + } + return AssignedReg; +} + +std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { + unsigned IdxN = getRegForValue(Idx); + if (IdxN == 0) + // Unhandled operand. Halt "fast" selection and bail. + return std::pair<unsigned, bool>(0, false); + + bool IdxNIsKill = hasTrivialKill(Idx); + + // If the index is smaller or larger than intptr_t, truncate or extend it. + MVT PtrVT = TLI.getPointerTy(); + EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); + if (IdxVT.bitsLT(PtrVT)) { + IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, + IdxN, IdxNIsKill); + IdxNIsKill = true; + } + else if (IdxVT.bitsGT(PtrVT)) { + IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, + IdxN, IdxNIsKill); + IdxNIsKill = true; + } + return std::pair<unsigned, bool>(IdxN, IdxNIsKill); +} + +/// SelectBinaryOp - Select and emit code for a binary operator instruction, +/// which has an opcode which directly corresponds to the given ISD opcode. +/// +bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { + EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); + if (VT == MVT::Other || !VT.isSimple()) + // Unhandled type. Halt "fast" selection and bail. + return false; + + // We only handle legal types. For example, on x86-32 the instruction + // selector contains all of the 64-bit instructions from x86-64, + // under the assumption that i64 won't be used if the target doesn't + // support it. + if (!TLI.isTypeLegal(VT)) { + // MVT::i1 is special. Allow AND, OR, or XOR because they + // don't require additional zeroing, which makes them easy. + if (VT == MVT::i1 && + (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || + ISDOpcode == ISD::XOR)) + VT = TLI.getTypeToTransformTo(I->getContext(), VT); + else + return false; + } + + unsigned Op0 = getRegForValue(I->getOperand(0)); + if (Op0 == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool Op0IsKill = hasTrivialKill(I->getOperand(0)); + + // Check if the second operand is a constant and handle it appropriately. + if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { + unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(), + ISDOpcode, Op0, Op0IsKill, + CI->getZExtValue()); + if (ResultReg != 0) { + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, ResultReg); + return true; + } + } + + // Check if the second operand is a constant float. + if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { + unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), + ISDOpcode, Op0, Op0IsKill, CF); + if (ResultReg != 0) { + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, ResultReg); + return true; + } + } + + unsigned Op1 = getRegForValue(I->getOperand(1)); + if (Op1 == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool Op1IsKill = hasTrivialKill(I->getOperand(1)); + + // Now we have both operands in registers. Emit the instruction. + unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), + ISDOpcode, + Op0, Op0IsKill, + Op1, Op1IsKill); + if (ResultReg == 0) + // Target-specific code wasn't able to find a machine opcode for + // the given ISD opcode and type. Halt "fast" selection and bail. + return false; + + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, ResultReg); + return true; +} + +bool FastISel::SelectGetElementPtr(const User *I) { + unsigned N = getRegForValue(I->getOperand(0)); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool NIsKill = hasTrivialKill(I->getOperand(0)); + + const Type *Ty = I->getOperand(0)->getType(); + MVT VT = TLI.getPointerTy(); + for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, + E = I->op_end(); OI != E; ++OI) { + const Value *Idx = *OI; + if (const StructType *StTy = dyn_cast<StructType>(Ty)) { + unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); + if (Field) { + // N = N + Offset + uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field); + // FIXME: This can be optimized by combining the add with a + // subsequent one. + N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + NIsKill = true; + } + Ty = StTy->getElementType(Field); + } else { + Ty = cast<SequentialType>(Ty)->getElementType(); + + // If this is a constant subscript, handle it quickly. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { + if (CI->getZExtValue() == 0) continue; + uint64_t Offs = + TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); + N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + NIsKill = true; + continue; + } + + // N = N + Idx * ElementSize; + uint64_t ElementSize = TD.getTypeAllocSize(Ty); + std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); + unsigned IdxN = Pair.first; + bool IdxNIsKill = Pair.second; + if (IdxN == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + if (ElementSize != 1) { + IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); + if (IdxN == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + IdxNIsKill = true; + } + N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); + if (N == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + } + } + + // We successfully emitted code for the given LLVM Instruction. + UpdateValueMap(I, N); + return true; +} + +bool FastISel::SelectCall(const User *I) { + const Function *F = cast<CallInst>(I)->getCalledFunction(); + if (!F) return false; + + // Handle selected intrinsic function calls. + unsigned IID = F->getIntrinsicID(); + switch (IID) { + default: break; + case Intrinsic::dbg_declare: { + const DbgDeclareInst *DI = cast<DbgDeclareInst>(I); + if (!DIVariable(DI->getVariable()).Verify() || + !MF.getMMI().hasDebugInfo()) + return true; + + const Value *Address = DI->getAddress(); + if (!Address) + return true; + if (isa<UndefValue>(Address)) + return true; + const AllocaInst *AI = dyn_cast<AllocaInst>(Address); + // Don't handle byval struct arguments or VLAs, for example. + // Note that if we have a byval struct argument, fast ISel is turned off; + // those are handled in SelectionDAGBuilder. + if (AI) { + DenseMap<const AllocaInst*, int>::iterator SI = + StaticAllocaMap.find(AI); + if (SI == StaticAllocaMap.end()) break; // VLAs. + int FI = SI->second; + if (!DI->getDebugLoc().isUnknown()) + MF.getMMI().setVariableDbgInfo(DI->getVariable(), FI, DI->getDebugLoc()); + } else + // Building the map above is target independent. Generating DBG_VALUE + // inline is target dependent; do this now. + (void)TargetSelectInstruction(cast<Instruction>(I)); + return true; + } + case Intrinsic::dbg_value: { + // This form of DBG_VALUE is target-independent. + const DbgValueInst *DI = cast<DbgValueInst>(I); + const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); + const Value *V = DI->getValue(); + if (!V) { + // Currently the optimizer can produce this; insert an undef to + // help debugging. Probably the optimizer should not do this. + BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()). + addMetadata(DI->getVariable()); + } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()). + addMetadata(DI->getVariable()); + } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { + BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()). + addMetadata(DI->getVariable()); + } else if (unsigned Reg = lookUpRegForValue(V)) { + BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()). + addMetadata(DI->getVariable()); + } else { + // We can't yet handle anything else here because it would require + // generating code, thus altering codegen because of debug info. + // Insert an undef so we can see what we dropped. + BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()). + addMetadata(DI->getVariable()); + } + return true; + } + case Intrinsic::eh_exception: { + EVT VT = TLI.getValueType(I->getType()); + switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) { + default: break; + case TargetLowering::Expand: { + assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!"); + unsigned Reg = TLI.getExceptionAddressRegister(); + const TargetRegisterClass *RC = TLI.getRegClassFor(VT); + unsigned ResultReg = createResultReg(RC); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + Reg, RC, RC, DL); + assert(InsertedCopy && "Can't copy address registers!"); + InsertedCopy = InsertedCopy; + UpdateValueMap(I, ResultReg); + return true; + } + } + break; + } + case Intrinsic::eh_selector: { + EVT VT = TLI.getValueType(I->getType()); + switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) { + default: break; + case TargetLowering::Expand: { + if (MBB->isLandingPad()) + AddCatchInfo(*cast<CallInst>(I), &MF.getMMI(), MBB); + else { +#ifndef NDEBUG + CatchInfoLost.insert(cast<CallInst>(I)); +#endif + // FIXME: Mark exception selector register as live in. Hack for PR1508. + unsigned Reg = TLI.getExceptionSelectorRegister(); + if (Reg) MBB->addLiveIn(Reg); + } + + unsigned Reg = TLI.getExceptionSelectorRegister(); + EVT SrcVT = TLI.getPointerTy(); + const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT); + unsigned ResultReg = createResultReg(RC); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg, + RC, RC, DL); + assert(InsertedCopy && "Can't copy address registers!"); + InsertedCopy = InsertedCopy; + + bool ResultRegIsKill = hasTrivialKill(I); + + // Cast the register to the type of the selector. + if (SrcVT.bitsGT(MVT::i32)) + ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE, + ResultReg, ResultRegIsKill); + else if (SrcVT.bitsLT(MVT::i32)) + ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, + ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill); + if (ResultReg == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + UpdateValueMap(I, ResultReg); + + return true; + } + } + break; + } + } + + // An arbitrary call. Bail. + return false; +} + +bool FastISel::SelectCast(const User *I, unsigned Opcode) { + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + + if (SrcVT == MVT::Other || !SrcVT.isSimple() || + DstVT == MVT::Other || !DstVT.isSimple()) + // Unhandled type. Halt "fast" selection and bail. + return false; + + // Check if the destination type is legal. Or as a special case, + // it may be i1 if we're doing a truncate because that's + // easy and somewhat common. + if (!TLI.isTypeLegal(DstVT)) + if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE) + // Unhandled type. Halt "fast" selection and bail. + return false; + + // Check if the source operand is legal. Or as a special case, + // it may be i1 if we're doing zero-extension because that's + // easy and somewhat common. + if (!TLI.isTypeLegal(SrcVT)) + if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND) + // Unhandled type. Halt "fast" selection and bail. + return false; + + unsigned InputReg = getRegForValue(I->getOperand(0)); + if (!InputReg) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); + + // If the operand is i1, arrange for the high bits in the register to be zero. + if (SrcVT == MVT::i1) { + SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT); + InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill); + if (!InputReg) + return false; + InputRegIsKill = true; + } + // If the result is i1, truncate to the target's type for i1 first. + if (DstVT == MVT::i1) + DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT); + + unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), + DstVT.getSimpleVT(), + Opcode, + InputReg, InputRegIsKill); + if (!ResultReg) + return false; + + UpdateValueMap(I, ResultReg); + return true; +} + +bool FastISel::SelectBitCast(const User *I) { + // If the bitcast doesn't change the type, just use the operand value. + if (I->getType() == I->getOperand(0)->getType()) { + unsigned Reg = getRegForValue(I->getOperand(0)); + if (Reg == 0) + return false; + UpdateValueMap(I, Reg); + return true; + } + + // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators. + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + + if (SrcVT == MVT::Other || !SrcVT.isSimple() || + DstVT == MVT::Other || !DstVT.isSimple() || + !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) + // Unhandled type. Halt "fast" selection and bail. + return false; + + unsigned Op0 = getRegForValue(I->getOperand(0)); + if (Op0 == 0) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + bool Op0IsKill = hasTrivialKill(I->getOperand(0)); + + // First, try to perform the bitcast by inserting a reg-reg copy. + unsigned ResultReg = 0; + if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { + TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); + TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); + ResultReg = createResultReg(DstClass); + + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + Op0, DstClass, SrcClass, DL); + if (!InsertedCopy) + ResultReg = 0; + } + + // If the reg-reg copy failed, select a BIT_CONVERT opcode. + if (!ResultReg) + ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), + ISD::BIT_CONVERT, Op0, Op0IsKill); + + if (!ResultReg) + return false; + + UpdateValueMap(I, ResultReg); + return true; +} + +bool +FastISel::SelectInstruction(const Instruction *I) { + // Just before the terminator instruction, insert instructions to + // feed PHI nodes in successor blocks. + if (isa<TerminatorInst>(I)) + if (!HandlePHINodesInSuccessorBlocks(I->getParent())) + return false; + + DL = I->getDebugLoc(); + + // First, try doing target-independent selection. + if (SelectOperator(I, I->getOpcode())) { + DL = DebugLoc(); + return true; + } + + // Next, try calling the target to attempt to handle the instruction. + if (TargetSelectInstruction(I)) { + DL = DebugLoc(); + return true; + } + + DL = DebugLoc(); + return false; +} + +/// FastEmitBranch - Emit an unconditional branch to the given block, +/// unless it is the immediate (fall-through) successor, and update +/// the CFG. +void +FastISel::FastEmitBranch(MachineBasicBlock *MSucc) { + if (MBB->isLayoutSuccessor(MSucc)) { + // The unconditional fall-through case, which needs no instructions. + } else { + // The unconditional branch case. + TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>()); + } + MBB->addSuccessor(MSucc); +} + +/// SelectFNeg - Emit an FNeg operation. +/// +bool +FastISel::SelectFNeg(const User *I) { + unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); + if (OpReg == 0) return false; + + bool OpRegIsKill = hasTrivialKill(I); + + // If the target has ISD::FNEG, use it. + EVT VT = TLI.getValueType(I->getType()); + unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), + ISD::FNEG, OpReg, OpRegIsKill); + if (ResultReg != 0) { + UpdateValueMap(I, ResultReg); + return true; + } + + // Bitcast the value to integer, twiddle the sign bit with xor, + // and then bitcast it back to floating-point. + if (VT.getSizeInBits() > 64) return false; + EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); + if (!TLI.isTypeLegal(IntVT)) + return false; + + unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), + ISD::BIT_CONVERT, OpReg, OpRegIsKill); + if (IntReg == 0) + return false; + + unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, + IntReg, /*Kill=*/true, + UINT64_C(1) << (VT.getSizeInBits()-1), + IntVT.getSimpleVT()); + if (IntResultReg == 0) + return false; + + ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), + ISD::BIT_CONVERT, IntResultReg, /*Kill=*/true); + if (ResultReg == 0) + return false; + + UpdateValueMap(I, ResultReg); + return true; +} + +bool +FastISel::SelectOperator(const User *I, unsigned Opcode) { + switch (Opcode) { + case Instruction::Add: + return SelectBinaryOp(I, ISD::ADD); + case Instruction::FAdd: + return SelectBinaryOp(I, ISD::FADD); + case Instruction::Sub: + return SelectBinaryOp(I, ISD::SUB); + case Instruction::FSub: + // FNeg is currently represented in LLVM IR as a special case of FSub. + if (BinaryOperator::isFNeg(I)) + return SelectFNeg(I); + return SelectBinaryOp(I, ISD::FSUB); + case Instruction::Mul: + return SelectBinaryOp(I, ISD::MUL); + case Instruction::FMul: + return SelectBinaryOp(I, ISD::FMUL); + case Instruction::SDiv: + return SelectBinaryOp(I, ISD::SDIV); + case Instruction::UDiv: + return SelectBinaryOp(I, ISD::UDIV); + case Instruction::FDiv: + return SelectBinaryOp(I, ISD::FDIV); + case Instruction::SRem: + return SelectBinaryOp(I, ISD::SREM); + case Instruction::URem: + return SelectBinaryOp(I, ISD::UREM); + case Instruction::FRem: + return SelectBinaryOp(I, ISD::FREM); + case Instruction::Shl: + return SelectBinaryOp(I, ISD::SHL); + case Instruction::LShr: + return SelectBinaryOp(I, ISD::SRL); + case Instruction::AShr: + return SelectBinaryOp(I, ISD::SRA); + case Instruction::And: + return SelectBinaryOp(I, ISD::AND); + case Instruction::Or: + return SelectBinaryOp(I, ISD::OR); + case Instruction::Xor: + return SelectBinaryOp(I, ISD::XOR); + + case Instruction::GetElementPtr: + return SelectGetElementPtr(I); + + case Instruction::Br: { + const BranchInst *BI = cast<BranchInst>(I); + + if (BI->isUnconditional()) { + const BasicBlock *LLVMSucc = BI->getSuccessor(0); + MachineBasicBlock *MSucc = MBBMap[LLVMSucc]; + FastEmitBranch(MSucc); + return true; + } + + // Conditional branches are not handed yet. + // Halt "fast" selection and bail. + return false; + } + + case Instruction::Unreachable: + // Nothing to emit. + return true; + + case Instruction::Alloca: + // FunctionLowering has the static-sized case covered. + if (StaticAllocaMap.count(cast<AllocaInst>(I))) + return true; + + // Dynamic-sized alloca is not handled yet. + return false; + + case Instruction::Call: + return SelectCall(I); + + case Instruction::BitCast: + return SelectBitCast(I); + + case Instruction::FPToSI: + return SelectCast(I, ISD::FP_TO_SINT); + case Instruction::ZExt: + return SelectCast(I, ISD::ZERO_EXTEND); + case Instruction::SExt: + return SelectCast(I, ISD::SIGN_EXTEND); + case Instruction::Trunc: + return SelectCast(I, ISD::TRUNCATE); + case Instruction::SIToFP: + return SelectCast(I, ISD::SINT_TO_FP); + + case Instruction::IntToPtr: // Deliberate fall-through. + case Instruction::PtrToInt: { + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + if (DstVT.bitsGT(SrcVT)) + return SelectCast(I, ISD::ZERO_EXTEND); + if (DstVT.bitsLT(SrcVT)) + return SelectCast(I, ISD::TRUNCATE); + unsigned Reg = getRegForValue(I->getOperand(0)); + if (Reg == 0) return false; + UpdateValueMap(I, Reg); + return true; + } + + case Instruction::PHI: + llvm_unreachable("FastISel shouldn't visit PHI nodes!"); + + default: + // Unhandled instruction. Halt "fast" selection and bail. + return false; + } +} + +FastISel::FastISel(MachineFunction &mf, + DenseMap<const Value *, unsigned> &vm, + DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, + DenseMap<const AllocaInst *, int> &am, + std::vector<std::pair<MachineInstr*, unsigned> > &pn +#ifndef NDEBUG + , SmallSet<const Instruction *, 8> &cil +#endif + ) + : MBB(0), + ValueMap(vm), + MBBMap(bm), + StaticAllocaMap(am), + PHINodesToUpdate(pn), +#ifndef NDEBUG + CatchInfoLost(cil), +#endif + MF(mf), + MRI(MF.getRegInfo()), + MFI(*MF.getFrameInfo()), + MCP(*MF.getConstantPool()), + TM(MF.getTarget()), + TD(*TM.getTargetData()), + TII(*TM.getInstrInfo()), + TLI(*TM.getTargetLowering()), + IsBottomUp(false) { +} + +FastISel::~FastISel() {} + +unsigned FastISel::FastEmit_(MVT, MVT, + unsigned) { + return 0; +} + +unsigned FastISel::FastEmit_r(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/) { + return 0; +} + +unsigned FastISel::FastEmit_rr(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/, + unsigned /*Op1*/, bool /*Op1IsKill*/) { + return 0; +} + +unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { + return 0; +} + +unsigned FastISel::FastEmit_f(MVT, MVT, + unsigned, const ConstantFP * /*FPImm*/) { + return 0; +} + +unsigned FastISel::FastEmit_ri(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/, + uint64_t /*Imm*/) { + return 0; +} + +unsigned FastISel::FastEmit_rf(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/, + const ConstantFP * /*FPImm*/) { + return 0; +} + +unsigned FastISel::FastEmit_rri(MVT, MVT, + unsigned, + unsigned /*Op0*/, bool /*Op0IsKill*/, + unsigned /*Op1*/, bool /*Op1IsKill*/, + uint64_t /*Imm*/) { + return 0; +} + +/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries +/// to emit an instruction with an immediate operand using FastEmit_ri. +/// If that fails, it materializes the immediate into a register and try +/// FastEmit_rr instead. +unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, + unsigned Op0, bool Op0IsKill, + uint64_t Imm, MVT ImmType) { + // First check if immediate type is legal. If not, we can't use the ri form. + unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); + if (ResultReg != 0) + return ResultReg; + unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); + if (MaterialReg == 0) + return 0; + return FastEmit_rr(VT, VT, Opcode, + Op0, Op0IsKill, + MaterialReg, /*Kill=*/true); +} + +/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries +/// to emit an instruction with a floating-point immediate operand using +/// FastEmit_rf. If that fails, it materializes the immediate into a register +/// and try FastEmit_rr instead. +unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode, + unsigned Op0, bool Op0IsKill, + const ConstantFP *FPImm, MVT ImmType) { + // First check if immediate type is legal. If not, we can't use the rf form. + unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, Op0IsKill, FPImm); + if (ResultReg != 0) + return ResultReg; + + // Materialize the constant in a register. + unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm); + if (MaterialReg == 0) { + // If the target doesn't have a way to directly enter a floating-point + // value into a register, use an alternate approach. + // TODO: The current approach only supports floating-point constants + // that can be constructed by conversion from integer values. This should + // be replaced by code that creates a load from a constant-pool entry, + // which will require some target-specific work. + const APFloat &Flt = FPImm->getValueAPF(); + EVT IntVT = TLI.getPointerTy(); + + uint64_t x[2]; + uint32_t IntBitWidth = IntVT.getSizeInBits(); + bool isExact; + (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, + APFloat::rmTowardZero, &isExact); + if (!isExact) + return 0; + APInt IntVal(IntBitWidth, 2, x); + + unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(), + ISD::Constant, IntVal.getZExtValue()); + if (IntegerReg == 0) + return 0; + MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT, + ISD::SINT_TO_FP, IntegerReg, /*Kill=*/true); + if (MaterialReg == 0) + return 0; + } + return FastEmit_rr(VT, VT, Opcode, + Op0, Op0IsKill, + MaterialReg, /*Kill=*/true); +} + +unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { + return MRI.createVirtualRegister(RC); +} + +unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, + const TargetRegisterClass* RC) { + unsigned ResultReg = createResultReg(RC); + const TargetInstrDesc &II = TII.get(MachineInstOpcode); + + BuildMI(MBB, DL, II, ResultReg); + return ResultReg; +} + +unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill) { + unsigned ResultReg = createResultReg(RC); + const TargetInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(MBB, DL, II, ResultReg).addReg(Op0, Op0IsKill * RegState::Kill); + else { + BuildMI(MBB, DL, II).addReg(Op0, Op0IsKill * RegState::Kill); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + II.ImplicitDefs[0], RC, RC, DL); + if (!InsertedCopy) + ResultReg = 0; + } + + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + unsigned Op1, bool Op1IsKill) { + unsigned ResultReg = createResultReg(RC); + const TargetInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(MBB, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill); + else { + BuildMI(MBB, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + II.ImplicitDefs[0], RC, RC, DL); + if (!InsertedCopy) + ResultReg = 0; + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + uint64_t Imm) { + unsigned ResultReg = createResultReg(RC); + const TargetInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(MBB, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addImm(Imm); + else { + BuildMI(MBB, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addImm(Imm); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + II.ImplicitDefs[0], RC, RC, DL); + if (!InsertedCopy) + ResultReg = 0; + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + const ConstantFP *FPImm) { + unsigned ResultReg = createResultReg(RC); + const TargetInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(MBB, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addFPImm(FPImm); + else { + BuildMI(MBB, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addFPImm(FPImm); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + II.ImplicitDefs[0], RC, RC, DL); + if (!InsertedCopy) + ResultReg = 0; + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + unsigned Op0, bool Op0IsKill, + unsigned Op1, bool Op1IsKill, + uint64_t Imm) { + unsigned ResultReg = createResultReg(RC); + const TargetInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(MBB, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill) + .addImm(Imm); + else { + BuildMI(MBB, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addReg(Op1, Op1IsKill * RegState::Kill) + .addImm(Imm); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + II.ImplicitDefs[0], RC, RC, DL); + if (!InsertedCopy) + ResultReg = 0; + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, + const TargetRegisterClass *RC, + uint64_t Imm) { + unsigned ResultReg = createResultReg(RC); + const TargetInstrDesc &II = TII.get(MachineInstOpcode); + + if (II.getNumDefs() >= 1) + BuildMI(MBB, DL, II, ResultReg).addImm(Imm); + else { + BuildMI(MBB, DL, II).addImm(Imm); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + II.ImplicitDefs[0], RC, RC, DL); + if (!InsertedCopy) + ResultReg = 0; + } + return ResultReg; +} + +unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, + unsigned Op0, bool Op0IsKill, + uint32_t Idx) { + const TargetRegisterClass* RC = MRI.getRegClass(Op0); + + unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); + const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG); + + if (II.getNumDefs() >= 1) + BuildMI(MBB, DL, II, ResultReg) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addImm(Idx); + else { + BuildMI(MBB, DL, II) + .addReg(Op0, Op0IsKill * RegState::Kill) + .addImm(Idx); + bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + II.ImplicitDefs[0], RC, RC, DL); + if (!InsertedCopy) + ResultReg = 0; + } + return ResultReg; +} + +/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op +/// with all but the least significant bit set to zero. +unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { + return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); +} + +/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. +/// Emit code to ensure constants are copied into registers when needed. +/// Remember the virtual registers that need to be added to the Machine PHI +/// nodes as input. We cannot just directly add them, because expansion +/// might result in multiple MBB's for one BB. As such, the start of the +/// BB might correspond to a different MBB than the end. +bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { + const TerminatorInst *TI = LLVMBB->getTerminator(); + + SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; + unsigned OrigNumPHINodesToUpdate = PHINodesToUpdate.size(); + + // Check successor nodes' PHI nodes that expect a constant to be available + // from this block. + for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { + const BasicBlock *SuccBB = TI->getSuccessor(succ); + if (!isa<PHINode>(SuccBB->begin())) continue; + MachineBasicBlock *SuccMBB = MBBMap[SuccBB]; + + // If this terminator has multiple identical successors (common for + // switches), only handle each succ once. + if (!SuccsHandled.insert(SuccMBB)) continue; + + MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + + // At this point we know that there is a 1-1 correspondence between LLVM PHI + // nodes and Machine PHI nodes, but the incoming operands have not been + // emitted yet. + for (BasicBlock::const_iterator I = SuccBB->begin(); + const PHINode *PN = dyn_cast<PHINode>(I); ++I) { + + // Ignore dead phi's. + if (PN->use_empty()) continue; + + // Only handle legal types. Two interesting things to note here. First, + // by bailing out early, we may leave behind some dead instructions, + // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its + // own moves. Second, this check is necessary becuase FastISel doesn't + // use CreateRegForValue to create registers, so it always creates + // exactly one register for each non-void instruction. + EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); + if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { + // Promote MVT::i1. + if (VT == MVT::i1) + VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); + else { + PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); + return false; + } + } + + const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); + + // Set the DebugLoc for the copy. Prefer the location of the operand + // if there is one; use the location of the PHI otherwise. + DL = PN->getDebugLoc(); + if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) + DL = Inst->getDebugLoc(); + + unsigned Reg = getRegForValue(PHIOp); + if (Reg == 0) { + PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); + return false; + } + PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); + DL = DebugLoc(); + } + } + + return true; +} |