summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp1217
1 files changed, 1217 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
new file mode 100644
index 0000000..95f4d07
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp
@@ -0,0 +1,1217 @@
+//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the FastISel class.
+//
+// "Fast" instruction selection is designed to emit very poor code quickly.
+// Also, it is not designed to be able to do much lowering, so most illegal
+// types (e.g. i64 on 32-bit targets) and operations are not supported. It is
+// also not intended to be able to do much optimization, except in a few cases
+// where doing optimizations reduces overall compile time. For example, folding
+// constants into immediate fields is often done, because it's cheap and it
+// reduces the number of instructions later phases have to examine.
+//
+// "Fast" instruction selection is able to fail gracefully and transfer
+// control to the SelectionDAG selector for operations that it doesn't
+// support. In many cases, this allows us to avoid duplicating a lot of
+// the complicated lowering logic that SelectionDAG currently has.
+//
+// The intended use for "fast" instruction selection is "-O0" mode
+// compilation, where the quality of the generated code is irrelevant when
+// weighed against the speed at which the code can be generated. Also,
+// at -O0, the LLVM optimizers are not running, and this makes the
+// compile time of codegen a much higher portion of the overall compile
+// time. Despite its limitations, "fast" instruction selection is able to
+// handle enough code on its own to provide noticeable overall speedups
+// in -O0 compiles.
+//
+// Basic operations are supported in a target-independent way, by reading
+// the same instruction descriptions that the SelectionDAG selector reads,
+// and identifying simple arithmetic operations that can be directly selected
+// from simple operators. More complicated operations currently require
+// target-specific code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "FunctionLoweringInfo.h"
+using namespace llvm;
+
+bool FastISel::hasTrivialKill(const Value *V) const {
+ // Don't consider constants or arguments to have trivial kills.
+ const Instruction *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return false;
+
+ // No-op casts are trivially coalesced by fast-isel.
+ if (const CastInst *Cast = dyn_cast<CastInst>(I))
+ if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
+ !hasTrivialKill(Cast->getOperand(0)))
+ return false;
+
+ // Only instructions with a single use in the same basic block are considered
+ // to have trivial kills.
+ return I->hasOneUse() &&
+ !(I->getOpcode() == Instruction::BitCast ||
+ I->getOpcode() == Instruction::PtrToInt ||
+ I->getOpcode() == Instruction::IntToPtr) &&
+ cast<Instruction>(I->use_begin())->getParent() == I->getParent();
+}
+
+unsigned FastISel::getRegForValue(const Value *V) {
+ EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
+ // Don't handle non-simple values in FastISel.
+ if (!RealVT.isSimple())
+ return 0;
+
+ // Ignore illegal types. We must do this before looking up the value
+ // in ValueMap because Arguments are given virtual registers regardless
+ // of whether FastISel can handle them.
+ MVT VT = RealVT.getSimpleVT();
+ if (!TLI.isTypeLegal(VT)) {
+ // Promote MVT::i1 to a legal type though, because it's common and easy.
+ if (VT == MVT::i1)
+ VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
+ else
+ return 0;
+ }
+
+ // Look up the value to see if we already have a register for it. We
+ // cache values defined by Instructions across blocks, and other values
+ // only locally. This is because Instructions already have the SSA
+ // def-dominates-use requirement enforced.
+ DenseMap<const Value *, unsigned>::iterator I = ValueMap.find(V);
+ if (I != ValueMap.end())
+ return I->second;
+ unsigned Reg = LocalValueMap[V];
+ if (Reg != 0)
+ return Reg;
+
+ // In bottom-up mode, just create the virtual register which will be used
+ // to hold the value. It will be materialized later.
+ if (IsBottomUp) {
+ Reg = createResultReg(TLI.getRegClassFor(VT));
+ if (isa<Instruction>(V))
+ ValueMap[V] = Reg;
+ else
+ LocalValueMap[V] = Reg;
+ return Reg;
+ }
+
+ return materializeRegForValue(V, VT);
+}
+
+/// materializeRegForValue - Helper for getRegForVale. This function is
+/// called when the value isn't already available in a register and must
+/// be materialized with new instructions.
+unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
+ unsigned Reg = 0;
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ if (CI->getValue().getActiveBits() <= 64)
+ Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
+ } else if (isa<AllocaInst>(V)) {
+ Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
+ } else if (isa<ConstantPointerNull>(V)) {
+ // Translate this as an integer zero so that it can be
+ // local-CSE'd with actual integer zeros.
+ Reg =
+ getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
+ } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
+ // Try to emit the constant directly.
+ Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
+
+ if (!Reg) {
+ // Try to emit the constant by using an integer constant with a cast.
+ const APFloat &Flt = CF->getValueAPF();
+ EVT IntVT = TLI.getPointerTy();
+
+ uint64_t x[2];
+ uint32_t IntBitWidth = IntVT.getSizeInBits();
+ bool isExact;
+ (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
+ APFloat::rmTowardZero, &isExact);
+ if (isExact) {
+ APInt IntVal(IntBitWidth, 2, x);
+
+ unsigned IntegerReg =
+ getRegForValue(ConstantInt::get(V->getContext(), IntVal));
+ if (IntegerReg != 0)
+ Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
+ IntegerReg, /*Kill=*/false);
+ }
+ }
+ } else if (const Operator *Op = dyn_cast<Operator>(V)) {
+ if (!SelectOperator(Op, Op->getOpcode())) return 0;
+ Reg = LocalValueMap[Op];
+ } else if (isa<UndefValue>(V)) {
+ Reg = createResultReg(TLI.getRegClassFor(VT));
+ BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
+ }
+
+ // If target-independent code couldn't handle the value, give target-specific
+ // code a try.
+ if (!Reg && isa<Constant>(V))
+ Reg = TargetMaterializeConstant(cast<Constant>(V));
+
+ // Don't cache constant materializations in the general ValueMap.
+ // To do so would require tracking what uses they dominate.
+ if (Reg != 0)
+ LocalValueMap[V] = Reg;
+ return Reg;
+}
+
+unsigned FastISel::lookUpRegForValue(const Value *V) {
+ // Look up the value to see if we already have a register for it. We
+ // cache values defined by Instructions across blocks, and other values
+ // only locally. This is because Instructions already have the SSA
+ // def-dominates-use requirement enforced.
+ if (ValueMap.count(V))
+ return ValueMap[V];
+ return LocalValueMap[V];
+}
+
+/// UpdateValueMap - Update the value map to include the new mapping for this
+/// instruction, or insert an extra copy to get the result in a previous
+/// determined register.
+/// NOTE: This is only necessary because we might select a block that uses
+/// a value before we select the block that defines the value. It might be
+/// possible to fix this by selecting blocks in reverse postorder.
+unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
+ if (!isa<Instruction>(I)) {
+ LocalValueMap[I] = Reg;
+ return Reg;
+ }
+
+ unsigned &AssignedReg = ValueMap[I];
+ if (AssignedReg == 0)
+ AssignedReg = Reg;
+ else if (Reg != AssignedReg) {
+ const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
+ TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
+ Reg, RegClass, RegClass, DL);
+ }
+ return AssignedReg;
+}
+
+std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
+ unsigned IdxN = getRegForValue(Idx);
+ if (IdxN == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return std::pair<unsigned, bool>(0, false);
+
+ bool IdxNIsKill = hasTrivialKill(Idx);
+
+ // If the index is smaller or larger than intptr_t, truncate or extend it.
+ MVT PtrVT = TLI.getPointerTy();
+ EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
+ if (IdxVT.bitsLT(PtrVT)) {
+ IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
+ IdxN, IdxNIsKill);
+ IdxNIsKill = true;
+ }
+ else if (IdxVT.bitsGT(PtrVT)) {
+ IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
+ IdxN, IdxNIsKill);
+ IdxNIsKill = true;
+ }
+ return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
+}
+
+/// SelectBinaryOp - Select and emit code for a binary operator instruction,
+/// which has an opcode which directly corresponds to the given ISD opcode.
+///
+bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
+ EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
+ if (VT == MVT::Other || !VT.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ // We only handle legal types. For example, on x86-32 the instruction
+ // selector contains all of the 64-bit instructions from x86-64,
+ // under the assumption that i64 won't be used if the target doesn't
+ // support it.
+ if (!TLI.isTypeLegal(VT)) {
+ // MVT::i1 is special. Allow AND, OR, or XOR because they
+ // don't require additional zeroing, which makes them easy.
+ if (VT == MVT::i1 &&
+ (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
+ ISDOpcode == ISD::XOR))
+ VT = TLI.getTypeToTransformTo(I->getContext(), VT);
+ else
+ return false;
+ }
+
+ unsigned Op0 = getRegForValue(I->getOperand(0));
+ if (Op0 == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ bool Op0IsKill = hasTrivialKill(I->getOperand(0));
+
+ // Check if the second operand is a constant and handle it appropriately.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISDOpcode, Op0, Op0IsKill,
+ CI->getZExtValue());
+ if (ResultReg != 0) {
+ // We successfully emitted code for the given LLVM Instruction.
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ // Check if the second operand is a constant float.
+ if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
+ unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISDOpcode, Op0, Op0IsKill, CF);
+ if (ResultReg != 0) {
+ // We successfully emitted code for the given LLVM Instruction.
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ unsigned Op1 = getRegForValue(I->getOperand(1));
+ if (Op1 == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ bool Op1IsKill = hasTrivialKill(I->getOperand(1));
+
+ // Now we have both operands in registers. Emit the instruction.
+ unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISDOpcode,
+ Op0, Op0IsKill,
+ Op1, Op1IsKill);
+ if (ResultReg == 0)
+ // Target-specific code wasn't able to find a machine opcode for
+ // the given ISD opcode and type. Halt "fast" selection and bail.
+ return false;
+
+ // We successfully emitted code for the given LLVM Instruction.
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool FastISel::SelectGetElementPtr(const User *I) {
+ unsigned N = getRegForValue(I->getOperand(0));
+ if (N == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ bool NIsKill = hasTrivialKill(I->getOperand(0));
+
+ const Type *Ty = I->getOperand(0)->getType();
+ MVT VT = TLI.getPointerTy();
+ for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
+ E = I->op_end(); OI != E; ++OI) {
+ const Value *Idx = *OI;
+ if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
+ unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+ if (Field) {
+ // N = N + Offset
+ uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
+ // FIXME: This can be optimized by combining the add with a
+ // subsequent one.
+ N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
+ if (N == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ NIsKill = true;
+ }
+ Ty = StTy->getElementType(Field);
+ } else {
+ Ty = cast<SequentialType>(Ty)->getElementType();
+
+ // If this is a constant subscript, handle it quickly.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
+ if (CI->getZExtValue() == 0) continue;
+ uint64_t Offs =
+ TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+ N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
+ if (N == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ NIsKill = true;
+ continue;
+ }
+
+ // N = N + Idx * ElementSize;
+ uint64_t ElementSize = TD.getTypeAllocSize(Ty);
+ std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
+ unsigned IdxN = Pair.first;
+ bool IdxNIsKill = Pair.second;
+ if (IdxN == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ if (ElementSize != 1) {
+ IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
+ if (IdxN == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ IdxNIsKill = true;
+ }
+ N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
+ if (N == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+ }
+ }
+
+ // We successfully emitted code for the given LLVM Instruction.
+ UpdateValueMap(I, N);
+ return true;
+}
+
+bool FastISel::SelectCall(const User *I) {
+ const Function *F = cast<CallInst>(I)->getCalledFunction();
+ if (!F) return false;
+
+ // Handle selected intrinsic function calls.
+ unsigned IID = F->getIntrinsicID();
+ switch (IID) {
+ default: break;
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
+ if (!DIVariable(DI->getVariable()).Verify() ||
+ !MF.getMMI().hasDebugInfo())
+ return true;
+
+ const Value *Address = DI->getAddress();
+ if (!Address)
+ return true;
+ if (isa<UndefValue>(Address))
+ return true;
+ const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
+ // Don't handle byval struct arguments or VLAs, for example.
+ // Note that if we have a byval struct argument, fast ISel is turned off;
+ // those are handled in SelectionDAGBuilder.
+ if (AI) {
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ StaticAllocaMap.find(AI);
+ if (SI == StaticAllocaMap.end()) break; // VLAs.
+ int FI = SI->second;
+ if (!DI->getDebugLoc().isUnknown())
+ MF.getMMI().setVariableDbgInfo(DI->getVariable(), FI, DI->getDebugLoc());
+ } else
+ // Building the map above is target independent. Generating DBG_VALUE
+ // inline is target dependent; do this now.
+ (void)TargetSelectInstruction(cast<Instruction>(I));
+ return true;
+ }
+ case Intrinsic::dbg_value: {
+ // This form of DBG_VALUE is target-independent.
+ const DbgValueInst *DI = cast<DbgValueInst>(I);
+ const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
+ const Value *V = DI->getValue();
+ if (!V) {
+ // Currently the optimizer can produce this; insert an undef to
+ // help debugging. Probably the optimizer should not do this.
+ BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
+ addMetadata(DI->getVariable());
+ } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()).
+ addMetadata(DI->getVariable());
+ } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
+ BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()).
+ addMetadata(DI->getVariable());
+ } else if (unsigned Reg = lookUpRegForValue(V)) {
+ BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()).
+ addMetadata(DI->getVariable());
+ } else {
+ // We can't yet handle anything else here because it would require
+ // generating code, thus altering codegen because of debug info.
+ // Insert an undef so we can see what we dropped.
+ BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
+ addMetadata(DI->getVariable());
+ }
+ return true;
+ }
+ case Intrinsic::eh_exception: {
+ EVT VT = TLI.getValueType(I->getType());
+ switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
+ default: break;
+ case TargetLowering::Expand: {
+ assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
+ unsigned Reg = TLI.getExceptionAddressRegister();
+ const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
+ unsigned ResultReg = createResultReg(RC);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ Reg, RC, RC, DL);
+ assert(InsertedCopy && "Can't copy address registers!");
+ InsertedCopy = InsertedCopy;
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+ break;
+ }
+ case Intrinsic::eh_selector: {
+ EVT VT = TLI.getValueType(I->getType());
+ switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
+ default: break;
+ case TargetLowering::Expand: {
+ if (MBB->isLandingPad())
+ AddCatchInfo(*cast<CallInst>(I), &MF.getMMI(), MBB);
+ else {
+#ifndef NDEBUG
+ CatchInfoLost.insert(cast<CallInst>(I));
+#endif
+ // FIXME: Mark exception selector register as live in. Hack for PR1508.
+ unsigned Reg = TLI.getExceptionSelectorRegister();
+ if (Reg) MBB->addLiveIn(Reg);
+ }
+
+ unsigned Reg = TLI.getExceptionSelectorRegister();
+ EVT SrcVT = TLI.getPointerTy();
+ const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
+ unsigned ResultReg = createResultReg(RC);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
+ RC, RC, DL);
+ assert(InsertedCopy && "Can't copy address registers!");
+ InsertedCopy = InsertedCopy;
+
+ bool ResultRegIsKill = hasTrivialKill(I);
+
+ // Cast the register to the type of the selector.
+ if (SrcVT.bitsGT(MVT::i32))
+ ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
+ ResultReg, ResultRegIsKill);
+ else if (SrcVT.bitsLT(MVT::i32))
+ ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
+ ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
+ if (ResultReg == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+
+ return true;
+ }
+ }
+ break;
+ }
+ }
+
+ // An arbitrary call. Bail.
+ return false;
+}
+
+bool FastISel::SelectCast(const User *I, unsigned Opcode) {
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+
+ if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
+ DstVT == MVT::Other || !DstVT.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ // Check if the destination type is legal. Or as a special case,
+ // it may be i1 if we're doing a truncate because that's
+ // easy and somewhat common.
+ if (!TLI.isTypeLegal(DstVT))
+ if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ // Check if the source operand is legal. Or as a special case,
+ // it may be i1 if we're doing zero-extension because that's
+ // easy and somewhat common.
+ if (!TLI.isTypeLegal(SrcVT))
+ if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ unsigned InputReg = getRegForValue(I->getOperand(0));
+ if (!InputReg)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
+
+ // If the operand is i1, arrange for the high bits in the register to be zero.
+ if (SrcVT == MVT::i1) {
+ SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
+ InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill);
+ if (!InputReg)
+ return false;
+ InputRegIsKill = true;
+ }
+ // If the result is i1, truncate to the target's type for i1 first.
+ if (DstVT == MVT::i1)
+ DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
+
+ unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
+ DstVT.getSimpleVT(),
+ Opcode,
+ InputReg, InputRegIsKill);
+ if (!ResultReg)
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool FastISel::SelectBitCast(const User *I) {
+ // If the bitcast doesn't change the type, just use the operand value.
+ if (I->getType() == I->getOperand(0)->getType()) {
+ unsigned Reg = getRegForValue(I->getOperand(0));
+ if (Reg == 0)
+ return false;
+ UpdateValueMap(I, Reg);
+ return true;
+ }
+
+ // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+
+ if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
+ DstVT == MVT::Other || !DstVT.isSimple() ||
+ !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ unsigned Op0 = getRegForValue(I->getOperand(0));
+ if (Op0 == 0)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ bool Op0IsKill = hasTrivialKill(I->getOperand(0));
+
+ // First, try to perform the bitcast by inserting a reg-reg copy.
+ unsigned ResultReg = 0;
+ if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
+ TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
+ TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
+ ResultReg = createResultReg(DstClass);
+
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ Op0, DstClass, SrcClass, DL);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+
+ // If the reg-reg copy failed, select a BIT_CONVERT opcode.
+ if (!ResultReg)
+ ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
+ ISD::BIT_CONVERT, Op0, Op0IsKill);
+
+ if (!ResultReg)
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool
+FastISel::SelectInstruction(const Instruction *I) {
+ // Just before the terminator instruction, insert instructions to
+ // feed PHI nodes in successor blocks.
+ if (isa<TerminatorInst>(I))
+ if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
+ return false;
+
+ DL = I->getDebugLoc();
+
+ // First, try doing target-independent selection.
+ if (SelectOperator(I, I->getOpcode())) {
+ DL = DebugLoc();
+ return true;
+ }
+
+ // Next, try calling the target to attempt to handle the instruction.
+ if (TargetSelectInstruction(I)) {
+ DL = DebugLoc();
+ return true;
+ }
+
+ DL = DebugLoc();
+ return false;
+}
+
+/// FastEmitBranch - Emit an unconditional branch to the given block,
+/// unless it is the immediate (fall-through) successor, and update
+/// the CFG.
+void
+FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
+ if (MBB->isLayoutSuccessor(MSucc)) {
+ // The unconditional fall-through case, which needs no instructions.
+ } else {
+ // The unconditional branch case.
+ TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
+ }
+ MBB->addSuccessor(MSucc);
+}
+
+/// SelectFNeg - Emit an FNeg operation.
+///
+bool
+FastISel::SelectFNeg(const User *I) {
+ unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
+ if (OpReg == 0) return false;
+
+ bool OpRegIsKill = hasTrivialKill(I);
+
+ // If the target has ISD::FNEG, use it.
+ EVT VT = TLI.getValueType(I->getType());
+ unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
+ ISD::FNEG, OpReg, OpRegIsKill);
+ if (ResultReg != 0) {
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+
+ // Bitcast the value to integer, twiddle the sign bit with xor,
+ // and then bitcast it back to floating-point.
+ if (VT.getSizeInBits() > 64) return false;
+ EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
+ if (!TLI.isTypeLegal(IntVT))
+ return false;
+
+ unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
+ ISD::BIT_CONVERT, OpReg, OpRegIsKill);
+ if (IntReg == 0)
+ return false;
+
+ unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
+ IntReg, /*Kill=*/true,
+ UINT64_C(1) << (VT.getSizeInBits()-1),
+ IntVT.getSimpleVT());
+ if (IntResultReg == 0)
+ return false;
+
+ ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
+ ISD::BIT_CONVERT, IntResultReg, /*Kill=*/true);
+ if (ResultReg == 0)
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool
+FastISel::SelectOperator(const User *I, unsigned Opcode) {
+ switch (Opcode) {
+ case Instruction::Add:
+ return SelectBinaryOp(I, ISD::ADD);
+ case Instruction::FAdd:
+ return SelectBinaryOp(I, ISD::FADD);
+ case Instruction::Sub:
+ return SelectBinaryOp(I, ISD::SUB);
+ case Instruction::FSub:
+ // FNeg is currently represented in LLVM IR as a special case of FSub.
+ if (BinaryOperator::isFNeg(I))
+ return SelectFNeg(I);
+ return SelectBinaryOp(I, ISD::FSUB);
+ case Instruction::Mul:
+ return SelectBinaryOp(I, ISD::MUL);
+ case Instruction::FMul:
+ return SelectBinaryOp(I, ISD::FMUL);
+ case Instruction::SDiv:
+ return SelectBinaryOp(I, ISD::SDIV);
+ case Instruction::UDiv:
+ return SelectBinaryOp(I, ISD::UDIV);
+ case Instruction::FDiv:
+ return SelectBinaryOp(I, ISD::FDIV);
+ case Instruction::SRem:
+ return SelectBinaryOp(I, ISD::SREM);
+ case Instruction::URem:
+ return SelectBinaryOp(I, ISD::UREM);
+ case Instruction::FRem:
+ return SelectBinaryOp(I, ISD::FREM);
+ case Instruction::Shl:
+ return SelectBinaryOp(I, ISD::SHL);
+ case Instruction::LShr:
+ return SelectBinaryOp(I, ISD::SRL);
+ case Instruction::AShr:
+ return SelectBinaryOp(I, ISD::SRA);
+ case Instruction::And:
+ return SelectBinaryOp(I, ISD::AND);
+ case Instruction::Or:
+ return SelectBinaryOp(I, ISD::OR);
+ case Instruction::Xor:
+ return SelectBinaryOp(I, ISD::XOR);
+
+ case Instruction::GetElementPtr:
+ return SelectGetElementPtr(I);
+
+ case Instruction::Br: {
+ const BranchInst *BI = cast<BranchInst>(I);
+
+ if (BI->isUnconditional()) {
+ const BasicBlock *LLVMSucc = BI->getSuccessor(0);
+ MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
+ FastEmitBranch(MSucc);
+ return true;
+ }
+
+ // Conditional branches are not handed yet.
+ // Halt "fast" selection and bail.
+ return false;
+ }
+
+ case Instruction::Unreachable:
+ // Nothing to emit.
+ return true;
+
+ case Instruction::Alloca:
+ // FunctionLowering has the static-sized case covered.
+ if (StaticAllocaMap.count(cast<AllocaInst>(I)))
+ return true;
+
+ // Dynamic-sized alloca is not handled yet.
+ return false;
+
+ case Instruction::Call:
+ return SelectCall(I);
+
+ case Instruction::BitCast:
+ return SelectBitCast(I);
+
+ case Instruction::FPToSI:
+ return SelectCast(I, ISD::FP_TO_SINT);
+ case Instruction::ZExt:
+ return SelectCast(I, ISD::ZERO_EXTEND);
+ case Instruction::SExt:
+ return SelectCast(I, ISD::SIGN_EXTEND);
+ case Instruction::Trunc:
+ return SelectCast(I, ISD::TRUNCATE);
+ case Instruction::SIToFP:
+ return SelectCast(I, ISD::SINT_TO_FP);
+
+ case Instruction::IntToPtr: // Deliberate fall-through.
+ case Instruction::PtrToInt: {
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+ if (DstVT.bitsGT(SrcVT))
+ return SelectCast(I, ISD::ZERO_EXTEND);
+ if (DstVT.bitsLT(SrcVT))
+ return SelectCast(I, ISD::TRUNCATE);
+ unsigned Reg = getRegForValue(I->getOperand(0));
+ if (Reg == 0) return false;
+ UpdateValueMap(I, Reg);
+ return true;
+ }
+
+ case Instruction::PHI:
+ llvm_unreachable("FastISel shouldn't visit PHI nodes!");
+
+ default:
+ // Unhandled instruction. Halt "fast" selection and bail.
+ return false;
+ }
+}
+
+FastISel::FastISel(MachineFunction &mf,
+ DenseMap<const Value *, unsigned> &vm,
+ DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
+ DenseMap<const AllocaInst *, int> &am,
+ std::vector<std::pair<MachineInstr*, unsigned> > &pn
+#ifndef NDEBUG
+ , SmallSet<const Instruction *, 8> &cil
+#endif
+ )
+ : MBB(0),
+ ValueMap(vm),
+ MBBMap(bm),
+ StaticAllocaMap(am),
+ PHINodesToUpdate(pn),
+#ifndef NDEBUG
+ CatchInfoLost(cil),
+#endif
+ MF(mf),
+ MRI(MF.getRegInfo()),
+ MFI(*MF.getFrameInfo()),
+ MCP(*MF.getConstantPool()),
+ TM(MF.getTarget()),
+ TD(*TM.getTargetData()),
+ TII(*TM.getInstrInfo()),
+ TLI(*TM.getTargetLowering()),
+ IsBottomUp(false) {
+}
+
+FastISel::~FastISel() {}
+
+unsigned FastISel::FastEmit_(MVT, MVT,
+ unsigned) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_r(MVT, MVT,
+ unsigned,
+ unsigned /*Op0*/, bool /*Op0IsKill*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_rr(MVT, MVT,
+ unsigned,
+ unsigned /*Op0*/, bool /*Op0IsKill*/,
+ unsigned /*Op1*/, bool /*Op1IsKill*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_f(MVT, MVT,
+ unsigned, const ConstantFP * /*FPImm*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_ri(MVT, MVT,
+ unsigned,
+ unsigned /*Op0*/, bool /*Op0IsKill*/,
+ uint64_t /*Imm*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_rf(MVT, MVT,
+ unsigned,
+ unsigned /*Op0*/, bool /*Op0IsKill*/,
+ const ConstantFP * /*FPImm*/) {
+ return 0;
+}
+
+unsigned FastISel::FastEmit_rri(MVT, MVT,
+ unsigned,
+ unsigned /*Op0*/, bool /*Op0IsKill*/,
+ unsigned /*Op1*/, bool /*Op1IsKill*/,
+ uint64_t /*Imm*/) {
+ return 0;
+}
+
+/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
+/// to emit an instruction with an immediate operand using FastEmit_ri.
+/// If that fails, it materializes the immediate into a register and try
+/// FastEmit_rr instead.
+unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
+ unsigned Op0, bool Op0IsKill,
+ uint64_t Imm, MVT ImmType) {
+ // First check if immediate type is legal. If not, we can't use the ri form.
+ unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
+ if (ResultReg != 0)
+ return ResultReg;
+ unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
+ if (MaterialReg == 0)
+ return 0;
+ return FastEmit_rr(VT, VT, Opcode,
+ Op0, Op0IsKill,
+ MaterialReg, /*Kill=*/true);
+}
+
+/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
+/// to emit an instruction with a floating-point immediate operand using
+/// FastEmit_rf. If that fails, it materializes the immediate into a register
+/// and try FastEmit_rr instead.
+unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
+ unsigned Op0, bool Op0IsKill,
+ const ConstantFP *FPImm, MVT ImmType) {
+ // First check if immediate type is legal. If not, we can't use the rf form.
+ unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, Op0IsKill, FPImm);
+ if (ResultReg != 0)
+ return ResultReg;
+
+ // Materialize the constant in a register.
+ unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
+ if (MaterialReg == 0) {
+ // If the target doesn't have a way to directly enter a floating-point
+ // value into a register, use an alternate approach.
+ // TODO: The current approach only supports floating-point constants
+ // that can be constructed by conversion from integer values. This should
+ // be replaced by code that creates a load from a constant-pool entry,
+ // which will require some target-specific work.
+ const APFloat &Flt = FPImm->getValueAPF();
+ EVT IntVT = TLI.getPointerTy();
+
+ uint64_t x[2];
+ uint32_t IntBitWidth = IntVT.getSizeInBits();
+ bool isExact;
+ (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
+ APFloat::rmTowardZero, &isExact);
+ if (!isExact)
+ return 0;
+ APInt IntVal(IntBitWidth, 2, x);
+
+ unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
+ ISD::Constant, IntVal.getZExtValue());
+ if (IntegerReg == 0)
+ return 0;
+ MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
+ ISD::SINT_TO_FP, IntegerReg, /*Kill=*/true);
+ if (MaterialReg == 0)
+ return 0;
+ }
+ return FastEmit_rr(VT, VT, Opcode,
+ Op0, Op0IsKill,
+ MaterialReg, /*Kill=*/true);
+}
+
+unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
+ return MRI.createVirtualRegister(RC);
+}
+
+unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
+ const TargetRegisterClass* RC) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ BuildMI(MBB, DL, II, ResultReg);
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addReg(Op0, Op0IsKill * RegState::Kill);
+ else {
+ BuildMI(MBB, DL, II).addReg(Op0, Op0IsKill * RegState::Kill);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC, DL);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill);
+ else {
+ BuildMI(MBB, DL, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC, DL);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addImm(Imm);
+ else {
+ BuildMI(MBB, DL, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addImm(Imm);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC, DL);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ const ConstantFP *FPImm) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addFPImm(FPImm);
+ else {
+ BuildMI(MBB, DL, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addFPImm(FPImm);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC, DL);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ unsigned Op0, bool Op0IsKill,
+ unsigned Op1, bool Op1IsKill,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill)
+ .addImm(Imm);
+ else {
+ BuildMI(MBB, DL, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addReg(Op1, Op1IsKill * RegState::Kill)
+ .addImm(Imm);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC, DL);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
+ const TargetRegisterClass *RC,
+ uint64_t Imm) {
+ unsigned ResultReg = createResultReg(RC);
+ const TargetInstrDesc &II = TII.get(MachineInstOpcode);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
+ else {
+ BuildMI(MBB, DL, II).addImm(Imm);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC, DL);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
+ unsigned Op0, bool Op0IsKill,
+ uint32_t Idx) {
+ const TargetRegisterClass* RC = MRI.getRegClass(Op0);
+
+ unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
+ const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
+
+ if (II.getNumDefs() >= 1)
+ BuildMI(MBB, DL, II, ResultReg)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addImm(Idx);
+ else {
+ BuildMI(MBB, DL, II)
+ .addReg(Op0, Op0IsKill * RegState::Kill)
+ .addImm(Idx);
+ bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
+ II.ImplicitDefs[0], RC, RC, DL);
+ if (!InsertedCopy)
+ ResultReg = 0;
+ }
+ return ResultReg;
+}
+
+/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
+/// with all but the least significant bit set to zero.
+unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
+ return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
+}
+
+/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
+/// Emit code to ensure constants are copied into registers when needed.
+/// Remember the virtual registers that need to be added to the Machine PHI
+/// nodes as input. We cannot just directly add them, because expansion
+/// might result in multiple MBB's for one BB. As such, the start of the
+/// BB might correspond to a different MBB than the end.
+bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
+ const TerminatorInst *TI = LLVMBB->getTerminator();
+
+ SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
+ unsigned OrigNumPHINodesToUpdate = PHINodesToUpdate.size();
+
+ // Check successor nodes' PHI nodes that expect a constant to be available
+ // from this block.
+ for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
+ const BasicBlock *SuccBB = TI->getSuccessor(succ);
+ if (!isa<PHINode>(SuccBB->begin())) continue;
+ MachineBasicBlock *SuccMBB = MBBMap[SuccBB];
+
+ // If this terminator has multiple identical successors (common for
+ // switches), only handle each succ once.
+ if (!SuccsHandled.insert(SuccMBB)) continue;
+
+ MachineBasicBlock::iterator MBBI = SuccMBB->begin();
+
+ // At this point we know that there is a 1-1 correspondence between LLVM PHI
+ // nodes and Machine PHI nodes, but the incoming operands have not been
+ // emitted yet.
+ for (BasicBlock::const_iterator I = SuccBB->begin();
+ const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
+
+ // Ignore dead phi's.
+ if (PN->use_empty()) continue;
+
+ // Only handle legal types. Two interesting things to note here. First,
+ // by bailing out early, we may leave behind some dead instructions,
+ // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
+ // own moves. Second, this check is necessary becuase FastISel doesn't
+ // use CreateRegForValue to create registers, so it always creates
+ // exactly one register for each non-void instruction.
+ EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
+ if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
+ // Promote MVT::i1.
+ if (VT == MVT::i1)
+ VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
+ else {
+ PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
+ return false;
+ }
+ }
+
+ const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
+
+ // Set the DebugLoc for the copy. Prefer the location of the operand
+ // if there is one; use the location of the PHI otherwise.
+ DL = PN->getDebugLoc();
+ if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
+ DL = Inst->getDebugLoc();
+
+ unsigned Reg = getRegForValue(PHIOp);
+ if (Reg == 0) {
+ PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
+ return false;
+ }
+ PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
+ DL = DebugLoc();
+ }
+ }
+
+ return true;
+}
OpenPOWER on IntegriCloud