summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp14066
1 files changed, 14066 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
new file mode 100644
index 0000000..5fea52c
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp
@@ -0,0 +1,14066 @@
+//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
+// both before and after the DAG is legalized.
+//
+// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
+// primarily intended to handle simplification opportunities that are implicit
+// in the LLVM IR and exposed by the various codegen lowering phases.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "dagcombine"
+
+STATISTIC(NodesCombined , "Number of dag nodes combined");
+STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
+STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
+STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
+STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
+STATISTIC(SlicedLoads, "Number of load sliced");
+
+namespace {
+ static cl::opt<bool>
+ CombinerAA("combiner-alias-analysis", cl::Hidden,
+ cl::desc("Enable DAG combiner alias-analysis heuristics"));
+
+ static cl::opt<bool>
+ CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
+ cl::desc("Enable DAG combiner's use of IR alias analysis"));
+
+ static cl::opt<bool>
+ UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
+ cl::desc("Enable DAG combiner's use of TBAA"));
+
+#ifndef NDEBUG
+ static cl::opt<std::string>
+ CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
+ cl::desc("Only use DAG-combiner alias analysis in this"
+ " function"));
+#endif
+
+ /// Hidden option to stress test load slicing, i.e., when this option
+ /// is enabled, load slicing bypasses most of its profitability guards.
+ static cl::opt<bool>
+ StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
+ cl::desc("Bypass the profitability model of load "
+ "slicing"),
+ cl::init(false));
+
+ static cl::opt<bool>
+ MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
+ cl::desc("DAG combiner may split indexing from loads"));
+
+//------------------------------ DAGCombiner ---------------------------------//
+
+ class DAGCombiner {
+ SelectionDAG &DAG;
+ const TargetLowering &TLI;
+ CombineLevel Level;
+ CodeGenOpt::Level OptLevel;
+ bool LegalOperations;
+ bool LegalTypes;
+ bool ForCodeSize;
+
+ /// \brief Worklist of all of the nodes that need to be simplified.
+ ///
+ /// This must behave as a stack -- new nodes to process are pushed onto the
+ /// back and when processing we pop off of the back.
+ ///
+ /// The worklist will not contain duplicates but may contain null entries
+ /// due to nodes being deleted from the underlying DAG.
+ SmallVector<SDNode *, 64> Worklist;
+
+ /// \brief Mapping from an SDNode to its position on the worklist.
+ ///
+ /// This is used to find and remove nodes from the worklist (by nulling
+ /// them) when they are deleted from the underlying DAG. It relies on
+ /// stable indices of nodes within the worklist.
+ DenseMap<SDNode *, unsigned> WorklistMap;
+
+ /// \brief Set of nodes which have been combined (at least once).
+ ///
+ /// This is used to allow us to reliably add any operands of a DAG node
+ /// which have not yet been combined to the worklist.
+ SmallPtrSet<SDNode *, 64> CombinedNodes;
+
+ // AA - Used for DAG load/store alias analysis.
+ AliasAnalysis &AA;
+
+ /// When an instruction is simplified, add all users of the instruction to
+ /// the work lists because they might get more simplified now.
+ void AddUsersToWorklist(SDNode *N) {
+ for (SDNode *Node : N->uses())
+ AddToWorklist(Node);
+ }
+
+ /// Call the node-specific routine that folds each particular type of node.
+ SDValue visit(SDNode *N);
+
+ public:
+ /// Add to the worklist making sure its instance is at the back (next to be
+ /// processed.)
+ void AddToWorklist(SDNode *N) {
+ // Skip handle nodes as they can't usefully be combined and confuse the
+ // zero-use deletion strategy.
+ if (N->getOpcode() == ISD::HANDLENODE)
+ return;
+
+ if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
+ Worklist.push_back(N);
+ }
+
+ /// Remove all instances of N from the worklist.
+ void removeFromWorklist(SDNode *N) {
+ CombinedNodes.erase(N);
+
+ auto It = WorklistMap.find(N);
+ if (It == WorklistMap.end())
+ return; // Not in the worklist.
+
+ // Null out the entry rather than erasing it to avoid a linear operation.
+ Worklist[It->second] = nullptr;
+ WorklistMap.erase(It);
+ }
+
+ void deleteAndRecombine(SDNode *N);
+ bool recursivelyDeleteUnusedNodes(SDNode *N);
+
+ SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
+ bool AddTo = true);
+
+ SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
+ return CombineTo(N, &Res, 1, AddTo);
+ }
+
+ SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
+ bool AddTo = true) {
+ SDValue To[] = { Res0, Res1 };
+ return CombineTo(N, To, 2, AddTo);
+ }
+
+ void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
+
+ private:
+
+ /// Check the specified integer node value to see if it can be simplified or
+ /// if things it uses can be simplified by bit propagation.
+ /// If so, return true.
+ bool SimplifyDemandedBits(SDValue Op) {
+ unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
+ APInt Demanded = APInt::getAllOnesValue(BitWidth);
+ return SimplifyDemandedBits(Op, Demanded);
+ }
+
+ bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
+
+ bool CombineToPreIndexedLoadStore(SDNode *N);
+ bool CombineToPostIndexedLoadStore(SDNode *N);
+ SDValue SplitIndexingFromLoad(LoadSDNode *LD);
+ bool SliceUpLoad(SDNode *N);
+
+ /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
+ /// load.
+ ///
+ /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
+ /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
+ /// \param EltNo index of the vector element to load.
+ /// \param OriginalLoad load that EVE came from to be replaced.
+ /// \returns EVE on success SDValue() on failure.
+ SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
+ SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad);
+ void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
+ SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
+ SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
+ SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
+ SDValue PromoteIntBinOp(SDValue Op);
+ SDValue PromoteIntShiftOp(SDValue Op);
+ SDValue PromoteExtend(SDValue Op);
+ bool PromoteLoad(SDValue Op);
+
+ void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
+ SDValue Trunc, SDValue ExtLoad, SDLoc DL,
+ ISD::NodeType ExtType);
+
+ /// Call the node-specific routine that knows how to fold each
+ /// particular type of node. If that doesn't do anything, try the
+ /// target-specific DAG combines.
+ SDValue combine(SDNode *N);
+
+ // Visitation implementation - Implement dag node combining for different
+ // node types. The semantics are as follows:
+ // Return Value:
+ // SDValue.getNode() == 0 - No change was made
+ // SDValue.getNode() == N - N was replaced, is dead and has been handled.
+ // otherwise - N should be replaced by the returned Operand.
+ //
+ SDValue visitTokenFactor(SDNode *N);
+ SDValue visitMERGE_VALUES(SDNode *N);
+ SDValue visitADD(SDNode *N);
+ SDValue visitSUB(SDNode *N);
+ SDValue visitADDC(SDNode *N);
+ SDValue visitSUBC(SDNode *N);
+ SDValue visitADDE(SDNode *N);
+ SDValue visitSUBE(SDNode *N);
+ SDValue visitMUL(SDNode *N);
+ SDValue visitSDIV(SDNode *N);
+ SDValue visitUDIV(SDNode *N);
+ SDValue visitSREM(SDNode *N);
+ SDValue visitUREM(SDNode *N);
+ SDValue visitMULHU(SDNode *N);
+ SDValue visitMULHS(SDNode *N);
+ SDValue visitSMUL_LOHI(SDNode *N);
+ SDValue visitUMUL_LOHI(SDNode *N);
+ SDValue visitSMULO(SDNode *N);
+ SDValue visitUMULO(SDNode *N);
+ SDValue visitSDIVREM(SDNode *N);
+ SDValue visitUDIVREM(SDNode *N);
+ SDValue visitAND(SDNode *N);
+ SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference);
+ SDValue visitOR(SDNode *N);
+ SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference);
+ SDValue visitXOR(SDNode *N);
+ SDValue SimplifyVBinOp(SDNode *N);
+ SDValue visitSHL(SDNode *N);
+ SDValue visitSRA(SDNode *N);
+ SDValue visitSRL(SDNode *N);
+ SDValue visitRotate(SDNode *N);
+ SDValue visitBSWAP(SDNode *N);
+ SDValue visitCTLZ(SDNode *N);
+ SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
+ SDValue visitCTTZ(SDNode *N);
+ SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
+ SDValue visitCTPOP(SDNode *N);
+ SDValue visitSELECT(SDNode *N);
+ SDValue visitVSELECT(SDNode *N);
+ SDValue visitSELECT_CC(SDNode *N);
+ SDValue visitSETCC(SDNode *N);
+ SDValue visitSIGN_EXTEND(SDNode *N);
+ SDValue visitZERO_EXTEND(SDNode *N);
+ SDValue visitANY_EXTEND(SDNode *N);
+ SDValue visitSIGN_EXTEND_INREG(SDNode *N);
+ SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
+ SDValue visitTRUNCATE(SDNode *N);
+ SDValue visitBITCAST(SDNode *N);
+ SDValue visitBUILD_PAIR(SDNode *N);
+ SDValue visitFADD(SDNode *N);
+ SDValue visitFSUB(SDNode *N);
+ SDValue visitFMUL(SDNode *N);
+ SDValue visitFMA(SDNode *N);
+ SDValue visitFDIV(SDNode *N);
+ SDValue visitFREM(SDNode *N);
+ SDValue visitFSQRT(SDNode *N);
+ SDValue visitFCOPYSIGN(SDNode *N);
+ SDValue visitSINT_TO_FP(SDNode *N);
+ SDValue visitUINT_TO_FP(SDNode *N);
+ SDValue visitFP_TO_SINT(SDNode *N);
+ SDValue visitFP_TO_UINT(SDNode *N);
+ SDValue visitFP_ROUND(SDNode *N);
+ SDValue visitFP_ROUND_INREG(SDNode *N);
+ SDValue visitFP_EXTEND(SDNode *N);
+ SDValue visitFNEG(SDNode *N);
+ SDValue visitFABS(SDNode *N);
+ SDValue visitFCEIL(SDNode *N);
+ SDValue visitFTRUNC(SDNode *N);
+ SDValue visitFFLOOR(SDNode *N);
+ SDValue visitFMINNUM(SDNode *N);
+ SDValue visitFMAXNUM(SDNode *N);
+ SDValue visitBRCOND(SDNode *N);
+ SDValue visitBR_CC(SDNode *N);
+ SDValue visitLOAD(SDNode *N);
+ SDValue visitSTORE(SDNode *N);
+ SDValue visitINSERT_VECTOR_ELT(SDNode *N);
+ SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
+ SDValue visitBUILD_VECTOR(SDNode *N);
+ SDValue visitCONCAT_VECTORS(SDNode *N);
+ SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
+ SDValue visitVECTOR_SHUFFLE(SDNode *N);
+ SDValue visitSCALAR_TO_VECTOR(SDNode *N);
+ SDValue visitINSERT_SUBVECTOR(SDNode *N);
+ SDValue visitMLOAD(SDNode *N);
+ SDValue visitMSTORE(SDNode *N);
+ SDValue visitMGATHER(SDNode *N);
+ SDValue visitMSCATTER(SDNode *N);
+ SDValue visitFP_TO_FP16(SDNode *N);
+
+ SDValue visitFADDForFMACombine(SDNode *N);
+ SDValue visitFSUBForFMACombine(SDNode *N);
+
+ SDValue XformToShuffleWithZero(SDNode *N);
+ SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
+
+ SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
+
+ bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
+ SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
+ SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
+ SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
+ SDValue N3, ISD::CondCode CC,
+ bool NotExtCompare = false);
+ SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
+ SDLoc DL, bool foldBooleans = true);
+
+ bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
+ SDValue &CC) const;
+ bool isOneUseSetCC(SDValue N) const;
+
+ SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
+ unsigned HiOp);
+ SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
+ SDValue CombineExtLoad(SDNode *N);
+ SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
+ SDValue BuildSDIV(SDNode *N);
+ SDValue BuildSDIVPow2(SDNode *N);
+ SDValue BuildUDIV(SDNode *N);
+ SDValue BuildReciprocalEstimate(SDValue Op);
+ SDValue BuildRsqrtEstimate(SDValue Op);
+ SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations);
+ SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations);
+ SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
+ bool DemandHighBits = true);
+ SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
+ SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
+ SDValue InnerPos, SDValue InnerNeg,
+ unsigned PosOpcode, unsigned NegOpcode,
+ SDLoc DL);
+ SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
+ SDValue ReduceLoadWidth(SDNode *N);
+ SDValue ReduceLoadOpStoreWidth(SDNode *N);
+ SDValue TransformFPLoadStorePair(SDNode *N);
+ SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
+ SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
+
+ SDValue GetDemandedBits(SDValue V, const APInt &Mask);
+
+ /// Walk up chain skipping non-aliasing memory nodes,
+ /// looking for aliasing nodes and adding them to the Aliases vector.
+ void GatherAllAliases(SDNode *N, SDValue OriginalChain,
+ SmallVectorImpl<SDValue> &Aliases);
+
+ /// Return true if there is any possibility that the two addresses overlap.
+ bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
+
+ /// Walk up chain skipping non-aliasing memory nodes, looking for a better
+ /// chain (aliasing node.)
+ SDValue FindBetterChain(SDNode *N, SDValue Chain);
+
+ /// Holds a pointer to an LSBaseSDNode as well as information on where it
+ /// is located in a sequence of memory operations connected by a chain.
+ struct MemOpLink {
+ MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
+ MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
+ // Ptr to the mem node.
+ LSBaseSDNode *MemNode;
+ // Offset from the base ptr.
+ int64_t OffsetFromBase;
+ // What is the sequence number of this mem node.
+ // Lowest mem operand in the DAG starts at zero.
+ unsigned SequenceNum;
+ };
+
+ /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a
+ /// constant build_vector of the stored constant values in Stores.
+ SDValue getMergedConstantVectorStore(SelectionDAG &DAG,
+ SDLoc SL,
+ ArrayRef<MemOpLink> Stores,
+ EVT Ty) const;
+
+ /// This is a helper function for MergeConsecutiveStores. When the source
+ /// elements of the consecutive stores are all constants or all extracted
+ /// vector elements, try to merge them into one larger store.
+ /// \return True if a merged store was created.
+ bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
+ EVT MemVT, unsigned NumElem,
+ bool IsConstantSrc, bool UseVector);
+
+ /// This is a helper function for MergeConsecutiveStores.
+ /// Stores that may be merged are placed in StoreNodes.
+ /// Loads that may alias with those stores are placed in AliasLoadNodes.
+ void getStoreMergeAndAliasCandidates(
+ StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
+ SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes);
+
+ /// Merge consecutive store operations into a wide store.
+ /// This optimization uses wide integers or vectors when possible.
+ /// \return True if some memory operations were changed.
+ bool MergeConsecutiveStores(StoreSDNode *N);
+
+ /// \brief Try to transform a truncation where C is a constant:
+ /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
+ ///
+ /// \p N needs to be a truncation and its first operand an AND. Other
+ /// requirements are checked by the function (e.g. that trunc is
+ /// single-use) and if missed an empty SDValue is returned.
+ SDValue distributeTruncateThroughAnd(SDNode *N);
+
+ public:
+ DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
+ : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
+ OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
+ auto *F = DAG.getMachineFunction().getFunction();
+ ForCodeSize = F->hasFnAttribute(Attribute::OptimizeForSize) ||
+ F->hasFnAttribute(Attribute::MinSize);
+ }
+
+ /// Runs the dag combiner on all nodes in the work list
+ void Run(CombineLevel AtLevel);
+
+ SelectionDAG &getDAG() const { return DAG; }
+
+ /// Returns a type large enough to hold any valid shift amount - before type
+ /// legalization these can be huge.
+ EVT getShiftAmountTy(EVT LHSTy) {
+ assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
+ if (LHSTy.isVector())
+ return LHSTy;
+ return LegalTypes ? TLI.getScalarShiftAmountTy(LHSTy)
+ : TLI.getPointerTy();
+ }
+
+ /// This method returns true if we are running before type legalization or
+ /// if the specified VT is legal.
+ bool isTypeLegal(const EVT &VT) {
+ if (!LegalTypes) return true;
+ return TLI.isTypeLegal(VT);
+ }
+
+ /// Convenience wrapper around TargetLowering::getSetCCResultType
+ EVT getSetCCResultType(EVT VT) const {
+ return TLI.getSetCCResultType(*DAG.getContext(), VT);
+ }
+ };
+} // namespace
+
+
+namespace {
+/// This class is a DAGUpdateListener that removes any deleted
+/// nodes from the worklist.
+class WorklistRemover : public SelectionDAG::DAGUpdateListener {
+ DAGCombiner &DC;
+public:
+ explicit WorklistRemover(DAGCombiner &dc)
+ : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
+
+ void NodeDeleted(SDNode *N, SDNode *E) override {
+ DC.removeFromWorklist(N);
+ }
+};
+} // namespace
+
+//===----------------------------------------------------------------------===//
+// TargetLowering::DAGCombinerInfo implementation
+//===----------------------------------------------------------------------===//
+
+void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
+ ((DAGCombiner*)DC)->AddToWorklist(N);
+}
+
+void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
+ ((DAGCombiner*)DC)->removeFromWorklist(N);
+}
+
+SDValue TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
+ return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
+}
+
+SDValue TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, SDValue Res, bool AddTo) {
+ return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
+}
+
+
+SDValue TargetLowering::DAGCombinerInfo::
+CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
+ return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
+}
+
+void TargetLowering::DAGCombinerInfo::
+CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
+ return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
+}
+
+//===----------------------------------------------------------------------===//
+// Helper Functions
+//===----------------------------------------------------------------------===//
+
+void DAGCombiner::deleteAndRecombine(SDNode *N) {
+ removeFromWorklist(N);
+
+ // If the operands of this node are only used by the node, they will now be
+ // dead. Make sure to re-visit them and recursively delete dead nodes.
+ for (const SDValue &Op : N->ops())
+ // For an operand generating multiple values, one of the values may
+ // become dead allowing further simplification (e.g. split index
+ // arithmetic from an indexed load).
+ if (Op->hasOneUse() || Op->getNumValues() > 1)
+ AddToWorklist(Op.getNode());
+
+ DAG.DeleteNode(N);
+}
+
+/// Return 1 if we can compute the negated form of the specified expression for
+/// the same cost as the expression itself, or 2 if we can compute the negated
+/// form more cheaply than the expression itself.
+static char isNegatibleForFree(SDValue Op, bool LegalOperations,
+ const TargetLowering &TLI,
+ const TargetOptions *Options,
+ unsigned Depth = 0) {
+ // fneg is removable even if it has multiple uses.
+ if (Op.getOpcode() == ISD::FNEG) return 2;
+
+ // Don't allow anything with multiple uses.
+ if (!Op.hasOneUse()) return 0;
+
+ // Don't recurse exponentially.
+ if (Depth > 6) return 0;
+
+ switch (Op.getOpcode()) {
+ default: return false;
+ case ISD::ConstantFP:
+ // Don't invert constant FP values after legalize. The negated constant
+ // isn't necessarily legal.
+ return LegalOperations ? 0 : 1;
+ case ISD::FADD:
+ // FIXME: determine better conditions for this xform.
+ if (!Options->UnsafeFPMath) return 0;
+
+ // After operation legalization, it might not be legal to create new FSUBs.
+ if (LegalOperations &&
+ !TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType()))
+ return 0;
+
+ // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
+ if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
+ Options, Depth + 1))
+ return V;
+ // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
+ return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
+ Depth + 1);
+ case ISD::FSUB:
+ // We can't turn -(A-B) into B-A when we honor signed zeros.
+ if (!Options->UnsafeFPMath) return 0;
+
+ // fold (fneg (fsub A, B)) -> (fsub B, A)
+ return 1;
+
+ case ISD::FMUL:
+ case ISD::FDIV:
+ if (Options->HonorSignDependentRoundingFPMath()) return 0;
+
+ // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
+ if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
+ Options, Depth + 1))
+ return V;
+
+ return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
+ Depth + 1);
+
+ case ISD::FP_EXTEND:
+ case ISD::FP_ROUND:
+ case ISD::FSIN:
+ return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
+ Depth + 1);
+ }
+}
+
+/// If isNegatibleForFree returns true, return the newly negated expression.
+static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
+ bool LegalOperations, unsigned Depth = 0) {
+ const TargetOptions &Options = DAG.getTarget().Options;
+ // fneg is removable even if it has multiple uses.
+ if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
+
+ // Don't allow anything with multiple uses.
+ assert(Op.hasOneUse() && "Unknown reuse!");
+
+ assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Unknown code");
+ case ISD::ConstantFP: {
+ APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
+ V.changeSign();
+ return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
+ }
+ case ISD::FADD:
+ // FIXME: determine better conditions for this xform.
+ assert(Options.UnsafeFPMath);
+
+ // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
+ if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
+ DAG.getTargetLoweringInfo(), &Options, Depth+1))
+ return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
+ GetNegatedExpression(Op.getOperand(0), DAG,
+ LegalOperations, Depth+1),
+ Op.getOperand(1));
+ // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
+ return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
+ GetNegatedExpression(Op.getOperand(1), DAG,
+ LegalOperations, Depth+1),
+ Op.getOperand(0));
+ case ISD::FSUB:
+ // We can't turn -(A-B) into B-A when we honor signed zeros.
+ assert(Options.UnsafeFPMath);
+
+ // fold (fneg (fsub 0, B)) -> B
+ if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
+ if (N0CFP->isZero())
+ return Op.getOperand(1);
+
+ // fold (fneg (fsub A, B)) -> (fsub B, A)
+ return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(0));
+
+ case ISD::FMUL:
+ case ISD::FDIV:
+ assert(!Options.HonorSignDependentRoundingFPMath());
+
+ // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
+ if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
+ DAG.getTargetLoweringInfo(), &Options, Depth+1))
+ return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
+ GetNegatedExpression(Op.getOperand(0), DAG,
+ LegalOperations, Depth+1),
+ Op.getOperand(1));
+
+ // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
+ return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
+ Op.getOperand(0),
+ GetNegatedExpression(Op.getOperand(1), DAG,
+ LegalOperations, Depth+1));
+
+ case ISD::FP_EXTEND:
+ case ISD::FSIN:
+ return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
+ GetNegatedExpression(Op.getOperand(0), DAG,
+ LegalOperations, Depth+1));
+ case ISD::FP_ROUND:
+ return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
+ GetNegatedExpression(Op.getOperand(0), DAG,
+ LegalOperations, Depth+1),
+ Op.getOperand(1));
+ }
+}
+
+// Return true if this node is a setcc, or is a select_cc
+// that selects between the target values used for true and false, making it
+// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
+// the appropriate nodes based on the type of node we are checking. This
+// simplifies life a bit for the callers.
+bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
+ SDValue &CC) const {
+ if (N.getOpcode() == ISD::SETCC) {
+ LHS = N.getOperand(0);
+ RHS = N.getOperand(1);
+ CC = N.getOperand(2);
+ return true;
+ }
+
+ if (N.getOpcode() != ISD::SELECT_CC ||
+ !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
+ !TLI.isConstFalseVal(N.getOperand(3).getNode()))
+ return false;
+
+ if (TLI.getBooleanContents(N.getValueType()) ==
+ TargetLowering::UndefinedBooleanContent)
+ return false;
+
+ LHS = N.getOperand(0);
+ RHS = N.getOperand(1);
+ CC = N.getOperand(4);
+ return true;
+}
+
+/// Return true if this is a SetCC-equivalent operation with only one use.
+/// If this is true, it allows the users to invert the operation for free when
+/// it is profitable to do so.
+bool DAGCombiner::isOneUseSetCC(SDValue N) const {
+ SDValue N0, N1, N2;
+ if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
+ return true;
+ return false;
+}
+
+/// Returns true if N is a BUILD_VECTOR node whose
+/// elements are all the same constant or undefined.
+static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
+ BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
+ if (!C)
+ return false;
+
+ APInt SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
+ HasAnyUndefs) &&
+ EltVT.getSizeInBits() >= SplatBitSize);
+}
+
+// \brief Returns the SDNode if it is a constant integer BuildVector
+// or constant integer.
+static SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) {
+ if (isa<ConstantSDNode>(N))
+ return N.getNode();
+ if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
+ return N.getNode();
+ return nullptr;
+}
+
+// \brief Returns the SDNode if it is a constant float BuildVector
+// or constant float.
+static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
+ if (isa<ConstantFPSDNode>(N))
+ return N.getNode();
+ if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
+ return N.getNode();
+ return nullptr;
+}
+
+// \brief Returns the SDNode if it is a constant splat BuildVector or constant
+// int.
+static ConstantSDNode *isConstOrConstSplat(SDValue N) {
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
+
+ // BuildVectors can truncate their operands. Ignore that case here.
+ // FIXME: We blindly ignore splats which include undef which is overly
+ // pessimistic.
+ if (CN && UndefElements.none() &&
+ CN->getValueType(0) == N.getValueType().getScalarType())
+ return CN;
+ }
+
+ return nullptr;
+}
+
+// \brief Returns the SDNode if it is a constant splat BuildVector or constant
+// float.
+static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) {
+ if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
+ return CN;
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
+ BitVector UndefElements;
+ ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
+
+ if (CN && UndefElements.none())
+ return CN;
+ }
+
+ return nullptr;
+}
+
+SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
+ SDValue N0, SDValue N1) {
+ EVT VT = N0.getValueType();
+ if (N0.getOpcode() == Opc) {
+ if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
+ if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1)) {
+ // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
+ if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R))
+ return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
+ return SDValue();
+ }
+ if (N0.hasOneUse()) {
+ // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
+ // use
+ SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
+ if (!OpNode.getNode())
+ return SDValue();
+ AddToWorklist(OpNode.getNode());
+ return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
+ }
+ }
+ }
+
+ if (N1.getOpcode() == Opc) {
+ if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) {
+ if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0)) {
+ // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
+ if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L))
+ return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
+ return SDValue();
+ }
+ if (N1.hasOneUse()) {
+ // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one
+ // use
+ SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0);
+ if (!OpNode.getNode())
+ return SDValue();
+ AddToWorklist(OpNode.getNode());
+ return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
+ bool AddTo) {
+ assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
+ ++NodesCombined;
+ DEBUG(dbgs() << "\nReplacing.1 ";
+ N->dump(&DAG);
+ dbgs() << "\nWith: ";
+ To[0].getNode()->dump(&DAG);
+ dbgs() << " and " << NumTo-1 << " other values\n");
+ for (unsigned i = 0, e = NumTo; i != e; ++i)
+ assert((!To[i].getNode() ||
+ N->getValueType(i) == To[i].getValueType()) &&
+ "Cannot combine value to value of different type!");
+
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesWith(N, To);
+ if (AddTo) {
+ // Push the new nodes and any users onto the worklist
+ for (unsigned i = 0, e = NumTo; i != e; ++i) {
+ if (To[i].getNode()) {
+ AddToWorklist(To[i].getNode());
+ AddUsersToWorklist(To[i].getNode());
+ }
+ }
+ }
+
+ // Finally, if the node is now dead, remove it from the graph. The node
+ // may not be dead if the replacement process recursively simplified to
+ // something else needing this node.
+ if (N->use_empty())
+ deleteAndRecombine(N);
+ return SDValue(N, 0);
+}
+
+void DAGCombiner::
+CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
+ // Replace all uses. If any nodes become isomorphic to other nodes and
+ // are deleted, make sure to remove them from our worklist.
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
+
+ // Push the new node and any (possibly new) users onto the worklist.
+ AddToWorklist(TLO.New.getNode());
+ AddUsersToWorklist(TLO.New.getNode());
+
+ // Finally, if the node is now dead, remove it from the graph. The node
+ // may not be dead if the replacement process recursively simplified to
+ // something else needing this node.
+ if (TLO.Old.getNode()->use_empty())
+ deleteAndRecombine(TLO.Old.getNode());
+}
+
+/// Check the specified integer node value to see if it can be simplified or if
+/// things it uses can be simplified by bit propagation. If so, return true.
+bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
+ TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
+ APInt KnownZero, KnownOne;
+ if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
+ return false;
+
+ // Revisit the node.
+ AddToWorklist(Op.getNode());
+
+ // Replace the old value with the new one.
+ ++NodesCombined;
+ DEBUG(dbgs() << "\nReplacing.2 ";
+ TLO.Old.getNode()->dump(&DAG);
+ dbgs() << "\nWith: ";
+ TLO.New.getNode()->dump(&DAG);
+ dbgs() << '\n');
+
+ CommitTargetLoweringOpt(TLO);
+ return true;
+}
+
+void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
+ SDLoc dl(Load);
+ EVT VT = Load->getValueType(0);
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
+
+ DEBUG(dbgs() << "\nReplacing.9 ";
+ Load->dump(&DAG);
+ dbgs() << "\nWith: ";
+ Trunc.getNode()->dump(&DAG);
+ dbgs() << '\n');
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
+ deleteAndRecombine(Load);
+ AddToWorklist(Trunc.getNode());
+}
+
+SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
+ Replace = false;
+ SDLoc dl(Op);
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
+ EVT MemVT = LD->getMemoryVT();
+ ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
+ ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
+ : ISD::EXTLOAD)
+ : LD->getExtensionType();
+ Replace = true;
+ return DAG.getExtLoad(ExtType, dl, PVT,
+ LD->getChain(), LD->getBasePtr(),
+ MemVT, LD->getMemOperand());
+ }
+
+ unsigned Opc = Op.getOpcode();
+ switch (Opc) {
+ default: break;
+ case ISD::AssertSext:
+ return DAG.getNode(ISD::AssertSext, dl, PVT,
+ SExtPromoteOperand(Op.getOperand(0), PVT),
+ Op.getOperand(1));
+ case ISD::AssertZext:
+ return DAG.getNode(ISD::AssertZext, dl, PVT,
+ ZExtPromoteOperand(Op.getOperand(0), PVT),
+ Op.getOperand(1));
+ case ISD::Constant: {
+ unsigned ExtOpc =
+ Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ return DAG.getNode(ExtOpc, dl, PVT, Op);
+ }
+ }
+
+ if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
+ return SDValue();
+ return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
+}
+
+SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
+ if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
+ return SDValue();
+ EVT OldVT = Op.getValueType();
+ SDLoc dl(Op);
+ bool Replace = false;
+ SDValue NewOp = PromoteOperand(Op, PVT, Replace);
+ if (!NewOp.getNode())
+ return SDValue();
+ AddToWorklist(NewOp.getNode());
+
+ if (Replace)
+ ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
+ DAG.getValueType(OldVT));
+}
+
+SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
+ EVT OldVT = Op.getValueType();
+ SDLoc dl(Op);
+ bool Replace = false;
+ SDValue NewOp = PromoteOperand(Op, PVT, Replace);
+ if (!NewOp.getNode())
+ return SDValue();
+ AddToWorklist(NewOp.getNode());
+
+ if (Replace)
+ ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
+ return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
+}
+
+/// Promote the specified integer binary operation if the target indicates it is
+/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
+/// i32 since i16 instructions are longer.
+SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
+ if (!LegalOperations)
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ if (VT.isVector() || !VT.isInteger())
+ return SDValue();
+
+ // If operation type is 'undesirable', e.g. i16 on x86, consider
+ // promoting it.
+ unsigned Opc = Op.getOpcode();
+ if (TLI.isTypeDesirableForOp(Opc, VT))
+ return SDValue();
+
+ EVT PVT = VT;
+ // Consult target whether it is a good idea to promote this operation and
+ // what's the right type to promote it to.
+ if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
+ assert(PVT != VT && "Don't know what type to promote to!");
+
+ bool Replace0 = false;
+ SDValue N0 = Op.getOperand(0);
+ SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
+ if (!NN0.getNode())
+ return SDValue();
+
+ bool Replace1 = false;
+ SDValue N1 = Op.getOperand(1);
+ SDValue NN1;
+ if (N0 == N1)
+ NN1 = NN0;
+ else {
+ NN1 = PromoteOperand(N1, PVT, Replace1);
+ if (!NN1.getNode())
+ return SDValue();
+ }
+
+ AddToWorklist(NN0.getNode());
+ if (NN1.getNode())
+ AddToWorklist(NN1.getNode());
+
+ if (Replace0)
+ ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
+ if (Replace1)
+ ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
+
+ DEBUG(dbgs() << "\nPromoting ";
+ Op.getNode()->dump(&DAG));
+ SDLoc dl(Op);
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(Opc, dl, PVT, NN0, NN1));
+ }
+ return SDValue();
+}
+
+/// Promote the specified integer shift operation if the target indicates it is
+/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
+/// i32 since i16 instructions are longer.
+SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
+ if (!LegalOperations)
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ if (VT.isVector() || !VT.isInteger())
+ return SDValue();
+
+ // If operation type is 'undesirable', e.g. i16 on x86, consider
+ // promoting it.
+ unsigned Opc = Op.getOpcode();
+ if (TLI.isTypeDesirableForOp(Opc, VT))
+ return SDValue();
+
+ EVT PVT = VT;
+ // Consult target whether it is a good idea to promote this operation and
+ // what's the right type to promote it to.
+ if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
+ assert(PVT != VT && "Don't know what type to promote to!");
+
+ bool Replace = false;
+ SDValue N0 = Op.getOperand(0);
+ if (Opc == ISD::SRA)
+ N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
+ else if (Opc == ISD::SRL)
+ N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
+ else
+ N0 = PromoteOperand(N0, PVT, Replace);
+ if (!N0.getNode())
+ return SDValue();
+
+ AddToWorklist(N0.getNode());
+ if (Replace)
+ ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
+
+ DEBUG(dbgs() << "\nPromoting ";
+ Op.getNode()->dump(&DAG));
+ SDLoc dl(Op);
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::PromoteExtend(SDValue Op) {
+ if (!LegalOperations)
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ if (VT.isVector() || !VT.isInteger())
+ return SDValue();
+
+ // If operation type is 'undesirable', e.g. i16 on x86, consider
+ // promoting it.
+ unsigned Opc = Op.getOpcode();
+ if (TLI.isTypeDesirableForOp(Opc, VT))
+ return SDValue();
+
+ EVT PVT = VT;
+ // Consult target whether it is a good idea to promote this operation and
+ // what's the right type to promote it to.
+ if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
+ assert(PVT != VT && "Don't know what type to promote to!");
+ // fold (aext (aext x)) -> (aext x)
+ // fold (aext (zext x)) -> (zext x)
+ // fold (aext (sext x)) -> (sext x)
+ DEBUG(dbgs() << "\nPromoting ";
+ Op.getNode()->dump(&DAG));
+ return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
+ }
+ return SDValue();
+}
+
+bool DAGCombiner::PromoteLoad(SDValue Op) {
+ if (!LegalOperations)
+ return false;
+
+ EVT VT = Op.getValueType();
+ if (VT.isVector() || !VT.isInteger())
+ return false;
+
+ // If operation type is 'undesirable', e.g. i16 on x86, consider
+ // promoting it.
+ unsigned Opc = Op.getOpcode();
+ if (TLI.isTypeDesirableForOp(Opc, VT))
+ return false;
+
+ EVT PVT = VT;
+ // Consult target whether it is a good idea to promote this operation and
+ // what's the right type to promote it to.
+ if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
+ assert(PVT != VT && "Don't know what type to promote to!");
+
+ SDLoc dl(Op);
+ SDNode *N = Op.getNode();
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ EVT MemVT = LD->getMemoryVT();
+ ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
+ ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
+ : ISD::EXTLOAD)
+ : LD->getExtensionType();
+ SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
+ LD->getChain(), LD->getBasePtr(),
+ MemVT, LD->getMemOperand());
+ SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
+
+ DEBUG(dbgs() << "\nPromoting ";
+ N->dump(&DAG);
+ dbgs() << "\nTo: ";
+ Result.getNode()->dump(&DAG);
+ dbgs() << '\n');
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
+ deleteAndRecombine(N);
+ AddToWorklist(Result.getNode());
+ return true;
+ }
+ return false;
+}
+
+/// \brief Recursively delete a node which has no uses and any operands for
+/// which it is the only use.
+///
+/// Note that this both deletes the nodes and removes them from the worklist.
+/// It also adds any nodes who have had a user deleted to the worklist as they
+/// may now have only one use and subject to other combines.
+bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
+ if (!N->use_empty())
+ return false;
+
+ SmallSetVector<SDNode *, 16> Nodes;
+ Nodes.insert(N);
+ do {
+ N = Nodes.pop_back_val();
+ if (!N)
+ continue;
+
+ if (N->use_empty()) {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ Nodes.insert(N->getOperand(i).getNode());
+
+ removeFromWorklist(N);
+ DAG.DeleteNode(N);
+ } else {
+ AddToWorklist(N);
+ }
+ } while (!Nodes.empty());
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Main DAG Combiner implementation
+//===----------------------------------------------------------------------===//
+
+void DAGCombiner::Run(CombineLevel AtLevel) {
+ // set the instance variables, so that the various visit routines may use it.
+ Level = AtLevel;
+ LegalOperations = Level >= AfterLegalizeVectorOps;
+ LegalTypes = Level >= AfterLegalizeTypes;
+
+ // Add all the dag nodes to the worklist.
+ for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+ E = DAG.allnodes_end(); I != E; ++I)
+ AddToWorklist(I);
+
+ // Create a dummy node (which is not added to allnodes), that adds a reference
+ // to the root node, preventing it from being deleted, and tracking any
+ // changes of the root.
+ HandleSDNode Dummy(DAG.getRoot());
+
+ // while the worklist isn't empty, find a node and
+ // try and combine it.
+ while (!WorklistMap.empty()) {
+ SDNode *N;
+ // The Worklist holds the SDNodes in order, but it may contain null entries.
+ do {
+ N = Worklist.pop_back_val();
+ } while (!N);
+
+ bool GoodWorklistEntry = WorklistMap.erase(N);
+ (void)GoodWorklistEntry;
+ assert(GoodWorklistEntry &&
+ "Found a worklist entry without a corresponding map entry!");
+
+ // If N has no uses, it is dead. Make sure to revisit all N's operands once
+ // N is deleted from the DAG, since they too may now be dead or may have a
+ // reduced number of uses, allowing other xforms.
+ if (recursivelyDeleteUnusedNodes(N))
+ continue;
+
+ WorklistRemover DeadNodes(*this);
+
+ // If this combine is running after legalizing the DAG, re-legalize any
+ // nodes pulled off the worklist.
+ if (Level == AfterLegalizeDAG) {
+ SmallSetVector<SDNode *, 16> UpdatedNodes;
+ bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
+
+ for (SDNode *LN : UpdatedNodes) {
+ AddToWorklist(LN);
+ AddUsersToWorklist(LN);
+ }
+ if (!NIsValid)
+ continue;
+ }
+
+ DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
+
+ // Add any operands of the new node which have not yet been combined to the
+ // worklist as well. Because the worklist uniques things already, this
+ // won't repeatedly process the same operand.
+ CombinedNodes.insert(N);
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ if (!CombinedNodes.count(N->getOperand(i).getNode()))
+ AddToWorklist(N->getOperand(i).getNode());
+
+ SDValue RV = combine(N);
+
+ if (!RV.getNode())
+ continue;
+
+ ++NodesCombined;
+
+ // If we get back the same node we passed in, rather than a new node or
+ // zero, we know that the node must have defined multiple values and
+ // CombineTo was used. Since CombineTo takes care of the worklist
+ // mechanics for us, we have no work to do in this case.
+ if (RV.getNode() == N)
+ continue;
+
+ assert(N->getOpcode() != ISD::DELETED_NODE &&
+ RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
+ "Node was deleted but visit returned new node!");
+
+ DEBUG(dbgs() << " ... into: ";
+ RV.getNode()->dump(&DAG));
+
+ // Transfer debug value.
+ DAG.TransferDbgValues(SDValue(N, 0), RV);
+ if (N->getNumValues() == RV.getNode()->getNumValues())
+ DAG.ReplaceAllUsesWith(N, RV.getNode());
+ else {
+ assert(N->getValueType(0) == RV.getValueType() &&
+ N->getNumValues() == 1 && "Type mismatch");
+ SDValue OpV = RV;
+ DAG.ReplaceAllUsesWith(N, &OpV);
+ }
+
+ // Push the new node and any users onto the worklist
+ AddToWorklist(RV.getNode());
+ AddUsersToWorklist(RV.getNode());
+
+ // Finally, if the node is now dead, remove it from the graph. The node
+ // may not be dead if the replacement process recursively simplified to
+ // something else needing this node. This will also take care of adding any
+ // operands which have lost a user to the worklist.
+ recursivelyDeleteUnusedNodes(N);
+ }
+
+ // If the root changed (e.g. it was a dead load, update the root).
+ DAG.setRoot(Dummy.getValue());
+ DAG.RemoveDeadNodes();
+}
+
+SDValue DAGCombiner::visit(SDNode *N) {
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::TokenFactor: return visitTokenFactor(N);
+ case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
+ case ISD::ADD: return visitADD(N);
+ case ISD::SUB: return visitSUB(N);
+ case ISD::ADDC: return visitADDC(N);
+ case ISD::SUBC: return visitSUBC(N);
+ case ISD::ADDE: return visitADDE(N);
+ case ISD::SUBE: return visitSUBE(N);
+ case ISD::MUL: return visitMUL(N);
+ case ISD::SDIV: return visitSDIV(N);
+ case ISD::UDIV: return visitUDIV(N);
+ case ISD::SREM: return visitSREM(N);
+ case ISD::UREM: return visitUREM(N);
+ case ISD::MULHU: return visitMULHU(N);
+ case ISD::MULHS: return visitMULHS(N);
+ case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
+ case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
+ case ISD::SMULO: return visitSMULO(N);
+ case ISD::UMULO: return visitUMULO(N);
+ case ISD::SDIVREM: return visitSDIVREM(N);
+ case ISD::UDIVREM: return visitUDIVREM(N);
+ case ISD::AND: return visitAND(N);
+ case ISD::OR: return visitOR(N);
+ case ISD::XOR: return visitXOR(N);
+ case ISD::SHL: return visitSHL(N);
+ case ISD::SRA: return visitSRA(N);
+ case ISD::SRL: return visitSRL(N);
+ case ISD::ROTR:
+ case ISD::ROTL: return visitRotate(N);
+ case ISD::BSWAP: return visitBSWAP(N);
+ case ISD::CTLZ: return visitCTLZ(N);
+ case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
+ case ISD::CTTZ: return visitCTTZ(N);
+ case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
+ case ISD::CTPOP: return visitCTPOP(N);
+ case ISD::SELECT: return visitSELECT(N);
+ case ISD::VSELECT: return visitVSELECT(N);
+ case ISD::SELECT_CC: return visitSELECT_CC(N);
+ case ISD::SETCC: return visitSETCC(N);
+ case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
+ case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
+ case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
+ case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
+ case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
+ case ISD::TRUNCATE: return visitTRUNCATE(N);
+ case ISD::BITCAST: return visitBITCAST(N);
+ case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
+ case ISD::FADD: return visitFADD(N);
+ case ISD::FSUB: return visitFSUB(N);
+ case ISD::FMUL: return visitFMUL(N);
+ case ISD::FMA: return visitFMA(N);
+ case ISD::FDIV: return visitFDIV(N);
+ case ISD::FREM: return visitFREM(N);
+ case ISD::FSQRT: return visitFSQRT(N);
+ case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
+ case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
+ case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
+ case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
+ case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
+ case ISD::FP_ROUND: return visitFP_ROUND(N);
+ case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N);
+ case ISD::FP_EXTEND: return visitFP_EXTEND(N);
+ case ISD::FNEG: return visitFNEG(N);
+ case ISD::FABS: return visitFABS(N);
+ case ISD::FFLOOR: return visitFFLOOR(N);
+ case ISD::FMINNUM: return visitFMINNUM(N);
+ case ISD::FMAXNUM: return visitFMAXNUM(N);
+ case ISD::FCEIL: return visitFCEIL(N);
+ case ISD::FTRUNC: return visitFTRUNC(N);
+ case ISD::BRCOND: return visitBRCOND(N);
+ case ISD::BR_CC: return visitBR_CC(N);
+ case ISD::LOAD: return visitLOAD(N);
+ case ISD::STORE: return visitSTORE(N);
+ case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
+ case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
+ case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
+ case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
+ case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
+ case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
+ case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
+ case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
+ case ISD::MGATHER: return visitMGATHER(N);
+ case ISD::MLOAD: return visitMLOAD(N);
+ case ISD::MSCATTER: return visitMSCATTER(N);
+ case ISD::MSTORE: return visitMSTORE(N);
+ case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::combine(SDNode *N) {
+ SDValue RV = visit(N);
+
+ // If nothing happened, try a target-specific DAG combine.
+ if (!RV.getNode()) {
+ assert(N->getOpcode() != ISD::DELETED_NODE &&
+ "Node was deleted but visit returned NULL!");
+
+ if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
+ TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
+
+ // Expose the DAG combiner to the target combiner impls.
+ TargetLowering::DAGCombinerInfo
+ DagCombineInfo(DAG, Level, false, this);
+
+ RV = TLI.PerformDAGCombine(N, DagCombineInfo);
+ }
+ }
+
+ // If nothing happened still, try promoting the operation.
+ if (!RV.getNode()) {
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ RV = PromoteIntBinOp(SDValue(N, 0));
+ break;
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ RV = PromoteIntShiftOp(SDValue(N, 0));
+ break;
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ RV = PromoteExtend(SDValue(N, 0));
+ break;
+ case ISD::LOAD:
+ if (PromoteLoad(SDValue(N, 0)))
+ RV = SDValue(N, 0);
+ break;
+ }
+ }
+
+ // If N is a commutative binary node, try commuting it to enable more
+ // sdisel CSE.
+ if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
+ N->getNumValues() == 1) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // Constant operands are canonicalized to RHS.
+ if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
+ SDValue Ops[] = {N1, N0};
+ SDNode *CSENode;
+ if (const auto *BinNode = dyn_cast<BinaryWithFlagsSDNode>(N)) {
+ CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
+ &BinNode->Flags);
+ } else {
+ CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops);
+ }
+ if (CSENode)
+ return SDValue(CSENode, 0);
+ }
+ }
+
+ return RV;
+}
+
+/// Given a node, return its input chain if it has one, otherwise return a null
+/// sd operand.
+static SDValue getInputChainForNode(SDNode *N) {
+ if (unsigned NumOps = N->getNumOperands()) {
+ if (N->getOperand(0).getValueType() == MVT::Other)
+ return N->getOperand(0);
+ if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
+ return N->getOperand(NumOps-1);
+ for (unsigned i = 1; i < NumOps-1; ++i)
+ if (N->getOperand(i).getValueType() == MVT::Other)
+ return N->getOperand(i);
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
+ // If N has two operands, where one has an input chain equal to the other,
+ // the 'other' chain is redundant.
+ if (N->getNumOperands() == 2) {
+ if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
+ return N->getOperand(0);
+ if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
+ return N->getOperand(1);
+ }
+
+ SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
+ SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
+ SmallPtrSet<SDNode*, 16> SeenOps;
+ bool Changed = false; // If we should replace this token factor.
+
+ // Start out with this token factor.
+ TFs.push_back(N);
+
+ // Iterate through token factors. The TFs grows when new token factors are
+ // encountered.
+ for (unsigned i = 0; i < TFs.size(); ++i) {
+ SDNode *TF = TFs[i];
+
+ // Check each of the operands.
+ for (unsigned i = 0, ie = TF->getNumOperands(); i != ie; ++i) {
+ SDValue Op = TF->getOperand(i);
+
+ switch (Op.getOpcode()) {
+ case ISD::EntryToken:
+ // Entry tokens don't need to be added to the list. They are
+ // redundant.
+ Changed = true;
+ break;
+
+ case ISD::TokenFactor:
+ if (Op.hasOneUse() &&
+ std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
+ // Queue up for processing.
+ TFs.push_back(Op.getNode());
+ // Clean up in case the token factor is removed.
+ AddToWorklist(Op.getNode());
+ Changed = true;
+ break;
+ }
+ // Fall thru
+
+ default:
+ // Only add if it isn't already in the list.
+ if (SeenOps.insert(Op.getNode()).second)
+ Ops.push_back(Op);
+ else
+ Changed = true;
+ break;
+ }
+ }
+ }
+
+ SDValue Result;
+
+ // If we've changed things around then replace token factor.
+ if (Changed) {
+ if (Ops.empty()) {
+ // The entry token is the only possible outcome.
+ Result = DAG.getEntryNode();
+ } else {
+ // New and improved token factor.
+ Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
+ }
+
+ // Add users to worklist if AA is enabled, since it may introduce
+ // a lot of new chained token factors while removing memory deps.
+ bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
+ : DAG.getSubtarget().useAA();
+ return CombineTo(N, Result, UseAA /*add to worklist*/);
+ }
+
+ return Result;
+}
+
+/// MERGE_VALUES can always be eliminated.
+SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
+ WorklistRemover DeadNodes(*this);
+ // Replacing results may cause a different MERGE_VALUES to suddenly
+ // be CSE'd with N, and carry its uses with it. Iterate until no
+ // uses remain, to ensure that the node can be safely deleted.
+ // First add the users of this node to the work list so that they
+ // can be tried again once they have new operands.
+ AddUsersToWorklist(N);
+ do {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
+ } while (!N->use_empty());
+ deleteAndRecombine(N);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+}
+
+static bool isNullConstant(SDValue V) {
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
+ return Const != nullptr && Const->isNullValue();
+}
+
+static bool isNullFPConstant(SDValue V) {
+ ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
+ return Const != nullptr && Const->isZero() && !Const->isNegative();
+}
+
+static bool isAllOnesConstant(SDValue V) {
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
+ return Const != nullptr && Const->isAllOnesValue();
+}
+
+static bool isOneConstant(SDValue V) {
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
+ return Const != nullptr && Const->isOne();
+}
+
+/// If \p N is a ContantSDNode with isOpaque() == false return it casted to a
+/// ContantSDNode pointer else nullptr.
+static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
+ ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
+ return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
+}
+
+SDValue DAGCombiner::visitADD(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+
+ // fold vector ops
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (add x, 0) -> x, vector edition
+ if (ISD::isBuildVectorAllZeros(N1.getNode()))
+ return N0;
+ if (ISD::isBuildVectorAllZeros(N0.getNode()))
+ return N1;
+ }
+
+ // fold (add x, undef) -> undef
+ if (N0.getOpcode() == ISD::UNDEF)
+ return N0;
+ if (N1.getOpcode() == ISD::UNDEF)
+ return N1;
+ // fold (add c1, c2) -> c1+c2
+ ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+ ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
+ if (N0C && N1C)
+ return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, N0C, N1C);
+ // canonicalize constant to RHS
+ if (isConstantIntBuildVectorOrConstantInt(N0) &&
+ !isConstantIntBuildVectorOrConstantInt(N1))
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
+ // fold (add x, 0) -> x
+ if (isNullConstant(N1))
+ return N0;
+ // fold (add Sym, c) -> Sym+c
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
+ if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
+ GA->getOpcode() == ISD::GlobalAddress)
+ return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
+ GA->getOffset() +
+ (uint64_t)N1C->getSExtValue());
+ // fold ((c1-A)+c2) -> (c1+c2)-A
+ if (N1C && N0.getOpcode() == ISD::SUB)
+ if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getConstant(N1C->getAPIntValue()+
+ N0C->getAPIntValue(), DL, VT),
+ N0.getOperand(1));
+ }
+ // reassociate add
+ if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1))
+ return RADD;
+ // fold ((0-A) + B) -> B-A
+ if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0)))
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
+ // fold (A + (0-B)) -> A-B
+ if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0)))
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
+ // fold (A+(B-A)) -> B
+ if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
+ return N1.getOperand(0);
+ // fold ((B-A)+A) -> B
+ if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
+ return N0.getOperand(0);
+ // fold (A+(B-(A+C))) to (B-C)
+ if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
+ N0 == N1.getOperand(1).getOperand(0))
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
+ N1.getOperand(1).getOperand(1));
+ // fold (A+(B-(C+A))) to (B-C)
+ if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
+ N0 == N1.getOperand(1).getOperand(1))
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
+ N1.getOperand(1).getOperand(0));
+ // fold (A+((B-A)+or-C)) to (B+or-C)
+ if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
+ N1.getOperand(0).getOpcode() == ISD::SUB &&
+ N0 == N1.getOperand(0).getOperand(1))
+ return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
+ N1.getOperand(0).getOperand(0), N1.getOperand(1));
+
+ // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
+ if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
+ SDValue N00 = N0.getOperand(0);
+ SDValue N01 = N0.getOperand(1);
+ SDValue N10 = N1.getOperand(0);
+ SDValue N11 = N1.getOperand(1);
+
+ if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT,
+ DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
+ DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
+ }
+
+ if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+ // fold (a+b) -> (a|b) iff a and b share no bits.
+ if (VT.isInteger() && !VT.isVector()) {
+ APInt LHSZero, LHSOne;
+ APInt RHSZero, RHSOne;
+ DAG.computeKnownBits(N0, LHSZero, LHSOne);
+
+ if (LHSZero.getBoolValue()) {
+ DAG.computeKnownBits(N1, RHSZero, RHSOne);
+
+ // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
+ // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
+ if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero){
+ if (!LegalOperations || TLI.isOperationLegal(ISD::OR, VT))
+ return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
+ }
+ }
+ }
+
+ // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
+ if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
+ isNullConstant(N1.getOperand(0).getOperand(0)))
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
+ DAG.getNode(ISD::SHL, SDLoc(N), VT,
+ N1.getOperand(0).getOperand(1),
+ N1.getOperand(1)));
+ if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB &&
+ isNullConstant(N0.getOperand(0).getOperand(0)))
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
+ DAG.getNode(ISD::SHL, SDLoc(N), VT,
+ N0.getOperand(0).getOperand(1),
+ N0.getOperand(1)));
+
+ if (N1.getOpcode() == ISD::AND) {
+ SDValue AndOp0 = N1.getOperand(0);
+ unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
+ unsigned DestBits = VT.getScalarType().getSizeInBits();
+
+ // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
+ // and similar xforms where the inner op is either ~0 or 0.
+ if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
+ }
+ }
+
+ // add (sext i1), X -> sub X, (zext i1)
+ if (N0.getOpcode() == ISD::SIGN_EXTEND &&
+ N0.getOperand(0).getValueType() == MVT::i1 &&
+ !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
+ SDLoc DL(N);
+ SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
+ return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
+ }
+
+ // add X, (sextinreg Y i1) -> sub X, (and Y 1)
+ if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
+ if (TN->getVT() == MVT::i1) {
+ SDLoc DL(N);
+ SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
+ DAG.getConstant(1, DL, VT));
+ return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitADDC(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+
+ // If the flag result is dead, turn this into an ADD.
+ if (!N->hasAnyUseOfValue(1))
+ return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
+ DAG.getNode(ISD::CARRY_FALSE,
+ SDLoc(N), MVT::Glue));
+
+ // canonicalize constant to RHS.
+ ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (N0C && !N1C)
+ return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
+
+ // fold (addc x, 0) -> x + no carry out
+ if (isNullConstant(N1))
+ return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
+ SDLoc(N), MVT::Glue));
+
+ // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
+ APInt LHSZero, LHSOne;
+ APInt RHSZero, RHSOne;
+ DAG.computeKnownBits(N0, LHSZero, LHSOne);
+
+ if (LHSZero.getBoolValue()) {
+ DAG.computeKnownBits(N1, RHSZero, RHSOne);
+
+ // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
+ // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
+ if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
+ return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
+ DAG.getNode(ISD::CARRY_FALSE,
+ SDLoc(N), MVT::Glue));
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitADDE(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue CarryIn = N->getOperand(2);
+
+ // canonicalize constant to RHS
+ ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (N0C && !N1C)
+ return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
+ N1, N0, CarryIn);
+
+ // fold (adde x, y, false) -> (addc x, y)
+ if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
+ return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
+
+ return SDValue();
+}
+
+// Since it may not be valid to emit a fold to zero for vector initializers
+// check if we can before folding.
+static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
+ SelectionDAG &DAG,
+ bool LegalOperations, bool LegalTypes) {
+ if (!VT.isVector())
+ return DAG.getConstant(0, DL, VT);
+ if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
+ return DAG.getConstant(0, DL, VT);
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSUB(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+
+ // fold vector ops
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (sub x, 0) -> x, vector edition
+ if (ISD::isBuildVectorAllZeros(N1.getNode()))
+ return N0;
+ }
+
+ // fold (sub x, x) -> 0
+ // FIXME: Refactor this and xor and other similar operations together.
+ if (N0 == N1)
+ return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
+ // fold (sub c1, c2) -> c1-c2
+ ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+ ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
+ if (N0C && N1C)
+ return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, N0C, N1C);
+ // fold (sub x, c) -> (add x, -c)
+ if (N1C) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::ADD, DL, VT, N0,
+ DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
+ }
+ // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
+ if (isAllOnesConstant(N0))
+ return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
+ // fold A-(A-B) -> B
+ if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
+ return N1.getOperand(1);
+ // fold (A+B)-A -> B
+ if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
+ return N0.getOperand(1);
+ // fold (A+B)-B -> A
+ if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
+ return N0.getOperand(0);
+ // fold C2-(A+C1) -> (C2-C1)-A
+ ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr :
+ dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
+ if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
+ SDLoc DL(N);
+ SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
+ DL, VT);
+ return DAG.getNode(ISD::SUB, DL, VT, NewC,
+ N1.getOperand(0));
+ }
+ // fold ((A+(B+or-C))-B) -> A+or-C
+ if (N0.getOpcode() == ISD::ADD &&
+ (N0.getOperand(1).getOpcode() == ISD::SUB ||
+ N0.getOperand(1).getOpcode() == ISD::ADD) &&
+ N0.getOperand(1).getOperand(0) == N1)
+ return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1).getOperand(1));
+ // fold ((A+(C+B))-B) -> A+C
+ if (N0.getOpcode() == ISD::ADD &&
+ N0.getOperand(1).getOpcode() == ISD::ADD &&
+ N0.getOperand(1).getOperand(1) == N1)
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1).getOperand(0));
+ // fold ((A-(B-C))-C) -> A-B
+ if (N0.getOpcode() == ISD::SUB &&
+ N0.getOperand(1).getOpcode() == ISD::SUB &&
+ N0.getOperand(1).getOperand(1) == N1)
+ return DAG.getNode(ISD::SUB, SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1).getOperand(0));
+
+ // If either operand of a sub is undef, the result is undef
+ if (N0.getOpcode() == ISD::UNDEF)
+ return N0;
+ if (N1.getOpcode() == ISD::UNDEF)
+ return N1;
+
+ // If the relocation model supports it, consider symbol offsets.
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
+ if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
+ // fold (sub Sym, c) -> Sym-c
+ if (N1C && GA->getOpcode() == ISD::GlobalAddress)
+ return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
+ GA->getOffset() -
+ (uint64_t)N1C->getSExtValue());
+ // fold (sub Sym+c1, Sym+c2) -> c1-c2
+ if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
+ if (GA->getGlobal() == GB->getGlobal())
+ return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
+ SDLoc(N), VT);
+ }
+
+ // sub X, (sextinreg Y i1) -> add X, (and Y 1)
+ if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
+ if (TN->getVT() == MVT::i1) {
+ SDLoc DL(N);
+ SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
+ DAG.getConstant(1, DL, VT));
+ return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSUBC(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+
+ // If the flag result is dead, turn this into an SUB.
+ if (!N->hasAnyUseOfValue(1))
+ return CombineTo(N, DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1),
+ DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
+ MVT::Glue));
+
+ // fold (subc x, x) -> 0 + no borrow
+ if (N0 == N1) {
+ SDLoc DL(N);
+ return CombineTo(N, DAG.getConstant(0, DL, VT),
+ DAG.getNode(ISD::CARRY_FALSE, DL,
+ MVT::Glue));
+ }
+
+ // fold (subc x, 0) -> x + no borrow
+ if (isNullConstant(N1))
+ return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
+ MVT::Glue));
+
+ // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
+ if (isAllOnesConstant(N0))
+ return CombineTo(N, DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0),
+ DAG.getNode(ISD::CARRY_FALSE, SDLoc(N),
+ MVT::Glue));
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSUBE(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue CarryIn = N->getOperand(2);
+
+ // fold (sube x, y, false) -> (subc x, y)
+ if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
+ return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitMUL(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+
+ // fold (mul x, undef) -> 0
+ if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(N), VT);
+
+ bool N0IsConst = false;
+ bool N1IsConst = false;
+ bool N1IsOpaqueConst = false;
+ bool N0IsOpaqueConst = false;
+ APInt ConstValue0, ConstValue1;
+ // fold vector ops
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
+ N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
+ } else {
+ N0IsConst = isa<ConstantSDNode>(N0);
+ if (N0IsConst) {
+ ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
+ N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
+ }
+ N1IsConst = isa<ConstantSDNode>(N1);
+ if (N1IsConst) {
+ ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
+ N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
+ }
+ }
+
+ // fold (mul c1, c2) -> c1*c2
+ if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
+ return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
+ N0.getNode(), N1.getNode());
+
+ // canonicalize constant to RHS (vector doesn't have to splat)
+ if (isConstantIntBuildVectorOrConstantInt(N0) &&
+ !isConstantIntBuildVectorOrConstantInt(N1))
+ return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
+ // fold (mul x, 0) -> 0
+ if (N1IsConst && ConstValue1 == 0)
+ return N1;
+ // We require a splat of the entire scalar bit width for non-contiguous
+ // bit patterns.
+ bool IsFullSplat =
+ ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
+ // fold (mul x, 1) -> x
+ if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
+ return N0;
+ // fold (mul x, -1) -> 0-x
+ if (N1IsConst && ConstValue1.isAllOnesValue()) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getConstant(0, DL, VT), N0);
+ }
+ // fold (mul x, (1 << c)) -> x << c
+ if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() &&
+ IsFullSplat) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SHL, DL, VT, N0,
+ DAG.getConstant(ConstValue1.logBase2(), DL,
+ getShiftAmountTy(N0.getValueType())));
+ }
+ // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
+ if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() &&
+ IsFullSplat) {
+ unsigned Log2Val = (-ConstValue1).logBase2();
+ SDLoc DL(N);
+ // FIXME: If the input is something that is easily negated (e.g. a
+ // single-use add), we should put the negate there.
+ return DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getConstant(0, DL, VT),
+ DAG.getNode(ISD::SHL, DL, VT, N0,
+ DAG.getConstant(Log2Val, DL,
+ getShiftAmountTy(N0.getValueType()))));
+ }
+
+ APInt Val;
+ // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
+ if (N1IsConst && N0.getOpcode() == ISD::SHL &&
+ (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
+ isa<ConstantSDNode>(N0.getOperand(1)))) {
+ SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
+ N1, N0.getOperand(1));
+ AddToWorklist(C3.getNode());
+ return DAG.getNode(ISD::MUL, SDLoc(N), VT,
+ N0.getOperand(0), C3);
+ }
+
+ // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
+ // use.
+ {
+ SDValue Sh(nullptr,0), Y(nullptr,0);
+ // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
+ if (N0.getOpcode() == ISD::SHL &&
+ (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
+ isa<ConstantSDNode>(N0.getOperand(1))) &&
+ N0.getNode()->hasOneUse()) {
+ Sh = N0; Y = N1;
+ } else if (N1.getOpcode() == ISD::SHL &&
+ isa<ConstantSDNode>(N1.getOperand(1)) &&
+ N1.getNode()->hasOneUse()) {
+ Sh = N1; Y = N0;
+ }
+
+ if (Sh.getNode()) {
+ SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
+ Sh.getOperand(0), Y);
+ return DAG.getNode(ISD::SHL, SDLoc(N), VT,
+ Mul, Sh.getOperand(1));
+ }
+ }
+
+ // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
+ if (N1IsConst && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
+ (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
+ isa<ConstantSDNode>(N0.getOperand(1))))
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT,
+ DAG.getNode(ISD::MUL, SDLoc(N0), VT,
+ N0.getOperand(0), N1),
+ DAG.getNode(ISD::MUL, SDLoc(N1), VT,
+ N0.getOperand(1), N1));
+
+ // reassociate mul
+ if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1))
+ return RMUL;
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSDIV(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // fold vector ops
+ if (VT.isVector())
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (sdiv c1, c2) -> c1/c2
+ ConstantSDNode *N0C = isConstOrConstSplat(N0);
+ ConstantSDNode *N1C = isConstOrConstSplat(N1);
+ if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
+ return DAG.FoldConstantArithmetic(ISD::SDIV, SDLoc(N), VT, N0C, N1C);
+ // fold (sdiv X, 1) -> X
+ if (N1C && N1C->isOne())
+ return N0;
+ // fold (sdiv X, -1) -> 0-X
+ if (N1C && N1C->isAllOnesValue()) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getConstant(0, DL, VT), N0);
+ }
+ // If we know the sign bits of both operands are zero, strength reduce to a
+ // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
+ if (!VT.isVector()) {
+ if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::UDIV, SDLoc(N), N1.getValueType(),
+ N0, N1);
+ }
+
+ // fold (sdiv X, pow2) -> simple ops after legalize
+ if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
+ (N1C->getAPIntValue().isPowerOf2() ||
+ (-N1C->getAPIntValue()).isPowerOf2())) {
+ // If dividing by powers of two is cheap, then don't perform the following
+ // fold.
+ if (TLI.isPow2SDivCheap())
+ return SDValue();
+
+ // Target-specific implementation of sdiv x, pow2.
+ SDValue Res = BuildSDIVPow2(N);
+ if (Res.getNode())
+ return Res;
+
+ unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
+ SDLoc DL(N);
+
+ // Splat the sign bit into the register
+ SDValue SGN =
+ DAG.getNode(ISD::SRA, DL, VT, N0,
+ DAG.getConstant(VT.getScalarSizeInBits() - 1, DL,
+ getShiftAmountTy(N0.getValueType())));
+ AddToWorklist(SGN.getNode());
+
+ // Add (N0 < 0) ? abs2 - 1 : 0;
+ SDValue SRL =
+ DAG.getNode(ISD::SRL, DL, VT, SGN,
+ DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL,
+ getShiftAmountTy(SGN.getValueType())));
+ SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL);
+ AddToWorklist(SRL.getNode());
+ AddToWorklist(ADD.getNode()); // Divide by pow2
+ SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD,
+ DAG.getConstant(lg2, DL,
+ getShiftAmountTy(ADD.getValueType())));
+
+ // If we're dividing by a positive value, we're done. Otherwise, we must
+ // negate the result.
+ if (N1C->getAPIntValue().isNonNegative())
+ return SRA;
+
+ AddToWorklist(SRA.getNode());
+ return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
+ }
+
+ // If integer divide is expensive and we satisfy the requirements, emit an
+ // alternate sequence.
+ if (N1C && !TLI.isIntDivCheap()) {
+ SDValue Op = BuildSDIV(N);
+ if (Op.getNode()) return Op;
+ }
+
+ // undef / X -> 0
+ if (N0.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(N), VT);
+ // X / undef -> undef
+ if (N1.getOpcode() == ISD::UNDEF)
+ return N1;
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitUDIV(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // fold vector ops
+ if (VT.isVector())
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (udiv c1, c2) -> c1/c2
+ ConstantSDNode *N0C = isConstOrConstSplat(N0);
+ ConstantSDNode *N1C = isConstOrConstSplat(N1);
+ if (N0C && N1C)
+ if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, SDLoc(N), VT,
+ N0C, N1C))
+ return Folded;
+ // fold (udiv x, (1 << c)) -> x >>u c
+ if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2()) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SRL, DL, VT, N0,
+ DAG.getConstant(N1C->getAPIntValue().logBase2(), DL,
+ getShiftAmountTy(N0.getValueType())));
+ }
+ // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
+ if (N1.getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
+ if (SHC->getAPIntValue().isPowerOf2()) {
+ EVT ADDVT = N1.getOperand(1).getValueType();
+ SDLoc DL(N);
+ SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT,
+ N1.getOperand(1),
+ DAG.getConstant(SHC->getAPIntValue()
+ .logBase2(),
+ DL, ADDVT));
+ AddToWorklist(Add.getNode());
+ return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
+ }
+ }
+ }
+ // fold (udiv x, c) -> alternate
+ if (N1C && !TLI.isIntDivCheap()) {
+ SDValue Op = BuildUDIV(N);
+ if (Op.getNode()) return Op;
+ }
+
+ // undef / X -> 0
+ if (N0.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(N), VT);
+ // X / undef -> undef
+ if (N1.getOpcode() == ISD::UNDEF)
+ return N1;
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSREM(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // fold (srem c1, c2) -> c1%c2
+ ConstantSDNode *N0C = isConstOrConstSplat(N0);
+ ConstantSDNode *N1C = isConstOrConstSplat(N1);
+ if (N0C && N1C)
+ if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::SREM, SDLoc(N), VT,
+ N0C, N1C))
+ return Folded;
+ // If we know the sign bits of both operands are zero, strength reduce to a
+ // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
+ if (!VT.isVector()) {
+ if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::UREM, SDLoc(N), VT, N0, N1);
+ }
+
+ // If X/C can be simplified by the division-by-constant logic, lower
+ // X%C to the equivalent of X-X/C*C.
+ if (N1C && !N1C->isNullValue()) {
+ SDValue Div = DAG.getNode(ISD::SDIV, SDLoc(N), VT, N0, N1);
+ AddToWorklist(Div.getNode());
+ SDValue OptimizedDiv = combine(Div.getNode());
+ if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
+ SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
+ OptimizedDiv, N1);
+ SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
+ AddToWorklist(Mul.getNode());
+ return Sub;
+ }
+ }
+
+ // undef % X -> 0
+ if (N0.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(N), VT);
+ // X % undef -> undef
+ if (N1.getOpcode() == ISD::UNDEF)
+ return N1;
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitUREM(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // fold (urem c1, c2) -> c1%c2
+ ConstantSDNode *N0C = isConstOrConstSplat(N0);
+ ConstantSDNode *N1C = isConstOrConstSplat(N1);
+ if (N0C && N1C)
+ if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UREM, SDLoc(N), VT,
+ N0C, N1C))
+ return Folded;
+ // fold (urem x, pow2) -> (and x, pow2-1)
+ if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
+ N1C->getAPIntValue().isPowerOf2()) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::AND, DL, VT, N0,
+ DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT));
+ }
+ // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
+ if (N1.getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
+ if (SHC->getAPIntValue().isPowerOf2()) {
+ SDLoc DL(N);
+ SDValue Add =
+ DAG.getNode(ISD::ADD, DL, VT, N1,
+ DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL,
+ VT));
+ AddToWorklist(Add.getNode());
+ return DAG.getNode(ISD::AND, DL, VT, N0, Add);
+ }
+ }
+ }
+
+ // If X/C can be simplified by the division-by-constant logic, lower
+ // X%C to the equivalent of X-X/C*C.
+ if (N1C && !N1C->isNullValue()) {
+ SDValue Div = DAG.getNode(ISD::UDIV, SDLoc(N), VT, N0, N1);
+ AddToWorklist(Div.getNode());
+ SDValue OptimizedDiv = combine(Div.getNode());
+ if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
+ SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
+ OptimizedDiv, N1);
+ SDValue Sub = DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, Mul);
+ AddToWorklist(Mul.getNode());
+ return Sub;
+ }
+ }
+
+ // undef % X -> 0
+ if (N0.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(N), VT);
+ // X % undef -> undef
+ if (N1.getOpcode() == ISD::UNDEF)
+ return N1;
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitMULHS(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // fold (mulhs x, 0) -> 0
+ if (isNullConstant(N1))
+ return N1;
+ // fold (mulhs x, 1) -> (sra x, size(x)-1)
+ if (isOneConstant(N1)) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
+ DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
+ DL,
+ getShiftAmountTy(N0.getValueType())));
+ }
+ // fold (mulhs x, undef) -> 0
+ if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(N), VT);
+
+ // If the type twice as wide is legal, transform the mulhs to a wider multiply
+ // plus a shift.
+ if (VT.isSimple() && !VT.isVector()) {
+ MVT Simple = VT.getSimpleVT();
+ unsigned SimpleSize = Simple.getSizeInBits();
+ EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
+ if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
+ N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
+ N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
+ DAG.getConstant(SimpleSize, DL,
+ getShiftAmountTy(N1.getValueType())));
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitMULHU(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // fold (mulhu x, 0) -> 0
+ if (isNullConstant(N1))
+ return N1;
+ // fold (mulhu x, 1) -> 0
+ if (isOneConstant(N1))
+ return DAG.getConstant(0, DL, N0.getValueType());
+ // fold (mulhu x, undef) -> 0
+ if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, DL, VT);
+
+ // If the type twice as wide is legal, transform the mulhu to a wider multiply
+ // plus a shift.
+ if (VT.isSimple() && !VT.isVector()) {
+ MVT Simple = VT.getSimpleVT();
+ unsigned SimpleSize = Simple.getSizeInBits();
+ EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
+ if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
+ N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
+ N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
+ DAG.getConstant(SimpleSize, DL,
+ getShiftAmountTy(N1.getValueType())));
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
+ }
+ }
+
+ return SDValue();
+}
+
+/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
+/// give the opcodes for the two computations that are being performed. Return
+/// true if a simplification was made.
+SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
+ unsigned HiOp) {
+ // If the high half is not needed, just compute the low half.
+ bool HiExists = N->hasAnyUseOfValue(1);
+ if (!HiExists &&
+ (!LegalOperations ||
+ TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
+ SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
+ return CombineTo(N, Res, Res);
+ }
+
+ // If the low half is not needed, just compute the high half.
+ bool LoExists = N->hasAnyUseOfValue(0);
+ if (!LoExists &&
+ (!LegalOperations ||
+ TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
+ SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
+ return CombineTo(N, Res, Res);
+ }
+
+ // If both halves are used, return as it is.
+ if (LoExists && HiExists)
+ return SDValue();
+
+ // If the two computed results can be simplified separately, separate them.
+ if (LoExists) {
+ SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
+ AddToWorklist(Lo.getNode());
+ SDValue LoOpt = combine(Lo.getNode());
+ if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
+ (!LegalOperations ||
+ TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
+ return CombineTo(N, LoOpt, LoOpt);
+ }
+
+ if (HiExists) {
+ SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
+ AddToWorklist(Hi.getNode());
+ SDValue HiOpt = combine(Hi.getNode());
+ if (HiOpt.getNode() && HiOpt != Hi &&
+ (!LegalOperations ||
+ TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
+ return CombineTo(N, HiOpt, HiOpt);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
+ SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS);
+ if (Res.getNode()) return Res;
+
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // If the type is twice as wide is legal, transform the mulhu to a wider
+ // multiply plus a shift.
+ if (VT.isSimple() && !VT.isVector()) {
+ MVT Simple = VT.getSimpleVT();
+ unsigned SimpleSize = Simple.getSizeInBits();
+ EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
+ if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
+ SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
+ SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
+ Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
+ // Compute the high part as N1.
+ Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
+ DAG.getConstant(SimpleSize, DL,
+ getShiftAmountTy(Lo.getValueType())));
+ Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
+ // Compute the low part as N0.
+ Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
+ return CombineTo(N, Lo, Hi);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
+ SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU);
+ if (Res.getNode()) return Res;
+
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // If the type is twice as wide is legal, transform the mulhu to a wider
+ // multiply plus a shift.
+ if (VT.isSimple() && !VT.isVector()) {
+ MVT Simple = VT.getSimpleVT();
+ unsigned SimpleSize = Simple.getSizeInBits();
+ EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
+ if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
+ SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
+ SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
+ Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
+ // Compute the high part as N1.
+ Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
+ DAG.getConstant(SimpleSize, DL,
+ getShiftAmountTy(Lo.getValueType())));
+ Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
+ // Compute the low part as N0.
+ Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
+ return CombineTo(N, Lo, Hi);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSMULO(SDNode *N) {
+ // (smulo x, 2) -> (saddo x, x)
+ if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ if (C2->getAPIntValue() == 2)
+ return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
+ N->getOperand(0), N->getOperand(0));
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitUMULO(SDNode *N) {
+ // (umulo x, 2) -> (uaddo x, x)
+ if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ if (C2->getAPIntValue() == 2)
+ return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
+ N->getOperand(0), N->getOperand(0));
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSDIVREM(SDNode *N) {
+ SDValue Res = SimplifyNodeWithTwoResults(N, ISD::SDIV, ISD::SREM);
+ if (Res.getNode()) return Res;
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitUDIVREM(SDNode *N) {
+ SDValue Res = SimplifyNodeWithTwoResults(N, ISD::UDIV, ISD::UREM);
+ if (Res.getNode()) return Res;
+
+ return SDValue();
+}
+
+/// If this is a binary operator with two operands of the same opcode, try to
+/// simplify it.
+SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
+ SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+ assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
+
+ // Bail early if none of these transforms apply.
+ if (N0.getNode()->getNumOperands() == 0) return SDValue();
+
+ // For each of OP in AND/OR/XOR:
+ // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
+ // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
+ // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
+ // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
+ // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
+ //
+ // do not sink logical op inside of a vector extend, since it may combine
+ // into a vsetcc.
+ EVT Op0VT = N0.getOperand(0).getValueType();
+ if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
+ N0.getOpcode() == ISD::SIGN_EXTEND ||
+ N0.getOpcode() == ISD::BSWAP ||
+ // Avoid infinite looping with PromoteIntBinOp.
+ (N0.getOpcode() == ISD::ANY_EXTEND &&
+ (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
+ (N0.getOpcode() == ISD::TRUNCATE &&
+ (!TLI.isZExtFree(VT, Op0VT) ||
+ !TLI.isTruncateFree(Op0VT, VT)) &&
+ TLI.isTypeLegal(Op0VT))) &&
+ !VT.isVector() &&
+ Op0VT == N1.getOperand(0).getValueType() &&
+ (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
+ SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
+ N0.getOperand(0).getValueType(),
+ N0.getOperand(0), N1.getOperand(0));
+ AddToWorklist(ORNode.getNode());
+ return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
+ }
+
+ // For each of OP in SHL/SRL/SRA/AND...
+ // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
+ // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
+ // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
+ if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
+ N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
+ N0.getOperand(1) == N1.getOperand(1)) {
+ SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
+ N0.getOperand(0).getValueType(),
+ N0.getOperand(0), N1.getOperand(0));
+ AddToWorklist(ORNode.getNode());
+ return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
+ ORNode, N0.getOperand(1));
+ }
+
+ // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
+ // Only perform this optimization after type legalization and before
+ // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
+ // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
+ // we don't want to undo this promotion.
+ // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
+ // on scalars.
+ if ((N0.getOpcode() == ISD::BITCAST ||
+ N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
+ Level == AfterLegalizeTypes) {
+ SDValue In0 = N0.getOperand(0);
+ SDValue In1 = N1.getOperand(0);
+ EVT In0Ty = In0.getValueType();
+ EVT In1Ty = In1.getValueType();
+ SDLoc DL(N);
+ // If both incoming values are integers, and the original types are the
+ // same.
+ if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
+ SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
+ SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
+ AddToWorklist(Op.getNode());
+ return BC;
+ }
+ }
+
+ // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
+ // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
+ // If both shuffles use the same mask, and both shuffle within a single
+ // vector, then it is worthwhile to move the swizzle after the operation.
+ // The type-legalizer generates this pattern when loading illegal
+ // vector types from memory. In many cases this allows additional shuffle
+ // optimizations.
+ // There are other cases where moving the shuffle after the xor/and/or
+ // is profitable even if shuffles don't perform a swizzle.
+ // If both shuffles use the same mask, and both shuffles have the same first
+ // or second operand, then it might still be profitable to move the shuffle
+ // after the xor/and/or operation.
+ if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
+ ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
+ ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
+
+ assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
+ "Inputs to shuffles are not the same type");
+
+ // Check that both shuffles use the same mask. The masks are known to be of
+ // the same length because the result vector type is the same.
+ // Check also that shuffles have only one use to avoid introducing extra
+ // instructions.
+ if (SVN0->hasOneUse() && SVN1->hasOneUse() &&
+ SVN0->getMask().equals(SVN1->getMask())) {
+ SDValue ShOp = N0->getOperand(1);
+
+ // Don't try to fold this node if it requires introducing a
+ // build vector of all zeros that might be illegal at this stage.
+ if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) {
+ if (!LegalTypes)
+ ShOp = DAG.getConstant(0, SDLoc(N), VT);
+ else
+ ShOp = SDValue();
+ }
+
+ // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C)
+ // (OR (shuf (A, C), shuf (B, C)) -> shuf (OR (A, B), C)
+ // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0)
+ if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
+ SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
+ N0->getOperand(0), N1->getOperand(0));
+ AddToWorklist(NewNode.getNode());
+ return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp,
+ &SVN0->getMask()[0]);
+ }
+
+ // Don't try to fold this node if it requires introducing a
+ // build vector of all zeros that might be illegal at this stage.
+ ShOp = N0->getOperand(0);
+ if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) {
+ if (!LegalTypes)
+ ShOp = DAG.getConstant(0, SDLoc(N), VT);
+ else
+ ShOp = SDValue();
+ }
+
+ // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B))
+ // (OR (shuf (C, A), shuf (C, B)) -> shuf (C, OR (A, B))
+ // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B))
+ if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) {
+ SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
+ N0->getOperand(1), N1->getOperand(1));
+ AddToWorklist(NewNode.getNode());
+ return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode,
+ &SVN0->getMask()[0]);
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+/// This contains all DAGCombine rules which reduce two values combined by
+/// an And operation to a single value. This makes them reusable in the context
+/// of visitSELECT(). Rules involving constants are not included as
+/// visitSELECT() already handles those cases.
+SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
+ SDNode *LocReference) {
+ EVT VT = N1.getValueType();
+
+ // fold (and x, undef) -> 0
+ if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(LocReference), VT);
+ // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
+ SDValue LL, LR, RL, RR, CC0, CC1;
+ if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
+ ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
+ ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
+
+ if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
+ LL.getValueType().isInteger()) {
+ // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
+ if (isNullConstant(LR) && Op1 == ISD::SETEQ) {
+ SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ORNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ }
+ if (isAllOnesConstant(LR)) {
+ // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
+ if (Op1 == ISD::SETEQ) {
+ SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ANDNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
+ }
+ // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
+ if (Op1 == ISD::SETGT) {
+ SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ORNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ }
+ }
+ }
+ // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
+ if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
+ Op0 == Op1 && LL.getValueType().isInteger() &&
+ Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
+ (isAllOnesConstant(LR) && isNullConstant(RR)))) {
+ SDLoc DL(N0);
+ SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(),
+ LL, DAG.getConstant(1, DL,
+ LL.getValueType()));
+ AddToWorklist(ADDNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode,
+ DAG.getConstant(2, DL, LL.getValueType()),
+ ISD::SETUGE);
+ }
+ // canonicalize equivalent to ll == rl
+ if (LL == RR && LR == RL) {
+ Op1 = ISD::getSetCCSwappedOperands(Op1);
+ std::swap(RL, RR);
+ }
+ if (LL == RL && LR == RR) {
+ bool isInteger = LL.getValueType().isInteger();
+ ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
+ if (Result != ISD::SETCC_INVALID &&
+ (!LegalOperations ||
+ (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
+ TLI.isOperationLegal(ISD::SETCC,
+ getSetCCResultType(N0.getSimpleValueType())))))
+ return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
+ LL, LR, Result);
+ }
+ }
+
+ if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
+ VT.getSizeInBits() <= 64) {
+ if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ APInt ADDC = ADDI->getAPIntValue();
+ if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
+ // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
+ // immediate for an add, but it is legal if its top c2 bits are set,
+ // transform the ADD so the immediate doesn't need to be materialized
+ // in a register.
+ if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
+ APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
+ SRLI->getZExtValue());
+ if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
+ ADDC |= Mask;
+ if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
+ SDLoc DL(N0);
+ SDValue NewAdd =
+ DAG.getNode(ISD::ADD, DL, VT,
+ N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
+ CombineTo(N0.getNode(), NewAdd);
+ // Return N so it doesn't get rechecked!
+ return SDValue(LocReference, 0);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitAND(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N1.getValueType();
+
+ // fold vector ops
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (and x, 0) -> 0, vector edition
+ if (ISD::isBuildVectorAllZeros(N0.getNode()))
+ // do not return N0, because undef node may exist in N0
+ return DAG.getConstant(
+ APInt::getNullValue(
+ N0.getValueType().getScalarType().getSizeInBits()),
+ SDLoc(N), N0.getValueType());
+ if (ISD::isBuildVectorAllZeros(N1.getNode()))
+ // do not return N1, because undef node may exist in N1
+ return DAG.getConstant(
+ APInt::getNullValue(
+ N1.getValueType().getScalarType().getSizeInBits()),
+ SDLoc(N), N1.getValueType());
+
+ // fold (and x, -1) -> x, vector edition
+ if (ISD::isBuildVectorAllOnes(N0.getNode()))
+ return N1;
+ if (ISD::isBuildVectorAllOnes(N1.getNode()))
+ return N0;
+ }
+
+ // fold (and c1, c2) -> c1&c2
+ ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (N0C && N1C && !N1C->isOpaque())
+ return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
+ // canonicalize constant to RHS
+ if (isConstantIntBuildVectorOrConstantInt(N0) &&
+ !isConstantIntBuildVectorOrConstantInt(N1))
+ return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
+ // fold (and x, -1) -> x
+ if (isAllOnesConstant(N1))
+ return N0;
+ // if (and x, c) is known to be zero, return 0
+ unsigned BitWidth = VT.getScalarType().getSizeInBits();
+ if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
+ APInt::getAllOnesValue(BitWidth)))
+ return DAG.getConstant(0, SDLoc(N), VT);
+ // reassociate and
+ if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1))
+ return RAND;
+ // fold (and (or x, C), D) -> D if (C & D) == D
+ if (N1C && N0.getOpcode() == ISD::OR)
+ if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
+ if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
+ return N1;
+ // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
+ if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
+ SDValue N0Op0 = N0.getOperand(0);
+ APInt Mask = ~N1C->getAPIntValue();
+ Mask = Mask.trunc(N0Op0.getValueSizeInBits());
+ if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
+ SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
+ N0.getValueType(), N0Op0);
+
+ // Replace uses of the AND with uses of the Zero extend node.
+ CombineTo(N, Zext);
+
+ // We actually want to replace all uses of the any_extend with the
+ // zero_extend, to avoid duplicating things. This will later cause this
+ // AND to be folded.
+ CombineTo(N0.getNode(), Zext);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+ // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
+ // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
+ // already be zero by virtue of the width of the base type of the load.
+ //
+ // the 'X' node here can either be nothing or an extract_vector_elt to catch
+ // more cases.
+ if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ N0.getOperand(0).getOpcode() == ISD::LOAD) ||
+ N0.getOpcode() == ISD::LOAD) {
+ LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
+ N0 : N0.getOperand(0) );
+
+ // Get the constant (if applicable) the zero'th operand is being ANDed with.
+ // This can be a pure constant or a vector splat, in which case we treat the
+ // vector as a scalar and use the splat value.
+ APInt Constant = APInt::getNullValue(1);
+ if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
+ Constant = C->getAPIntValue();
+ } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
+ SplatBitSize, HasAnyUndefs);
+ if (IsSplat) {
+ // Undef bits can contribute to a possible optimisation if set, so
+ // set them.
+ SplatValue |= SplatUndef;
+
+ // The splat value may be something like "0x00FFFFFF", which means 0 for
+ // the first vector value and FF for the rest, repeating. We need a mask
+ // that will apply equally to all members of the vector, so AND all the
+ // lanes of the constant together.
+ EVT VT = Vector->getValueType(0);
+ unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
+
+ // If the splat value has been compressed to a bitlength lower
+ // than the size of the vector lane, we need to re-expand it to
+ // the lane size.
+ if (BitWidth > SplatBitSize)
+ for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
+ SplatBitSize < BitWidth;
+ SplatBitSize = SplatBitSize * 2)
+ SplatValue |= SplatValue.shl(SplatBitSize);
+
+ // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
+ // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
+ if (SplatBitSize % BitWidth == 0) {
+ Constant = APInt::getAllOnesValue(BitWidth);
+ for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
+ Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
+ }
+ }
+ }
+
+ // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
+ // actually legal and isn't going to get expanded, else this is a false
+ // optimisation.
+ bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
+ Load->getValueType(0),
+ Load->getMemoryVT());
+
+ // Resize the constant to the same size as the original memory access before
+ // extension. If it is still the AllOnesValue then this AND is completely
+ // unneeded.
+ Constant =
+ Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
+
+ bool B;
+ switch (Load->getExtensionType()) {
+ default: B = false; break;
+ case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
+ case ISD::ZEXTLOAD:
+ case ISD::NON_EXTLOAD: B = true; break;
+ }
+
+ if (B && Constant.isAllOnesValue()) {
+ // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
+ // preserve semantics once we get rid of the AND.
+ SDValue NewLoad(Load, 0);
+ if (Load->getExtensionType() == ISD::EXTLOAD) {
+ NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
+ Load->getValueType(0), SDLoc(Load),
+ Load->getChain(), Load->getBasePtr(),
+ Load->getOffset(), Load->getMemoryVT(),
+ Load->getMemOperand());
+ // Replace uses of the EXTLOAD with the new ZEXTLOAD.
+ if (Load->getNumValues() == 3) {
+ // PRE/POST_INC loads have 3 values.
+ SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
+ NewLoad.getValue(2) };
+ CombineTo(Load, To, 3, true);
+ } else {
+ CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
+ }
+ }
+
+ // Fold the AND away, taking care not to fold to the old load node if we
+ // replaced it.
+ CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
+
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ // fold (and (load x), 255) -> (zextload x, i8)
+ // fold (and (extload x, i16), 255) -> (zextload x, i8)
+ // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
+ if (N1C && (N0.getOpcode() == ISD::LOAD ||
+ (N0.getOpcode() == ISD::ANY_EXTEND &&
+ N0.getOperand(0).getOpcode() == ISD::LOAD))) {
+ bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
+ LoadSDNode *LN0 = HasAnyExt
+ ? cast<LoadSDNode>(N0.getOperand(0))
+ : cast<LoadSDNode>(N0);
+ if (LN0->getExtensionType() != ISD::SEXTLOAD &&
+ LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
+ uint32_t ActiveBits = N1C->getAPIntValue().getActiveBits();
+ if (ActiveBits > 0 && APIntOps::isMask(ActiveBits, N1C->getAPIntValue())){
+ EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
+ EVT LoadedVT = LN0->getMemoryVT();
+ EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
+
+ if (ExtVT == LoadedVT &&
+ (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy,
+ ExtVT))) {
+
+ SDValue NewLoad =
+ DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
+ LN0->getChain(), LN0->getBasePtr(), ExtVT,
+ LN0->getMemOperand());
+ AddToWorklist(N);
+ CombineTo(LN0, NewLoad, NewLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+
+ // Do not change the width of a volatile load.
+ // Do not generate loads of non-round integer types since these can
+ // be expensive (and would be wrong if the type is not byte sized).
+ if (!LN0->isVolatile() && LoadedVT.bitsGT(ExtVT) && ExtVT.isRound() &&
+ (!LegalOperations || TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy,
+ ExtVT))) {
+ EVT PtrType = LN0->getOperand(1).getValueType();
+
+ unsigned Alignment = LN0->getAlignment();
+ SDValue NewPtr = LN0->getBasePtr();
+
+ // For big endian targets, we need to add an offset to the pointer
+ // to load the correct bytes. For little endian systems, we merely
+ // need to read fewer bytes from the same pointer.
+ if (TLI.isBigEndian()) {
+ unsigned LVTStoreBytes = LoadedVT.getStoreSize();
+ unsigned EVTStoreBytes = ExtVT.getStoreSize();
+ unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
+ SDLoc DL(LN0);
+ NewPtr = DAG.getNode(ISD::ADD, DL, PtrType,
+ NewPtr, DAG.getConstant(PtrOff, DL, PtrType));
+ Alignment = MinAlign(Alignment, PtrOff);
+ }
+
+ AddToWorklist(NewPtr.getNode());
+
+ SDValue Load =
+ DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
+ LN0->getChain(), NewPtr,
+ LN0->getPointerInfo(),
+ ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
+ LN0->isInvariant(), Alignment, LN0->getAAInfo());
+ AddToWorklist(N);
+ CombineTo(LN0, Load, Load.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+ }
+ }
+
+ if (SDValue Combined = visitANDLike(N0, N1, N))
+ return Combined;
+
+ // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
+ if (N0.getOpcode() == N1.getOpcode()) {
+ SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+ if (Tmp.getNode()) return Tmp;
+ }
+
+ // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
+ // fold (and (sra)) -> (and (srl)) when possible.
+ if (!VT.isVector() &&
+ SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+ // fold (zext_inreg (extload x)) -> (zextload x)
+ if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ EVT MemVT = LN0->getMemoryVT();
+ // If we zero all the possible extended bits, then we can turn this into
+ // a zextload if we are running before legalize or the operation is legal.
+ unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
+ if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
+ BitWidth - MemVT.getScalarType().getSizeInBits())) &&
+ ((!LegalOperations && !LN0->isVolatile()) ||
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
+ SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
+ LN0->getChain(), LN0->getBasePtr(),
+ MemVT, LN0->getMemOperand());
+ AddToWorklist(N);
+ CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+ // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
+ if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
+ N0.hasOneUse()) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ EVT MemVT = LN0->getMemoryVT();
+ // If we zero all the possible extended bits, then we can turn this into
+ // a zextload if we are running before legalize or the operation is legal.
+ unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
+ if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
+ BitWidth - MemVT.getScalarType().getSizeInBits())) &&
+ ((!LegalOperations && !LN0->isVolatile()) ||
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
+ SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
+ LN0->getChain(), LN0->getBasePtr(),
+ MemVT, LN0->getMemOperand());
+ AddToWorklist(N);
+ CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+ // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
+ if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
+ SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
+ N0.getOperand(1), false);
+ if (BSwap.getNode())
+ return BSwap;
+ }
+
+ return SDValue();
+}
+
+/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
+SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
+ bool DemandHighBits) {
+ if (!LegalOperations)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
+ return SDValue();
+ if (!TLI.isOperationLegal(ISD::BSWAP, VT))
+ return SDValue();
+
+ // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
+ bool LookPassAnd0 = false;
+ bool LookPassAnd1 = false;
+ if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
+ std::swap(N0, N1);
+ if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
+ std::swap(N0, N1);
+ if (N0.getOpcode() == ISD::AND) {
+ if (!N0.getNode()->hasOneUse())
+ return SDValue();
+ ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!N01C || N01C->getZExtValue() != 0xFF00)
+ return SDValue();
+ N0 = N0.getOperand(0);
+ LookPassAnd0 = true;
+ }
+
+ if (N1.getOpcode() == ISD::AND) {
+ if (!N1.getNode()->hasOneUse())
+ return SDValue();
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C || N11C->getZExtValue() != 0xFF)
+ return SDValue();
+ N1 = N1.getOperand(0);
+ LookPassAnd1 = true;
+ }
+
+ if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
+ std::swap(N0, N1);
+ if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
+ return SDValue();
+ if (!N0.getNode()->hasOneUse() ||
+ !N1.getNode()->hasOneUse())
+ return SDValue();
+
+ ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N01C || !N11C)
+ return SDValue();
+ if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
+ return SDValue();
+
+ // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
+ SDValue N00 = N0->getOperand(0);
+ if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
+ if (!N00.getNode()->hasOneUse())
+ return SDValue();
+ ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
+ if (!N001C || N001C->getZExtValue() != 0xFF)
+ return SDValue();
+ N00 = N00.getOperand(0);
+ LookPassAnd0 = true;
+ }
+
+ SDValue N10 = N1->getOperand(0);
+ if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
+ if (!N10.getNode()->hasOneUse())
+ return SDValue();
+ ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
+ if (!N101C || N101C->getZExtValue() != 0xFF00)
+ return SDValue();
+ N10 = N10.getOperand(0);
+ LookPassAnd1 = true;
+ }
+
+ if (N00 != N10)
+ return SDValue();
+
+ // Make sure everything beyond the low halfword gets set to zero since the SRL
+ // 16 will clear the top bits.
+ unsigned OpSizeInBits = VT.getSizeInBits();
+ if (DemandHighBits && OpSizeInBits > 16) {
+ // If the left-shift isn't masked out then the only way this is a bswap is
+ // if all bits beyond the low 8 are 0. In that case the entire pattern
+ // reduces to a left shift anyway: leave it for other parts of the combiner.
+ if (!LookPassAnd0)
+ return SDValue();
+
+ // However, if the right shift isn't masked out then it might be because
+ // it's not needed. See if we can spot that too.
+ if (!LookPassAnd1 &&
+ !DAG.MaskedValueIsZero(
+ N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
+ return SDValue();
+ }
+
+ SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
+ if (OpSizeInBits > 16) {
+ SDLoc DL(N);
+ Res = DAG.getNode(ISD::SRL, DL, VT, Res,
+ DAG.getConstant(OpSizeInBits - 16, DL,
+ getShiftAmountTy(VT)));
+ }
+ return Res;
+}
+
+/// Return true if the specified node is an element that makes up a 32-bit
+/// packed halfword byteswap.
+/// ((x & 0x000000ff) << 8) |
+/// ((x & 0x0000ff00) >> 8) |
+/// ((x & 0x00ff0000) << 8) |
+/// ((x & 0xff000000) >> 8)
+static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
+ if (!N.getNode()->hasOneUse())
+ return false;
+
+ unsigned Opc = N.getOpcode();
+ if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
+ return false;
+
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!N1C)
+ return false;
+
+ unsigned Num;
+ switch (N1C->getZExtValue()) {
+ default:
+ return false;
+ case 0xFF: Num = 0; break;
+ case 0xFF00: Num = 1; break;
+ case 0xFF0000: Num = 2; break;
+ case 0xFF000000: Num = 3; break;
+ }
+
+ // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
+ SDValue N0 = N.getOperand(0);
+ if (Opc == ISD::AND) {
+ if (Num == 0 || Num == 2) {
+ // (x >> 8) & 0xff
+ // (x >> 8) & 0xff0000
+ if (N0.getOpcode() != ISD::SRL)
+ return false;
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!C || C->getZExtValue() != 8)
+ return false;
+ } else {
+ // (x << 8) & 0xff00
+ // (x << 8) & 0xff000000
+ if (N0.getOpcode() != ISD::SHL)
+ return false;
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!C || C->getZExtValue() != 8)
+ return false;
+ }
+ } else if (Opc == ISD::SHL) {
+ // (x & 0xff) << 8
+ // (x & 0xff0000) << 8
+ if (Num != 0 && Num != 2)
+ return false;
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!C || C->getZExtValue() != 8)
+ return false;
+ } else { // Opc == ISD::SRL
+ // (x & 0xff00) >> 8
+ // (x & 0xff000000) >> 8
+ if (Num != 1 && Num != 3)
+ return false;
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
+ if (!C || C->getZExtValue() != 8)
+ return false;
+ }
+
+ if (Parts[Num])
+ return false;
+
+ Parts[Num] = N0.getOperand(0).getNode();
+ return true;
+}
+
+/// Match a 32-bit packed halfword bswap. That is
+/// ((x & 0x000000ff) << 8) |
+/// ((x & 0x0000ff00) >> 8) |
+/// ((x & 0x00ff0000) << 8) |
+/// ((x & 0xff000000) >> 8)
+/// => (rotl (bswap x), 16)
+SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
+ if (!LegalOperations)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i32)
+ return SDValue();
+ if (!TLI.isOperationLegal(ISD::BSWAP, VT))
+ return SDValue();
+
+ // Look for either
+ // (or (or (and), (and)), (or (and), (and)))
+ // (or (or (or (and), (and)), (and)), (and))
+ if (N0.getOpcode() != ISD::OR)
+ return SDValue();
+ SDValue N00 = N0.getOperand(0);
+ SDValue N01 = N0.getOperand(1);
+ SDNode *Parts[4] = {};
+
+ if (N1.getOpcode() == ISD::OR &&
+ N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
+ // (or (or (and), (and)), (or (and), (and)))
+ SDValue N000 = N00.getOperand(0);
+ if (!isBSwapHWordElement(N000, Parts))
+ return SDValue();
+
+ SDValue N001 = N00.getOperand(1);
+ if (!isBSwapHWordElement(N001, Parts))
+ return SDValue();
+ SDValue N010 = N01.getOperand(0);
+ if (!isBSwapHWordElement(N010, Parts))
+ return SDValue();
+ SDValue N011 = N01.getOperand(1);
+ if (!isBSwapHWordElement(N011, Parts))
+ return SDValue();
+ } else {
+ // (or (or (or (and), (and)), (and)), (and))
+ if (!isBSwapHWordElement(N1, Parts))
+ return SDValue();
+ if (!isBSwapHWordElement(N01, Parts))
+ return SDValue();
+ if (N00.getOpcode() != ISD::OR)
+ return SDValue();
+ SDValue N000 = N00.getOperand(0);
+ if (!isBSwapHWordElement(N000, Parts))
+ return SDValue();
+ SDValue N001 = N00.getOperand(1);
+ if (!isBSwapHWordElement(N001, Parts))
+ return SDValue();
+ }
+
+ // Make sure the parts are all coming from the same node.
+ if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
+ return SDValue();
+
+ SDLoc DL(N);
+ SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
+ SDValue(Parts[0], 0));
+
+ // Result of the bswap should be rotated by 16. If it's not legal, then
+ // do (x << 16) | (x >> 16).
+ SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
+ if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
+ return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
+ if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
+ return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
+ return DAG.getNode(ISD::OR, DL, VT,
+ DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
+ DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
+}
+
+/// This contains all DAGCombine rules which reduce two values combined by
+/// an Or operation to a single value \see visitANDLike().
+SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) {
+ EVT VT = N1.getValueType();
+ // fold (or x, undef) -> -1
+ if (!LegalOperations &&
+ (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
+ EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
+ return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()),
+ SDLoc(LocReference), VT);
+ }
+ // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
+ SDValue LL, LR, RL, RR, CC0, CC1;
+ if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
+ ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
+ ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
+
+ if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) {
+ // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
+ // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
+ if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
+ SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ORNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
+ }
+ // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
+ // fold (or (setgt X, -1), (setgt Y -1)) -> (setgt (and X, Y), -1)
+ if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
+ SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
+ LR.getValueType(), LL, RL);
+ AddToWorklist(ANDNode.getNode());
+ return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
+ }
+ }
+ // canonicalize equivalent to ll == rl
+ if (LL == RR && LR == RL) {
+ Op1 = ISD::getSetCCSwappedOperands(Op1);
+ std::swap(RL, RR);
+ }
+ if (LL == RL && LR == RR) {
+ bool isInteger = LL.getValueType().isInteger();
+ ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
+ if (Result != ISD::SETCC_INVALID &&
+ (!LegalOperations ||
+ (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
+ TLI.isOperationLegal(ISD::SETCC,
+ getSetCCResultType(N0.getValueType())))))
+ return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
+ LL, LR, Result);
+ }
+ }
+
+ // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
+ if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
+ // Don't increase # computations.
+ (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
+ // We can only do this xform if we know that bits from X that are set in C2
+ // but not in C1 are already zero. Likewise for Y.
+ if (const ConstantSDNode *N0O1C =
+ getAsNonOpaqueConstant(N0.getOperand(1))) {
+ if (const ConstantSDNode *N1O1C =
+ getAsNonOpaqueConstant(N1.getOperand(1))) {
+ // We can only do this xform if we know that bits from X that are set in
+ // C2 but not in C1 are already zero. Likewise for Y.
+ const APInt &LHSMask = N0O1C->getAPIntValue();
+ const APInt &RHSMask = N1O1C->getAPIntValue();
+
+ if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
+ DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
+ SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
+ N0.getOperand(0), N1.getOperand(0));
+ SDLoc DL(LocReference);
+ return DAG.getNode(ISD::AND, DL, VT, X,
+ DAG.getConstant(LHSMask | RHSMask, DL, VT));
+ }
+ }
+ }
+ }
+
+ // (or (and X, M), (and X, N)) -> (and X, (or M, N))
+ if (N0.getOpcode() == ISD::AND &&
+ N1.getOpcode() == ISD::AND &&
+ N0.getOperand(0) == N1.getOperand(0) &&
+ // Don't increase # computations.
+ (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
+ SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
+ N0.getOperand(1), N1.getOperand(1));
+ return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitOR(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N1.getValueType();
+
+ // fold vector ops
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (or x, 0) -> x, vector edition
+ if (ISD::isBuildVectorAllZeros(N0.getNode()))
+ return N1;
+ if (ISD::isBuildVectorAllZeros(N1.getNode()))
+ return N0;
+
+ // fold (or x, -1) -> -1, vector edition
+ if (ISD::isBuildVectorAllOnes(N0.getNode()))
+ // do not return N0, because undef node may exist in N0
+ return DAG.getConstant(
+ APInt::getAllOnesValue(
+ N0.getValueType().getScalarType().getSizeInBits()),
+ SDLoc(N), N0.getValueType());
+ if (ISD::isBuildVectorAllOnes(N1.getNode()))
+ // do not return N1, because undef node may exist in N1
+ return DAG.getConstant(
+ APInt::getAllOnesValue(
+ N1.getValueType().getScalarType().getSizeInBits()),
+ SDLoc(N), N1.getValueType());
+
+ // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
+ // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
+ // Do this only if the resulting shuffle is legal.
+ if (isa<ShuffleVectorSDNode>(N0) &&
+ isa<ShuffleVectorSDNode>(N1) &&
+ // Avoid folding a node with illegal type.
+ TLI.isTypeLegal(VT) &&
+ N0->getOperand(1) == N1->getOperand(1) &&
+ ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) {
+ bool CanFold = true;
+ unsigned NumElts = VT.getVectorNumElements();
+ const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
+ const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
+ // We construct two shuffle masks:
+ // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand
+ // and N1 as the second operand.
+ // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand
+ // and N0 as the second operand.
+ // We do this because OR is commutable and therefore there might be
+ // two ways to fold this node into a shuffle.
+ SmallVector<int,4> Mask1;
+ SmallVector<int,4> Mask2;
+
+ for (unsigned i = 0; i != NumElts && CanFold; ++i) {
+ int M0 = SV0->getMaskElt(i);
+ int M1 = SV1->getMaskElt(i);
+
+ // Both shuffle indexes are undef. Propagate Undef.
+ if (M0 < 0 && M1 < 0) {
+ Mask1.push_back(M0);
+ Mask2.push_back(M0);
+ continue;
+ }
+
+ if (M0 < 0 || M1 < 0 ||
+ (M0 < (int)NumElts && M1 < (int)NumElts) ||
+ (M0 >= (int)NumElts && M1 >= (int)NumElts)) {
+ CanFold = false;
+ break;
+ }
+
+ Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts);
+ Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts);
+ }
+
+ if (CanFold) {
+ // Fold this sequence only if the resulting shuffle is 'legal'.
+ if (TLI.isShuffleMaskLegal(Mask1, VT))
+ return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0),
+ N1->getOperand(0), &Mask1[0]);
+ if (TLI.isShuffleMaskLegal(Mask2, VT))
+ return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0),
+ N0->getOperand(0), &Mask2[0]);
+ }
+ }
+ }
+
+ // fold (or c1, c2) -> c1|c2
+ ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (N0C && N1C && !N1C->isOpaque())
+ return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
+ // canonicalize constant to RHS
+ if (isConstantIntBuildVectorOrConstantInt(N0) &&
+ !isConstantIntBuildVectorOrConstantInt(N1))
+ return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
+ // fold (or x, 0) -> x
+ if (isNullConstant(N1))
+ return N0;
+ // fold (or x, -1) -> -1
+ if (isAllOnesConstant(N1))
+ return N1;
+ // fold (or x, c) -> c iff (x & ~c) == 0
+ if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
+ return N1;
+
+ if (SDValue Combined = visitORLike(N0, N1, N))
+ return Combined;
+
+ // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
+ SDValue BSwap = MatchBSwapHWord(N, N0, N1);
+ if (BSwap.getNode())
+ return BSwap;
+ BSwap = MatchBSwapHWordLow(N, N0, N1);
+ if (BSwap.getNode())
+ return BSwap;
+
+ // reassociate or
+ if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1))
+ return ROR;
+ // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
+ // iff (c1 & c2) == 0.
+ if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
+ isa<ConstantSDNode>(N0.getOperand(1))) {
+ ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
+ if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) {
+ if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
+ N1C, C1))
+ return DAG.getNode(
+ ISD::AND, SDLoc(N), VT,
+ DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR);
+ return SDValue();
+ }
+ }
+ // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
+ if (N0.getOpcode() == N1.getOpcode()) {
+ SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+ if (Tmp.getNode()) return Tmp;
+ }
+
+ // See if this is some rotate idiom.
+ if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
+ return SDValue(Rot, 0);
+
+ // Simplify the operands using demanded-bits information.
+ if (!VT.isVector() &&
+ SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+ return SDValue();
+}
+
+/// Match "(X shl/srl V1) & V2" where V2 may not be present.
+static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
+ if (Op.getOpcode() == ISD::AND) {
+ if (isa<ConstantSDNode>(Op.getOperand(1))) {
+ Mask = Op.getOperand(1);
+ Op = Op.getOperand(0);
+ } else {
+ return false;
+ }
+ }
+
+ if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
+ Shift = Op;
+ return true;
+ }
+
+ return false;
+}
+
+// Return true if we can prove that, whenever Neg and Pos are both in the
+// range [0, OpSize), Neg == (Pos == 0 ? 0 : OpSize - Pos). This means that
+// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
+//
+// (or (shift1 X, Neg), (shift2 X, Pos))
+//
+// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
+// in direction shift1 by Neg. The range [0, OpSize) means that we only need
+// to consider shift amounts with defined behavior.
+static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned OpSize) {
+ // If OpSize is a power of 2 then:
+ //
+ // (a) (Pos == 0 ? 0 : OpSize - Pos) == (OpSize - Pos) & (OpSize - 1)
+ // (b) Neg == Neg & (OpSize - 1) whenever Neg is in [0, OpSize).
+ //
+ // So if OpSize is a power of 2 and Neg is (and Neg', OpSize-1), we check
+ // for the stronger condition:
+ //
+ // Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1) [A]
+ //
+ // for all Neg and Pos. Since Neg & (OpSize - 1) == Neg' & (OpSize - 1)
+ // we can just replace Neg with Neg' for the rest of the function.
+ //
+ // In other cases we check for the even stronger condition:
+ //
+ // Neg == OpSize - Pos [B]
+ //
+ // for all Neg and Pos. Note that the (or ...) then invokes undefined
+ // behavior if Pos == 0 (and consequently Neg == OpSize).
+ //
+ // We could actually use [A] whenever OpSize is a power of 2, but the
+ // only extra cases that it would match are those uninteresting ones
+ // where Neg and Pos are never in range at the same time. E.g. for
+ // OpSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
+ // as well as (sub 32, Pos), but:
+ //
+ // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
+ //
+ // always invokes undefined behavior for 32-bit X.
+ //
+ // Below, Mask == OpSize - 1 when using [A] and is all-ones otherwise.
+ unsigned MaskLoBits = 0;
+ if (Neg.getOpcode() == ISD::AND &&
+ isPowerOf2_64(OpSize) &&
+ Neg.getOperand(1).getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(Neg.getOperand(1))->getAPIntValue() == OpSize - 1) {
+ Neg = Neg.getOperand(0);
+ MaskLoBits = Log2_64(OpSize);
+ }
+
+ // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
+ if (Neg.getOpcode() != ISD::SUB)
+ return 0;
+ ConstantSDNode *NegC = dyn_cast<ConstantSDNode>(Neg.getOperand(0));
+ if (!NegC)
+ return 0;
+ SDValue NegOp1 = Neg.getOperand(1);
+
+ // On the RHS of [A], if Pos is Pos' & (OpSize - 1), just replace Pos with
+ // Pos'. The truncation is redundant for the purpose of the equality.
+ if (MaskLoBits &&
+ Pos.getOpcode() == ISD::AND &&
+ Pos.getOperand(1).getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() == OpSize - 1)
+ Pos = Pos.getOperand(0);
+
+ // The condition we need is now:
+ //
+ // (NegC - NegOp1) & Mask == (OpSize - Pos) & Mask
+ //
+ // If NegOp1 == Pos then we need:
+ //
+ // OpSize & Mask == NegC & Mask
+ //
+ // (because "x & Mask" is a truncation and distributes through subtraction).
+ APInt Width;
+ if (Pos == NegOp1)
+ Width = NegC->getAPIntValue();
+ // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
+ // Then the condition we want to prove becomes:
+ //
+ // (NegC - NegOp1) & Mask == (OpSize - (NegOp1 + PosC)) & Mask
+ //
+ // which, again because "x & Mask" is a truncation, becomes:
+ //
+ // NegC & Mask == (OpSize - PosC) & Mask
+ // OpSize & Mask == (NegC + PosC) & Mask
+ else if (Pos.getOpcode() == ISD::ADD &&
+ Pos.getOperand(0) == NegOp1 &&
+ Pos.getOperand(1).getOpcode() == ISD::Constant)
+ Width = (cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() +
+ NegC->getAPIntValue());
+ else
+ return false;
+
+ // Now we just need to check that OpSize & Mask == Width & Mask.
+ if (MaskLoBits)
+ // Opsize & Mask is 0 since Mask is Opsize - 1.
+ return Width.getLoBits(MaskLoBits) == 0;
+ return Width == OpSize;
+}
+
+// A subroutine of MatchRotate used once we have found an OR of two opposite
+// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
+// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
+// former being preferred if supported. InnerPos and InnerNeg are Pos and
+// Neg with outer conversions stripped away.
+SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
+ SDValue Neg, SDValue InnerPos,
+ SDValue InnerNeg, unsigned PosOpcode,
+ unsigned NegOpcode, SDLoc DL) {
+ // fold (or (shl x, (*ext y)),
+ // (srl x, (*ext (sub 32, y)))) ->
+ // (rotl x, y) or (rotr x, (sub 32, y))
+ //
+ // fold (or (shl x, (*ext (sub 32, y))),
+ // (srl x, (*ext y))) ->
+ // (rotr x, y) or (rotl x, (sub 32, y))
+ EVT VT = Shifted.getValueType();
+ if (matchRotateSub(InnerPos, InnerNeg, VT.getSizeInBits())) {
+ bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
+ return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
+ HasPos ? Pos : Neg).getNode();
+ }
+
+ return nullptr;
+}
+
+// MatchRotate - Handle an 'or' of two operands. If this is one of the many
+// idioms for rotate, and if the target supports rotation instructions, generate
+// a rot[lr].
+SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
+ // Must be a legal type. Expanded 'n promoted things won't work with rotates.
+ EVT VT = LHS.getValueType();
+ if (!TLI.isTypeLegal(VT)) return nullptr;
+
+ // The target must have at least one rotate flavor.
+ bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
+ bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
+ if (!HasROTL && !HasROTR) return nullptr;
+
+ // Match "(X shl/srl V1) & V2" where V2 may not be present.
+ SDValue LHSShift; // The shift.
+ SDValue LHSMask; // AND value if any.
+ if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
+ return nullptr; // Not part of a rotate.
+
+ SDValue RHSShift; // The shift.
+ SDValue RHSMask; // AND value if any.
+ if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
+ return nullptr; // Not part of a rotate.
+
+ if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
+ return nullptr; // Not shifting the same value.
+
+ if (LHSShift.getOpcode() == RHSShift.getOpcode())
+ return nullptr; // Shifts must disagree.
+
+ // Canonicalize shl to left side in a shl/srl pair.
+ if (RHSShift.getOpcode() == ISD::SHL) {
+ std::swap(LHS, RHS);
+ std::swap(LHSShift, RHSShift);
+ std::swap(LHSMask , RHSMask );
+ }
+
+ unsigned OpSizeInBits = VT.getSizeInBits();
+ SDValue LHSShiftArg = LHSShift.getOperand(0);
+ SDValue LHSShiftAmt = LHSShift.getOperand(1);
+ SDValue RHSShiftArg = RHSShift.getOperand(0);
+ SDValue RHSShiftAmt = RHSShift.getOperand(1);
+
+ // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
+ // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
+ if (LHSShiftAmt.getOpcode() == ISD::Constant &&
+ RHSShiftAmt.getOpcode() == ISD::Constant) {
+ uint64_t LShVal = cast<ConstantSDNode>(LHSShiftAmt)->getZExtValue();
+ uint64_t RShVal = cast<ConstantSDNode>(RHSShiftAmt)->getZExtValue();
+ if ((LShVal + RShVal) != OpSizeInBits)
+ return nullptr;
+
+ SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
+ LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
+
+ // If there is an AND of either shifted operand, apply it to the result.
+ if (LHSMask.getNode() || RHSMask.getNode()) {
+ APInt Mask = APInt::getAllOnesValue(OpSizeInBits);
+
+ if (LHSMask.getNode()) {
+ APInt RHSBits = APInt::getLowBitsSet(OpSizeInBits, LShVal);
+ Mask &= cast<ConstantSDNode>(LHSMask)->getAPIntValue() | RHSBits;
+ }
+ if (RHSMask.getNode()) {
+ APInt LHSBits = APInt::getHighBitsSet(OpSizeInBits, RShVal);
+ Mask &= cast<ConstantSDNode>(RHSMask)->getAPIntValue() | LHSBits;
+ }
+
+ Rot = DAG.getNode(ISD::AND, DL, VT, Rot, DAG.getConstant(Mask, DL, VT));
+ }
+
+ return Rot.getNode();
+ }
+
+ // If there is a mask here, and we have a variable shift, we can't be sure
+ // that we're masking out the right stuff.
+ if (LHSMask.getNode() || RHSMask.getNode())
+ return nullptr;
+
+ // If the shift amount is sign/zext/any-extended just peel it off.
+ SDValue LExtOp0 = LHSShiftAmt;
+ SDValue RExtOp0 = RHSShiftAmt;
+ if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
+ LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
+ LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
+ LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
+ (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
+ RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
+ RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
+ RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
+ LExtOp0 = LHSShiftAmt.getOperand(0);
+ RExtOp0 = RHSShiftAmt.getOperand(0);
+ }
+
+ SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
+ LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
+ if (TryL)
+ return TryL;
+
+ SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
+ RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
+ if (TryR)
+ return TryR;
+
+ return nullptr;
+}
+
+SDValue DAGCombiner::visitXOR(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+
+ // fold vector ops
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (xor x, 0) -> x, vector edition
+ if (ISD::isBuildVectorAllZeros(N0.getNode()))
+ return N1;
+ if (ISD::isBuildVectorAllZeros(N1.getNode()))
+ return N0;
+ }
+
+ // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
+ if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(N), VT);
+ // fold (xor x, undef) -> undef
+ if (N0.getOpcode() == ISD::UNDEF)
+ return N0;
+ if (N1.getOpcode() == ISD::UNDEF)
+ return N1;
+ // fold (xor c1, c2) -> c1^c2
+ ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+ ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
+ if (N0C && N1C)
+ return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C);
+ // canonicalize constant to RHS
+ if (isConstantIntBuildVectorOrConstantInt(N0) &&
+ !isConstantIntBuildVectorOrConstantInt(N1))
+ return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
+ // fold (xor x, 0) -> x
+ if (isNullConstant(N1))
+ return N0;
+ // reassociate xor
+ if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1))
+ return RXOR;
+
+ // fold !(x cc y) -> (x !cc y)
+ SDValue LHS, RHS, CC;
+ if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
+ bool isInt = LHS.getValueType().isInteger();
+ ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
+ isInt);
+
+ if (!LegalOperations ||
+ TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
+ switch (N0.getOpcode()) {
+ default:
+ llvm_unreachable("Unhandled SetCC Equivalent!");
+ case ISD::SETCC:
+ return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
+ case ISD::SELECT_CC:
+ return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
+ N0.getOperand(3), NotCC);
+ }
+ }
+ }
+
+ // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
+ if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND &&
+ N0.getNode()->hasOneUse() &&
+ isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
+ SDValue V = N0.getOperand(0);
+ SDLoc DL(N0);
+ V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V,
+ DAG.getConstant(1, DL, V.getValueType()));
+ AddToWorklist(V.getNode());
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
+ }
+
+ // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
+ if (isOneConstant(N1) && VT == MVT::i1 &&
+ (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
+ SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
+ if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
+ unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
+ LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
+ RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
+ AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
+ return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
+ }
+ }
+ // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
+ if (isAllOnesConstant(N1) &&
+ (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
+ SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
+ if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
+ unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
+ LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
+ RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
+ AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
+ return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
+ }
+ }
+ // fold (xor (and x, y), y) -> (and (not x), y)
+ if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
+ N0->getOperand(1) == N1) {
+ SDValue X = N0->getOperand(0);
+ SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
+ AddToWorklist(NotX.getNode());
+ return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
+ }
+ // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
+ if (N1C && N0.getOpcode() == ISD::XOR) {
+ if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
+ DAG.getConstant(N1C->getAPIntValue() ^
+ N00C->getAPIntValue(), DL, VT));
+ }
+ if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
+ DAG.getConstant(N1C->getAPIntValue() ^
+ N01C->getAPIntValue(), DL, VT));
+ }
+ }
+ // fold (xor x, x) -> 0
+ if (N0 == N1)
+ return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
+
+ // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
+ // Here is a concrete example of this equivalence:
+ // i16 x == 14
+ // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
+ // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
+ //
+ // =>
+ //
+ // i16 ~1 == 0b1111111111111110
+ // i16 rol(~1, 14) == 0b1011111111111111
+ //
+ // Some additional tips to help conceptualize this transform:
+ // - Try to see the operation as placing a single zero in a value of all ones.
+ // - There exists no value for x which would allow the result to contain zero.
+ // - Values of x larger than the bitwidth are undefined and do not require a
+ // consistent result.
+ // - Pushing the zero left requires shifting one bits in from the right.
+ // A rotate left of ~1 is a nice way of achieving the desired result.
+ if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL
+ && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
+ N0.getOperand(1));
+ }
+
+ // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
+ if (N0.getOpcode() == N1.getOpcode()) {
+ SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N);
+ if (Tmp.getNode()) return Tmp;
+ }
+
+ // Simplify the expression using non-local knowledge.
+ if (!VT.isVector() &&
+ SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+ return SDValue();
+}
+
+/// Handle transforms common to the three shifts, when the shift amount is a
+/// constant.
+SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
+ SDNode *LHS = N->getOperand(0).getNode();
+ if (!LHS->hasOneUse()) return SDValue();
+
+ // We want to pull some binops through shifts, so that we have (and (shift))
+ // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
+ // thing happens with address calculations, so it's important to canonicalize
+ // it.
+ bool HighBitSet = false; // Can we transform this if the high bit is set?
+
+ switch (LHS->getOpcode()) {
+ default: return SDValue();
+ case ISD::OR:
+ case ISD::XOR:
+ HighBitSet = false; // We can only transform sra if the high bit is clear.
+ break;
+ case ISD::AND:
+ HighBitSet = true; // We can only transform sra if the high bit is set.
+ break;
+ case ISD::ADD:
+ if (N->getOpcode() != ISD::SHL)
+ return SDValue(); // only shl(add) not sr[al](add).
+ HighBitSet = false; // We can only transform sra if the high bit is clear.
+ break;
+ }
+
+ // We require the RHS of the binop to be a constant and not opaque as well.
+ ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
+ if (!BinOpCst) return SDValue();
+
+ // FIXME: disable this unless the input to the binop is a shift by a constant.
+ // If it is not a shift, it pessimizes some common cases like:
+ //
+ // void foo(int *X, int i) { X[i & 1235] = 1; }
+ // int bar(int *X, int i) { return X[i & 255]; }
+ SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
+ if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
+ BinOpLHSVal->getOpcode() != ISD::SRA &&
+ BinOpLHSVal->getOpcode() != ISD::SRL) ||
+ !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+
+ // If this is a signed shift right, and the high bit is modified by the
+ // logical operation, do not perform the transformation. The highBitSet
+ // boolean indicates the value of the high bit of the constant which would
+ // cause it to be modified for this operation.
+ if (N->getOpcode() == ISD::SRA) {
+ bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
+ if (BinOpRHSSignSet != HighBitSet)
+ return SDValue();
+ }
+
+ if (!TLI.isDesirableToCommuteWithShift(LHS))
+ return SDValue();
+
+ // Fold the constants, shifting the binop RHS by the shift amount.
+ SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
+ N->getValueType(0),
+ LHS->getOperand(1), N->getOperand(1));
+ assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
+
+ // Create the new shift.
+ SDValue NewShift = DAG.getNode(N->getOpcode(),
+ SDLoc(LHS->getOperand(0)),
+ VT, LHS->getOperand(0), N->getOperand(1));
+
+ // Create the new binop.
+ return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
+}
+
+SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
+ assert(N->getOpcode() == ISD::TRUNCATE);
+ assert(N->getOperand(0).getOpcode() == ISD::AND);
+
+ // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
+ if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
+ SDValue N01 = N->getOperand(0).getOperand(1);
+
+ if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) {
+ if (!N01C->isOpaque()) {
+ EVT TruncVT = N->getValueType(0);
+ SDValue N00 = N->getOperand(0).getOperand(0);
+ APInt TruncC = N01C->getAPIntValue();
+ TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits());
+ SDLoc DL(N);
+
+ return DAG.getNode(ISD::AND, DL, TruncVT,
+ DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00),
+ DAG.getConstant(TruncC, DL, TruncVT));
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitRotate(SDNode *N) {
+ // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
+ if (N->getOperand(1).getOpcode() == ISD::TRUNCATE &&
+ N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) {
+ SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode());
+ if (NewOp1.getNode())
+ return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
+ N->getOperand(0), NewOp1);
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSHL(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+ unsigned OpSizeInBits = VT.getScalarSizeInBits();
+
+ // fold vector ops
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
+ // If setcc produces all-one true value then:
+ // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
+ if (N1CV && N1CV->isConstant()) {
+ if (N0.getOpcode() == ISD::AND) {
+ SDValue N00 = N0->getOperand(0);
+ SDValue N01 = N0->getOperand(1);
+ BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
+
+ if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
+ TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
+ TargetLowering::ZeroOrNegativeOneBooleanContent) {
+ if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
+ N01CV, N1CV))
+ return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
+ }
+ } else {
+ N1C = isConstOrConstSplat(N1);
+ }
+ }
+ }
+
+ // fold (shl c1, c2) -> c1<<c2
+ ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+ if (N0C && N1C && !N1C->isOpaque())
+ return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
+ // fold (shl 0, x) -> 0
+ if (isNullConstant(N0))
+ return N0;
+ // fold (shl x, c >= size(x)) -> undef
+ if (N1C && N1C->getZExtValue() >= OpSizeInBits)
+ return DAG.getUNDEF(VT);
+ // fold (shl x, 0) -> x
+ if (N1C && N1C->isNullValue())
+ return N0;
+ // fold (shl undef, x) -> 0
+ if (N0.getOpcode() == ISD::UNDEF)
+ return DAG.getConstant(0, SDLoc(N), VT);
+ // if (shl x, c) is known to be zero, return 0
+ if (DAG.MaskedValueIsZero(SDValue(N, 0),
+ APInt::getAllOnesValue(OpSizeInBits)))
+ return DAG.getConstant(0, SDLoc(N), VT);
+ // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
+ if (N1.getOpcode() == ISD::TRUNCATE &&
+ N1.getOperand(0).getOpcode() == ISD::AND) {
+ SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
+ if (NewOp1.getNode())
+ return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
+ }
+
+ if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+ // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
+ if (N1C && N0.getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
+ uint64_t c1 = N0C1->getZExtValue();
+ uint64_t c2 = N1C->getZExtValue();
+ SDLoc DL(N);
+ if (c1 + c2 >= OpSizeInBits)
+ return DAG.getConstant(0, DL, VT);
+ return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
+ DAG.getConstant(c1 + c2, DL, N1.getValueType()));
+ }
+ }
+
+ // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
+ // For this to be valid, the second form must not preserve any of the bits
+ // that are shifted out by the inner shift in the first form. This means
+ // the outer shift size must be >= the number of bits added by the ext.
+ // As a corollary, we don't care what kind of ext it is.
+ if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
+ N0.getOpcode() == ISD::ANY_EXTEND ||
+ N0.getOpcode() == ISD::SIGN_EXTEND) &&
+ N0.getOperand(0).getOpcode() == ISD::SHL) {
+ SDValue N0Op0 = N0.getOperand(0);
+ if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
+ uint64_t c1 = N0Op0C1->getZExtValue();
+ uint64_t c2 = N1C->getZExtValue();
+ EVT InnerShiftVT = N0Op0.getValueType();
+ uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
+ if (c2 >= OpSizeInBits - InnerShiftSize) {
+ SDLoc DL(N0);
+ if (c1 + c2 >= OpSizeInBits)
+ return DAG.getConstant(0, DL, VT);
+ return DAG.getNode(ISD::SHL, DL, VT,
+ DAG.getNode(N0.getOpcode(), DL, VT,
+ N0Op0->getOperand(0)),
+ DAG.getConstant(c1 + c2, DL, N1.getValueType()));
+ }
+ }
+ }
+
+ // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
+ // Only fold this if the inner zext has no other uses to avoid increasing
+ // the total number of instructions.
+ if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
+ N0.getOperand(0).getOpcode() == ISD::SRL) {
+ SDValue N0Op0 = N0.getOperand(0);
+ if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
+ uint64_t c1 = N0Op0C1->getZExtValue();
+ if (c1 < VT.getScalarSizeInBits()) {
+ uint64_t c2 = N1C->getZExtValue();
+ if (c1 == c2) {
+ SDValue NewOp0 = N0.getOperand(0);
+ EVT CountVT = NewOp0.getOperand(1).getValueType();
+ SDLoc DL(N);
+ SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(),
+ NewOp0,
+ DAG.getConstant(c2, DL, CountVT));
+ AddToWorklist(NewSHL.getNode());
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
+ }
+ }
+ }
+ }
+
+ // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
+ // (and (srl x, (sub c1, c2), MASK)
+ // Only fold this if the inner shift has no other uses -- if it does, folding
+ // this will increase the total number of instructions.
+ if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
+ if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
+ uint64_t c1 = N0C1->getZExtValue();
+ if (c1 < OpSizeInBits) {
+ uint64_t c2 = N1C->getZExtValue();
+ APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
+ SDValue Shift;
+ if (c2 > c1) {
+ Mask = Mask.shl(c2 - c1);
+ SDLoc DL(N);
+ Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
+ DAG.getConstant(c2 - c1, DL, N1.getValueType()));
+ } else {
+ Mask = Mask.lshr(c1 - c2);
+ SDLoc DL(N);
+ Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
+ DAG.getConstant(c1 - c2, DL, N1.getValueType()));
+ }
+ SDLoc DL(N0);
+ return DAG.getNode(ISD::AND, DL, VT, Shift,
+ DAG.getConstant(Mask, DL, VT));
+ }
+ }
+ }
+ // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
+ if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
+ unsigned BitSize = VT.getScalarSizeInBits();
+ SDLoc DL(N);
+ SDValue HiBitsMask =
+ DAG.getConstant(APInt::getHighBitsSet(BitSize,
+ BitSize - N1C->getZExtValue()),
+ DL, VT);
+ return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
+ HiBitsMask);
+ }
+
+ // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
+ // Variant of version done on multiply, except mul by a power of 2 is turned
+ // into a shift.
+ APInt Val;
+ if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
+ (isa<ConstantSDNode>(N0.getOperand(1)) ||
+ isConstantSplatVector(N0.getOperand(1).getNode(), Val))) {
+ SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
+ SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1);
+ }
+
+ if (N1C && !N1C->isOpaque()) {
+ SDValue NewSHL = visitShiftByConstant(N, N1C);
+ if (NewSHL.getNode())
+ return NewSHL;
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSRA(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+ unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+
+ // fold vector ops
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ N1C = isConstOrConstSplat(N1);
+ }
+
+ // fold (sra c1, c2) -> (sra c1, c2)
+ ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+ if (N0C && N1C && !N1C->isOpaque())
+ return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
+ // fold (sra 0, x) -> 0
+ if (isNullConstant(N0))
+ return N0;
+ // fold (sra -1, x) -> -1
+ if (isAllOnesConstant(N0))
+ return N0;
+ // fold (sra x, (setge c, size(x))) -> undef
+ if (N1C && N1C->getZExtValue() >= OpSizeInBits)
+ return DAG.getUNDEF(VT);
+ // fold (sra x, 0) -> x
+ if (N1C && N1C->isNullValue())
+ return N0;
+ // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
+ // sext_inreg.
+ if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
+ unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
+ EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
+ if (VT.isVector())
+ ExtVT = EVT::getVectorVT(*DAG.getContext(),
+ ExtVT, VT.getVectorNumElements());
+ if ((!LegalOperations ||
+ TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
+ N0.getOperand(0), DAG.getValueType(ExtVT));
+ }
+
+ // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
+ if (N1C && N0.getOpcode() == ISD::SRA) {
+ if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) {
+ unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
+ if (Sum >= OpSizeInBits)
+ Sum = OpSizeInBits - 1;
+ SDLoc DL(N);
+ return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0),
+ DAG.getConstant(Sum, DL, N1.getValueType()));
+ }
+ }
+
+ // fold (sra (shl X, m), (sub result_size, n))
+ // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
+ // result_size - n != m.
+ // If truncate is free for the target sext(shl) is likely to result in better
+ // code.
+ if (N0.getOpcode() == ISD::SHL && N1C) {
+ // Get the two constanst of the shifts, CN0 = m, CN = n.
+ const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
+ if (N01C) {
+ LLVMContext &Ctx = *DAG.getContext();
+ // Determine what the truncate's result bitsize and type would be.
+ EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
+
+ if (VT.isVector())
+ TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
+
+ // Determine the residual right-shift amount.
+ signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
+
+ // If the shift is not a no-op (in which case this should be just a sign
+ // extend already), the truncated to type is legal, sign_extend is legal
+ // on that type, and the truncate to that type is both legal and free,
+ // perform the transform.
+ if ((ShiftAmt > 0) &&
+ TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
+ TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
+ TLI.isTruncateFree(VT, TruncVT)) {
+
+ SDLoc DL(N);
+ SDValue Amt = DAG.getConstant(ShiftAmt, DL,
+ getShiftAmountTy(N0.getOperand(0).getValueType()));
+ SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
+ N0.getOperand(0), Amt);
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
+ Shift);
+ return DAG.getNode(ISD::SIGN_EXTEND, DL,
+ N->getValueType(0), Trunc);
+ }
+ }
+ }
+
+ // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
+ if (N1.getOpcode() == ISD::TRUNCATE &&
+ N1.getOperand(0).getOpcode() == ISD::AND) {
+ SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
+ if (NewOp1.getNode())
+ return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
+ }
+
+ // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
+ // if c1 is equal to the number of bits the trunc removes
+ if (N0.getOpcode() == ISD::TRUNCATE &&
+ (N0.getOperand(0).getOpcode() == ISD::SRL ||
+ N0.getOperand(0).getOpcode() == ISD::SRA) &&
+ N0.getOperand(0).hasOneUse() &&
+ N0.getOperand(0).getOperand(1).hasOneUse() &&
+ N1C) {
+ SDValue N0Op0 = N0.getOperand(0);
+ if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
+ unsigned LargeShiftVal = LargeShift->getZExtValue();
+ EVT LargeVT = N0Op0.getValueType();
+
+ if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
+ SDLoc DL(N);
+ SDValue Amt =
+ DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL,
+ getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
+ SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT,
+ N0Op0.getOperand(0), Amt);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
+ }
+ }
+ }
+
+ // Simplify, based on bits shifted out of the LHS.
+ if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+
+ // If the sign bit is known to be zero, switch this to a SRL.
+ if (DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
+
+ if (N1C && !N1C->isOpaque()) {
+ SDValue NewSRA = visitShiftByConstant(N, N1C);
+ if (NewSRA.getNode())
+ return NewSRA;
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSRL(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+ unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
+
+ // fold vector ops
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (VT.isVector()) {
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ N1C = isConstOrConstSplat(N1);
+ }
+
+ // fold (srl c1, c2) -> c1 >>u c2
+ ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
+ if (N0C && N1C && !N1C->isOpaque())
+ return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
+ // fold (srl 0, x) -> 0
+ if (isNullConstant(N0))
+ return N0;
+ // fold (srl x, c >= size(x)) -> undef
+ if (N1C && N1C->getZExtValue() >= OpSizeInBits)
+ return DAG.getUNDEF(VT);
+ // fold (srl x, 0) -> x
+ if (N1C && N1C->isNullValue())
+ return N0;
+ // if (srl x, c) is known to be zero, return 0
+ if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
+ APInt::getAllOnesValue(OpSizeInBits)))
+ return DAG.getConstant(0, SDLoc(N), VT);
+
+ // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
+ if (N1C && N0.getOpcode() == ISD::SRL) {
+ if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) {
+ uint64_t c1 = N01C->getZExtValue();
+ uint64_t c2 = N1C->getZExtValue();
+ SDLoc DL(N);
+ if (c1 + c2 >= OpSizeInBits)
+ return DAG.getConstant(0, DL, VT);
+ return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
+ DAG.getConstant(c1 + c2, DL, N1.getValueType()));
+ }
+ }
+
+ // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
+ if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
+ N0.getOperand(0).getOpcode() == ISD::SRL &&
+ isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
+ uint64_t c1 =
+ cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
+ uint64_t c2 = N1C->getZExtValue();
+ EVT InnerShiftVT = N0.getOperand(0).getValueType();
+ EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
+ uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
+ // This is only valid if the OpSizeInBits + c1 = size of inner shift.
+ if (c1 + OpSizeInBits == InnerShiftSize) {
+ SDLoc DL(N0);
+ if (c1 + c2 >= InnerShiftSize)
+ return DAG.getConstant(0, DL, VT);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT,
+ DAG.getNode(ISD::SRL, DL, InnerShiftVT,
+ N0.getOperand(0)->getOperand(0),
+ DAG.getConstant(c1 + c2, DL,
+ ShiftCountVT)));
+ }
+ }
+
+ // fold (srl (shl x, c), c) -> (and x, cst2)
+ if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) {
+ unsigned BitSize = N0.getScalarValueSizeInBits();
+ if (BitSize <= 64) {
+ uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize;
+ SDLoc DL(N);
+ return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
+ DAG.getConstant(~0ULL >> ShAmt, DL, VT));
+ }
+ }
+
+ // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
+ if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
+ // Shifting in all undef bits?
+ EVT SmallVT = N0.getOperand(0).getValueType();
+ unsigned BitSize = SmallVT.getScalarSizeInBits();
+ if (N1C->getZExtValue() >= BitSize)
+ return DAG.getUNDEF(VT);
+
+ if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
+ uint64_t ShiftAmt = N1C->getZExtValue();
+ SDLoc DL0(N0);
+ SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
+ N0.getOperand(0),
+ DAG.getConstant(ShiftAmt, DL0,
+ getShiftAmountTy(SmallVT)));
+ AddToWorklist(SmallShift.getNode());
+ APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt);
+ SDLoc DL(N);
+ return DAG.getNode(ISD::AND, DL, VT,
+ DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
+ DAG.getConstant(Mask, DL, VT));
+ }
+ }
+
+ // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
+ // bit, which is unmodified by sra.
+ if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
+ if (N0.getOpcode() == ISD::SRA)
+ return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
+ }
+
+ // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
+ if (N1C && N0.getOpcode() == ISD::CTLZ &&
+ N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
+ APInt KnownZero, KnownOne;
+ DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne);
+
+ // If any of the input bits are KnownOne, then the input couldn't be all
+ // zeros, thus the result of the srl will always be zero.
+ if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
+
+ // If all of the bits input the to ctlz node are known to be zero, then
+ // the result of the ctlz is "32" and the result of the shift is one.
+ APInt UnknownBits = ~KnownZero;
+ if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
+
+ // Otherwise, check to see if there is exactly one bit input to the ctlz.
+ if ((UnknownBits & (UnknownBits - 1)) == 0) {
+ // Okay, we know that only that the single bit specified by UnknownBits
+ // could be set on input to the CTLZ node. If this bit is set, the SRL
+ // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
+ // to an SRL/XOR pair, which is likely to simplify more.
+ unsigned ShAmt = UnknownBits.countTrailingZeros();
+ SDValue Op = N0.getOperand(0);
+
+ if (ShAmt) {
+ SDLoc DL(N0);
+ Op = DAG.getNode(ISD::SRL, DL, VT, Op,
+ DAG.getConstant(ShAmt, DL,
+ getShiftAmountTy(Op.getValueType())));
+ AddToWorklist(Op.getNode());
+ }
+
+ SDLoc DL(N);
+ return DAG.getNode(ISD::XOR, DL, VT,
+ Op, DAG.getConstant(1, DL, VT));
+ }
+ }
+
+ // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
+ if (N1.getOpcode() == ISD::TRUNCATE &&
+ N1.getOperand(0).getOpcode() == ISD::AND) {
+ SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
+ if (NewOp1.getNode())
+ return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
+ }
+
+ // fold operands of srl based on knowledge that the low bits are not
+ // demanded.
+ if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+ if (N1C && !N1C->isOpaque()) {
+ SDValue NewSRL = visitShiftByConstant(N, N1C);
+ if (NewSRL.getNode())
+ return NewSRL;
+ }
+
+ // Attempt to convert a srl of a load into a narrower zero-extending load.
+ SDValue NarrowLoad = ReduceLoadWidth(N);
+ if (NarrowLoad.getNode())
+ return NarrowLoad;
+
+ // Here is a common situation. We want to optimize:
+ //
+ // %a = ...
+ // %b = and i32 %a, 2
+ // %c = srl i32 %b, 1
+ // brcond i32 %c ...
+ //
+ // into
+ //
+ // %a = ...
+ // %b = and %a, 2
+ // %c = setcc eq %b, 0
+ // brcond %c ...
+ //
+ // However when after the source operand of SRL is optimized into AND, the SRL
+ // itself may not be optimized further. Look for it and add the BRCOND into
+ // the worklist.
+ if (N->hasOneUse()) {
+ SDNode *Use = *N->use_begin();
+ if (Use->getOpcode() == ISD::BRCOND)
+ AddToWorklist(Use);
+ else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
+ // Also look pass the truncate.
+ Use = *Use->use_begin();
+ if (Use->getOpcode() == ISD::BRCOND)
+ AddToWorklist(Use);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitBSWAP(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (bswap c1) -> c2
+ if (isConstantIntBuildVectorOrConstantInt(N0))
+ return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
+ // fold (bswap (bswap x)) -> x
+ if (N0.getOpcode() == ISD::BSWAP)
+ return N0->getOperand(0);
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitCTLZ(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (ctlz c1) -> c2
+ if (isConstantIntBuildVectorOrConstantInt(N0))
+ return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (ctlz_zero_undef c1) -> c2
+ if (isConstantIntBuildVectorOrConstantInt(N0))
+ return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitCTTZ(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (cttz c1) -> c2
+ if (isConstantIntBuildVectorOrConstantInt(N0))
+ return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (cttz_zero_undef c1) -> c2
+ if (isConstantIntBuildVectorOrConstantInt(N0))
+ return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitCTPOP(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (ctpop c1) -> c2
+ if (isConstantIntBuildVectorOrConstantInt(N0))
+ return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
+ return SDValue();
+}
+
+
+/// \brief Generate Min/Max node
+static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS,
+ SDValue True, SDValue False,
+ ISD::CondCode CC, const TargetLowering &TLI,
+ SelectionDAG &DAG) {
+ if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
+ return SDValue();
+
+ switch (CC) {
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ case ISD::SETULT:
+ case ISD::SETULE: {
+ unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
+ if (TLI.isOperationLegal(Opcode, VT))
+ return DAG.getNode(Opcode, DL, VT, LHS, RHS);
+ return SDValue();
+ }
+ case ISD::SETOGT:
+ case ISD::SETOGE:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETUGT:
+ case ISD::SETUGE: {
+ unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
+ if (TLI.isOperationLegal(Opcode, VT))
+ return DAG.getNode(Opcode, DL, VT, LHS, RHS);
+ return SDValue();
+ }
+ default:
+ return SDValue();
+ }
+}
+
+SDValue DAGCombiner::visitSELECT(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ EVT VT = N->getValueType(0);
+ EVT VT0 = N0.getValueType();
+
+ // fold (select C, X, X) -> X
+ if (N1 == N2)
+ return N1;
+ if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) {
+ // fold (select true, X, Y) -> X
+ // fold (select false, X, Y) -> Y
+ return !N0C->isNullValue() ? N1 : N2;
+ }
+ // fold (select C, 1, X) -> (or C, X)
+ if (VT == MVT::i1 && isOneConstant(N1))
+ return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
+ // fold (select C, 0, 1) -> (xor C, 1)
+ // We can't do this reliably if integer based booleans have different contents
+ // to floating point based booleans. This is because we can't tell whether we
+ // have an integer-based boolean or a floating-point-based boolean unless we
+ // can find the SETCC that produced it and inspect its operands. This is
+ // fairly easy if C is the SETCC node, but it can potentially be
+ // undiscoverable (or not reasonably discoverable). For example, it could be
+ // in another basic block or it could require searching a complicated
+ // expression.
+ if (VT.isInteger() &&
+ (VT0 == MVT::i1 || (VT0.isInteger() &&
+ TLI.getBooleanContents(false, false) ==
+ TLI.getBooleanContents(false, true) &&
+ TLI.getBooleanContents(false, false) ==
+ TargetLowering::ZeroOrOneBooleanContent)) &&
+ isNullConstant(N1) && isOneConstant(N2)) {
+ SDValue XORNode;
+ if (VT == VT0) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::XOR, DL, VT0,
+ N0, DAG.getConstant(1, DL, VT0));
+ }
+ SDLoc DL0(N0);
+ XORNode = DAG.getNode(ISD::XOR, DL0, VT0,
+ N0, DAG.getConstant(1, DL0, VT0));
+ AddToWorklist(XORNode.getNode());
+ if (VT.bitsGT(VT0))
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
+ }
+ // fold (select C, 0, X) -> (and (not C), X)
+ if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
+ SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
+ AddToWorklist(NOTNode.getNode());
+ return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
+ }
+ // fold (select C, X, 1) -> (or (not C), X)
+ if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
+ SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
+ AddToWorklist(NOTNode.getNode());
+ return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
+ }
+ // fold (select C, X, 0) -> (and C, X)
+ if (VT == MVT::i1 && isNullConstant(N2))
+ return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
+ // fold (select X, X, Y) -> (or X, Y)
+ // fold (select X, 1, Y) -> (or X, Y)
+ if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
+ return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
+ // fold (select X, Y, X) -> (and X, Y)
+ // fold (select X, Y, 0) -> (and X, Y)
+ if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
+ return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
+
+ // If we can fold this based on the true/false value, do so.
+ if (SimplifySelectOps(N, N1, N2))
+ return SDValue(N, 0); // Don't revisit N.
+
+ // fold selects based on a setcc into other things, such as min/max/abs
+ if (N0.getOpcode() == ISD::SETCC) {
+ // select x, y (fcmp lt x, y) -> fminnum x, y
+ // select x, y (fcmp gt x, y) -> fmaxnum x, y
+ //
+ // This is OK if we don't care about what happens if either operand is a
+ // NaN.
+ //
+
+ // FIXME: Instead of testing for UnsafeFPMath, this should be checking for
+ // no signed zeros as well as no nans.
+ const TargetOptions &Options = DAG.getTarget().Options;
+ if (Options.UnsafeFPMath &&
+ VT.isFloatingPoint() && N0.hasOneUse() &&
+ DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+
+ SDValue FMinMax =
+ combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0), N0.getOperand(1),
+ N1, N2, CC, TLI, DAG);
+ if (FMinMax)
+ return FMinMax;
+ }
+
+ if ((!LegalOperations &&
+ TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) ||
+ TLI.isOperationLegal(ISD::SELECT_CC, VT))
+ return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1),
+ N1, N2, N0.getOperand(2));
+ return SimplifySelect(SDLoc(N), N0, N1, N2);
+ }
+
+ if (VT0 == MVT::i1) {
+ if (TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT)) {
+ // select (and Cond0, Cond1), X, Y
+ // -> select Cond0, (select Cond1, X, Y), Y
+ if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
+ SDValue Cond0 = N0->getOperand(0);
+ SDValue Cond1 = N0->getOperand(1);
+ SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
+ N1.getValueType(), Cond1, N1, N2);
+ return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0,
+ InnerSelect, N2);
+ }
+ // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
+ if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
+ SDValue Cond0 = N0->getOperand(0);
+ SDValue Cond1 = N0->getOperand(1);
+ SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
+ N1.getValueType(), Cond1, N1, N2);
+ return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1,
+ InnerSelect);
+ }
+ }
+
+ // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
+ if (N1->getOpcode() == ISD::SELECT) {
+ SDValue N1_0 = N1->getOperand(0);
+ SDValue N1_1 = N1->getOperand(1);
+ SDValue N1_2 = N1->getOperand(2);
+ if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
+ // Create the actual and node if we can generate good code for it.
+ if (!TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT)) {
+ SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(),
+ N0, N1_0);
+ return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And,
+ N1_1, N2);
+ }
+ // Otherwise see if we can optimize the "and" to a better pattern.
+ if (SDValue Combined = visitANDLike(N0, N1_0, N))
+ return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
+ N1_1, N2);
+ }
+ }
+ // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
+ if (N2->getOpcode() == ISD::SELECT) {
+ SDValue N2_0 = N2->getOperand(0);
+ SDValue N2_1 = N2->getOperand(1);
+ SDValue N2_2 = N2->getOperand(2);
+ if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
+ // Create the actual or node if we can generate good code for it.
+ if (!TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT)) {
+ SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(),
+ N0, N2_0);
+ return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or,
+ N1, N2_2);
+ }
+ // Otherwise see if we can optimize to a better pattern.
+ if (SDValue Combined = visitORLike(N0, N2_0, N))
+ return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
+ N1, N2_2);
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+static
+std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
+ SDLoc DL(N);
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+
+ // Split the inputs.
+ SDValue Lo, Hi, LL, LH, RL, RH;
+ std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
+ std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
+
+ Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
+ Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
+
+ return std::make_pair(Lo, Hi);
+}
+
+// This function assumes all the vselect's arguments are CONCAT_VECTOR
+// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
+static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
+ SDLoc dl(N);
+ SDValue Cond = N->getOperand(0);
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ EVT VT = N->getValueType(0);
+ int NumElems = VT.getVectorNumElements();
+ assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
+ RHS.getOpcode() == ISD::CONCAT_VECTORS &&
+ Cond.getOpcode() == ISD::BUILD_VECTOR);
+
+ // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
+ // binary ones here.
+ if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
+ return SDValue();
+
+ // We're sure we have an even number of elements due to the
+ // concat_vectors we have as arguments to vselect.
+ // Skip BV elements until we find one that's not an UNDEF
+ // After we find an UNDEF element, keep looping until we get to half the
+ // length of the BV and see if all the non-undef nodes are the same.
+ ConstantSDNode *BottomHalf = nullptr;
+ for (int i = 0; i < NumElems / 2; ++i) {
+ if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF)
+ continue;
+
+ if (BottomHalf == nullptr)
+ BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
+ else if (Cond->getOperand(i).getNode() != BottomHalf)
+ return SDValue();
+ }
+
+ // Do the same for the second half of the BuildVector
+ ConstantSDNode *TopHalf = nullptr;
+ for (int i = NumElems / 2; i < NumElems; ++i) {
+ if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF)
+ continue;
+
+ if (TopHalf == nullptr)
+ TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
+ else if (Cond->getOperand(i).getNode() != TopHalf)
+ return SDValue();
+ }
+
+ assert(TopHalf && BottomHalf &&
+ "One half of the selector was all UNDEFs and the other was all the "
+ "same value. This should have been addressed before this function.");
+ return DAG.getNode(
+ ISD::CONCAT_VECTORS, dl, VT,
+ BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
+ TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
+}
+
+SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
+
+ if (Level >= AfterLegalizeTypes)
+ return SDValue();
+
+ MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
+ SDValue Mask = MSC->getMask();
+ SDValue Data = MSC->getValue();
+ SDLoc DL(N);
+
+ // If the MSCATTER data type requires splitting and the mask is provided by a
+ // SETCC, then split both nodes and its operands before legalization. This
+ // prevents the type legalizer from unrolling SETCC into scalar comparisons
+ // and enables future optimizations (e.g. min/max pattern matching on X86).
+ if (Mask.getOpcode() != ISD::SETCC)
+ return SDValue();
+
+ // Check if any splitting is required.
+ if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
+ TargetLowering::TypeSplitVector)
+ return SDValue();
+ SDValue MaskLo, MaskHi, Lo, Hi;
+ std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0));
+
+ SDValue Chain = MSC->getChain();
+
+ EVT MemoryVT = MSC->getMemoryVT();
+ unsigned Alignment = MSC->getOriginalAlignment();
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ SDValue DataLo, DataHi;
+ std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
+
+ SDValue BasePtr = MSC->getBasePtr();
+ SDValue IndexLo, IndexHi;
+ std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MSC->getPointerInfo(),
+ MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
+ Alignment, MSC->getAAInfo(), MSC->getRanges());
+
+ SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo };
+ Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
+ DL, OpsLo, MMO);
+
+ SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi};
+ Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
+ DL, OpsHi, MMO);
+
+ AddToWorklist(Lo.getNode());
+ AddToWorklist(Hi.getNode());
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
+}
+
+SDValue DAGCombiner::visitMSTORE(SDNode *N) {
+
+ if (Level >= AfterLegalizeTypes)
+ return SDValue();
+
+ MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
+ SDValue Mask = MST->getMask();
+ SDValue Data = MST->getValue();
+ SDLoc DL(N);
+
+ // If the MSTORE data type requires splitting and the mask is provided by a
+ // SETCC, then split both nodes and its operands before legalization. This
+ // prevents the type legalizer from unrolling SETCC into scalar comparisons
+ // and enables future optimizations (e.g. min/max pattern matching on X86).
+ if (Mask.getOpcode() == ISD::SETCC) {
+
+ // Check if any splitting is required.
+ if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
+ TargetLowering::TypeSplitVector)
+ return SDValue();
+
+ SDValue MaskLo, MaskHi, Lo, Hi;
+ std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0));
+
+ SDValue Chain = MST->getChain();
+ SDValue Ptr = MST->getBasePtr();
+
+ EVT MemoryVT = MST->getMemoryVT();
+ unsigned Alignment = MST->getOriginalAlignment();
+
+ // if Alignment is equal to the vector size,
+ // take the half of it for the second part
+ unsigned SecondHalfAlignment =
+ (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
+ Alignment/2 : Alignment;
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ SDValue DataLo, DataHi;
+ std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MST->getPointerInfo(),
+ MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
+ Alignment, MST->getAAInfo(), MST->getRanges());
+
+ Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
+ MST->isTruncatingStore());
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
+
+ MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MST->getPointerInfo(),
+ MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
+ SecondHalfAlignment, MST->getAAInfo(),
+ MST->getRanges());
+
+ Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
+ MST->isTruncatingStore());
+
+ AddToWorklist(Lo.getNode());
+ AddToWorklist(Hi.getNode());
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitMGATHER(SDNode *N) {
+
+ if (Level >= AfterLegalizeTypes)
+ return SDValue();
+
+ MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N);
+ SDValue Mask = MGT->getMask();
+ SDLoc DL(N);
+
+ // If the MGATHER result requires splitting and the mask is provided by a
+ // SETCC, then split both nodes and its operands before legalization. This
+ // prevents the type legalizer from unrolling SETCC into scalar comparisons
+ // and enables future optimizations (e.g. min/max pattern matching on X86).
+
+ if (Mask.getOpcode() != ISD::SETCC)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+
+ // Check if any splitting is required.
+ if (TLI.getTypeAction(*DAG.getContext(), VT) !=
+ TargetLowering::TypeSplitVector)
+ return SDValue();
+
+ SDValue MaskLo, MaskHi, Lo, Hi;
+ std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
+
+ SDValue Src0 = MGT->getValue();
+ SDValue Src0Lo, Src0Hi;
+ std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
+
+ SDValue Chain = MGT->getChain();
+ EVT MemoryVT = MGT->getMemoryVT();
+ unsigned Alignment = MGT->getOriginalAlignment();
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ SDValue BasePtr = MGT->getBasePtr();
+ SDValue Index = MGT->getIndex();
+ SDValue IndexLo, IndexHi;
+ std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MGT->getPointerInfo(),
+ MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
+ Alignment, MGT->getAAInfo(), MGT->getRanges());
+
+ SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo };
+ Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo,
+ MMO);
+
+ SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi};
+ Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi,
+ MMO);
+
+ AddToWorklist(Lo.getNode());
+ AddToWorklist(Hi.getNode());
+
+ // Build a factor node to remember that this load is independent of the
+ // other one.
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain);
+
+ SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
+
+ SDValue RetOps[] = { GatherRes, Chain };
+ return DAG.getMergeValues(RetOps, DL);
+}
+
+SDValue DAGCombiner::visitMLOAD(SDNode *N) {
+
+ if (Level >= AfterLegalizeTypes)
+ return SDValue();
+
+ MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
+ SDValue Mask = MLD->getMask();
+ SDLoc DL(N);
+
+ // If the MLOAD result requires splitting and the mask is provided by a
+ // SETCC, then split both nodes and its operands before legalization. This
+ // prevents the type legalizer from unrolling SETCC into scalar comparisons
+ // and enables future optimizations (e.g. min/max pattern matching on X86).
+
+ if (Mask.getOpcode() == ISD::SETCC) {
+ EVT VT = N->getValueType(0);
+
+ // Check if any splitting is required.
+ if (TLI.getTypeAction(*DAG.getContext(), VT) !=
+ TargetLowering::TypeSplitVector)
+ return SDValue();
+
+ SDValue MaskLo, MaskHi, Lo, Hi;
+ std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
+
+ SDValue Src0 = MLD->getSrc0();
+ SDValue Src0Lo, Src0Hi;
+ std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
+
+ SDValue Chain = MLD->getChain();
+ SDValue Ptr = MLD->getBasePtr();
+ EVT MemoryVT = MLD->getMemoryVT();
+ unsigned Alignment = MLD->getOriginalAlignment();
+
+ // if Alignment is equal to the vector size,
+ // take the half of it for the second part
+ unsigned SecondHalfAlignment =
+ (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
+ Alignment/2 : Alignment;
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MLD->getPointerInfo(),
+ MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
+ Alignment, MLD->getAAInfo(), MLD->getRanges());
+
+ Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
+ ISD::NON_EXTLOAD);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
+
+ MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MLD->getPointerInfo(),
+ MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
+ SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
+
+ Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
+ ISD::NON_EXTLOAD);
+
+ AddToWorklist(Lo.getNode());
+ AddToWorklist(Hi.getNode());
+
+ // Build a factor node to remember that this load is independent of the
+ // other one.
+ Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
+
+ SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
+
+ SDValue RetOps[] = { LoadRes, Chain };
+ return DAG.getMergeValues(RetOps, DL);
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitVSELECT(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDLoc DL(N);
+
+ // Canonicalize integer abs.
+ // vselect (setg[te] X, 0), X, -X ->
+ // vselect (setgt X, -1), X, -X ->
+ // vselect (setl[te] X, 0), -X, X ->
+ // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
+ if (N0.getOpcode() == ISD::SETCC) {
+ SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+ bool isAbs = false;
+ bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
+
+ if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
+ (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
+ N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
+ isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
+ else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
+ N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
+ isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
+
+ if (isAbs) {
+ EVT VT = LHS.getValueType();
+ SDValue Shift = DAG.getNode(
+ ISD::SRA, DL, VT, LHS,
+ DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT));
+ SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
+ AddToWorklist(Shift.getNode());
+ AddToWorklist(Add.getNode());
+ return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
+ }
+ }
+
+ if (SimplifySelectOps(N, N1, N2))
+ return SDValue(N, 0); // Don't revisit N.
+
+ // If the VSELECT result requires splitting and the mask is provided by a
+ // SETCC, then split both nodes and its operands before legalization. This
+ // prevents the type legalizer from unrolling SETCC into scalar comparisons
+ // and enables future optimizations (e.g. min/max pattern matching on X86).
+ if (N0.getOpcode() == ISD::SETCC) {
+ EVT VT = N->getValueType(0);
+
+ // Check if any splitting is required.
+ if (TLI.getTypeAction(*DAG.getContext(), VT) !=
+ TargetLowering::TypeSplitVector)
+ return SDValue();
+
+ SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
+ std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
+ std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
+ std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
+
+ Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
+ Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
+
+ // Add the new VSELECT nodes to the work list in case they need to be split
+ // again.
+ AddToWorklist(Lo.getNode());
+ AddToWorklist(Hi.getNode());
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
+ }
+
+ // Fold (vselect (build_vector all_ones), N1, N2) -> N1
+ if (ISD::isBuildVectorAllOnes(N0.getNode()))
+ return N1;
+ // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
+ if (ISD::isBuildVectorAllZeros(N0.getNode()))
+ return N2;
+
+ // The ConvertSelectToConcatVector function is assuming both the above
+ // checks for (vselect (build_vector all{ones,zeros) ...) have been made
+ // and addressed.
+ if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
+ N2.getOpcode() == ISD::CONCAT_VECTORS &&
+ ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
+ SDValue CV = ConvertSelectToConcatVector(N, DAG);
+ if (CV.getNode())
+ return CV;
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ SDValue N3 = N->getOperand(3);
+ SDValue N4 = N->getOperand(4);
+ ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
+
+ // fold select_cc lhs, rhs, x, x, cc -> x
+ if (N2 == N3)
+ return N2;
+
+ // Determine if the condition we're dealing with is constant
+ SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
+ N0, N1, CC, SDLoc(N), false);
+ if (SCC.getNode()) {
+ AddToWorklist(SCC.getNode());
+
+ if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
+ if (!SCCC->isNullValue())
+ return N2; // cond always true -> true val
+ else
+ return N3; // cond always false -> false val
+ } else if (SCC->getOpcode() == ISD::UNDEF) {
+ // When the condition is UNDEF, just return the first operand. This is
+ // coherent the DAG creation, no setcc node is created in this case
+ return N2;
+ } else if (SCC.getOpcode() == ISD::SETCC) {
+ // Fold to a simpler select_cc
+ return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
+ SCC.getOperand(0), SCC.getOperand(1), N2, N3,
+ SCC.getOperand(2));
+ }
+ }
+
+ // If we can fold this based on the true/false value, do so.
+ if (SimplifySelectOps(N, N2, N3))
+ return SDValue(N, 0); // Don't revisit N.
+
+ // fold select_cc into other things, such as min/max/abs
+ return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
+}
+
+SDValue DAGCombiner::visitSETCC(SDNode *N) {
+ return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
+ cast<CondCodeSDNode>(N->getOperand(2))->get(),
+ SDLoc(N));
+}
+
+// tryToFoldExtendOfConstant - Try to fold a sext/zext/aext
+// dag node into a ConstantSDNode or a build_vector of constants.
+// This function is called by the DAGCombiner when visiting sext/zext/aext
+// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
+// Vector extends are not folded if operations are legal; this is to
+// avoid introducing illegal build_vector dag nodes.
+static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
+ SelectionDAG &DAG, bool LegalTypes,
+ bool LegalOperations) {
+ unsigned Opcode = N->getOpcode();
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
+ Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
+ && "Expected EXTEND dag node in input!");
+
+ // fold (sext c1) -> c1
+ // fold (zext c1) -> c1
+ // fold (aext c1) -> c1
+ if (isa<ConstantSDNode>(N0))
+ return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode();
+
+ // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
+ // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
+ // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
+ EVT SVT = VT.getScalarType();
+ if (!(VT.isVector() &&
+ (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) &&
+ ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
+ return nullptr;
+
+ // We can fold this node into a build_vector.
+ unsigned VTBits = SVT.getSizeInBits();
+ unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits();
+ unsigned ShAmt = VTBits - EVTBits;
+ SmallVector<SDValue, 8> Elts;
+ unsigned NumElts = VT.getVectorNumElements();
+ SDLoc DL(N);
+
+ for (unsigned i=0; i != NumElts; ++i) {
+ SDValue Op = N0->getOperand(i);
+ if (Op->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(DAG.getUNDEF(SVT));
+ continue;
+ }
+
+ SDLoc DL(Op);
+ ConstantSDNode *CurrentND = cast<ConstantSDNode>(Op);
+ const APInt &C = APInt(VTBits, CurrentND->getAPIntValue().getZExtValue());
+ if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
+ Elts.push_back(DAG.getConstant(C.shl(ShAmt).ashr(ShAmt).getZExtValue(),
+ DL, SVT));
+ else
+ Elts.push_back(DAG.getConstant(C.shl(ShAmt).lshr(ShAmt).getZExtValue(),
+ DL, SVT));
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode();
+}
+
+// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
+// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
+// transformation. Returns true if extension are possible and the above
+// mentioned transformation is profitable.
+static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
+ unsigned ExtOpc,
+ SmallVectorImpl<SDNode *> &ExtendNodes,
+ const TargetLowering &TLI) {
+ bool HasCopyToRegUses = false;
+ bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
+ for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
+ UE = N0.getNode()->use_end();
+ UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User == N)
+ continue;
+ if (UI.getUse().getResNo() != N0.getResNo())
+ continue;
+ // FIXME: Only extend SETCC N, N and SETCC N, c for now.
+ if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
+ if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
+ // Sign bits will be lost after a zext.
+ return false;
+ bool Add = false;
+ for (unsigned i = 0; i != 2; ++i) {
+ SDValue UseOp = User->getOperand(i);
+ if (UseOp == N0)
+ continue;
+ if (!isa<ConstantSDNode>(UseOp))
+ return false;
+ Add = true;
+ }
+ if (Add)
+ ExtendNodes.push_back(User);
+ continue;
+ }
+ // If truncates aren't free and there are users we can't
+ // extend, it isn't worthwhile.
+ if (!isTruncFree)
+ return false;
+ // Remember if this value is live-out.
+ if (User->getOpcode() == ISD::CopyToReg)
+ HasCopyToRegUses = true;
+ }
+
+ if (HasCopyToRegUses) {
+ bool BothLiveOut = false;
+ for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ UI != UE; ++UI) {
+ SDUse &Use = UI.getUse();
+ if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
+ BothLiveOut = true;
+ break;
+ }
+ }
+ if (BothLiveOut)
+ // Both unextended and extended values are live out. There had better be
+ // a good reason for the transformation.
+ return ExtendNodes.size();
+ }
+ return true;
+}
+
+void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
+ SDValue Trunc, SDValue ExtLoad, SDLoc DL,
+ ISD::NodeType ExtType) {
+ // Extend SetCC uses if necessary.
+ for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
+ SDNode *SetCC = SetCCs[i];
+ SmallVector<SDValue, 4> Ops;
+
+ for (unsigned j = 0; j != 2; ++j) {
+ SDValue SOp = SetCC->getOperand(j);
+ if (SOp == Trunc)
+ Ops.push_back(ExtLoad);
+ else
+ Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
+ }
+
+ Ops.push_back(SetCC->getOperand(2));
+ CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
+ }
+}
+
+// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
+SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT DstVT = N->getValueType(0);
+ EVT SrcVT = N0.getValueType();
+
+ assert((N->getOpcode() == ISD::SIGN_EXTEND ||
+ N->getOpcode() == ISD::ZERO_EXTEND) &&
+ "Unexpected node type (not an extend)!");
+
+ // fold (sext (load x)) to multiple smaller sextloads; same for zext.
+ // For example, on a target with legal v4i32, but illegal v8i32, turn:
+ // (v8i32 (sext (v8i16 (load x))))
+ // into:
+ // (v8i32 (concat_vectors (v4i32 (sextload x)),
+ // (v4i32 (sextload (x + 16)))))
+ // Where uses of the original load, i.e.:
+ // (v8i16 (load x))
+ // are replaced with:
+ // (v8i16 (truncate
+ // (v8i32 (concat_vectors (v4i32 (sextload x)),
+ // (v4i32 (sextload (x + 16)))))))
+ //
+ // This combine is only applicable to illegal, but splittable, vectors.
+ // All legal types, and illegal non-vector types, are handled elsewhere.
+ // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
+ //
+ if (N0->getOpcode() != ISD::LOAD)
+ return SDValue();
+
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+
+ if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
+ !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
+ !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
+ return SDValue();
+
+ SmallVector<SDNode *, 4> SetCCs;
+ if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI))
+ return SDValue();
+
+ ISD::LoadExtType ExtType =
+ N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
+
+ // Try to split the vector types to get down to legal types.
+ EVT SplitSrcVT = SrcVT;
+ EVT SplitDstVT = DstVT;
+ while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
+ SplitSrcVT.getVectorNumElements() > 1) {
+ SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
+ SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
+ }
+
+ if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
+ return SDValue();
+
+ SDLoc DL(N);
+ const unsigned NumSplits =
+ DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
+ const unsigned Stride = SplitSrcVT.getStoreSize();
+ SmallVector<SDValue, 4> Loads;
+ SmallVector<SDValue, 4> Chains;
+
+ SDValue BasePtr = LN0->getBasePtr();
+ for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
+ const unsigned Offset = Idx * Stride;
+ const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
+
+ SDValue SplitLoad = DAG.getExtLoad(
+ ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr,
+ LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT,
+ LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(),
+ Align, LN0->getAAInfo());
+
+ BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
+ DAG.getConstant(Stride, DL, BasePtr.getValueType()));
+
+ Loads.push_back(SplitLoad.getValue(0));
+ Chains.push_back(SplitLoad.getValue(1));
+ }
+
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+ SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
+
+ CombineTo(N, NewValue);
+
+ // Replace uses of the original load (before extension)
+ // with a truncate of the concatenated sextloaded vectors.
+ SDValue Trunc =
+ DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
+ CombineTo(N0.getNode(), Trunc, NewChain);
+ ExtendSetCCUses(SetCCs, Trunc, NewValue, DL,
+ (ISD::NodeType)N->getOpcode());
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+}
+
+SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
+ LegalOperations))
+ return SDValue(Res, 0);
+
+ // fold (sext (sext x)) -> (sext x)
+ // fold (sext (aext x)) -> (sext x)
+ if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
+ return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
+ N0.getOperand(0));
+
+ if (N0.getOpcode() == ISD::TRUNCATE) {
+ // fold (sext (truncate (load x))) -> (sext (smaller load x))
+ // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
+ SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
+ if (NarrowLoad.getNode()) {
+ SDNode* oye = N0.getNode()->getOperand(0).getNode();
+ if (NarrowLoad.getNode() != N0.getNode()) {
+ CombineTo(N0.getNode(), NarrowLoad);
+ // CombineTo deleted the truncate, if needed, but not what's under it.
+ AddToWorklist(oye);
+ }
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+
+ // See if the value being truncated is already sign extended. If so, just
+ // eliminate the trunc/sext pair.
+ SDValue Op = N0.getOperand(0);
+ unsigned OpBits = Op.getValueType().getScalarType().getSizeInBits();
+ unsigned MidBits = N0.getValueType().getScalarType().getSizeInBits();
+ unsigned DestBits = VT.getScalarType().getSizeInBits();
+ unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
+
+ if (OpBits == DestBits) {
+ // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
+ // bits, it is already ready.
+ if (NumSignBits > DestBits-MidBits)
+ return Op;
+ } else if (OpBits < DestBits) {
+ // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
+ // bits, just sext from i32.
+ if (NumSignBits > OpBits-MidBits)
+ return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
+ } else {
+ // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
+ // bits, just truncate to i32.
+ if (NumSignBits > OpBits-MidBits)
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
+ }
+
+ // fold (sext (truncate x)) -> (sextinreg x).
+ if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
+ N0.getValueType())) {
+ if (OpBits < DestBits)
+ Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
+ else if (OpBits > DestBits)
+ Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
+ DAG.getValueType(N0.getValueType()));
+ }
+ }
+
+ // fold (sext (load x)) -> (sext (truncate (sextload x)))
+ // Only generate vector extloads when 1) they're legal, and 2) they are
+ // deemed desirable by the target.
+ if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
+ ((!LegalOperations && !VT.isVector() &&
+ !cast<LoadSDNode>(N0)->isVolatile()) ||
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) {
+ bool DoXform = true;
+ SmallVector<SDNode*, 4> SetCCs;
+ if (!N0.hasOneUse())
+ DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
+ if (VT.isVector())
+ DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
+ if (DoXform) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
+ LN0->getChain(),
+ LN0->getBasePtr(), N0.getValueType(),
+ LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
+ N0.getValueType(), ExtLoad);
+ CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
+ ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
+ ISD::SIGN_EXTEND);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ // fold (sext (load x)) to multiple smaller sextloads.
+ // Only on illegal but splittable vectors.
+ if (SDValue ExtLoad = CombineExtLoad(N))
+ return ExtLoad;
+
+ // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
+ // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
+ if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
+ ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ EVT MemVT = LN0->getMemoryVT();
+ if ((!LegalOperations && !LN0->isVolatile()) ||
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) {
+ SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
+ LN0->getChain(),
+ LN0->getBasePtr(), MemVT,
+ LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ CombineTo(N0.getNode(),
+ DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
+ N0.getValueType(), ExtLoad),
+ ExtLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ // fold (sext (and/or/xor (load x), cst)) ->
+ // (and/or/xor (sextload x), (sext cst))
+ if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
+ N0.getOpcode() == ISD::XOR) &&
+ isa<LoadSDNode>(N0.getOperand(0)) &&
+ N0.getOperand(1).getOpcode() == ISD::Constant &&
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) &&
+ (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
+ if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) {
+ bool DoXform = true;
+ SmallVector<SDNode*, 4> SetCCs;
+ if (!N0.hasOneUse())
+ DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
+ SetCCs, TLI);
+ if (DoXform) {
+ SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
+ LN0->getChain(), LN0->getBasePtr(),
+ LN0->getMemoryVT(),
+ LN0->getMemOperand());
+ APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ Mask = Mask.sext(VT.getSizeInBits());
+ SDLoc DL(N);
+ SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
+ ExtLoad, DAG.getConstant(Mask, DL, VT));
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
+ SDLoc(N0.getOperand(0)),
+ N0.getOperand(0).getValueType(), ExtLoad);
+ CombineTo(N, And);
+ CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
+ ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
+ ISD::SIGN_EXTEND);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+ }
+
+ if (N0.getOpcode() == ISD::SETCC) {
+ EVT N0VT = N0.getOperand(0).getValueType();
+ // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
+ // Only do this before legalize for now.
+ if (VT.isVector() && !LegalOperations &&
+ TLI.getBooleanContents(N0VT) ==
+ TargetLowering::ZeroOrNegativeOneBooleanContent) {
+ // On some architectures (such as SSE/NEON/etc) the SETCC result type is
+ // of the same size as the compared operands. Only optimize sext(setcc())
+ // if this is the case.
+ EVT SVT = getSetCCResultType(N0VT);
+
+ // We know that the # elements of the results is the same as the
+ // # elements of the compare (and the # elements of the compare result
+ // for that matter). Check to see that they are the same size. If so,
+ // we know that the element size of the sext'd result matches the
+ // element size of the compare operands.
+ if (VT.getSizeInBits() == SVT.getSizeInBits())
+ return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
+ N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+
+ // If the desired elements are smaller or larger than the source
+ // elements we can use a matching integer vector type and then
+ // truncate/sign extend
+ EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
+ if (SVT == MatchingVectorType) {
+ SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
+ N0.getOperand(0), N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+ return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
+ }
+ }
+
+ // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0)
+ unsigned ElementWidth = VT.getScalarType().getSizeInBits();
+ SDLoc DL(N);
+ SDValue NegOne =
+ DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT);
+ SDValue SCC =
+ SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
+ NegOne, DAG.getConstant(0, DL, VT),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+ if (SCC.getNode()) return SCC;
+
+ if (!VT.isVector()) {
+ EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType());
+ if (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, SetCCVT)) {
+ SDLoc DL(N);
+ ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
+ SDValue SetCC = DAG.getSetCC(DL, SetCCVT,
+ N0.getOperand(0), N0.getOperand(1), CC);
+ return DAG.getSelect(DL, VT, SetCC,
+ NegOne, DAG.getConstant(0, DL, VT));
+ }
+ }
+ }
+
+ // fold (sext x) -> (zext x) if the sign bit is known zero.
+ if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
+ DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
+
+ return SDValue();
+}
+
+// isTruncateOf - If N is a truncate of some other value, return true, record
+// the value being truncated in Op and which of Op's bits are zero in KnownZero.
+// This function computes KnownZero to avoid a duplicated call to
+// computeKnownBits in the caller.
+static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
+ APInt &KnownZero) {
+ APInt KnownOne;
+ if (N->getOpcode() == ISD::TRUNCATE) {
+ Op = N->getOperand(0);
+ DAG.computeKnownBits(Op, KnownZero, KnownOne);
+ return true;
+ }
+
+ if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
+ cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
+ return false;
+
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ assert(Op0.getValueType() == Op1.getValueType());
+
+ if (isNullConstant(Op0))
+ Op = Op1;
+ else if (isNullConstant(Op1))
+ Op = Op0;
+ else
+ return false;
+
+ DAG.computeKnownBits(Op, KnownZero, KnownOne);
+
+ if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
+ return false;
+
+ return true;
+}
+
+SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
+ LegalOperations))
+ return SDValue(Res, 0);
+
+ // fold (zext (zext x)) -> (zext x)
+ // fold (zext (aext x)) -> (zext x)
+ if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
+ N0.getOperand(0));
+
+ // fold (zext (truncate x)) -> (zext x) or
+ // (zext (truncate x)) -> (truncate x)
+ // This is valid when the truncated bits of x are already zero.
+ // FIXME: We should extend this to work for vectors too.
+ SDValue Op;
+ APInt KnownZero;
+ if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
+ APInt TruncatedBits =
+ (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
+ APInt(Op.getValueSizeInBits(), 0) :
+ APInt::getBitsSet(Op.getValueSizeInBits(),
+ N0.getValueSizeInBits(),
+ std::min(Op.getValueSizeInBits(),
+ VT.getSizeInBits()));
+ if (TruncatedBits == (KnownZero & TruncatedBits)) {
+ if (VT.bitsGT(Op.getValueType()))
+ return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
+ if (VT.bitsLT(Op.getValueType()))
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
+
+ return Op;
+ }
+ }
+
+ // fold (zext (truncate (load x))) -> (zext (smaller load x))
+ // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
+ if (N0.getOpcode() == ISD::TRUNCATE) {
+ SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
+ if (NarrowLoad.getNode()) {
+ SDNode* oye = N0.getNode()->getOperand(0).getNode();
+ if (NarrowLoad.getNode() != N0.getNode()) {
+ CombineTo(N0.getNode(), NarrowLoad);
+ // CombineTo deleted the truncate, if needed, but not what's under it.
+ AddToWorklist(oye);
+ }
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ // fold (zext (truncate x)) -> (and x, mask)
+ if (N0.getOpcode() == ISD::TRUNCATE &&
+ (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT))) {
+
+ // fold (zext (truncate (load x))) -> (zext (smaller load x))
+ // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
+ SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
+ if (NarrowLoad.getNode()) {
+ SDNode* oye = N0.getNode()->getOperand(0).getNode();
+ if (NarrowLoad.getNode() != N0.getNode()) {
+ CombineTo(N0.getNode(), NarrowLoad);
+ // CombineTo deleted the truncate, if needed, but not what's under it.
+ AddToWorklist(oye);
+ }
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+
+ SDValue Op = N0.getOperand(0);
+ if (Op.getValueType().bitsLT(VT)) {
+ Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
+ AddToWorklist(Op.getNode());
+ } else if (Op.getValueType().bitsGT(VT)) {
+ Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
+ AddToWorklist(Op.getNode());
+ }
+ return DAG.getZeroExtendInReg(Op, SDLoc(N),
+ N0.getValueType().getScalarType());
+ }
+
+ // Fold (zext (and (trunc x), cst)) -> (and x, cst),
+ // if either of the casts is not free.
+ if (N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
+ N0.getOperand(1).getOpcode() == ISD::Constant &&
+ (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
+ N0.getValueType()) ||
+ !TLI.isZExtFree(N0.getValueType(), VT))) {
+ SDValue X = N0.getOperand(0).getOperand(0);
+ if (X.getValueType().bitsLT(VT)) {
+ X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
+ } else if (X.getValueType().bitsGT(VT)) {
+ X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
+ }
+ APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ Mask = Mask.zext(VT.getSizeInBits());
+ SDLoc DL(N);
+ return DAG.getNode(ISD::AND, DL, VT,
+ X, DAG.getConstant(Mask, DL, VT));
+ }
+
+ // fold (zext (load x)) -> (zext (truncate (zextload x)))
+ // Only generate vector extloads when 1) they're legal, and 2) they are
+ // deemed desirable by the target.
+ if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
+ ((!LegalOperations && !VT.isVector() &&
+ !cast<LoadSDNode>(N0)->isVolatile()) ||
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) {
+ bool DoXform = true;
+ SmallVector<SDNode*, 4> SetCCs;
+ if (!N0.hasOneUse())
+ DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
+ if (VT.isVector())
+ DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
+ if (DoXform) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
+ LN0->getChain(),
+ LN0->getBasePtr(), N0.getValueType(),
+ LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
+ N0.getValueType(), ExtLoad);
+ CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
+
+ ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
+ ISD::ZERO_EXTEND);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ // fold (zext (load x)) to multiple smaller zextloads.
+ // Only on illegal but splittable vectors.
+ if (SDValue ExtLoad = CombineExtLoad(N))
+ return ExtLoad;
+
+ // fold (zext (and/or/xor (load x), cst)) ->
+ // (and/or/xor (zextload x), (zext cst))
+ if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
+ N0.getOpcode() == ISD::XOR) &&
+ isa<LoadSDNode>(N0.getOperand(0)) &&
+ N0.getOperand(1).getOpcode() == ISD::Constant &&
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) &&
+ (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
+ if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) {
+ bool DoXform = true;
+ SmallVector<SDNode*, 4> SetCCs;
+ if (!N0.hasOneUse())
+ DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::ZERO_EXTEND,
+ SetCCs, TLI);
+ if (DoXform) {
+ SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
+ LN0->getChain(), LN0->getBasePtr(),
+ LN0->getMemoryVT(),
+ LN0->getMemOperand());
+ APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ Mask = Mask.zext(VT.getSizeInBits());
+ SDLoc DL(N);
+ SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
+ ExtLoad, DAG.getConstant(Mask, DL, VT));
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
+ SDLoc(N0.getOperand(0)),
+ N0.getOperand(0).getValueType(), ExtLoad);
+ CombineTo(N, And);
+ CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
+ ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
+ ISD::ZERO_EXTEND);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+ }
+
+ // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
+ // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
+ if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
+ ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ EVT MemVT = LN0->getMemoryVT();
+ if ((!LegalOperations && !LN0->isVolatile()) ||
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) {
+ SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
+ LN0->getChain(),
+ LN0->getBasePtr(), MemVT,
+ LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ CombineTo(N0.getNode(),
+ DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
+ ExtLoad),
+ ExtLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ if (N0.getOpcode() == ISD::SETCC) {
+ if (!LegalOperations && VT.isVector() &&
+ N0.getValueType().getVectorElementType() == MVT::i1) {
+ EVT N0VT = N0.getOperand(0).getValueType();
+ if (getSetCCResultType(N0VT) == N0.getValueType())
+ return SDValue();
+
+ // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
+ // Only do this before legalize for now.
+ EVT EltVT = VT.getVectorElementType();
+ SDLoc DL(N);
+ SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
+ DAG.getConstant(1, DL, EltVT));
+ if (VT.getSizeInBits() == N0VT.getSizeInBits())
+ // We know that the # elements of the results is the same as the
+ // # elements of the compare (and the # elements of the compare result
+ // for that matter). Check to see that they are the same size. If so,
+ // we know that the element size of the sext'd result matches the
+ // element size of the compare operands.
+ return DAG.getNode(ISD::AND, DL, VT,
+ DAG.getSetCC(DL, VT, N0.getOperand(0),
+ N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get()),
+ DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
+ OneOps));
+
+ // If the desired elements are smaller or larger than the source
+ // elements we can use a matching integer vector type and then
+ // truncate/sign extend
+ EVT MatchingElementType =
+ EVT::getIntegerVT(*DAG.getContext(),
+ N0VT.getScalarType().getSizeInBits());
+ EVT MatchingVectorType =
+ EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
+ N0VT.getVectorNumElements());
+ SDValue VsetCC =
+ DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0),
+ N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+ return DAG.getNode(ISD::AND, DL, VT,
+ DAG.getSExtOrTrunc(VsetCC, DL, VT),
+ DAG.getNode(ISD::BUILD_VECTOR, DL, VT, OneOps));
+ }
+
+ // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
+ SDLoc DL(N);
+ SDValue SCC =
+ SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
+ DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+ if (SCC.getNode()) return SCC;
+ }
+
+ // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
+ if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
+ isa<ConstantSDNode>(N0.getOperand(1)) &&
+ N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
+ N0.hasOneUse()) {
+ SDValue ShAmt = N0.getOperand(1);
+ unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
+ if (N0.getOpcode() == ISD::SHL) {
+ SDValue InnerZExt = N0.getOperand(0);
+ // If the original shl may be shifting out bits, do not perform this
+ // transformation.
+ unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
+ InnerZExt.getOperand(0).getValueType().getSizeInBits();
+ if (ShAmtVal > KnownZeroBits)
+ return SDValue();
+ }
+
+ SDLoc DL(N);
+
+ // Ensure that the shift amount is wide enough for the shifted value.
+ if (VT.getSizeInBits() >= 256)
+ ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
+
+ return DAG.getNode(N0.getOpcode(), DL, VT,
+ DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
+ ShAmt);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
+ LegalOperations))
+ return SDValue(Res, 0);
+
+ // fold (aext (aext x)) -> (aext x)
+ // fold (aext (zext x)) -> (zext x)
+ // fold (aext (sext x)) -> (sext x)
+ if (N0.getOpcode() == ISD::ANY_EXTEND ||
+ N0.getOpcode() == ISD::ZERO_EXTEND ||
+ N0.getOpcode() == ISD::SIGN_EXTEND)
+ return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
+
+ // fold (aext (truncate (load x))) -> (aext (smaller load x))
+ // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
+ if (N0.getOpcode() == ISD::TRUNCATE) {
+ SDValue NarrowLoad = ReduceLoadWidth(N0.getNode());
+ if (NarrowLoad.getNode()) {
+ SDNode* oye = N0.getNode()->getOperand(0).getNode();
+ if (NarrowLoad.getNode() != N0.getNode()) {
+ CombineTo(N0.getNode(), NarrowLoad);
+ // CombineTo deleted the truncate, if needed, but not what's under it.
+ AddToWorklist(oye);
+ }
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ // fold (aext (truncate x))
+ if (N0.getOpcode() == ISD::TRUNCATE) {
+ SDValue TruncOp = N0.getOperand(0);
+ if (TruncOp.getValueType() == VT)
+ return TruncOp; // x iff x size == zext size.
+ if (TruncOp.getValueType().bitsGT(VT))
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
+ return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
+ }
+
+ // Fold (aext (and (trunc x), cst)) -> (and x, cst)
+ // if the trunc is not free.
+ if (N0.getOpcode() == ISD::AND &&
+ N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
+ N0.getOperand(1).getOpcode() == ISD::Constant &&
+ !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
+ N0.getValueType())) {
+ SDValue X = N0.getOperand(0).getOperand(0);
+ if (X.getValueType().bitsLT(VT)) {
+ X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
+ } else if (X.getValueType().bitsGT(VT)) {
+ X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
+ }
+ APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ Mask = Mask.zext(VT.getSizeInBits());
+ SDLoc DL(N);
+ return DAG.getNode(ISD::AND, DL, VT,
+ X, DAG.getConstant(Mask, DL, VT));
+ }
+
+ // fold (aext (load x)) -> (aext (truncate (extload x)))
+ // None of the supported targets knows how to perform load and any_ext
+ // on vectors in one instruction. We only perform this transformation on
+ // scalars.
+ if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
+ ISD::isUNINDEXEDLoad(N0.getNode()) &&
+ TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
+ bool DoXform = true;
+ SmallVector<SDNode*, 4> SetCCs;
+ if (!N0.hasOneUse())
+ DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
+ if (DoXform) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
+ LN0->getChain(),
+ LN0->getBasePtr(), N0.getValueType(),
+ LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
+ N0.getValueType(), ExtLoad);
+ CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
+ ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
+ ISD::ANY_EXTEND);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
+ // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
+ // fold (aext ( extload x)) -> (aext (truncate (extload x)))
+ if (N0.getOpcode() == ISD::LOAD &&
+ !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
+ N0.hasOneUse()) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ ISD::LoadExtType ExtType = LN0->getExtensionType();
+ EVT MemVT = LN0->getMemoryVT();
+ if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
+ SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
+ VT, LN0->getChain(), LN0->getBasePtr(),
+ MemVT, LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ CombineTo(N0.getNode(),
+ DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
+ N0.getValueType(), ExtLoad),
+ ExtLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+
+ if (N0.getOpcode() == ISD::SETCC) {
+ // For vectors:
+ // aext(setcc) -> vsetcc
+ // aext(setcc) -> truncate(vsetcc)
+ // aext(setcc) -> aext(vsetcc)
+ // Only do this before legalize for now.
+ if (VT.isVector() && !LegalOperations) {
+ EVT N0VT = N0.getOperand(0).getValueType();
+ // We know that the # elements of the results is the same as the
+ // # elements of the compare (and the # elements of the compare result
+ // for that matter). Check to see that they are the same size. If so,
+ // we know that the element size of the sext'd result matches the
+ // element size of the compare operands.
+ if (VT.getSizeInBits() == N0VT.getSizeInBits())
+ return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
+ N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+ // If the desired elements are smaller or larger than the source
+ // elements we can use a matching integer vector type and then
+ // truncate/any extend
+ else {
+ EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
+ SDValue VsetCC =
+ DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
+ N0.getOperand(1),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+ return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
+ }
+ }
+
+ // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
+ SDLoc DL(N);
+ SDValue SCC =
+ SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
+ DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT),
+ cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
+ if (SCC.getNode())
+ return SCC;
+ }
+
+ return SDValue();
+}
+
+/// See if the specified operand can be simplified with the knowledge that only
+/// the bits specified by Mask are used. If so, return the simpler operand,
+/// otherwise return a null SDValue.
+SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
+ switch (V.getOpcode()) {
+ default: break;
+ case ISD::Constant: {
+ const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
+ assert(CV && "Const value should be ConstSDNode.");
+ const APInt &CVal = CV->getAPIntValue();
+ APInt NewVal = CVal & Mask;
+ if (NewVal != CVal)
+ return DAG.getConstant(NewVal, SDLoc(V), V.getValueType());
+ break;
+ }
+ case ISD::OR:
+ case ISD::XOR:
+ // If the LHS or RHS don't contribute bits to the or, drop them.
+ if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
+ return V.getOperand(1);
+ if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
+ return V.getOperand(0);
+ break;
+ case ISD::SRL:
+ // Only look at single-use SRLs.
+ if (!V.getNode()->hasOneUse())
+ break;
+ if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) {
+ // See if we can recursively simplify the LHS.
+ unsigned Amt = RHSC->getZExtValue();
+
+ // Watch out for shift count overflow though.
+ if (Amt >= Mask.getBitWidth()) break;
+ APInt NewMask = Mask << Amt;
+ SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask);
+ if (SimplifyLHS.getNode())
+ return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
+ SimplifyLHS, V.getOperand(1));
+ }
+ }
+ return SDValue();
+}
+
+/// If the result of a wider load is shifted to right of N bits and then
+/// truncated to a narrower type and where N is a multiple of number of bits of
+/// the narrower type, transform it to a narrower load from address + N / num of
+/// bits of new type. If the result is to be extended, also fold the extension
+/// to form a extending load.
+SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
+ unsigned Opc = N->getOpcode();
+
+ ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT ExtVT = VT;
+
+ // This transformation isn't valid for vector loads.
+ if (VT.isVector())
+ return SDValue();
+
+ // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
+ // extended to VT.
+ if (Opc == ISD::SIGN_EXTEND_INREG) {
+ ExtType = ISD::SEXTLOAD;
+ ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+ } else if (Opc == ISD::SRL) {
+ // Another special-case: SRL is basically zero-extending a narrower value.
+ ExtType = ISD::ZEXTLOAD;
+ N0 = SDValue(N, 0);
+ ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!N01) return SDValue();
+ ExtVT = EVT::getIntegerVT(*DAG.getContext(),
+ VT.getSizeInBits() - N01->getZExtValue());
+ }
+ if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT))
+ return SDValue();
+
+ unsigned EVTBits = ExtVT.getSizeInBits();
+
+ // Do not generate loads of non-round integer types since these can
+ // be expensive (and would be wrong if the type is not byte sized).
+ if (!ExtVT.isRound())
+ return SDValue();
+
+ unsigned ShAmt = 0;
+ if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
+ if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ ShAmt = N01->getZExtValue();
+ // Is the shift amount a multiple of size of VT?
+ if ((ShAmt & (EVTBits-1)) == 0) {
+ N0 = N0.getOperand(0);
+ // Is the load width a multiple of size of VT?
+ if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
+ return SDValue();
+ }
+
+ // At this point, we must have a load or else we can't do the transform.
+ if (!isa<LoadSDNode>(N0)) return SDValue();
+
+ // Because a SRL must be assumed to *need* to zero-extend the high bits
+ // (as opposed to anyext the high bits), we can't combine the zextload
+ // lowering of SRL and an sextload.
+ if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
+ return SDValue();
+
+ // If the shift amount is larger than the input type then we're not
+ // accessing any of the loaded bytes. If the load was a zextload/extload
+ // then the result of the shift+trunc is zero/undef (handled elsewhere).
+ if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
+ return SDValue();
+ }
+ }
+
+ // If the load is shifted left (and the result isn't shifted back right),
+ // we can fold the truncate through the shift.
+ unsigned ShLeftAmt = 0;
+ if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
+ ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
+ if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
+ ShLeftAmt = N01->getZExtValue();
+ N0 = N0.getOperand(0);
+ }
+ }
+
+ // If we haven't found a load, we can't narrow it. Don't transform one with
+ // multiple uses, this would require adding a new load.
+ if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
+ return SDValue();
+
+ // Don't change the width of a volatile load.
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ if (LN0->isVolatile())
+ return SDValue();
+
+ // Verify that we are actually reducing a load width here.
+ if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
+ return SDValue();
+
+ // For the transform to be legal, the load must produce only two values
+ // (the value loaded and the chain). Don't transform a pre-increment
+ // load, for example, which produces an extra value. Otherwise the
+ // transformation is not equivalent, and the downstream logic to replace
+ // uses gets things wrong.
+ if (LN0->getNumValues() > 2)
+ return SDValue();
+
+ // If the load that we're shrinking is an extload and we're not just
+ // discarding the extension we can't simply shrink the load. Bail.
+ // TODO: It would be possible to merge the extensions in some cases.
+ if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
+ LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
+ return SDValue();
+
+ if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT))
+ return SDValue();
+
+ EVT PtrType = N0.getOperand(1).getValueType();
+
+ if (PtrType == MVT::Untyped || PtrType.isExtended())
+ // It's not possible to generate a constant of extended or untyped type.
+ return SDValue();
+
+ // For big endian targets, we need to adjust the offset to the pointer to
+ // load the correct bytes.
+ if (TLI.isBigEndian()) {
+ unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
+ unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
+ ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
+ }
+
+ uint64_t PtrOff = ShAmt / 8;
+ unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
+ SDLoc DL(LN0);
+ SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
+ PtrType, LN0->getBasePtr(),
+ DAG.getConstant(PtrOff, DL, PtrType));
+ AddToWorklist(NewPtr.getNode());
+
+ SDValue Load;
+ if (ExtType == ISD::NON_EXTLOAD)
+ Load = DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
+ LN0->getPointerInfo().getWithOffset(PtrOff),
+ LN0->isVolatile(), LN0->isNonTemporal(),
+ LN0->isInvariant(), NewAlign, LN0->getAAInfo());
+ else
+ Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
+ LN0->getPointerInfo().getWithOffset(PtrOff),
+ ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
+ LN0->isInvariant(), NewAlign, LN0->getAAInfo());
+
+ // Replace the old load's chain with the new load's chain.
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
+
+ // Shift the result left, if we've swallowed a left shift.
+ SDValue Result = Load;
+ if (ShLeftAmt != 0) {
+ EVT ShImmTy = getShiftAmountTy(Result.getValueType());
+ if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
+ ShImmTy = VT;
+ // If the shift amount is as large as the result size (but, presumably,
+ // no larger than the source) then the useful bits of the result are
+ // zero; we can't simply return the shortened shift, because the result
+ // of that operation is undefined.
+ SDLoc DL(N0);
+ if (ShLeftAmt >= VT.getSizeInBits())
+ Result = DAG.getConstant(0, DL, VT);
+ else
+ Result = DAG.getNode(ISD::SHL, DL, VT,
+ Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
+ }
+
+ // Return the new loaded value.
+ return Result;
+}
+
+SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ EVT EVT = cast<VTSDNode>(N1)->getVT();
+ unsigned VTBits = VT.getScalarType().getSizeInBits();
+ unsigned EVTBits = EVT.getScalarType().getSizeInBits();
+
+ // fold (sext_in_reg c1) -> c1
+ if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
+
+ // If the input is already sign extended, just drop the extension.
+ if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
+ return N0;
+
+ // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
+ if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
+ EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
+ N0.getOperand(0), N1);
+
+ // fold (sext_in_reg (sext x)) -> (sext x)
+ // fold (sext_in_reg (aext x)) -> (sext x)
+ // if x is small enough.
+ if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
+ (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
+ return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
+ }
+
+ // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
+ if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
+ return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
+
+ // fold operands of sext_in_reg based on knowledge that the top bits are not
+ // demanded.
+ if (SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+ // fold (sext_in_reg (load x)) -> (smaller sextload x)
+ // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
+ SDValue NarrowLoad = ReduceLoadWidth(N);
+ if (NarrowLoad.getNode())
+ return NarrowLoad;
+
+ // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
+ // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
+ // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
+ if (N0.getOpcode() == ISD::SRL) {
+ if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
+ if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
+ // We can turn this into an SRA iff the input to the SRL is already sign
+ // extended enough.
+ unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
+ if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
+ return DAG.getNode(ISD::SRA, SDLoc(N), VT,
+ N0.getOperand(0), N0.getOperand(1));
+ }
+ }
+
+ // fold (sext_inreg (extload x)) -> (sextload x)
+ if (ISD::isEXTLoad(N0.getNode()) &&
+ ISD::isUNINDEXEDLoad(N0.getNode()) &&
+ EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
+ ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
+ LN0->getChain(),
+ LN0->getBasePtr(), EVT,
+ LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
+ AddToWorklist(ExtLoad.getNode());
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
+ if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
+ N0.hasOneUse() &&
+ EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
+ ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
+ LN0->getChain(),
+ LN0->getBasePtr(), EVT,
+ LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+
+ // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
+ if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
+ SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
+ N0.getOperand(1), false);
+ if (BSwap.getNode())
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
+ BSwap, N1);
+ }
+
+ // Fold a sext_inreg of a build_vector of ConstantSDNodes or undefs
+ // into a build_vector.
+ if (ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
+ SmallVector<SDValue, 8> Elts;
+ unsigned NumElts = N0->getNumOperands();
+ unsigned ShAmt = VTBits - EVTBits;
+
+ for (unsigned i = 0; i != NumElts; ++i) {
+ SDValue Op = N0->getOperand(i);
+ if (Op->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(Op);
+ continue;
+ }
+
+ ConstantSDNode *CurrentND = cast<ConstantSDNode>(Op);
+ const APInt &C = APInt(VTBits, CurrentND->getAPIntValue().getZExtValue());
+ Elts.push_back(DAG.getConstant(C.shl(ShAmt).ashr(ShAmt).getZExtValue(),
+ SDLoc(Op), Op.getValueType()));
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Elts);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ if (N0.getOpcode() == ISD::UNDEF)
+ return DAG.getUNDEF(VT);
+
+ if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
+ LegalOperations))
+ return SDValue(Res, 0);
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ bool isLE = TLI.isLittleEndian();
+
+ // noop truncate
+ if (N0.getValueType() == N->getValueType(0))
+ return N0;
+ // fold (truncate c1) -> c1
+ if (isConstantIntBuildVectorOrConstantInt(N0))
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
+ // fold (truncate (truncate x)) -> (truncate x)
+ if (N0.getOpcode() == ISD::TRUNCATE)
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
+ // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
+ if (N0.getOpcode() == ISD::ZERO_EXTEND ||
+ N0.getOpcode() == ISD::SIGN_EXTEND ||
+ N0.getOpcode() == ISD::ANY_EXTEND) {
+ if (N0.getOperand(0).getValueType().bitsLT(VT))
+ // if the source is smaller than the dest, we still need an extend
+ return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
+ N0.getOperand(0));
+ if (N0.getOperand(0).getValueType().bitsGT(VT))
+ // if the source is larger than the dest, than we just need the truncate
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
+ // if the source and dest are the same type, we can drop both the extend
+ // and the truncate.
+ return N0.getOperand(0);
+ }
+
+ // Fold extract-and-trunc into a narrow extract. For example:
+ // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
+ // i32 y = TRUNCATE(i64 x)
+ // -- becomes --
+ // v16i8 b = BITCAST (v2i64 val)
+ // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
+ //
+ // Note: We only run this optimization after type legalization (which often
+ // creates this pattern) and before operation legalization after which
+ // we need to be more careful about the vector instructions that we generate.
+ if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
+
+ EVT VecTy = N0.getOperand(0).getValueType();
+ EVT ExTy = N0.getValueType();
+ EVT TrTy = N->getValueType(0);
+
+ unsigned NumElem = VecTy.getVectorNumElements();
+ unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
+
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
+ assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
+
+ SDValue EltNo = N0->getOperand(1);
+ if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
+ int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+ EVT IndexTy = TLI.getVectorIdxTy();
+ int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
+
+ SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
+ NVT, N0.getOperand(0));
+
+ SDLoc DL(N);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
+ DL, TrTy, V,
+ DAG.getConstant(Index, DL, IndexTy));
+ }
+ }
+
+ // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
+ if (N0.getOpcode() == ISD::SELECT) {
+ EVT SrcVT = N0.getValueType();
+ if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
+ TLI.isTruncateFree(SrcVT, VT)) {
+ SDLoc SL(N0);
+ SDValue Cond = N0.getOperand(0);
+ SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
+ SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
+ return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
+ }
+ }
+
+ // Fold a series of buildvector, bitcast, and truncate if possible.
+ // For example fold
+ // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
+ // (2xi32 (buildvector x, y)).
+ if (Level == AfterLegalizeVectorOps && VT.isVector() &&
+ N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
+ N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
+ N0.getOperand(0).hasOneUse()) {
+
+ SDValue BuildVect = N0.getOperand(0);
+ EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
+ EVT TruncVecEltTy = VT.getVectorElementType();
+
+ // Check that the element types match.
+ if (BuildVectEltTy == TruncVecEltTy) {
+ // Now we only need to compute the offset of the truncated elements.
+ unsigned BuildVecNumElts = BuildVect.getNumOperands();
+ unsigned TruncVecNumElts = VT.getVectorNumElements();
+ unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
+
+ assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
+ "Invalid number of elements");
+
+ SmallVector<SDValue, 8> Opnds;
+ for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
+ Opnds.push_back(BuildVect.getOperand(i));
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
+ }
+ }
+
+ // See if we can simplify the input to this truncate through knowledge that
+ // only the low bits are being used.
+ // For example "trunc (or (shl x, 8), y)" // -> trunc y
+ // Currently we only perform this optimization on scalars because vectors
+ // may have different active low bits.
+ if (!VT.isVector()) {
+ SDValue Shorter =
+ GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
+ VT.getSizeInBits()));
+ if (Shorter.getNode())
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
+ }
+ // fold (truncate (load x)) -> (smaller load x)
+ // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
+ if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
+ SDValue Reduced = ReduceLoadWidth(N);
+ if (Reduced.getNode())
+ return Reduced;
+ // Handle the case where the load remains an extending load even
+ // after truncation.
+ if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ if (!LN0->isVolatile() &&
+ LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
+ SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
+ VT, LN0->getChain(), LN0->getBasePtr(),
+ LN0->getMemoryVT(),
+ LN0->getMemOperand());
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
+ return NewLoad;
+ }
+ }
+ }
+ // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
+ // where ... are all 'undef'.
+ if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
+ SmallVector<EVT, 8> VTs;
+ SDValue V;
+ unsigned Idx = 0;
+ unsigned NumDefs = 0;
+
+ for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
+ SDValue X = N0.getOperand(i);
+ if (X.getOpcode() != ISD::UNDEF) {
+ V = X;
+ Idx = i;
+ NumDefs++;
+ }
+ // Stop if more than one members are non-undef.
+ if (NumDefs > 1)
+ break;
+ VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
+ VT.getVectorElementType(),
+ X.getValueType().getVectorNumElements()));
+ }
+
+ if (NumDefs == 0)
+ return DAG.getUNDEF(VT);
+
+ if (NumDefs == 1) {
+ assert(V.getNode() && "The single defined operand is empty!");
+ SmallVector<SDValue, 8> Opnds;
+ for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
+ if (i != Idx) {
+ Opnds.push_back(DAG.getUNDEF(VTs[i]));
+ continue;
+ }
+ SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
+ AddToWorklist(NV.getNode());
+ Opnds.push_back(NV);
+ }
+ return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
+ }
+ }
+
+ // Simplify the operands using demanded-bits information.
+ if (!VT.isVector() &&
+ SimplifyDemandedBits(SDValue(N, 0)))
+ return SDValue(N, 0);
+
+ return SDValue();
+}
+
+static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
+ SDValue Elt = N->getOperand(i);
+ if (Elt.getOpcode() != ISD::MERGE_VALUES)
+ return Elt.getNode();
+ return Elt.getOperand(Elt.getResNo()).getNode();
+}
+
+/// build_pair (load, load) -> load
+/// if load locations are consecutive.
+SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
+ assert(N->getOpcode() == ISD::BUILD_PAIR);
+
+ LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
+ LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
+ if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
+ LD1->getAddressSpace() != LD2->getAddressSpace())
+ return SDValue();
+ EVT LD1VT = LD1->getValueType(0);
+
+ if (ISD::isNON_EXTLoad(LD2) &&
+ LD2->hasOneUse() &&
+ // If both are volatile this would reduce the number of volatile loads.
+ // If one is volatile it might be ok, but play conservative and bail out.
+ !LD1->isVolatile() &&
+ !LD2->isVolatile() &&
+ DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
+ unsigned Align = LD1->getAlignment();
+ unsigned NewAlign = TLI.getDataLayout()->
+ getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
+
+ if (NewAlign <= Align &&
+ (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
+ return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
+ LD1->getBasePtr(), LD1->getPointerInfo(),
+ false, false, false, Align);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitBITCAST(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // If the input is a BUILD_VECTOR with all constant elements, fold this now.
+ // Only do this before legalize, since afterward the target may be depending
+ // on the bitconvert.
+ // First check to see if this is all constant.
+ if (!LegalTypes &&
+ N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
+ VT.isVector()) {
+ bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant();
+
+ EVT DestEltVT = N->getValueType(0).getVectorElementType();
+ assert(!DestEltVT.isVector() &&
+ "Element type of vector ValueType must not be vector!");
+ if (isSimple)
+ return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
+ }
+
+ // If the input is a constant, let getNode fold it.
+ if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
+ // If we can't allow illegal operations, we need to check that this is just
+ // a fp -> int or int -> conversion and that the resulting operation will
+ // be legal.
+ if (!LegalOperations ||
+ (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
+ TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
+ (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
+ TLI.isOperationLegal(ISD::Constant, VT)))
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
+ }
+
+ // (conv (conv x, t1), t2) -> (conv x, t2)
+ if (N0.getOpcode() == ISD::BITCAST)
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
+ N0.getOperand(0));
+
+ // fold (conv (load x)) -> (load (conv*)x)
+ // If the resultant load doesn't need a higher alignment than the original!
+ if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
+ // Do not change the width of a volatile load.
+ !cast<LoadSDNode>(N0)->isVolatile() &&
+ // Do not remove the cast if the types differ in endian layout.
+ TLI.hasBigEndianPartOrdering(N0.getValueType()) ==
+ TLI.hasBigEndianPartOrdering(VT) &&
+ (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
+ TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ unsigned Align = TLI.getDataLayout()->
+ getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
+ unsigned OrigAlign = LN0->getAlignment();
+
+ if (Align <= OrigAlign) {
+ SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
+ LN0->getBasePtr(), LN0->getPointerInfo(),
+ LN0->isVolatile(), LN0->isNonTemporal(),
+ LN0->isInvariant(), OrigAlign,
+ LN0->getAAInfo());
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
+ return Load;
+ }
+ }
+
+ // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
+ // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
+ // This often reduces constant pool loads.
+ if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
+ (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
+ N0.getNode()->hasOneUse() && VT.isInteger() &&
+ !VT.isVector() && !N0.getValueType().isVector()) {
+ SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
+ N0.getOperand(0));
+ AddToWorklist(NewConv.getNode());
+
+ SDLoc DL(N);
+ APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
+ if (N0.getOpcode() == ISD::FNEG)
+ return DAG.getNode(ISD::XOR, DL, VT,
+ NewConv, DAG.getConstant(SignBit, DL, VT));
+ assert(N0.getOpcode() == ISD::FABS);
+ return DAG.getNode(ISD::AND, DL, VT,
+ NewConv, DAG.getConstant(~SignBit, DL, VT));
+ }
+
+ // fold (bitconvert (fcopysign cst, x)) ->
+ // (or (and (bitconvert x), sign), (and cst, (not sign)))
+ // Note that we don't handle (copysign x, cst) because this can always be
+ // folded to an fneg or fabs.
+ if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
+ isa<ConstantFPSDNode>(N0.getOperand(0)) &&
+ VT.isInteger() && !VT.isVector()) {
+ unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
+ EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
+ if (isTypeLegal(IntXVT)) {
+ SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
+ IntXVT, N0.getOperand(1));
+ AddToWorklist(X.getNode());
+
+ // If X has a different width than the result/lhs, sext it or truncate it.
+ unsigned VTWidth = VT.getSizeInBits();
+ if (OrigXWidth < VTWidth) {
+ X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
+ AddToWorklist(X.getNode());
+ } else if (OrigXWidth > VTWidth) {
+ // To get the sign bit in the right place, we have to shift it right
+ // before truncating.
+ SDLoc DL(X);
+ X = DAG.getNode(ISD::SRL, DL,
+ X.getValueType(), X,
+ DAG.getConstant(OrigXWidth-VTWidth, DL,
+ X.getValueType()));
+ AddToWorklist(X.getNode());
+ X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
+ AddToWorklist(X.getNode());
+ }
+
+ APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
+ X = DAG.getNode(ISD::AND, SDLoc(X), VT,
+ X, DAG.getConstant(SignBit, SDLoc(X), VT));
+ AddToWorklist(X.getNode());
+
+ SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
+ VT, N0.getOperand(0));
+ Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
+ Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
+ AddToWorklist(Cst.getNode());
+
+ return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
+ }
+ }
+
+ // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
+ if (N0.getOpcode() == ISD::BUILD_PAIR) {
+ SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT);
+ if (CombineLD.getNode())
+ return CombineLD;
+ }
+
+ // Remove double bitcasts from shuffles - this is often a legacy of
+ // XformToShuffleWithZero being used to combine bitmaskings (of
+ // float vectors bitcast to integer vectors) into shuffles.
+ // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
+ if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
+ N0->getOpcode() == ISD::VECTOR_SHUFFLE &&
+ VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
+ !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
+
+ // If operands are a bitcast, peek through if it casts the original VT.
+ // If operands are a UNDEF or constant, just bitcast back to original VT.
+ auto PeekThroughBitcast = [&](SDValue Op) {
+ if (Op.getOpcode() == ISD::BITCAST &&
+ Op.getOperand(0)->getValueType(0) == VT)
+ return SDValue(Op.getOperand(0));
+ if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
+ ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
+ return SDValue();
+ };
+
+ SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
+ SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
+ if (!(SV0 && SV1))
+ return SDValue();
+
+ int MaskScale =
+ VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
+ SmallVector<int, 8> NewMask;
+ for (int M : SVN->getMask())
+ for (int i = 0; i != MaskScale; ++i)
+ NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
+
+ bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
+ if (!LegalMask) {
+ std::swap(SV0, SV1);
+ ShuffleVectorSDNode::commuteMask(NewMask);
+ LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
+ }
+
+ if (LegalMask)
+ return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ return CombineConsecutiveLoads(N, VT);
+}
+
+/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
+/// operands. DstEltVT indicates the destination element value type.
+SDValue DAGCombiner::
+ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
+ EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
+
+ // If this is already the right type, we're done.
+ if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
+
+ unsigned SrcBitSize = SrcEltVT.getSizeInBits();
+ unsigned DstBitSize = DstEltVT.getSizeInBits();
+
+ // If this is a conversion of N elements of one type to N elements of another
+ // type, convert each element. This handles FP<->INT cases.
+ if (SrcBitSize == DstBitSize) {
+ EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
+ BV->getValueType(0).getVectorNumElements());
+
+ // Due to the FP element handling below calling this routine recursively,
+ // we can end up with a scalar-to-vector node here.
+ if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
+ DAG.getNode(ISD::BITCAST, SDLoc(BV),
+ DstEltVT, BV->getOperand(0)));
+
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
+ SDValue Op = BV->getOperand(i);
+ // If the vector element type is not legal, the BUILD_VECTOR operands
+ // are promoted and implicitly truncated. Make that explicit here.
+ if (Op.getValueType() != SrcEltVT)
+ Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
+ Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
+ DstEltVT, Op));
+ AddToWorklist(Ops.back().getNode());
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops);
+ }
+
+ // Otherwise, we're growing or shrinking the elements. To avoid having to
+ // handle annoying details of growing/shrinking FP values, we convert them to
+ // int first.
+ if (SrcEltVT.isFloatingPoint()) {
+ // Convert the input float vector to a int vector where the elements are the
+ // same sizes.
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
+ BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
+ SrcEltVT = IntVT;
+ }
+
+ // Now we know the input is an integer vector. If the output is a FP type,
+ // convert to integer first, then to FP of the right size.
+ if (DstEltVT.isFloatingPoint()) {
+ EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
+ SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
+
+ // Next, convert to FP elements of the same size.
+ return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
+ }
+
+ SDLoc DL(BV);
+
+ // Okay, we know the src/dst types are both integers of differing types.
+ // Handling growing first.
+ assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
+ if (SrcBitSize < DstBitSize) {
+ unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
+
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0, e = BV->getNumOperands(); i != e;
+ i += NumInputsPerOutput) {
+ bool isLE = TLI.isLittleEndian();
+ APInt NewBits = APInt(DstBitSize, 0);
+ bool EltIsUndef = true;
+ for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
+ // Shift the previously computed bits over.
+ NewBits <<= SrcBitSize;
+ SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
+ if (Op.getOpcode() == ISD::UNDEF) continue;
+ EltIsUndef = false;
+
+ NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
+ zextOrTrunc(SrcBitSize).zext(DstBitSize);
+ }
+
+ if (EltIsUndef)
+ Ops.push_back(DAG.getUNDEF(DstEltVT));
+ else
+ Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
+ }
+
+ EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
+ }
+
+ // Finally, this must be the case where we are shrinking elements: each input
+ // turns into multiple outputs.
+ unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
+ EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
+ NumOutputsPerInput*BV->getNumOperands());
+ SmallVector<SDValue, 8> Ops;
+
+ for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
+ if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
+ Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
+ continue;
+ }
+
+ APInt OpVal = cast<ConstantSDNode>(BV->getOperand(i))->
+ getAPIntValue().zextOrTrunc(SrcBitSize);
+
+ for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
+ APInt ThisVal = OpVal.trunc(DstBitSize);
+ Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
+ OpVal = OpVal.lshr(DstBitSize);
+ }
+
+ // For big endian targets, swap the order of the pieces of each element.
+ if (TLI.isBigEndian())
+ std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
+}
+
+/// Try to perform FMA combining on a given FADD node.
+SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc SL(N);
+
+ const TargetOptions &Options = DAG.getTarget().Options;
+ bool UnsafeFPMath = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
+ Options.UnsafeFPMath);
+
+ // Floating-point multiply-add with intermediate rounding.
+ bool HasFMAD = (LegalOperations &&
+ TLI.isOperationLegal(ISD::FMAD, VT));
+
+ // Floating-point multiply-add without intermediate rounding.
+ bool HasFMA = ((!LegalOperations ||
+ TLI.isOperationLegalOrCustom(ISD::FMA, VT)) &&
+ TLI.isFMAFasterThanFMulAndFAdd(VT) &&
+ UnsafeFPMath);
+
+ // No valid opcode, do not combine.
+ if (!HasFMAD && !HasFMA)
+ return SDValue();
+
+ // Always prefer FMAD to FMA for precision.
+ unsigned int PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
+ bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
+ bool LookThroughFPExt = TLI.isFPExtFree(VT);
+
+ // fold (fadd (fmul x, y), z) -> (fma x, y, z)
+ if (N0.getOpcode() == ISD::FMUL &&
+ (Aggressive || N0->hasOneUse())) {
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N0.getOperand(0), N0.getOperand(1), N1);
+ }
+
+ // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
+ // Note: Commutes FADD operands.
+ if (N1.getOpcode() == ISD::FMUL &&
+ (Aggressive || N1->hasOneUse())) {
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N1.getOperand(0), N1.getOperand(1), N0);
+ }
+
+ // Look through FP_EXTEND nodes to do more combining.
+ if (UnsafeFPMath && LookThroughFPExt) {
+ // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
+ if (N0.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::FMUL)
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N00.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N00.getOperand(1)), N1);
+ }
+
+ // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
+ // Note: Commutes FADD operands.
+ if (N1.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N10 = N1.getOperand(0);
+ if (N10.getOpcode() == ISD::FMUL)
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N10.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N10.getOperand(1)), N0);
+ }
+ }
+
+ // More folding opportunities when target permits.
+ if ((UnsafeFPMath || HasFMAD) && Aggressive) {
+ // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
+ if (N0.getOpcode() == PreferredFusedOpcode &&
+ N0.getOperand(2).getOpcode() == ISD::FMUL) {
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N0.getOperand(0), N0.getOperand(1),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N0.getOperand(2).getOperand(0),
+ N0.getOperand(2).getOperand(1),
+ N1));
+ }
+
+ // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
+ if (N1->getOpcode() == PreferredFusedOpcode &&
+ N1.getOperand(2).getOpcode() == ISD::FMUL) {
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N1.getOperand(0), N1.getOperand(1),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N1.getOperand(2).getOperand(0),
+ N1.getOperand(2).getOperand(1),
+ N0));
+ }
+
+ if (UnsafeFPMath && LookThroughFPExt) {
+ // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
+ // -> (fma x, y, (fma (fpext u), (fpext v), z))
+ auto FoldFAddFMAFPExtFMul = [&] (
+ SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
+ return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
+ Z));
+ };
+ if (N0.getOpcode() == PreferredFusedOpcode) {
+ SDValue N02 = N0.getOperand(2);
+ if (N02.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N020 = N02.getOperand(0);
+ if (N020.getOpcode() == ISD::FMUL)
+ return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
+ N020.getOperand(0), N020.getOperand(1),
+ N1);
+ }
+ }
+
+ // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
+ // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
+ // FIXME: This turns two single-precision and one double-precision
+ // operation into two double-precision operations, which might not be
+ // interesting for all targets, especially GPUs.
+ auto FoldFAddFPExtFMAFMul = [&] (
+ SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
+ Z));
+ };
+ if (N0.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == PreferredFusedOpcode) {
+ SDValue N002 = N00.getOperand(2);
+ if (N002.getOpcode() == ISD::FMUL)
+ return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
+ N002.getOperand(0), N002.getOperand(1),
+ N1);
+ }
+ }
+
+ // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
+ // -> (fma y, z, (fma (fpext u), (fpext v), x))
+ if (N1.getOpcode() == PreferredFusedOpcode) {
+ SDValue N12 = N1.getOperand(2);
+ if (N12.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N120 = N12.getOperand(0);
+ if (N120.getOpcode() == ISD::FMUL)
+ return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
+ N120.getOperand(0), N120.getOperand(1),
+ N0);
+ }
+ }
+
+ // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
+ // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
+ // FIXME: This turns two single-precision and one double-precision
+ // operation into two double-precision operations, which might not be
+ // interesting for all targets, especially GPUs.
+ if (N1.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N10 = N1.getOperand(0);
+ if (N10.getOpcode() == PreferredFusedOpcode) {
+ SDValue N102 = N10.getOperand(2);
+ if (N102.getOpcode() == ISD::FMUL)
+ return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
+ N102.getOperand(0), N102.getOperand(1),
+ N0);
+ }
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+/// Try to perform FMA combining on a given FSUB node.
+SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc SL(N);
+
+ const TargetOptions &Options = DAG.getTarget().Options;
+ bool UnsafeFPMath = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
+ Options.UnsafeFPMath);
+
+ // Floating-point multiply-add with intermediate rounding.
+ bool HasFMAD = (LegalOperations &&
+ TLI.isOperationLegal(ISD::FMAD, VT));
+
+ // Floating-point multiply-add without intermediate rounding.
+ bool HasFMA = ((!LegalOperations ||
+ TLI.isOperationLegalOrCustom(ISD::FMA, VT)) &&
+ TLI.isFMAFasterThanFMulAndFAdd(VT) &&
+ UnsafeFPMath);
+
+ // No valid opcode, do not combine.
+ if (!HasFMAD && !HasFMA)
+ return SDValue();
+
+ // Always prefer FMAD to FMA for precision.
+ unsigned int PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
+ bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
+ bool LookThroughFPExt = TLI.isFPExtFree(VT);
+
+ // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
+ if (N0.getOpcode() == ISD::FMUL &&
+ (Aggressive || N0->hasOneUse())) {
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N0.getOperand(0), N0.getOperand(1),
+ DAG.getNode(ISD::FNEG, SL, VT, N1));
+ }
+
+ // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
+ // Note: Commutes FSUB operands.
+ if (N1.getOpcode() == ISD::FMUL &&
+ (Aggressive || N1->hasOneUse()))
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT,
+ N1.getOperand(0)),
+ N1.getOperand(1), N0);
+
+ // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
+ if (N0.getOpcode() == ISD::FNEG &&
+ N0.getOperand(0).getOpcode() == ISD::FMUL &&
+ (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
+ SDValue N00 = N0.getOperand(0).getOperand(0);
+ SDValue N01 = N0.getOperand(0).getOperand(1);
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
+ DAG.getNode(ISD::FNEG, SL, VT, N1));
+ }
+
+ // Look through FP_EXTEND nodes to do more combining.
+ if (UnsafeFPMath && LookThroughFPExt) {
+ // fold (fsub (fpext (fmul x, y)), z)
+ // -> (fma (fpext x), (fpext y), (fneg z))
+ if (N0.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::FMUL)
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N00.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N00.getOperand(1)),
+ DAG.getNode(ISD::FNEG, SL, VT, N1));
+ }
+
+ // fold (fsub x, (fpext (fmul y, z)))
+ // -> (fma (fneg (fpext y)), (fpext z), x)
+ // Note: Commutes FSUB operands.
+ if (N1.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N10 = N1.getOperand(0);
+ if (N10.getOpcode() == ISD::FMUL)
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N10.getOperand(0))),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N10.getOperand(1)),
+ N0);
+ }
+
+ // fold (fsub (fpext (fneg (fmul, x, y))), z)
+ // -> (fneg (fma (fpext x), (fpext y), z))
+ // Note: This could be removed with appropriate canonicalization of the
+ // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
+ // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
+ // from implementing the canonicalization in visitFSUB.
+ if (N0.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::FNEG) {
+ SDValue N000 = N00.getOperand(0);
+ if (N000.getOpcode() == ISD::FMUL) {
+ return DAG.getNode(ISD::FNEG, SL, VT,
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N000.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N000.getOperand(1)),
+ N1));
+ }
+ }
+ }
+
+ // fold (fsub (fneg (fpext (fmul, x, y))), z)
+ // -> (fneg (fma (fpext x)), (fpext y), z)
+ // Note: This could be removed with appropriate canonicalization of the
+ // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
+ // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
+ // from implementing the canonicalization in visitFSUB.
+ if (N0.getOpcode() == ISD::FNEG) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N000 = N00.getOperand(0);
+ if (N000.getOpcode() == ISD::FMUL) {
+ return DAG.getNode(ISD::FNEG, SL, VT,
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N000.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N000.getOperand(1)),
+ N1));
+ }
+ }
+ }
+
+ }
+
+ // More folding opportunities when target permits.
+ if ((UnsafeFPMath || HasFMAD) && Aggressive) {
+ // fold (fsub (fma x, y, (fmul u, v)), z)
+ // -> (fma x, y (fma u, v, (fneg z)))
+ if (N0.getOpcode() == PreferredFusedOpcode &&
+ N0.getOperand(2).getOpcode() == ISD::FMUL) {
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N0.getOperand(0), N0.getOperand(1),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N0.getOperand(2).getOperand(0),
+ N0.getOperand(2).getOperand(1),
+ DAG.getNode(ISD::FNEG, SL, VT,
+ N1)));
+ }
+
+ // fold (fsub x, (fma y, z, (fmul u, v)))
+ // -> (fma (fneg y), z, (fma (fneg u), v, x))
+ if (N1.getOpcode() == PreferredFusedOpcode &&
+ N1.getOperand(2).getOpcode() == ISD::FMUL) {
+ SDValue N20 = N1.getOperand(2).getOperand(0);
+ SDValue N21 = N1.getOperand(2).getOperand(1);
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT,
+ N1.getOperand(0)),
+ N1.getOperand(1),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT, N20),
+
+ N21, N0));
+ }
+
+ if (UnsafeFPMath && LookThroughFPExt) {
+ // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
+ // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
+ if (N0.getOpcode() == PreferredFusedOpcode) {
+ SDValue N02 = N0.getOperand(2);
+ if (N02.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N020 = N02.getOperand(0);
+ if (N020.getOpcode() == ISD::FMUL)
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ N0.getOperand(0), N0.getOperand(1),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N020.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N020.getOperand(1)),
+ DAG.getNode(ISD::FNEG, SL, VT,
+ N1)));
+ }
+ }
+
+ // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
+ // -> (fma (fpext x), (fpext y),
+ // (fma (fpext u), (fpext v), (fneg z)))
+ // FIXME: This turns two single-precision and one double-precision
+ // operation into two double-precision operations, which might not be
+ // interesting for all targets, especially GPUs.
+ if (N0.getOpcode() == ISD::FP_EXTEND) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == PreferredFusedOpcode) {
+ SDValue N002 = N00.getOperand(2);
+ if (N002.getOpcode() == ISD::FMUL)
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N00.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N00.getOperand(1)),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N002.getOperand(0)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N002.getOperand(1)),
+ DAG.getNode(ISD::FNEG, SL, VT,
+ N1)));
+ }
+ }
+
+ // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
+ // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
+ if (N1.getOpcode() == PreferredFusedOpcode &&
+ N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
+ SDValue N120 = N1.getOperand(2).getOperand(0);
+ if (N120.getOpcode() == ISD::FMUL) {
+ SDValue N1200 = N120.getOperand(0);
+ SDValue N1201 = N120.getOperand(1);
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
+ N1.getOperand(1),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL,
+ VT, N1200)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N1201),
+ N0));
+ }
+ }
+
+ // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
+ // -> (fma (fneg (fpext y)), (fpext z),
+ // (fma (fneg (fpext u)), (fpext v), x))
+ // FIXME: This turns two single-precision and one double-precision
+ // operation into two double-precision operations, which might not be
+ // interesting for all targets, especially GPUs.
+ if (N1.getOpcode() == ISD::FP_EXTEND &&
+ N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
+ SDValue N100 = N1.getOperand(0).getOperand(0);
+ SDValue N101 = N1.getOperand(0).getOperand(1);
+ SDValue N102 = N1.getOperand(0).getOperand(2);
+ if (N102.getOpcode() == ISD::FMUL) {
+ SDValue N1020 = N102.getOperand(0);
+ SDValue N1021 = N102.getOperand(1);
+ return DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N100)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
+ DAG.getNode(PreferredFusedOpcode, SL, VT,
+ DAG.getNode(ISD::FNEG, SL, VT,
+ DAG.getNode(ISD::FP_EXTEND, SL,
+ VT, N1020)),
+ DAG.getNode(ISD::FP_EXTEND, SL, VT,
+ N1021),
+ N0));
+ }
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFADD(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+ const TargetOptions &Options = DAG.getTarget().Options;
+
+ // fold vector ops
+ if (VT.isVector())
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (fadd c1, c2) -> c1 + c2
+ if (N0CFP && N1CFP)
+ return DAG.getNode(ISD::FADD, DL, VT, N0, N1);
+
+ // canonicalize constant to RHS
+ if (N0CFP && !N1CFP)
+ return DAG.getNode(ISD::FADD, DL, VT, N1, N0);
+
+ // fold (fadd A, (fneg B)) -> (fsub A, B)
+ if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
+ isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
+ return DAG.getNode(ISD::FSUB, DL, VT, N0,
+ GetNegatedExpression(N1, DAG, LegalOperations));
+
+ // fold (fadd (fneg A), B) -> (fsub B, A)
+ if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
+ isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
+ return DAG.getNode(ISD::FSUB, DL, VT, N1,
+ GetNegatedExpression(N0, DAG, LegalOperations));
+
+ // If 'unsafe math' is enabled, fold lots of things.
+ if (Options.UnsafeFPMath) {
+ // No FP constant should be created after legalization as Instruction
+ // Selection pass has a hard time dealing with FP constants.
+ bool AllowNewConst = (Level < AfterLegalizeDAG);
+
+ // fold (fadd A, 0) -> A
+ if (N1CFP && N1CFP->isZero())
+ return N0;
+
+ // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
+ if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
+ isa<ConstantFPSDNode>(N0.getOperand(1)))
+ return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0),
+ DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1));
+
+ // If allowed, fold (fadd (fneg x), x) -> 0.0
+ if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
+ return DAG.getConstantFP(0.0, DL, VT);
+
+ // If allowed, fold (fadd x, (fneg x)) -> 0.0
+ if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
+ return DAG.getConstantFP(0.0, DL, VT);
+
+ // We can fold chains of FADD's of the same value into multiplications.
+ // This transform is not safe in general because we are reducing the number
+ // of rounding steps.
+ if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
+ if (N0.getOpcode() == ISD::FMUL) {
+ ConstantFPSDNode *CFP00 = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
+ ConstantFPSDNode *CFP01 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
+
+ // (fadd (fmul x, c), x) -> (fmul x, c+1)
+ if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
+ SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, SDValue(CFP01, 0),
+ DAG.getConstantFP(1.0, DL, VT));
+ return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP);
+ }
+
+ // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
+ if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
+ N1.getOperand(0) == N1.getOperand(1) &&
+ N0.getOperand(0) == N1.getOperand(0)) {
+ SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, SDValue(CFP01, 0),
+ DAG.getConstantFP(2.0, DL, VT));
+ return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP);
+ }
+ }
+
+ if (N1.getOpcode() == ISD::FMUL) {
+ ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
+ ConstantFPSDNode *CFP11 = dyn_cast<ConstantFPSDNode>(N1.getOperand(1));
+
+ // (fadd x, (fmul x, c)) -> (fmul x, c+1)
+ if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
+ SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, SDValue(CFP11, 0),
+ DAG.getConstantFP(1.0, DL, VT));
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP);
+ }
+
+ // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
+ if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
+ N0.getOperand(0) == N0.getOperand(1) &&
+ N1.getOperand(0) == N0.getOperand(0)) {
+ SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, SDValue(CFP11, 0),
+ DAG.getConstantFP(2.0, DL, VT));
+ return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP);
+ }
+ }
+
+ if (N0.getOpcode() == ISD::FADD && AllowNewConst) {
+ ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N0.getOperand(0));
+ // (fadd (fadd x, x), x) -> (fmul x, 3.0)
+ if (!CFP && N0.getOperand(0) == N0.getOperand(1) &&
+ (N0.getOperand(0) == N1)) {
+ return DAG.getNode(ISD::FMUL, DL, VT,
+ N1, DAG.getConstantFP(3.0, DL, VT));
+ }
+ }
+
+ if (N1.getOpcode() == ISD::FADD && AllowNewConst) {
+ ConstantFPSDNode *CFP10 = dyn_cast<ConstantFPSDNode>(N1.getOperand(0));
+ // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
+ if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
+ N1.getOperand(0) == N0) {
+ return DAG.getNode(ISD::FMUL, DL, VT,
+ N0, DAG.getConstantFP(3.0, DL, VT));
+ }
+ }
+
+ // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
+ if (AllowNewConst &&
+ N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
+ N0.getOperand(0) == N0.getOperand(1) &&
+ N1.getOperand(0) == N1.getOperand(1) &&
+ N0.getOperand(0) == N1.getOperand(0)) {
+ return DAG.getNode(ISD::FMUL, DL, VT,
+ N0.getOperand(0), DAG.getConstantFP(4.0, DL, VT));
+ }
+ }
+ } // enable-unsafe-fp-math
+
+ // FADD -> FMA combines:
+ SDValue Fused = visitFADDForFMACombine(N);
+ if (Fused) {
+ AddToWorklist(Fused.getNode());
+ return Fused;
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFSUB(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
+ ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+ const TargetOptions &Options = DAG.getTarget().Options;
+
+ // fold vector ops
+ if (VT.isVector())
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (fsub c1, c2) -> c1-c2
+ if (N0CFP && N1CFP)
+ return DAG.getNode(ISD::FSUB, dl, VT, N0, N1);
+
+ // fold (fsub A, (fneg B)) -> (fadd A, B)
+ if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
+ return DAG.getNode(ISD::FADD, dl, VT, N0,
+ GetNegatedExpression(N1, DAG, LegalOperations));
+
+ // If 'unsafe math' is enabled, fold lots of things.
+ if (Options.UnsafeFPMath) {
+ // (fsub A, 0) -> A
+ if (N1CFP && N1CFP->isZero())
+ return N0;
+
+ // (fsub 0, B) -> -B
+ if (N0CFP && N0CFP->isZero()) {
+ if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
+ return GetNegatedExpression(N1, DAG, LegalOperations);
+ if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
+ return DAG.getNode(ISD::FNEG, dl, VT, N1);
+ }
+
+ // (fsub x, x) -> 0.0
+ if (N0 == N1)
+ return DAG.getConstantFP(0.0f, dl, VT);
+
+ // (fsub x, (fadd x, y)) -> (fneg y)
+ // (fsub x, (fadd y, x)) -> (fneg y)
+ if (N1.getOpcode() == ISD::FADD) {
+ SDValue N10 = N1->getOperand(0);
+ SDValue N11 = N1->getOperand(1);
+
+ if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options))
+ return GetNegatedExpression(N11, DAG, LegalOperations);
+
+ if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options))
+ return GetNegatedExpression(N10, DAG, LegalOperations);
+ }
+ }
+
+ // FSUB -> FMA combines:
+ SDValue Fused = visitFSUBForFMACombine(N);
+ if (Fused) {
+ AddToWorklist(Fused.getNode());
+ return Fused;
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFMUL(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
+ ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+ const TargetOptions &Options = DAG.getTarget().Options;
+
+ // fold vector ops
+ if (VT.isVector()) {
+ // This just handles C1 * C2 for vectors. Other vector folds are below.
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+ }
+
+ // fold (fmul c1, c2) -> c1*c2
+ if (N0CFP && N1CFP)
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, N1);
+
+ // canonicalize constant to RHS
+ if (isConstantFPBuildVectorOrConstantFP(N0) &&
+ !isConstantFPBuildVectorOrConstantFP(N1))
+ return DAG.getNode(ISD::FMUL, DL, VT, N1, N0);
+
+ // fold (fmul A, 1.0) -> A
+ if (N1CFP && N1CFP->isExactlyValue(1.0))
+ return N0;
+
+ if (Options.UnsafeFPMath) {
+ // fold (fmul A, 0) -> 0
+ if (N1CFP && N1CFP->isZero())
+ return N1;
+
+ // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
+ if (N0.getOpcode() == ISD::FMUL) {
+ // Fold scalars or any vector constants (not just splats).
+ // This fold is done in general by InstCombine, but extra fmul insts
+ // may have been generated during lowering.
+ SDValue N00 = N0.getOperand(0);
+ SDValue N01 = N0.getOperand(1);
+ auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
+ auto *BV00 = dyn_cast<BuildVectorSDNode>(N00);
+ auto *BV01 = dyn_cast<BuildVectorSDNode>(N01);
+
+ // Check 1: Make sure that the first operand of the inner multiply is NOT
+ // a constant. Otherwise, we may induce infinite looping.
+ if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) {
+ // Check 2: Make sure that the second operand of the inner multiply and
+ // the second operand of the outer multiply are constants.
+ if ((N1CFP && isConstOrConstSplatFP(N01)) ||
+ (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) {
+ SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1);
+ return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts);
+ }
+ }
+ }
+
+ // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c))
+ // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs
+ // during an early run of DAGCombiner can prevent folding with fmuls
+ // inserted during lowering.
+ if (N0.getOpcode() == ISD::FADD && N0.getOperand(0) == N0.getOperand(1)) {
+ const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
+ SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1);
+ return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts);
+ }
+ }
+
+ // fold (fmul X, 2.0) -> (fadd X, X)
+ if (N1CFP && N1CFP->isExactlyValue(+2.0))
+ return DAG.getNode(ISD::FADD, DL, VT, N0, N0);
+
+ // fold (fmul X, -1.0) -> (fneg X)
+ if (N1CFP && N1CFP->isExactlyValue(-1.0))
+ if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
+ return DAG.getNode(ISD::FNEG, DL, VT, N0);
+
+ // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
+ if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
+ if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
+ // Both can be negated for free, check to see if at least one is cheaper
+ // negated.
+ if (LHSNeg == 2 || RHSNeg == 2)
+ return DAG.getNode(ISD::FMUL, DL, VT,
+ GetNegatedExpression(N0, DAG, LegalOperations),
+ GetNegatedExpression(N1, DAG, LegalOperations));
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFMA(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+ const TargetOptions &Options = DAG.getTarget().Options;
+
+ // Constant fold FMA.
+ if (isa<ConstantFPSDNode>(N0) &&
+ isa<ConstantFPSDNode>(N1) &&
+ isa<ConstantFPSDNode>(N2)) {
+ return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2);
+ }
+
+ if (Options.UnsafeFPMath) {
+ if (N0CFP && N0CFP->isZero())
+ return N2;
+ if (N1CFP && N1CFP->isZero())
+ return N2;
+ }
+ if (N0CFP && N0CFP->isExactlyValue(1.0))
+ return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
+ if (N1CFP && N1CFP->isExactlyValue(1.0))
+ return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
+
+ // Canonicalize (fma c, x, y) -> (fma x, c, y)
+ if (N0CFP && !N1CFP)
+ return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
+
+ // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
+ if (Options.UnsafeFPMath && N1CFP &&
+ N2.getOpcode() == ISD::FMUL &&
+ N0 == N2.getOperand(0) &&
+ N2.getOperand(1).getOpcode() == ISD::ConstantFP) {
+ return DAG.getNode(ISD::FMUL, dl, VT, N0,
+ DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1)));
+ }
+
+
+ // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
+ if (Options.UnsafeFPMath &&
+ N0.getOpcode() == ISD::FMUL && N1CFP &&
+ N0.getOperand(1).getOpcode() == ISD::ConstantFP) {
+ return DAG.getNode(ISD::FMA, dl, VT,
+ N0.getOperand(0),
+ DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1)),
+ N2);
+ }
+
+ // (fma x, 1, y) -> (fadd x, y)
+ // (fma x, -1, y) -> (fadd (fneg x), y)
+ if (N1CFP) {
+ if (N1CFP->isExactlyValue(1.0))
+ return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
+
+ if (N1CFP->isExactlyValue(-1.0) &&
+ (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
+ SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
+ AddToWorklist(RHSNeg.getNode());
+ return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
+ }
+ }
+
+ // (fma x, c, x) -> (fmul x, (c+1))
+ if (Options.UnsafeFPMath && N1CFP && N0 == N2)
+ return DAG.getNode(ISD::FMUL, dl, VT, N0,
+ DAG.getNode(ISD::FADD, dl, VT,
+ N1, DAG.getConstantFP(1.0, dl, VT)));
+
+ // (fma x, c, (fneg x)) -> (fmul x, (c-1))
+ if (Options.UnsafeFPMath && N1CFP &&
+ N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0)
+ return DAG.getNode(ISD::FMUL, dl, VT, N0,
+ DAG.getNode(ISD::FADD, dl, VT,
+ N1, DAG.getConstantFP(-1.0, dl, VT)));
+
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFDIV(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+ const TargetOptions &Options = DAG.getTarget().Options;
+
+ // fold vector ops
+ if (VT.isVector())
+ if (SDValue FoldedVOp = SimplifyVBinOp(N))
+ return FoldedVOp;
+
+ // fold (fdiv c1, c2) -> c1/c2
+ if (N0CFP && N1CFP)
+ return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
+
+ if (Options.UnsafeFPMath) {
+ // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
+ if (N1CFP) {
+ // Compute the reciprocal 1.0 / c2.
+ APFloat N1APF = N1CFP->getValueAPF();
+ APFloat Recip(N1APF.getSemantics(), 1); // 1.0
+ APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
+ // Only do the transform if the reciprocal is a legal fp immediate that
+ // isn't too nasty (eg NaN, denormal, ...).
+ if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
+ (!LegalOperations ||
+ // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
+ // backend)... we should handle this gracefully after Legalize.
+ // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
+ TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
+ TLI.isFPImmLegal(Recip, VT)))
+ return DAG.getNode(ISD::FMUL, DL, VT, N0,
+ DAG.getConstantFP(Recip, DL, VT));
+ }
+
+ // If this FDIV is part of a reciprocal square root, it may be folded
+ // into a target-specific square root estimate instruction.
+ if (N1.getOpcode() == ISD::FSQRT) {
+ if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0))) {
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ } else if (N1.getOpcode() == ISD::FP_EXTEND &&
+ N1.getOperand(0).getOpcode() == ISD::FSQRT) {
+ if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0))) {
+ RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
+ AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ } else if (N1.getOpcode() == ISD::FP_ROUND &&
+ N1.getOperand(0).getOpcode() == ISD::FSQRT) {
+ if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0))) {
+ RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
+ AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ } else if (N1.getOpcode() == ISD::FMUL) {
+ // Look through an FMUL. Even though this won't remove the FDIV directly,
+ // it's still worthwhile to get rid of the FSQRT if possible.
+ SDValue SqrtOp;
+ SDValue OtherOp;
+ if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
+ SqrtOp = N1.getOperand(0);
+ OtherOp = N1.getOperand(1);
+ } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
+ SqrtOp = N1.getOperand(1);
+ OtherOp = N1.getOperand(0);
+ }
+ if (SqrtOp.getNode()) {
+ // We found a FSQRT, so try to make this fold:
+ // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
+ if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0))) {
+ RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp);
+ AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ }
+ }
+
+ // Fold into a reciprocal estimate and multiply instead of a real divide.
+ if (SDValue RV = BuildReciprocalEstimate(N1)) {
+ AddToWorklist(RV.getNode());
+ return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
+ }
+ }
+
+ // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
+ if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
+ if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
+ // Both can be negated for free, check to see if at least one is cheaper
+ // negated.
+ if (LHSNeg == 2 || RHSNeg == 2)
+ return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
+ GetNegatedExpression(N0, DAG, LegalOperations),
+ GetNegatedExpression(N1, DAG, LegalOperations));
+ }
+ }
+
+ // Combine multiple FDIVs with the same divisor into multiple FMULs by the
+ // reciprocal.
+ // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
+ // Notice that this is not always beneficial. One reason is different target
+ // may have different costs for FDIV and FMUL, so sometimes the cost of two
+ // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
+ // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
+ if (Options.UnsafeFPMath) {
+ // Skip if current node is a reciprocal.
+ if (N0CFP && N0CFP->isExactlyValue(1.0))
+ return SDValue();
+
+ SmallVector<SDNode *, 4> Users;
+ // Find all FDIV users of the same divisor.
+ for (auto *U : N1->uses()) {
+ if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1)
+ Users.push_back(U);
+ }
+
+ if (TLI.combineRepeatedFPDivisors(Users.size())) {
+ SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
+ SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1);
+
+ // Dividend / Divisor -> Dividend * Reciprocal
+ for (auto *U : Users) {
+ SDValue Dividend = U->getOperand(0);
+ if (Dividend != FPOne) {
+ SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
+ Reciprocal);
+ DAG.ReplaceAllUsesWith(U, NewNode.getNode());
+ }
+ }
+ return SDValue();
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFREM(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ EVT VT = N->getValueType(0);
+
+ // fold (frem c1, c2) -> fmod(c1,c2)
+ if (N0CFP && N1CFP)
+ return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFSQRT(SDNode *N) {
+ if (DAG.getTarget().Options.UnsafeFPMath &&
+ !TLI.isFsqrtCheap()) {
+ // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5)
+ if (SDValue RV = BuildRsqrtEstimate(N->getOperand(0))) {
+ EVT VT = RV.getValueType();
+ SDLoc DL(N);
+ RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV);
+ AddToWorklist(RV.getNode());
+
+ // Unfortunately, RV is now NaN if the input was exactly 0.
+ // Select out this case and force the answer to 0.
+ SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
+ SDValue ZeroCmp =
+ DAG.getSetCC(DL, TLI.getSetCCResultType(*DAG.getContext(), VT),
+ N->getOperand(0), Zero, ISD::SETEQ);
+ AddToWorklist(ZeroCmp.getNode());
+ AddToWorklist(RV.getNode());
+
+ RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT,
+ DL, VT, ZeroCmp, Zero, RV);
+ return RV;
+ }
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+ EVT VT = N->getValueType(0);
+
+ if (N0CFP && N1CFP) // Constant fold
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
+
+ if (N1CFP) {
+ const APFloat& V = N1CFP->getValueAPF();
+ // copysign(x, c1) -> fabs(x) iff ispos(c1)
+ // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
+ if (!V.isNegative()) {
+ if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
+ return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
+ } else {
+ if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
+ return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
+ DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
+ }
+ }
+
+ // copysign(fabs(x), y) -> copysign(x, y)
+ // copysign(fneg(x), y) -> copysign(x, y)
+ // copysign(copysign(x,z), y) -> copysign(x, y)
+ if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
+ N0.getOpcode() == ISD::FCOPYSIGN)
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
+ N0.getOperand(0), N1);
+
+ // copysign(x, abs(y)) -> abs(x)
+ if (N1.getOpcode() == ISD::FABS)
+ return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
+
+ // copysign(x, copysign(y,z)) -> copysign(x, z)
+ if (N1.getOpcode() == ISD::FCOPYSIGN)
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
+ N0, N1.getOperand(1));
+
+ // copysign(x, fp_extend(y)) -> copysign(x, y)
+ // copysign(x, fp_round(y)) -> copysign(x, y)
+ if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
+ N0, N1.getOperand(0));
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT OpVT = N0.getValueType();
+
+ // fold (sint_to_fp c1) -> c1fp
+ if (isConstantIntBuildVectorOrConstantInt(N0) &&
+ // ...but only if the target supports immediate floating-point values
+ (!LegalOperations ||
+ TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
+ return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
+
+ // If the input is a legal type, and SINT_TO_FP is not legal on this target,
+ // but UINT_TO_FP is legal on this target, try to convert.
+ if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
+ TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
+ // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
+ if (DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
+ }
+
+ // The next optimizations are desirable only if SELECT_CC can be lowered.
+ if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
+ // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
+ if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
+ !VT.isVector() &&
+ (!LegalOperations ||
+ TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
+ SDLoc DL(N);
+ SDValue Ops[] =
+ { N0.getOperand(0), N0.getOperand(1),
+ DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
+ N0.getOperand(2) };
+ return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
+ }
+
+ // fold (sint_to_fp (zext (setcc x, y, cc))) ->
+ // (select_cc x, y, 1.0, 0.0,, cc)
+ if (N0.getOpcode() == ISD::ZERO_EXTEND &&
+ N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
+ (!LegalOperations ||
+ TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
+ SDLoc DL(N);
+ SDValue Ops[] =
+ { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
+ DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
+ N0.getOperand(0).getOperand(2) };
+ return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT OpVT = N0.getValueType();
+
+ // fold (uint_to_fp c1) -> c1fp
+ if (isConstantIntBuildVectorOrConstantInt(N0) &&
+ // ...but only if the target supports immediate floating-point values
+ (!LegalOperations ||
+ TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
+ return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
+
+ // If the input is a legal type, and UINT_TO_FP is not legal on this target,
+ // but SINT_TO_FP is legal on this target, try to convert.
+ if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
+ TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
+ // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
+ if (DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
+ }
+
+ // The next optimizations are desirable only if SELECT_CC can be lowered.
+ if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
+ // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
+
+ if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
+ (!LegalOperations ||
+ TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
+ SDLoc DL(N);
+ SDValue Ops[] =
+ { N0.getOperand(0), N0.getOperand(1),
+ DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
+ N0.getOperand(2) };
+ return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
+ }
+ }
+
+ return SDValue();
+}
+
+// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
+static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
+ return SDValue();
+
+ SDValue Src = N0.getOperand(0);
+ EVT SrcVT = Src.getValueType();
+ bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
+ bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
+
+ // We can safely assume the conversion won't overflow the output range,
+ // because (for example) (uint8_t)18293.f is undefined behavior.
+
+ // Since we can assume the conversion won't overflow, our decision as to
+ // whether the input will fit in the float should depend on the minimum
+ // of the input range and output range.
+
+ // This means this is also safe for a signed input and unsigned output, since
+ // a negative input would lead to undefined behavior.
+ unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
+ unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
+ unsigned ActualSize = std::min(InputSize, OutputSize);
+ const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
+
+ // We can only fold away the float conversion if the input range can be
+ // represented exactly in the float range.
+ if (APFloat::semanticsPrecision(sem) >= ActualSize) {
+ if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
+ unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
+ : ISD::ZERO_EXTEND;
+ return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
+ }
+ if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
+ if (SrcVT == VT)
+ return Src;
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Src);
+ }
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (fp_to_sint c1fp) -> c1
+ if (isConstantFPBuildVectorOrConstantFP(N0))
+ return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
+
+ return FoldIntToFPToInt(N, DAG);
+}
+
+SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (fp_to_uint c1fp) -> c1
+ if (isConstantFPBuildVectorOrConstantFP(N0))
+ return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
+
+ return FoldIntToFPToInt(N, DAG);
+}
+
+SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ EVT VT = N->getValueType(0);
+
+ // fold (fp_round c1fp) -> c1fp
+ if (N0CFP)
+ return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
+
+ // fold (fp_round (fp_extend x)) -> x
+ if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
+ return N0.getOperand(0);
+
+ // fold (fp_round (fp_round x)) -> (fp_round x)
+ if (N0.getOpcode() == ISD::FP_ROUND) {
+ const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
+ const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1;
+ // If the first fp_round isn't a value preserving truncation, it might
+ // introduce a tie in the second fp_round, that wouldn't occur in the
+ // single-step fp_round we want to fold to.
+ // In other words, double rounding isn't the same as rounding.
+ // Also, this is a value preserving truncation iff both fp_round's are.
+ if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
+ DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
+ }
+ }
+
+ // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
+ if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
+ SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
+ N0.getOperand(0), N1);
+ AddToWorklist(Tmp.getNode());
+ return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
+ Tmp, N0.getOperand(1));
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
+ ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+
+ // fold (fp_round_inreg c1fp) -> c1fp
+ if (N0CFP && isTypeLegal(EVT)) {
+ SDLoc DL(N);
+ SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
+ return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
+ if (N->hasOneUse() &&
+ N->use_begin()->getOpcode() == ISD::FP_ROUND)
+ return SDValue();
+
+ // fold (fp_extend c1fp) -> c1fp
+ if (isConstantFPBuildVectorOrConstantFP(N0))
+ return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
+
+ // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
+ if (N0.getOpcode() == ISD::FP16_TO_FP &&
+ TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
+ return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
+
+ // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
+ // value of X.
+ if (N0.getOpcode() == ISD::FP_ROUND
+ && N0.getNode()->getConstantOperandVal(1) == 1) {
+ SDValue In = N0.getOperand(0);
+ if (In.getValueType() == VT) return In;
+ if (VT.bitsLT(In.getValueType()))
+ return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
+ In, N0.getOperand(1));
+ return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
+ }
+
+ // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
+ if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
+ TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
+ LoadSDNode *LN0 = cast<LoadSDNode>(N0);
+ SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
+ LN0->getChain(),
+ LN0->getBasePtr(), N0.getValueType(),
+ LN0->getMemOperand());
+ CombineTo(N, ExtLoad);
+ CombineTo(N0.getNode(),
+ DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
+ N0.getValueType(), ExtLoad,
+ DAG.getIntPtrConstant(1, SDLoc(N0))),
+ ExtLoad.getValue(1));
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFCEIL(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (fceil c1) -> fceil(c1)
+ if (isConstantFPBuildVectorOrConstantFP(N0))
+ return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (ftrunc c1) -> ftrunc(c1)
+ if (isConstantFPBuildVectorOrConstantFP(N0))
+ return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (ffloor c1) -> ffloor(c1)
+ if (isConstantFPBuildVectorOrConstantFP(N0))
+ return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
+
+ return SDValue();
+}
+
+// FIXME: FNEG and FABS have a lot in common; refactor.
+SDValue DAGCombiner::visitFNEG(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // Constant fold FNEG.
+ if (isConstantFPBuildVectorOrConstantFP(N0))
+ return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
+
+ if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
+ &DAG.getTarget().Options))
+ return GetNegatedExpression(N0, DAG, LegalOperations);
+
+ // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
+ // constant pool values.
+ if (!TLI.isFNegFree(VT) &&
+ N0.getOpcode() == ISD::BITCAST &&
+ N0.getNode()->hasOneUse()) {
+ SDValue Int = N0.getOperand(0);
+ EVT IntVT = Int.getValueType();
+ if (IntVT.isInteger() && !IntVT.isVector()) {
+ APInt SignMask;
+ if (N0.getValueType().isVector()) {
+ // For a vector, get a mask such as 0x80... per scalar element
+ // and splat it.
+ SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
+ SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
+ } else {
+ // For a scalar, just generate 0x80...
+ SignMask = APInt::getSignBit(IntVT.getSizeInBits());
+ }
+ SDLoc DL0(N0);
+ Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
+ DAG.getConstant(SignMask, DL0, IntVT));
+ AddToWorklist(Int.getNode());
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int);
+ }
+ }
+
+ // (fneg (fmul c, x)) -> (fmul -c, x)
+ if (N0.getOpcode() == ISD::FMUL &&
+ (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
+ ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
+ if (CFP1) {
+ APFloat CVal = CFP1->getValueAPF();
+ CVal.changeSign();
+ if (Level >= AfterLegalizeDAG &&
+ (TLI.isFPImmLegal(CVal, N->getValueType(0)) ||
+ TLI.isOperationLegal(ISD::ConstantFP, N->getValueType(0))))
+ return DAG.getNode(
+ ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
+ DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0.getOperand(1)));
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ const ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ const ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+
+ if (N0CFP && N1CFP) {
+ const APFloat &C0 = N0CFP->getValueAPF();
+ const APFloat &C1 = N1CFP->getValueAPF();
+ return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), N->getValueType(0));
+ }
+
+ if (N0CFP) {
+ EVT VT = N->getValueType(0);
+ // Canonicalize to constant on RHS.
+ return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ const ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
+ const ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
+
+ if (N0CFP && N1CFP) {
+ const APFloat &C0 = N0CFP->getValueAPF();
+ const APFloat &C1 = N1CFP->getValueAPF();
+ return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), N->getValueType(0));
+ }
+
+ if (N0CFP) {
+ EVT VT = N->getValueType(0);
+ // Canonicalize to constant on RHS.
+ return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFABS(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // fold (fabs c1) -> fabs(c1)
+ if (isConstantFPBuildVectorOrConstantFP(N0))
+ return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
+
+ // fold (fabs (fabs x)) -> (fabs x)
+ if (N0.getOpcode() == ISD::FABS)
+ return N->getOperand(0);
+
+ // fold (fabs (fneg x)) -> (fabs x)
+ // fold (fabs (fcopysign x, y)) -> (fabs x)
+ if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
+ return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
+
+ // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading
+ // constant pool values.
+ if (!TLI.isFAbsFree(VT) &&
+ N0.getOpcode() == ISD::BITCAST &&
+ N0.getNode()->hasOneUse()) {
+ SDValue Int = N0.getOperand(0);
+ EVT IntVT = Int.getValueType();
+ if (IntVT.isInteger() && !IntVT.isVector()) {
+ APInt SignMask;
+ if (N0.getValueType().isVector()) {
+ // For a vector, get a mask such as 0x7f... per scalar element
+ // and splat it.
+ SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
+ SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
+ } else {
+ // For a scalar, just generate 0x7f...
+ SignMask = ~APInt::getSignBit(IntVT.getSizeInBits());
+ }
+ SDLoc DL(N0);
+ Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
+ DAG.getConstant(SignMask, DL, IntVT));
+ AddToWorklist(Int.getNode());
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitBRCOND(SDNode *N) {
+ SDValue Chain = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+
+ // If N is a constant we could fold this into a fallthrough or unconditional
+ // branch. However that doesn't happen very often in normal code, because
+ // Instcombine/SimplifyCFG should have handled the available opportunities.
+ // If we did this folding here, it would be necessary to update the
+ // MachineBasicBlock CFG, which is awkward.
+
+ // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
+ // on the target.
+ if (N1.getOpcode() == ISD::SETCC &&
+ TLI.isOperationLegalOrCustom(ISD::BR_CC,
+ N1.getOperand(0).getValueType())) {
+ return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
+ Chain, N1.getOperand(2),
+ N1.getOperand(0), N1.getOperand(1), N2);
+ }
+
+ if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
+ ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
+ (N1.getOperand(0).hasOneUse() &&
+ N1.getOperand(0).getOpcode() == ISD::SRL))) {
+ SDNode *Trunc = nullptr;
+ if (N1.getOpcode() == ISD::TRUNCATE) {
+ // Look pass the truncate.
+ Trunc = N1.getNode();
+ N1 = N1.getOperand(0);
+ }
+
+ // Match this pattern so that we can generate simpler code:
+ //
+ // %a = ...
+ // %b = and i32 %a, 2
+ // %c = srl i32 %b, 1
+ // brcond i32 %c ...
+ //
+ // into
+ //
+ // %a = ...
+ // %b = and i32 %a, 2
+ // %c = setcc eq %b, 0
+ // brcond %c ...
+ //
+ // This applies only when the AND constant value has one bit set and the
+ // SRL constant is equal to the log2 of the AND constant. The back-end is
+ // smart enough to convert the result into a TEST/JMP sequence.
+ SDValue Op0 = N1.getOperand(0);
+ SDValue Op1 = N1.getOperand(1);
+
+ if (Op0.getOpcode() == ISD::AND &&
+ Op1.getOpcode() == ISD::Constant) {
+ SDValue AndOp1 = Op0.getOperand(1);
+
+ if (AndOp1.getOpcode() == ISD::Constant) {
+ const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
+
+ if (AndConst.isPowerOf2() &&
+ cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
+ SDLoc DL(N);
+ SDValue SetCC =
+ DAG.getSetCC(DL,
+ getSetCCResultType(Op0.getValueType()),
+ Op0, DAG.getConstant(0, DL, Op0.getValueType()),
+ ISD::SETNE);
+
+ SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL,
+ MVT::Other, Chain, SetCC, N2);
+ // Don't add the new BRCond into the worklist or else SimplifySelectCC
+ // will convert it back to (X & C1) >> C2.
+ CombineTo(N, NewBRCond, false);
+ // Truncate is dead.
+ if (Trunc)
+ deleteAndRecombine(Trunc);
+ // Replace the uses of SRL with SETCC
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
+ deleteAndRecombine(N1.getNode());
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+ }
+
+ if (Trunc)
+ // Restore N1 if the above transformation doesn't match.
+ N1 = N->getOperand(1);
+ }
+
+ // Transform br(xor(x, y)) -> br(x != y)
+ // Transform br(xor(xor(x,y), 1)) -> br (x == y)
+ if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
+ SDNode *TheXor = N1.getNode();
+ SDValue Op0 = TheXor->getOperand(0);
+ SDValue Op1 = TheXor->getOperand(1);
+ if (Op0.getOpcode() == Op1.getOpcode()) {
+ // Avoid missing important xor optimizations.
+ SDValue Tmp = visitXOR(TheXor);
+ if (Tmp.getNode()) {
+ if (Tmp.getNode() != TheXor) {
+ DEBUG(dbgs() << "\nReplacing.8 ";
+ TheXor->dump(&DAG);
+ dbgs() << "\nWith: ";
+ Tmp.getNode()->dump(&DAG);
+ dbgs() << '\n');
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
+ deleteAndRecombine(TheXor);
+ return DAG.getNode(ISD::BRCOND, SDLoc(N),
+ MVT::Other, Chain, Tmp, N2);
+ }
+
+ // visitXOR has changed XOR's operands or replaced the XOR completely,
+ // bail out.
+ return SDValue(N, 0);
+ }
+ }
+
+ if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
+ bool Equal = false;
+ if (isOneConstant(Op0) && Op0.hasOneUse() &&
+ Op0.getOpcode() == ISD::XOR) {
+ TheXor = Op0.getNode();
+ Equal = true;
+ }
+
+ EVT SetCCVT = N1.getValueType();
+ if (LegalTypes)
+ SetCCVT = getSetCCResultType(SetCCVT);
+ SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
+ SetCCVT,
+ Op0, Op1,
+ Equal ? ISD::SETEQ : ISD::SETNE);
+ // Replace the uses of XOR with SETCC
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
+ deleteAndRecombine(N1.getNode());
+ return DAG.getNode(ISD::BRCOND, SDLoc(N),
+ MVT::Other, Chain, SetCC, N2);
+ }
+ }
+
+ return SDValue();
+}
+
+// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
+//
+SDValue DAGCombiner::visitBR_CC(SDNode *N) {
+ CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
+ SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
+
+ // If N is a constant we could fold this into a fallthrough or unconditional
+ // branch. However that doesn't happen very often in normal code, because
+ // Instcombine/SimplifyCFG should have handled the available opportunities.
+ // If we did this folding here, it would be necessary to update the
+ // MachineBasicBlock CFG, which is awkward.
+
+ // Use SimplifySetCC to simplify SETCC's.
+ SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
+ CondLHS, CondRHS, CC->get(), SDLoc(N),
+ false);
+ if (Simp.getNode()) AddToWorklist(Simp.getNode());
+
+ // fold to a simpler setcc
+ if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
+ return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
+ N->getOperand(0), Simp.getOperand(2),
+ Simp.getOperand(0), Simp.getOperand(1),
+ N->getOperand(4));
+
+ return SDValue();
+}
+
+/// Return true if 'Use' is a load or a store that uses N as its base pointer
+/// and that N may be folded in the load / store addressing mode.
+static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
+ SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ EVT VT;
+ unsigned AS;
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
+ if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
+ return false;
+ VT = LD->getMemoryVT();
+ AS = LD->getAddressSpace();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
+ if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
+ return false;
+ VT = ST->getMemoryVT();
+ AS = ST->getAddressSpace();
+ } else
+ return false;
+
+ TargetLowering::AddrMode AM;
+ if (N->getOpcode() == ISD::ADD) {
+ ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (Offset)
+ // [reg +/- imm]
+ AM.BaseOffs = Offset->getSExtValue();
+ else
+ // [reg +/- reg]
+ AM.Scale = 1;
+ } else if (N->getOpcode() == ISD::SUB) {
+ ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (Offset)
+ // [reg +/- imm]
+ AM.BaseOffs = -Offset->getSExtValue();
+ else
+ // [reg +/- reg]
+ AM.Scale = 1;
+ } else
+ return false;
+
+ return TLI.isLegalAddressingMode(AM, VT.getTypeForEVT(*DAG.getContext()), AS);
+}
+
+/// Try turning a load/store into a pre-indexed load/store when the base
+/// pointer is an add or subtract and it has other uses besides the load/store.
+/// After the transformation, the new indexed load/store has effectively folded
+/// the add/subtract in and all of its other uses are redirected to the
+/// new load/store.
+bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
+ if (Level < AfterLegalizeDAG)
+ return false;
+
+ bool isLoad = true;
+ SDValue Ptr;
+ EVT VT;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ if (LD->isIndexed())
+ return false;
+ VT = LD->getMemoryVT();
+ if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
+ !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
+ return false;
+ Ptr = LD->getBasePtr();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ if (ST->isIndexed())
+ return false;
+ VT = ST->getMemoryVT();
+ if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
+ !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
+ return false;
+ Ptr = ST->getBasePtr();
+ isLoad = false;
+ } else {
+ return false;
+ }
+
+ // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
+ // out. There is no reason to make this a preinc/predec.
+ if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
+ Ptr.getNode()->hasOneUse())
+ return false;
+
+ // Ask the target to do addressing mode selection.
+ SDValue BasePtr;
+ SDValue Offset;
+ ISD::MemIndexedMode AM = ISD::UNINDEXED;
+ if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
+ return false;
+
+ // Backends without true r+i pre-indexed forms may need to pass a
+ // constant base with a variable offset so that constant coercion
+ // will work with the patterns in canonical form.
+ bool Swapped = false;
+ if (isa<ConstantSDNode>(BasePtr)) {
+ std::swap(BasePtr, Offset);
+ Swapped = true;
+ }
+
+ // Don't create a indexed load / store with zero offset.
+ if (isNullConstant(Offset))
+ return false;
+
+ // Try turning it into a pre-indexed load / store except when:
+ // 1) The new base ptr is a frame index.
+ // 2) If N is a store and the new base ptr is either the same as or is a
+ // predecessor of the value being stored.
+ // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
+ // that would create a cycle.
+ // 4) All uses are load / store ops that use it as old base ptr.
+
+ // Check #1. Preinc'ing a frame index would require copying the stack pointer
+ // (plus the implicit offset) to a register to preinc anyway.
+ if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
+ return false;
+
+ // Check #2.
+ if (!isLoad) {
+ SDValue Val = cast<StoreSDNode>(N)->getValue();
+ if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
+ return false;
+ }
+
+ // If the offset is a constant, there may be other adds of constants that
+ // can be folded with this one. We should do this to avoid having to keep
+ // a copy of the original base pointer.
+ SmallVector<SDNode *, 16> OtherUses;
+ if (isa<ConstantSDNode>(Offset))
+ for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
+ UE = BasePtr.getNode()->use_end();
+ UI != UE; ++UI) {
+ SDUse &Use = UI.getUse();
+ // Skip the use that is Ptr and uses of other results from BasePtr's
+ // node (important for nodes that return multiple results).
+ if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
+ continue;
+
+ if (Use.getUser()->isPredecessorOf(N))
+ continue;
+
+ if (Use.getUser()->getOpcode() != ISD::ADD &&
+ Use.getUser()->getOpcode() != ISD::SUB) {
+ OtherUses.clear();
+ break;
+ }
+
+ SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
+ if (!isa<ConstantSDNode>(Op1)) {
+ OtherUses.clear();
+ break;
+ }
+
+ // FIXME: In some cases, we can be smarter about this.
+ if (Op1.getValueType() != Offset.getValueType()) {
+ OtherUses.clear();
+ break;
+ }
+
+ OtherUses.push_back(Use.getUser());
+ }
+
+ if (Swapped)
+ std::swap(BasePtr, Offset);
+
+ // Now check for #3 and #4.
+ bool RealUse = false;
+
+ // Caches for hasPredecessorHelper
+ SmallPtrSet<const SDNode *, 32> Visited;
+ SmallVector<const SDNode *, 16> Worklist;
+
+ for (SDNode *Use : Ptr.getNode()->uses()) {
+ if (Use == N)
+ continue;
+ if (N->hasPredecessorHelper(Use, Visited, Worklist))
+ return false;
+
+ // If Ptr may be folded in addressing mode of other use, then it's
+ // not profitable to do this transformation.
+ if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
+ RealUse = true;
+ }
+
+ if (!RealUse)
+ return false;
+
+ SDValue Result;
+ if (isLoad)
+ Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
+ BasePtr, Offset, AM);
+ else
+ Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
+ BasePtr, Offset, AM);
+ ++PreIndexedNodes;
+ ++NodesCombined;
+ DEBUG(dbgs() << "\nReplacing.4 ";
+ N->dump(&DAG);
+ dbgs() << "\nWith: ";
+ Result.getNode()->dump(&DAG);
+ dbgs() << '\n');
+ WorklistRemover DeadNodes(*this);
+ if (isLoad) {
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
+ } else {
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
+ }
+
+ // Finally, since the node is now dead, remove it from the graph.
+ deleteAndRecombine(N);
+
+ if (Swapped)
+ std::swap(BasePtr, Offset);
+
+ // Replace other uses of BasePtr that can be updated to use Ptr
+ for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
+ unsigned OffsetIdx = 1;
+ if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
+ OffsetIdx = 0;
+ assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
+ BasePtr.getNode() && "Expected BasePtr operand");
+
+ // We need to replace ptr0 in the following expression:
+ // x0 * offset0 + y0 * ptr0 = t0
+ // knowing that
+ // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
+ //
+ // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
+ // indexed load/store and the expresion that needs to be re-written.
+ //
+ // Therefore, we have:
+ // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
+
+ ConstantSDNode *CN =
+ cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
+ int X0, X1, Y0, Y1;
+ APInt Offset0 = CN->getAPIntValue();
+ APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
+
+ X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
+ Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
+ X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
+ Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
+
+ unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
+
+ APInt CNV = Offset0;
+ if (X0 < 0) CNV = -CNV;
+ if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
+ else CNV = CNV - Offset1;
+
+ SDLoc DL(OtherUses[i]);
+
+ // We can now generate the new expression.
+ SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
+ SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
+
+ SDValue NewUse = DAG.getNode(Opcode,
+ DL,
+ OtherUses[i]->getValueType(0), NewOp1, NewOp2);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
+ deleteAndRecombine(OtherUses[i]);
+ }
+
+ // Replace the uses of Ptr with uses of the updated base value.
+ DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
+ deleteAndRecombine(Ptr.getNode());
+
+ return true;
+}
+
+/// Try to combine a load/store with a add/sub of the base pointer node into a
+/// post-indexed load/store. The transformation folded the add/subtract into the
+/// new indexed load/store effectively and all of its uses are redirected to the
+/// new load/store.
+bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
+ if (Level < AfterLegalizeDAG)
+ return false;
+
+ bool isLoad = true;
+ SDValue Ptr;
+ EVT VT;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ if (LD->isIndexed())
+ return false;
+ VT = LD->getMemoryVT();
+ if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
+ !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
+ return false;
+ Ptr = LD->getBasePtr();
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ if (ST->isIndexed())
+ return false;
+ VT = ST->getMemoryVT();
+ if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
+ !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
+ return false;
+ Ptr = ST->getBasePtr();
+ isLoad = false;
+ } else {
+ return false;
+ }
+
+ if (Ptr.getNode()->hasOneUse())
+ return false;
+
+ for (SDNode *Op : Ptr.getNode()->uses()) {
+ if (Op == N ||
+ (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
+ continue;
+
+ SDValue BasePtr;
+ SDValue Offset;
+ ISD::MemIndexedMode AM = ISD::UNINDEXED;
+ if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
+ // Don't create a indexed load / store with zero offset.
+ if (isNullConstant(Offset))
+ continue;
+
+ // Try turning it into a post-indexed load / store except when
+ // 1) All uses are load / store ops that use it as base ptr (and
+ // it may be folded as addressing mmode).
+ // 2) Op must be independent of N, i.e. Op is neither a predecessor
+ // nor a successor of N. Otherwise, if Op is folded that would
+ // create a cycle.
+
+ if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
+ continue;
+
+ // Check for #1.
+ bool TryNext = false;
+ for (SDNode *Use : BasePtr.getNode()->uses()) {
+ if (Use == Ptr.getNode())
+ continue;
+
+ // If all the uses are load / store addresses, then don't do the
+ // transformation.
+ if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
+ bool RealUse = false;
+ for (SDNode *UseUse : Use->uses()) {
+ if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
+ RealUse = true;
+ }
+
+ if (!RealUse) {
+ TryNext = true;
+ break;
+ }
+ }
+ }
+
+ if (TryNext)
+ continue;
+
+ // Check for #2
+ if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
+ SDValue Result = isLoad
+ ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
+ BasePtr, Offset, AM)
+ : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
+ BasePtr, Offset, AM);
+ ++PostIndexedNodes;
+ ++NodesCombined;
+ DEBUG(dbgs() << "\nReplacing.5 ";
+ N->dump(&DAG);
+ dbgs() << "\nWith: ";
+ Result.getNode()->dump(&DAG);
+ dbgs() << '\n');
+ WorklistRemover DeadNodes(*this);
+ if (isLoad) {
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
+ } else {
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
+ }
+
+ // Finally, since the node is now dead, remove it from the graph.
+ deleteAndRecombine(N);
+
+ // Replace the uses of Use with uses of the updated base value.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
+ Result.getValue(isLoad ? 1 : 0));
+ deleteAndRecombine(Op);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+/// \brief Return the base-pointer arithmetic from an indexed \p LD.
+SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+ assert(AM != ISD::UNINDEXED);
+ SDValue BP = LD->getOperand(1);
+ SDValue Inc = LD->getOperand(2);
+
+ // Some backends use TargetConstants for load offsets, but don't expect
+ // TargetConstants in general ADD nodes. We can convert these constants into
+ // regular Constants (if the constant is not opaque).
+ assert((Inc.getOpcode() != ISD::TargetConstant ||
+ !cast<ConstantSDNode>(Inc)->isOpaque()) &&
+ "Cannot split out indexing using opaque target constants");
+ if (Inc.getOpcode() == ISD::TargetConstant) {
+ ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
+ Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
+ ConstInc->getValueType(0));
+ }
+
+ unsigned Opc =
+ (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
+ return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
+}
+
+SDValue DAGCombiner::visitLOAD(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ SDValue Chain = LD->getChain();
+ SDValue Ptr = LD->getBasePtr();
+
+ // If load is not volatile and there are no uses of the loaded value (and
+ // the updated indexed value in case of indexed loads), change uses of the
+ // chain value into uses of the chain input (i.e. delete the dead load).
+ if (!LD->isVolatile()) {
+ if (N->getValueType(1) == MVT::Other) {
+ // Unindexed loads.
+ if (!N->hasAnyUseOfValue(0)) {
+ // It's not safe to use the two value CombineTo variant here. e.g.
+ // v1, chain2 = load chain1, loc
+ // v2, chain3 = load chain2, loc
+ // v3 = add v2, c
+ // Now we replace use of chain2 with chain1. This makes the second load
+ // isomorphic to the one we are deleting, and thus makes this load live.
+ DEBUG(dbgs() << "\nReplacing.6 ";
+ N->dump(&DAG);
+ dbgs() << "\nWith chain: ";
+ Chain.getNode()->dump(&DAG);
+ dbgs() << "\n");
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
+
+ if (N->use_empty())
+ deleteAndRecombine(N);
+
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ } else {
+ // Indexed loads.
+ assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
+
+ // If this load has an opaque TargetConstant offset, then we cannot split
+ // the indexing into an add/sub directly (that TargetConstant may not be
+ // valid for a different type of node, and we cannot convert an opaque
+ // target constant into a regular constant).
+ bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
+ cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
+
+ if (!N->hasAnyUseOfValue(0) &&
+ ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
+ SDValue Undef = DAG.getUNDEF(N->getValueType(0));
+ SDValue Index;
+ if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
+ Index = SplitIndexingFromLoad(LD);
+ // Try to fold the base pointer arithmetic into subsequent loads and
+ // stores.
+ AddUsersToWorklist(N);
+ } else
+ Index = DAG.getUNDEF(N->getValueType(1));
+ DEBUG(dbgs() << "\nReplacing.7 ";
+ N->dump(&DAG);
+ dbgs() << "\nWith: ";
+ Undef.getNode()->dump(&DAG);
+ dbgs() << " and 2 other values\n");
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
+ deleteAndRecombine(N);
+ return SDValue(N, 0); // Return N so it doesn't get rechecked!
+ }
+ }
+ }
+
+ // If this load is directly stored, replace the load value with the stored
+ // value.
+ // TODO: Handle store large -> read small portion.
+ // TODO: Handle TRUNCSTORE/LOADEXT
+ if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
+ if (ISD::isNON_TRUNCStore(Chain.getNode())) {
+ StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
+ if (PrevST->getBasePtr() == Ptr &&
+ PrevST->getValue().getValueType() == N->getValueType(0))
+ return CombineTo(N, Chain.getOperand(1), Chain);
+ }
+ }
+
+ // Try to infer better alignment information than the load already has.
+ if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
+ if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
+ if (Align > LD->getMemOperand()->getBaseAlignment()) {
+ SDValue NewLoad =
+ DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
+ LD->getValueType(0),
+ Chain, Ptr, LD->getPointerInfo(),
+ LD->getMemoryVT(),
+ LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(), Align, LD->getAAInfo());
+ if (NewLoad.getNode() != N)
+ return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
+ }
+ }
+ }
+
+ bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
+ : DAG.getSubtarget().useAA();
+#ifndef NDEBUG
+ if (CombinerAAOnlyFunc.getNumOccurrences() &&
+ CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
+ UseAA = false;
+#endif
+ if (UseAA && LD->isUnindexed()) {
+ // Walk up chain skipping non-aliasing memory nodes.
+ SDValue BetterChain = FindBetterChain(N, Chain);
+
+ // If there is a better chain.
+ if (Chain != BetterChain) {
+ SDValue ReplLoad;
+
+ // Replace the chain to void dependency.
+ if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
+ ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
+ BetterChain, Ptr, LD->getMemOperand());
+ } else {
+ ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
+ LD->getValueType(0),
+ BetterChain, Ptr, LD->getMemoryVT(),
+ LD->getMemOperand());
+ }
+
+ // Create token factor to keep old chain connected.
+ SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
+ MVT::Other, Chain, ReplLoad.getValue(1));
+
+ // Make sure the new and old chains are cleaned up.
+ AddToWorklist(Token.getNode());
+
+ // Replace uses with load result and token factor. Don't add users
+ // to work list.
+ return CombineTo(N, ReplLoad.getValue(0), Token, false);
+ }
+ }
+
+ // Try transforming N to an indexed load.
+ if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
+ return SDValue(N, 0);
+
+ // Try to slice up N to more direct loads if the slices are mapped to
+ // different register banks or pairing can take place.
+ if (SliceUpLoad(N))
+ return SDValue(N, 0);
+
+ return SDValue();
+}
+
+namespace {
+/// \brief Helper structure used to slice a load in smaller loads.
+/// Basically a slice is obtained from the following sequence:
+/// Origin = load Ty1, Base
+/// Shift = srl Ty1 Origin, CstTy Amount
+/// Inst = trunc Shift to Ty2
+///
+/// Then, it will be rewriten into:
+/// Slice = load SliceTy, Base + SliceOffset
+/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
+///
+/// SliceTy is deduced from the number of bits that are actually used to
+/// build Inst.
+struct LoadedSlice {
+ /// \brief Helper structure used to compute the cost of a slice.
+ struct Cost {
+ /// Are we optimizing for code size.
+ bool ForCodeSize;
+ /// Various cost.
+ unsigned Loads;
+ unsigned Truncates;
+ unsigned CrossRegisterBanksCopies;
+ unsigned ZExts;
+ unsigned Shift;
+
+ Cost(bool ForCodeSize = false)
+ : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
+ CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
+
+ /// \brief Get the cost of one isolated slice.
+ Cost(const LoadedSlice &LS, bool ForCodeSize = false)
+ : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
+ CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
+ EVT TruncType = LS.Inst->getValueType(0);
+ EVT LoadedType = LS.getLoadedType();
+ if (TruncType != LoadedType &&
+ !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
+ ZExts = 1;
+ }
+
+ /// \brief Account for slicing gain in the current cost.
+ /// Slicing provide a few gains like removing a shift or a
+ /// truncate. This method allows to grow the cost of the original
+ /// load with the gain from this slice.
+ void addSliceGain(const LoadedSlice &LS) {
+ // Each slice saves a truncate.
+ const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
+ if (!TLI.isTruncateFree(LS.Inst->getValueType(0),
+ LS.Inst->getOperand(0).getValueType()))
+ ++Truncates;
+ // If there is a shift amount, this slice gets rid of it.
+ if (LS.Shift)
+ ++Shift;
+ // If this slice can merge a cross register bank copy, account for it.
+ if (LS.canMergeExpensiveCrossRegisterBankCopy())
+ ++CrossRegisterBanksCopies;
+ }
+
+ Cost &operator+=(const Cost &RHS) {
+ Loads += RHS.Loads;
+ Truncates += RHS.Truncates;
+ CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
+ ZExts += RHS.ZExts;
+ Shift += RHS.Shift;
+ return *this;
+ }
+
+ bool operator==(const Cost &RHS) const {
+ return Loads == RHS.Loads && Truncates == RHS.Truncates &&
+ CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
+ ZExts == RHS.ZExts && Shift == RHS.Shift;
+ }
+
+ bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
+
+ bool operator<(const Cost &RHS) const {
+ // Assume cross register banks copies are as expensive as loads.
+ // FIXME: Do we want some more target hooks?
+ unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
+ unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
+ // Unless we are optimizing for code size, consider the
+ // expensive operation first.
+ if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
+ return ExpensiveOpsLHS < ExpensiveOpsRHS;
+ return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
+ (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
+ }
+
+ bool operator>(const Cost &RHS) const { return RHS < *this; }
+
+ bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
+
+ bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
+ };
+ // The last instruction that represent the slice. This should be a
+ // truncate instruction.
+ SDNode *Inst;
+ // The original load instruction.
+ LoadSDNode *Origin;
+ // The right shift amount in bits from the original load.
+ unsigned Shift;
+ // The DAG from which Origin came from.
+ // This is used to get some contextual information about legal types, etc.
+ SelectionDAG *DAG;
+
+ LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
+ unsigned Shift = 0, SelectionDAG *DAG = nullptr)
+ : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
+
+ /// \brief Get the bits used in a chunk of bits \p BitWidth large.
+ /// \return Result is \p BitWidth and has used bits set to 1 and
+ /// not used bits set to 0.
+ APInt getUsedBits() const {
+ // Reproduce the trunc(lshr) sequence:
+ // - Start from the truncated value.
+ // - Zero extend to the desired bit width.
+ // - Shift left.
+ assert(Origin && "No original load to compare against.");
+ unsigned BitWidth = Origin->getValueSizeInBits(0);
+ assert(Inst && "This slice is not bound to an instruction");
+ assert(Inst->getValueSizeInBits(0) <= BitWidth &&
+ "Extracted slice is bigger than the whole type!");
+ APInt UsedBits(Inst->getValueSizeInBits(0), 0);
+ UsedBits.setAllBits();
+ UsedBits = UsedBits.zext(BitWidth);
+ UsedBits <<= Shift;
+ return UsedBits;
+ }
+
+ /// \brief Get the size of the slice to be loaded in bytes.
+ unsigned getLoadedSize() const {
+ unsigned SliceSize = getUsedBits().countPopulation();
+ assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
+ return SliceSize / 8;
+ }
+
+ /// \brief Get the type that will be loaded for this slice.
+ /// Note: This may not be the final type for the slice.
+ EVT getLoadedType() const {
+ assert(DAG && "Missing context");
+ LLVMContext &Ctxt = *DAG->getContext();
+ return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
+ }
+
+ /// \brief Get the alignment of the load used for this slice.
+ unsigned getAlignment() const {
+ unsigned Alignment = Origin->getAlignment();
+ unsigned Offset = getOffsetFromBase();
+ if (Offset != 0)
+ Alignment = MinAlign(Alignment, Alignment + Offset);
+ return Alignment;
+ }
+
+ /// \brief Check if this slice can be rewritten with legal operations.
+ bool isLegal() const {
+ // An invalid slice is not legal.
+ if (!Origin || !Inst || !DAG)
+ return false;
+
+ // Offsets are for indexed load only, we do not handle that.
+ if (Origin->getOffset().getOpcode() != ISD::UNDEF)
+ return false;
+
+ const TargetLowering &TLI = DAG->getTargetLoweringInfo();
+
+ // Check that the type is legal.
+ EVT SliceType = getLoadedType();
+ if (!TLI.isTypeLegal(SliceType))
+ return false;
+
+ // Check that the load is legal for this type.
+ if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
+ return false;
+
+ // Check that the offset can be computed.
+ // 1. Check its type.
+ EVT PtrType = Origin->getBasePtr().getValueType();
+ if (PtrType == MVT::Untyped || PtrType.isExtended())
+ return false;
+
+ // 2. Check that it fits in the immediate.
+ if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
+ return false;
+
+ // 3. Check that the computation is legal.
+ if (!TLI.isOperationLegal(ISD::ADD, PtrType))
+ return false;
+
+ // Check that the zext is legal if it needs one.
+ EVT TruncateType = Inst->getValueType(0);
+ if (TruncateType != SliceType &&
+ !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
+ return false;
+
+ return true;
+ }
+
+ /// \brief Get the offset in bytes of this slice in the original chunk of
+ /// bits.
+ /// \pre DAG != nullptr.
+ uint64_t getOffsetFromBase() const {
+ assert(DAG && "Missing context.");
+ bool IsBigEndian =
+ DAG->getTargetLoweringInfo().getDataLayout()->isBigEndian();
+ assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
+ uint64_t Offset = Shift / 8;
+ unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
+ assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
+ "The size of the original loaded type is not a multiple of a"
+ " byte.");
+ // If Offset is bigger than TySizeInBytes, it means we are loading all
+ // zeros. This should have been optimized before in the process.
+ assert(TySizeInBytes > Offset &&
+ "Invalid shift amount for given loaded size");
+ if (IsBigEndian)
+ Offset = TySizeInBytes - Offset - getLoadedSize();
+ return Offset;
+ }
+
+ /// \brief Generate the sequence of instructions to load the slice
+ /// represented by this object and redirect the uses of this slice to
+ /// this new sequence of instructions.
+ /// \pre this->Inst && this->Origin are valid Instructions and this
+ /// object passed the legal check: LoadedSlice::isLegal returned true.
+ /// \return The last instruction of the sequence used to load the slice.
+ SDValue loadSlice() const {
+ assert(Inst && Origin && "Unable to replace a non-existing slice.");
+ const SDValue &OldBaseAddr = Origin->getBasePtr();
+ SDValue BaseAddr = OldBaseAddr;
+ // Get the offset in that chunk of bytes w.r.t. the endianess.
+ int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
+ assert(Offset >= 0 && "Offset too big to fit in int64_t!");
+ if (Offset) {
+ // BaseAddr = BaseAddr + Offset.
+ EVT ArithType = BaseAddr.getValueType();
+ SDLoc DL(Origin);
+ BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
+ DAG->getConstant(Offset, DL, ArithType));
+ }
+
+ // Create the type of the loaded slice according to its size.
+ EVT SliceType = getLoadedType();
+
+ // Create the load for the slice.
+ SDValue LastInst = DAG->getLoad(
+ SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
+ Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
+ Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
+ // If the final type is not the same as the loaded type, this means that
+ // we have to pad with zero. Create a zero extend for that.
+ EVT FinalType = Inst->getValueType(0);
+ if (SliceType != FinalType)
+ LastInst =
+ DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
+ return LastInst;
+ }
+
+ /// \brief Check if this slice can be merged with an expensive cross register
+ /// bank copy. E.g.,
+ /// i = load i32
+ /// f = bitcast i32 i to float
+ bool canMergeExpensiveCrossRegisterBankCopy() const {
+ if (!Inst || !Inst->hasOneUse())
+ return false;
+ SDNode *Use = *Inst->use_begin();
+ if (Use->getOpcode() != ISD::BITCAST)
+ return false;
+ assert(DAG && "Missing context");
+ const TargetLowering &TLI = DAG->getTargetLoweringInfo();
+ EVT ResVT = Use->getValueType(0);
+ const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
+ const TargetRegisterClass *ArgRC =
+ TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
+ if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
+ return false;
+
+ // At this point, we know that we perform a cross-register-bank copy.
+ // Check if it is expensive.
+ const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
+ // Assume bitcasts are cheap, unless both register classes do not
+ // explicitly share a common sub class.
+ if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
+ return false;
+
+ // Check if it will be merged with the load.
+ // 1. Check the alignment constraint.
+ unsigned RequiredAlignment = TLI.getDataLayout()->getABITypeAlignment(
+ ResVT.getTypeForEVT(*DAG->getContext()));
+
+ if (RequiredAlignment > getAlignment())
+ return false;
+
+ // 2. Check that the load is a legal operation for that type.
+ if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
+ return false;
+
+ // 3. Check that we do not have a zext in the way.
+ if (Inst->getValueType(0) != getLoadedType())
+ return false;
+
+ return true;
+ }
+};
+} // namespace
+
+/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
+/// \p UsedBits looks like 0..0 1..1 0..0.
+static bool areUsedBitsDense(const APInt &UsedBits) {
+ // If all the bits are one, this is dense!
+ if (UsedBits.isAllOnesValue())
+ return true;
+
+ // Get rid of the unused bits on the right.
+ APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
+ // Get rid of the unused bits on the left.
+ if (NarrowedUsedBits.countLeadingZeros())
+ NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
+ // Check that the chunk of bits is completely used.
+ return NarrowedUsedBits.isAllOnesValue();
+}
+
+/// \brief Check whether or not \p First and \p Second are next to each other
+/// in memory. This means that there is no hole between the bits loaded
+/// by \p First and the bits loaded by \p Second.
+static bool areSlicesNextToEachOther(const LoadedSlice &First,
+ const LoadedSlice &Second) {
+ assert(First.Origin == Second.Origin && First.Origin &&
+ "Unable to match different memory origins.");
+ APInt UsedBits = First.getUsedBits();
+ assert((UsedBits & Second.getUsedBits()) == 0 &&
+ "Slices are not supposed to overlap.");
+ UsedBits |= Second.getUsedBits();
+ return areUsedBitsDense(UsedBits);
+}
+
+/// \brief Adjust the \p GlobalLSCost according to the target
+/// paring capabilities and the layout of the slices.
+/// \pre \p GlobalLSCost should account for at least as many loads as
+/// there is in the slices in \p LoadedSlices.
+static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
+ LoadedSlice::Cost &GlobalLSCost) {
+ unsigned NumberOfSlices = LoadedSlices.size();
+ // If there is less than 2 elements, no pairing is possible.
+ if (NumberOfSlices < 2)
+ return;
+
+ // Sort the slices so that elements that are likely to be next to each
+ // other in memory are next to each other in the list.
+ std::sort(LoadedSlices.begin(), LoadedSlices.end(),
+ [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
+ assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
+ return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
+ });
+ const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
+ // First (resp. Second) is the first (resp. Second) potentially candidate
+ // to be placed in a paired load.
+ const LoadedSlice *First = nullptr;
+ const LoadedSlice *Second = nullptr;
+ for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
+ // Set the beginning of the pair.
+ First = Second) {
+
+ Second = &LoadedSlices[CurrSlice];
+
+ // If First is NULL, it means we start a new pair.
+ // Get to the next slice.
+ if (!First)
+ continue;
+
+ EVT LoadedType = First->getLoadedType();
+
+ // If the types of the slices are different, we cannot pair them.
+ if (LoadedType != Second->getLoadedType())
+ continue;
+
+ // Check if the target supplies paired loads for this type.
+ unsigned RequiredAlignment = 0;
+ if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
+ // move to the next pair, this type is hopeless.
+ Second = nullptr;
+ continue;
+ }
+ // Check if we meet the alignment requirement.
+ if (RequiredAlignment > First->getAlignment())
+ continue;
+
+ // Check that both loads are next to each other in memory.
+ if (!areSlicesNextToEachOther(*First, *Second))
+ continue;
+
+ assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
+ --GlobalLSCost.Loads;
+ // Move to the next pair.
+ Second = nullptr;
+ }
+}
+
+/// \brief Check the profitability of all involved LoadedSlice.
+/// Currently, it is considered profitable if there is exactly two
+/// involved slices (1) which are (2) next to each other in memory, and
+/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
+///
+/// Note: The order of the elements in \p LoadedSlices may be modified, but not
+/// the elements themselves.
+///
+/// FIXME: When the cost model will be mature enough, we can relax
+/// constraints (1) and (2).
+static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
+ const APInt &UsedBits, bool ForCodeSize) {
+ unsigned NumberOfSlices = LoadedSlices.size();
+ if (StressLoadSlicing)
+ return NumberOfSlices > 1;
+
+ // Check (1).
+ if (NumberOfSlices != 2)
+ return false;
+
+ // Check (2).
+ if (!areUsedBitsDense(UsedBits))
+ return false;
+
+ // Check (3).
+ LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
+ // The original code has one big load.
+ OrigCost.Loads = 1;
+ for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
+ const LoadedSlice &LS = LoadedSlices[CurrSlice];
+ // Accumulate the cost of all the slices.
+ LoadedSlice::Cost SliceCost(LS, ForCodeSize);
+ GlobalSlicingCost += SliceCost;
+
+ // Account as cost in the original configuration the gain obtained
+ // with the current slices.
+ OrigCost.addSliceGain(LS);
+ }
+
+ // If the target supports paired load, adjust the cost accordingly.
+ adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
+ return OrigCost > GlobalSlicingCost;
+}
+
+/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
+/// operations, split it in the various pieces being extracted.
+///
+/// This sort of thing is introduced by SROA.
+/// This slicing takes care not to insert overlapping loads.
+/// \pre LI is a simple load (i.e., not an atomic or volatile load).
+bool DAGCombiner::SliceUpLoad(SDNode *N) {
+ if (Level < AfterLegalizeDAG)
+ return false;
+
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
+ !LD->getValueType(0).isInteger())
+ return false;
+
+ // Keep track of already used bits to detect overlapping values.
+ // In that case, we will just abort the transformation.
+ APInt UsedBits(LD->getValueSizeInBits(0), 0);
+
+ SmallVector<LoadedSlice, 4> LoadedSlices;
+
+ // Check if this load is used as several smaller chunks of bits.
+ // Basically, look for uses in trunc or trunc(lshr) and record a new chain
+ // of computation for each trunc.
+ for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
+ UI != UIEnd; ++UI) {
+ // Skip the uses of the chain.
+ if (UI.getUse().getResNo() != 0)
+ continue;
+
+ SDNode *User = *UI;
+ unsigned Shift = 0;
+
+ // Check if this is a trunc(lshr).
+ if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
+ isa<ConstantSDNode>(User->getOperand(1))) {
+ Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
+ User = *User->use_begin();
+ }
+
+ // At this point, User is a Truncate, iff we encountered, trunc or
+ // trunc(lshr).
+ if (User->getOpcode() != ISD::TRUNCATE)
+ return false;
+
+ // The width of the type must be a power of 2 and greater than 8-bits.
+ // Otherwise the load cannot be represented in LLVM IR.
+ // Moreover, if we shifted with a non-8-bits multiple, the slice
+ // will be across several bytes. We do not support that.
+ unsigned Width = User->getValueSizeInBits(0);
+ if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
+ return 0;
+
+ // Build the slice for this chain of computations.
+ LoadedSlice LS(User, LD, Shift, &DAG);
+ APInt CurrentUsedBits = LS.getUsedBits();
+
+ // Check if this slice overlaps with another.
+ if ((CurrentUsedBits & UsedBits) != 0)
+ return false;
+ // Update the bits used globally.
+ UsedBits |= CurrentUsedBits;
+
+ // Check if the new slice would be legal.
+ if (!LS.isLegal())
+ return false;
+
+ // Record the slice.
+ LoadedSlices.push_back(LS);
+ }
+
+ // Abort slicing if it does not seem to be profitable.
+ if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
+ return false;
+
+ ++SlicedLoads;
+
+ // Rewrite each chain to use an independent load.
+ // By construction, each chain can be represented by a unique load.
+
+ // Prepare the argument for the new token factor for all the slices.
+ SmallVector<SDValue, 8> ArgChains;
+ for (SmallVectorImpl<LoadedSlice>::const_iterator
+ LSIt = LoadedSlices.begin(),
+ LSItEnd = LoadedSlices.end();
+ LSIt != LSItEnd; ++LSIt) {
+ SDValue SliceInst = LSIt->loadSlice();
+ CombineTo(LSIt->Inst, SliceInst, true);
+ if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
+ SliceInst = SliceInst.getOperand(0);
+ assert(SliceInst->getOpcode() == ISD::LOAD &&
+ "It takes more than a zext to get to the loaded slice!!");
+ ArgChains.push_back(SliceInst.getValue(1));
+ }
+
+ SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
+ ArgChains);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
+ return true;
+}
+
+/// Check to see if V is (and load (ptr), imm), where the load is having
+/// specific bytes cleared out. If so, return the byte size being masked out
+/// and the shift amount.
+static std::pair<unsigned, unsigned>
+CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
+ std::pair<unsigned, unsigned> Result(0, 0);
+
+ // Check for the structure we're looking for.
+ if (V->getOpcode() != ISD::AND ||
+ !isa<ConstantSDNode>(V->getOperand(1)) ||
+ !ISD::isNormalLoad(V->getOperand(0).getNode()))
+ return Result;
+
+ // Check the chain and pointer.
+ LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
+ if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
+
+ // The store should be chained directly to the load or be an operand of a
+ // tokenfactor.
+ if (LD == Chain.getNode())
+ ; // ok.
+ else if (Chain->getOpcode() != ISD::TokenFactor)
+ return Result; // Fail.
+ else {
+ bool isOk = false;
+ for (unsigned i = 0, e = Chain->getNumOperands(); i != e; ++i)
+ if (Chain->getOperand(i).getNode() == LD) {
+ isOk = true;
+ break;
+ }
+ if (!isOk) return Result;
+ }
+
+ // This only handles simple types.
+ if (V.getValueType() != MVT::i16 &&
+ V.getValueType() != MVT::i32 &&
+ V.getValueType() != MVT::i64)
+ return Result;
+
+ // Check the constant mask. Invert it so that the bits being masked out are
+ // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
+ // follow the sign bit for uniformity.
+ uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
+ unsigned NotMaskLZ = countLeadingZeros(NotMask);
+ if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
+ unsigned NotMaskTZ = countTrailingZeros(NotMask);
+ if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
+ if (NotMaskLZ == 64) return Result; // All zero mask.
+
+ // See if we have a continuous run of bits. If so, we have 0*1+0*
+ if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
+ return Result;
+
+ // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
+ if (V.getValueType() != MVT::i64 && NotMaskLZ)
+ NotMaskLZ -= 64-V.getValueSizeInBits();
+
+ unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
+ switch (MaskedBytes) {
+ case 1:
+ case 2:
+ case 4: break;
+ default: return Result; // All one mask, or 5-byte mask.
+ }
+
+ // Verify that the first bit starts at a multiple of mask so that the access
+ // is aligned the same as the access width.
+ if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
+
+ Result.first = MaskedBytes;
+ Result.second = NotMaskTZ/8;
+ return Result;
+}
+
+
+/// Check to see if IVal is something that provides a value as specified by
+/// MaskInfo. If so, replace the specified store with a narrower store of
+/// truncated IVal.
+static SDNode *
+ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
+ SDValue IVal, StoreSDNode *St,
+ DAGCombiner *DC) {
+ unsigned NumBytes = MaskInfo.first;
+ unsigned ByteShift = MaskInfo.second;
+ SelectionDAG &DAG = DC->getDAG();
+
+ // Check to see if IVal is all zeros in the part being masked in by the 'or'
+ // that uses this. If not, this is not a replacement.
+ APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
+ ByteShift*8, (ByteShift+NumBytes)*8);
+ if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
+
+ // Check that it is legal on the target to do this. It is legal if the new
+ // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
+ // legalization.
+ MVT VT = MVT::getIntegerVT(NumBytes*8);
+ if (!DC->isTypeLegal(VT))
+ return nullptr;
+
+ // Okay, we can do this! Replace the 'St' store with a store of IVal that is
+ // shifted by ByteShift and truncated down to NumBytes.
+ if (ByteShift) {
+ SDLoc DL(IVal);
+ IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
+ DAG.getConstant(ByteShift*8, DL,
+ DC->getShiftAmountTy(IVal.getValueType())));
+ }
+
+ // Figure out the offset for the store and the alignment of the access.
+ unsigned StOffset;
+ unsigned NewAlign = St->getAlignment();
+
+ if (DAG.getTargetLoweringInfo().isLittleEndian())
+ StOffset = ByteShift;
+ else
+ StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
+
+ SDValue Ptr = St->getBasePtr();
+ if (StOffset) {
+ SDLoc DL(IVal);
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
+ Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
+ NewAlign = MinAlign(NewAlign, StOffset);
+ }
+
+ // Truncate down to the new size.
+ IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
+
+ ++OpsNarrowed;
+ return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
+ St->getPointerInfo().getWithOffset(StOffset),
+ false, false, NewAlign).getNode();
+}
+
+
+/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
+/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
+/// narrowing the load and store if it would end up being a win for performance
+/// or code size.
+SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ if (ST->isVolatile())
+ return SDValue();
+
+ SDValue Chain = ST->getChain();
+ SDValue Value = ST->getValue();
+ SDValue Ptr = ST->getBasePtr();
+ EVT VT = Value.getValueType();
+
+ if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
+ return SDValue();
+
+ unsigned Opc = Value.getOpcode();
+
+ // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
+ // is a byte mask indicating a consecutive number of bytes, check to see if
+ // Y is known to provide just those bytes. If so, we try to replace the
+ // load + replace + store sequence with a single (narrower) store, which makes
+ // the load dead.
+ if (Opc == ISD::OR) {
+ std::pair<unsigned, unsigned> MaskedLoad;
+ MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
+ if (MaskedLoad.first)
+ if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
+ Value.getOperand(1), ST,this))
+ return SDValue(NewST, 0);
+
+ // Or is commutative, so try swapping X and Y.
+ MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
+ if (MaskedLoad.first)
+ if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
+ Value.getOperand(0), ST,this))
+ return SDValue(NewST, 0);
+ }
+
+ if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
+ Value.getOperand(1).getOpcode() != ISD::Constant)
+ return SDValue();
+
+ SDValue N0 = Value.getOperand(0);
+ if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
+ Chain == SDValue(N0.getNode(), 1)) {
+ LoadSDNode *LD = cast<LoadSDNode>(N0);
+ if (LD->getBasePtr() != Ptr ||
+ LD->getPointerInfo().getAddrSpace() !=
+ ST->getPointerInfo().getAddrSpace())
+ return SDValue();
+
+ // Find the type to narrow it the load / op / store to.
+ SDValue N1 = Value.getOperand(1);
+ unsigned BitWidth = N1.getValueSizeInBits();
+ APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
+ if (Opc == ISD::AND)
+ Imm ^= APInt::getAllOnesValue(BitWidth);
+ if (Imm == 0 || Imm.isAllOnesValue())
+ return SDValue();
+ unsigned ShAmt = Imm.countTrailingZeros();
+ unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
+ unsigned NewBW = NextPowerOf2(MSB - ShAmt);
+ EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
+ // The narrowing should be profitable, the load/store operation should be
+ // legal (or custom) and the store size should be equal to the NewVT width.
+ while (NewBW < BitWidth &&
+ (NewVT.getStoreSizeInBits() != NewBW ||
+ !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
+ !TLI.isNarrowingProfitable(VT, NewVT))) {
+ NewBW = NextPowerOf2(NewBW);
+ NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
+ }
+ if (NewBW >= BitWidth)
+ return SDValue();
+
+ // If the lsb changed does not start at the type bitwidth boundary,
+ // start at the previous one.
+ if (ShAmt % NewBW)
+ ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
+ APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
+ std::min(BitWidth, ShAmt + NewBW));
+ if ((Imm & Mask) == Imm) {
+ APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
+ if (Opc == ISD::AND)
+ NewImm ^= APInt::getAllOnesValue(NewBW);
+ uint64_t PtrOff = ShAmt / 8;
+ // For big endian targets, we need to adjust the offset to the pointer to
+ // load the correct bytes.
+ if (TLI.isBigEndian())
+ PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
+
+ unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
+ Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
+ if (NewAlign < TLI.getDataLayout()->getABITypeAlignment(NewVTTy))
+ return SDValue();
+
+ SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
+ Ptr.getValueType(), Ptr,
+ DAG.getConstant(PtrOff, SDLoc(LD),
+ Ptr.getValueType()));
+ SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
+ LD->getChain(), NewPtr,
+ LD->getPointerInfo().getWithOffset(PtrOff),
+ LD->isVolatile(), LD->isNonTemporal(),
+ LD->isInvariant(), NewAlign,
+ LD->getAAInfo());
+ SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
+ DAG.getConstant(NewImm, SDLoc(Value),
+ NewVT));
+ SDValue NewST = DAG.getStore(Chain, SDLoc(N),
+ NewVal, NewPtr,
+ ST->getPointerInfo().getWithOffset(PtrOff),
+ false, false, NewAlign);
+
+ AddToWorklist(NewPtr.getNode());
+ AddToWorklist(NewLD.getNode());
+ AddToWorklist(NewVal.getNode());
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
+ ++OpsNarrowed;
+ return NewST;
+ }
+ }
+
+ return SDValue();
+}
+
+/// For a given floating point load / store pair, if the load value isn't used
+/// by any other operations, then consider transforming the pair to integer
+/// load / store operations if the target deems the transformation profitable.
+SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ SDValue Chain = ST->getChain();
+ SDValue Value = ST->getValue();
+ if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
+ Value.hasOneUse() &&
+ Chain == SDValue(Value.getNode(), 1)) {
+ LoadSDNode *LD = cast<LoadSDNode>(Value);
+ EVT VT = LD->getMemoryVT();
+ if (!VT.isFloatingPoint() ||
+ VT != ST->getMemoryVT() ||
+ LD->isNonTemporal() ||
+ ST->isNonTemporal() ||
+ LD->getPointerInfo().getAddrSpace() != 0 ||
+ ST->getPointerInfo().getAddrSpace() != 0)
+ return SDValue();
+
+ EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
+ if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
+ !TLI.isOperationLegal(ISD::STORE, IntVT) ||
+ !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
+ !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
+ return SDValue();
+
+ unsigned LDAlign = LD->getAlignment();
+ unsigned STAlign = ST->getAlignment();
+ Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlign = TLI.getDataLayout()->getABITypeAlignment(IntVTTy);
+ if (LDAlign < ABIAlign || STAlign < ABIAlign)
+ return SDValue();
+
+ SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
+ LD->getChain(), LD->getBasePtr(),
+ LD->getPointerInfo(),
+ false, false, false, LDAlign);
+
+ SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
+ NewLD, ST->getBasePtr(),
+ ST->getPointerInfo(),
+ false, false, STAlign);
+
+ AddToWorklist(NewLD.getNode());
+ AddToWorklist(NewST.getNode());
+ WorklistRemover DeadNodes(*this);
+ DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
+ ++LdStFP2Int;
+ return NewST;
+ }
+
+ return SDValue();
+}
+
+namespace {
+/// Helper struct to parse and store a memory address as base + index + offset.
+/// We ignore sign extensions when it is safe to do so.
+/// The following two expressions are not equivalent. To differentiate we need
+/// to store whether there was a sign extension involved in the index
+/// computation.
+/// (load (i64 add (i64 copyfromreg %c)
+/// (i64 signextend (add (i8 load %index)
+/// (i8 1))))
+/// vs
+///
+/// (load (i64 add (i64 copyfromreg %c)
+/// (i64 signextend (i32 add (i32 signextend (i8 load %index))
+/// (i32 1)))))
+struct BaseIndexOffset {
+ SDValue Base;
+ SDValue Index;
+ int64_t Offset;
+ bool IsIndexSignExt;
+
+ BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
+
+ BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
+ bool IsIndexSignExt) :
+ Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
+
+ bool equalBaseIndex(const BaseIndexOffset &Other) {
+ return Other.Base == Base && Other.Index == Index &&
+ Other.IsIndexSignExt == IsIndexSignExt;
+ }
+
+ /// Parses tree in Ptr for base, index, offset addresses.
+ static BaseIndexOffset match(SDValue Ptr) {
+ bool IsIndexSignExt = false;
+
+ // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
+ // instruction, then it could be just the BASE or everything else we don't
+ // know how to handle. Just use Ptr as BASE and give up.
+ if (Ptr->getOpcode() != ISD::ADD)
+ return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
+
+ // We know that we have at least an ADD instruction. Try to pattern match
+ // the simple case of BASE + OFFSET.
+ if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
+ int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
+ return BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
+ IsIndexSignExt);
+ }
+
+ // Inside a loop the current BASE pointer is calculated using an ADD and a
+ // MUL instruction. In this case Ptr is the actual BASE pointer.
+ // (i64 add (i64 %array_ptr)
+ // (i64 mul (i64 %induction_var)
+ // (i64 %element_size)))
+ if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
+ return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
+
+ // Look at Base + Index + Offset cases.
+ SDValue Base = Ptr->getOperand(0);
+ SDValue IndexOffset = Ptr->getOperand(1);
+
+ // Skip signextends.
+ if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
+ IndexOffset = IndexOffset->getOperand(0);
+ IsIndexSignExt = true;
+ }
+
+ // Either the case of Base + Index (no offset) or something else.
+ if (IndexOffset->getOpcode() != ISD::ADD)
+ return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
+
+ // Now we have the case of Base + Index + offset.
+ SDValue Index = IndexOffset->getOperand(0);
+ SDValue Offset = IndexOffset->getOperand(1);
+
+ if (!isa<ConstantSDNode>(Offset))
+ return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
+
+ // Ignore signextends.
+ if (Index->getOpcode() == ISD::SIGN_EXTEND) {
+ Index = Index->getOperand(0);
+ IsIndexSignExt = true;
+ } else IsIndexSignExt = false;
+
+ int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
+ return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
+ }
+};
+} // namespace
+
+SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG,
+ SDLoc SL,
+ ArrayRef<MemOpLink> Stores,
+ EVT Ty) const {
+ SmallVector<SDValue, 8> BuildVector;
+
+ for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I)
+ BuildVector.push_back(cast<StoreSDNode>(Stores[I].MemNode)->getValue());
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SL, Ty, BuildVector);
+}
+
+bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
+ SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT,
+ unsigned NumElem, bool IsConstantSrc, bool UseVector) {
+ // Make sure we have something to merge.
+ if (NumElem < 2)
+ return false;
+
+ int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
+ LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
+ unsigned LatestNodeUsed = 0;
+
+ for (unsigned i=0; i < NumElem; ++i) {
+ // Find a chain for the new wide-store operand. Notice that some
+ // of the store nodes that we found may not be selected for inclusion
+ // in the wide store. The chain we use needs to be the chain of the
+ // latest store node which is *used* and replaced by the wide store.
+ if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
+ LatestNodeUsed = i;
+ }
+
+ // The latest Node in the DAG.
+ LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
+ SDLoc DL(StoreNodes[0].MemNode);
+
+ SDValue StoredVal;
+ if (UseVector) {
+ // Find a legal type for the vector store.
+ EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
+ assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
+ if (IsConstantSrc) {
+ StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Ty);
+ } else {
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElem ; ++i) {
+ StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
+ SDValue Val = St->getValue();
+ // All of the operands of a BUILD_VECTOR must have the same type.
+ if (Val.getValueType() != MemVT)
+ return false;
+ Ops.push_back(Val);
+ }
+
+ // Build the extracted vector elements back into a vector.
+ StoredVal = DAG.getNode(ISD::BUILD_VECTOR, DL, Ty, Ops);
+ }
+ } else {
+ // We should always use a vector store when merging extracted vector
+ // elements, so this path implies a store of constants.
+ assert(IsConstantSrc && "Merged vector elements should use vector store");
+
+ unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
+ APInt StoreInt(SizeInBits, 0);
+
+ // Construct a single integer constant which is made of the smaller
+ // constant inputs.
+ bool IsLE = TLI.isLittleEndian();
+ for (unsigned i = 0; i < NumElem ; ++i) {
+ unsigned Idx = IsLE ? (NumElem - 1 - i) : i;
+ StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
+ SDValue Val = St->getValue();
+ StoreInt <<= ElementSizeBytes * 8;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
+ StoreInt |= C->getAPIntValue().zext(SizeInBits);
+ } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
+ StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits);
+ } else {
+ llvm_unreachable("Invalid constant element type");
+ }
+ }
+
+ // Create the new Load and Store operations.
+ EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
+ StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
+ }
+
+ SDValue NewStore = DAG.getStore(LatestOp->getChain(), DL, StoredVal,
+ FirstInChain->getBasePtr(),
+ FirstInChain->getPointerInfo(),
+ false, false,
+ FirstInChain->getAlignment());
+
+ // Replace the last store with the new store
+ CombineTo(LatestOp, NewStore);
+ // Erase all other stores.
+ for (unsigned i = 0; i < NumElem ; ++i) {
+ if (StoreNodes[i].MemNode == LatestOp)
+ continue;
+ StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
+ // ReplaceAllUsesWith will replace all uses that existed when it was
+ // called, but graph optimizations may cause new ones to appear. For
+ // example, the case in pr14333 looks like
+ //
+ // St's chain -> St -> another store -> X
+ //
+ // And the only difference from St to the other store is the chain.
+ // When we change it's chain to be St's chain they become identical,
+ // get CSEed and the net result is that X is now a use of St.
+ // Since we know that St is redundant, just iterate.
+ while (!St->use_empty())
+ DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
+ deleteAndRecombine(St);
+ }
+
+ return true;
+}
+
+static bool allowableAlignment(const SelectionDAG &DAG,
+ const TargetLowering &TLI, EVT EVTTy,
+ unsigned AS, unsigned Align) {
+ if (TLI.allowsMisalignedMemoryAccesses(EVTTy, AS, Align))
+ return true;
+
+ Type *Ty = EVTTy.getTypeForEVT(*DAG.getContext());
+ unsigned ABIAlignment = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
+ return (Align >= ABIAlignment);
+}
+
+void DAGCombiner::getStoreMergeAndAliasCandidates(
+ StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
+ SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) {
+ // This holds the base pointer, index, and the offset in bytes from the base
+ // pointer.
+ BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
+
+ // We must have a base and an offset.
+ if (!BasePtr.Base.getNode())
+ return;
+
+ // Do not handle stores to undef base pointers.
+ if (BasePtr.Base.getOpcode() == ISD::UNDEF)
+ return;
+
+ // Walk up the chain and look for nodes with offsets from the same
+ // base pointer. Stop when reaching an instruction with a different kind
+ // or instruction which has a different base pointer.
+ EVT MemVT = St->getMemoryVT();
+ unsigned Seq = 0;
+ StoreSDNode *Index = St;
+ while (Index) {
+ // If the chain has more than one use, then we can't reorder the mem ops.
+ if (Index != St && !SDValue(Index, 0)->hasOneUse())
+ break;
+
+ // Find the base pointer and offset for this memory node.
+ BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
+
+ // Check that the base pointer is the same as the original one.
+ if (!Ptr.equalBaseIndex(BasePtr))
+ break;
+
+ // The memory operands must not be volatile.
+ if (Index->isVolatile() || Index->isIndexed())
+ break;
+
+ // No truncation.
+ if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
+ if (St->isTruncatingStore())
+ break;
+
+ // The stored memory type must be the same.
+ if (Index->getMemoryVT() != MemVT)
+ break;
+
+ // We found a potential memory operand to merge.
+ StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
+
+ // Find the next memory operand in the chain. If the next operand in the
+ // chain is a store then move up and continue the scan with the next
+ // memory operand. If the next operand is a load save it and use alias
+ // information to check if it interferes with anything.
+ SDNode *NextInChain = Index->getChain().getNode();
+ while (1) {
+ if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
+ // We found a store node. Use it for the next iteration.
+ Index = STn;
+ break;
+ } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
+ if (Ldn->isVolatile()) {
+ Index = nullptr;
+ break;
+ }
+
+ // Save the load node for later. Continue the scan.
+ AliasLoadNodes.push_back(Ldn);
+ NextInChain = Ldn->getChain().getNode();
+ continue;
+ } else {
+ Index = nullptr;
+ break;
+ }
+ }
+ }
+}
+
+bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
+ if (OptLevel == CodeGenOpt::None)
+ return false;
+
+ EVT MemVT = St->getMemoryVT();
+ int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
+ bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute(
+ Attribute::NoImplicitFloat);
+
+ // This function cannot currently deal with non-byte-sized memory sizes.
+ if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
+ return false;
+
+ // Don't merge vectors into wider inputs.
+ if (MemVT.isVector() || !MemVT.isSimple())
+ return false;
+
+ // Perform an early exit check. Do not bother looking at stored values that
+ // are not constants, loads, or extracted vector elements.
+ SDValue StoredVal = St->getValue();
+ bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
+ bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
+ isa<ConstantFPSDNode>(StoredVal);
+ bool IsExtractVecEltSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT);
+
+ if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecEltSrc)
+ return false;
+
+ // Only look at ends of store sequences.
+ SDValue Chain = SDValue(St, 0);
+ if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
+ return false;
+
+ // Save the LoadSDNodes that we find in the chain.
+ // We need to make sure that these nodes do not interfere with
+ // any of the store nodes.
+ SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
+
+ // Save the StoreSDNodes that we find in the chain.
+ SmallVector<MemOpLink, 8> StoreNodes;
+
+ getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes);
+
+ // Check if there is anything to merge.
+ if (StoreNodes.size() < 2)
+ return false;
+
+ // Sort the memory operands according to their distance from the base pointer.
+ std::sort(StoreNodes.begin(), StoreNodes.end(),
+ [](MemOpLink LHS, MemOpLink RHS) {
+ return LHS.OffsetFromBase < RHS.OffsetFromBase ||
+ (LHS.OffsetFromBase == RHS.OffsetFromBase &&
+ LHS.SequenceNum > RHS.SequenceNum);
+ });
+
+ // Scan the memory operations on the chain and find the first non-consecutive
+ // store memory address.
+ unsigned LastConsecutiveStore = 0;
+ int64_t StartAddress = StoreNodes[0].OffsetFromBase;
+ for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
+
+ // Check that the addresses are consecutive starting from the second
+ // element in the list of stores.
+ if (i > 0) {
+ int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
+ if (CurrAddress - StartAddress != (ElementSizeBytes * i))
+ break;
+ }
+
+ bool Alias = false;
+ // Check if this store interferes with any of the loads that we found.
+ for (unsigned ld = 0, lde = AliasLoadNodes.size(); ld < lde; ++ld)
+ if (isAlias(AliasLoadNodes[ld], StoreNodes[i].MemNode)) {
+ Alias = true;
+ break;
+ }
+ // We found a load that alias with this store. Stop the sequence.
+ if (Alias)
+ break;
+
+ // Mark this node as useful.
+ LastConsecutiveStore = i;
+ }
+
+ // The node with the lowest store address.
+ LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
+ unsigned FirstStoreAS = FirstInChain->getAddressSpace();
+ unsigned FirstStoreAlign = FirstInChain->getAlignment();
+
+ // Store the constants into memory as one consecutive store.
+ if (IsConstantSrc) {
+ unsigned LastLegalType = 0;
+ unsigned LastLegalVectorType = 0;
+ bool NonZero = false;
+ for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
+ StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
+ SDValue StoredVal = St->getValue();
+
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
+ NonZero |= !C->isNullValue();
+ } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
+ NonZero |= !C->getConstantFPValue()->isNullValue();
+ } else {
+ // Non-constant.
+ break;
+ }
+
+ // Find a legal type for the constant store.
+ unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
+ EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
+ if (TLI.isTypeLegal(StoreTy) &&
+ allowableAlignment(DAG, TLI, StoreTy, FirstStoreAS,
+ FirstStoreAlign)) {
+ LastLegalType = i+1;
+ // Or check whether a truncstore is legal.
+ } else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
+ TargetLowering::TypePromoteInteger) {
+ EVT LegalizedStoredValueTy =
+ TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
+ if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
+ allowableAlignment(DAG, TLI, LegalizedStoredValueTy, FirstStoreAS,
+ FirstStoreAlign)) {
+ LastLegalType = i + 1;
+ }
+ }
+
+ // Find a legal type for the vector store.
+ EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
+ if (TLI.isTypeLegal(Ty) &&
+ allowableAlignment(DAG, TLI, Ty, FirstStoreAS, FirstStoreAlign)) {
+ LastLegalVectorType = i + 1;
+ }
+ }
+
+
+ // We only use vectors if the constant is known to be zero or the target
+ // allows it and the function is not marked with the noimplicitfloat
+ // attribute.
+ if (NoVectors) {
+ LastLegalVectorType = 0;
+ } else if (NonZero && !TLI.storeOfVectorConstantIsCheap(MemVT,
+ LastLegalVectorType,
+ FirstStoreAS)) {
+ LastLegalVectorType = 0;
+ }
+
+ // Check if we found a legal integer type to store.
+ if (LastLegalType == 0 && LastLegalVectorType == 0)
+ return false;
+
+ bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
+ unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
+
+ return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
+ true, UseVector);
+ }
+
+ // When extracting multiple vector elements, try to store them
+ // in one vector store rather than a sequence of scalar stores.
+ if (IsExtractVecEltSrc) {
+ unsigned NumElem = 0;
+ for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) {
+ StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
+ SDValue StoredVal = St->getValue();
+ // This restriction could be loosened.
+ // Bail out if any stored values are not elements extracted from a vector.
+ // It should be possible to handle mixed sources, but load sources need
+ // more careful handling (see the block of code below that handles
+ // consecutive loads).
+ if (StoredVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return false;
+
+ // Find a legal type for the vector store.
+ EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
+ if (TLI.isTypeLegal(Ty) &&
+ allowableAlignment(DAG, TLI, Ty, FirstStoreAS, FirstStoreAlign))
+ NumElem = i + 1;
+ }
+
+ return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
+ false, true);
+ }
+
+ // Below we handle the case of multiple consecutive stores that
+ // come from multiple consecutive loads. We merge them into a single
+ // wide load and a single wide store.
+
+ // Look for load nodes which are used by the stored values.
+ SmallVector<MemOpLink, 8> LoadNodes;
+
+ // Find acceptable loads. Loads need to have the same chain (token factor),
+ // must not be zext, volatile, indexed, and they must be consecutive.
+ BaseIndexOffset LdBasePtr;
+ for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
+ StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
+ LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
+ if (!Ld) break;
+
+ // Loads must only have one use.
+ if (!Ld->hasNUsesOfValue(1, 0))
+ break;
+
+ // The memory operands must not be volatile.
+ if (Ld->isVolatile() || Ld->isIndexed())
+ break;
+
+ // We do not accept ext loads.
+ if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
+ break;
+
+ // The stored memory type must be the same.
+ if (Ld->getMemoryVT() != MemVT)
+ break;
+
+ BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
+ // If this is not the first ptr that we check.
+ if (LdBasePtr.Base.getNode()) {
+ // The base ptr must be the same.
+ if (!LdPtr.equalBaseIndex(LdBasePtr))
+ break;
+ } else {
+ // Check that all other base pointers are the same as this one.
+ LdBasePtr = LdPtr;
+ }
+
+ // We found a potential memory operand to merge.
+ LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
+ }
+
+ if (LoadNodes.size() < 2)
+ return false;
+
+ // If we have load/store pair instructions and we only have two values,
+ // don't bother.
+ unsigned RequiredAlignment;
+ if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
+ St->getAlignment() >= RequiredAlignment)
+ return false;
+
+ LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
+ unsigned FirstLoadAS = FirstLoad->getAddressSpace();
+ unsigned FirstLoadAlign = FirstLoad->getAlignment();
+
+ // Scan the memory operations on the chain and find the first non-consecutive
+ // load memory address. These variables hold the index in the store node
+ // array.
+ unsigned LastConsecutiveLoad = 0;
+ // This variable refers to the size and not index in the array.
+ unsigned LastLegalVectorType = 0;
+ unsigned LastLegalIntegerType = 0;
+ StartAddress = LoadNodes[0].OffsetFromBase;
+ SDValue FirstChain = FirstLoad->getChain();
+ for (unsigned i = 1; i < LoadNodes.size(); ++i) {
+ // All loads much share the same chain.
+ if (LoadNodes[i].MemNode->getChain() != FirstChain)
+ break;
+
+ int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
+ if (CurrAddress - StartAddress != (ElementSizeBytes * i))
+ break;
+ LastConsecutiveLoad = i;
+
+ // Find a legal type for the vector store.
+ EVT StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT, i+1);
+ if (TLI.isTypeLegal(StoreTy) &&
+ allowableAlignment(DAG, TLI, StoreTy, FirstStoreAS, FirstStoreAlign) &&
+ allowableAlignment(DAG, TLI, StoreTy, FirstLoadAS, FirstLoadAlign)) {
+ LastLegalVectorType = i + 1;
+ }
+
+ // Find a legal type for the integer store.
+ unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
+ StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
+ if (TLI.isTypeLegal(StoreTy) &&
+ allowableAlignment(DAG, TLI, StoreTy, FirstStoreAS, FirstStoreAlign) &&
+ allowableAlignment(DAG, TLI, StoreTy, FirstLoadAS, FirstLoadAlign))
+ LastLegalIntegerType = i + 1;
+ // Or check whether a truncstore and extload is legal.
+ else if (TLI.getTypeAction(*DAG.getContext(), StoreTy) ==
+ TargetLowering::TypePromoteInteger) {
+ EVT LegalizedStoredValueTy =
+ TLI.getTypeToTransformTo(*DAG.getContext(), StoreTy);
+ if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
+ TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
+ TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
+ TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) &&
+ allowableAlignment(DAG, TLI, LegalizedStoredValueTy, FirstStoreAS,
+ FirstStoreAlign) &&
+ allowableAlignment(DAG, TLI, LegalizedStoredValueTy, FirstLoadAS,
+ FirstLoadAlign))
+ LastLegalIntegerType = i+1;
+ }
+ }
+
+ // Only use vector types if the vector type is larger than the integer type.
+ // If they are the same, use integers.
+ bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
+ unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
+
+ // We add +1 here because the LastXXX variables refer to location while
+ // the NumElem refers to array/index size.
+ unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
+ NumElem = std::min(LastLegalType, NumElem);
+
+ if (NumElem < 2)
+ return false;
+
+ // The latest Node in the DAG.
+ unsigned LatestNodeUsed = 0;
+ for (unsigned i=1; i<NumElem; ++i) {
+ // Find a chain for the new wide-store operand. Notice that some
+ // of the store nodes that we found may not be selected for inclusion
+ // in the wide store. The chain we use needs to be the chain of the
+ // latest store node which is *used* and replaced by the wide store.
+ if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
+ LatestNodeUsed = i;
+ }
+
+ LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
+
+ // Find if it is better to use vectors or integers to load and store
+ // to memory.
+ EVT JointMemOpVT;
+ if (UseVectorTy) {
+ JointMemOpVT = EVT::getVectorVT(*DAG.getContext(), MemVT, NumElem);
+ } else {
+ unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
+ JointMemOpVT = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
+ }
+
+ SDLoc LoadDL(LoadNodes[0].MemNode);
+ SDLoc StoreDL(StoreNodes[0].MemNode);
+
+ SDValue NewLoad = DAG.getLoad(
+ JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
+ FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign);
+
+ SDValue NewStore = DAG.getStore(
+ LatestOp->getChain(), StoreDL, NewLoad, FirstInChain->getBasePtr(),
+ FirstInChain->getPointerInfo(), false, false, FirstStoreAlign);
+
+ // Replace one of the loads with the new load.
+ LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[0].MemNode);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
+ SDValue(NewLoad.getNode(), 1));
+
+ // Remove the rest of the load chains.
+ for (unsigned i = 1; i < NumElem ; ++i) {
+ // Replace all chain users of the old load nodes with the chain of the new
+ // load node.
+ LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Ld->getChain());
+ }
+
+ // Replace the last store with the new store.
+ CombineTo(LatestOp, NewStore);
+ // Erase all other stores.
+ for (unsigned i = 0; i < NumElem ; ++i) {
+ // Remove all Store nodes.
+ if (StoreNodes[i].MemNode == LatestOp)
+ continue;
+ StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
+ deleteAndRecombine(St);
+ }
+
+ return true;
+}
+
+SDValue DAGCombiner::visitSTORE(SDNode *N) {
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ SDValue Chain = ST->getChain();
+ SDValue Value = ST->getValue();
+ SDValue Ptr = ST->getBasePtr();
+
+ // If this is a store of a bit convert, store the input value if the
+ // resultant store does not need a higher alignment than the original.
+ if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
+ ST->isUnindexed()) {
+ unsigned OrigAlign = ST->getAlignment();
+ EVT SVT = Value.getOperand(0).getValueType();
+ unsigned Align = TLI.getDataLayout()->
+ getABITypeAlignment(SVT.getTypeForEVT(*DAG.getContext()));
+ if (Align <= OrigAlign &&
+ ((!LegalOperations && !ST->isVolatile()) ||
+ TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
+ return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
+ Ptr, ST->getPointerInfo(), ST->isVolatile(),
+ ST->isNonTemporal(), OrigAlign,
+ ST->getAAInfo());
+ }
+
+ // Turn 'store undef, Ptr' -> nothing.
+ if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
+ return Chain;
+
+ // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Value)) {
+ // NOTE: If the original store is volatile, this transform must not increase
+ // the number of stores. For example, on x86-32 an f64 can be stored in one
+ // processor operation but an i64 (which is not legal) requires two. So the
+ // transform should not be done in this case.
+ if (Value.getOpcode() != ISD::TargetConstantFP) {
+ SDValue Tmp;
+ switch (CFP->getSimpleValueType(0).SimpleTy) {
+ default: llvm_unreachable("Unknown FP type");
+ case MVT::f16: // We don't do this for these yet.
+ case MVT::f80:
+ case MVT::f128:
+ case MVT::ppcf128:
+ break;
+ case MVT::f32:
+ if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
+ TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
+ ;
+ Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
+ bitcastToAPInt().getZExtValue(), SDLoc(CFP),
+ MVT::i32);
+ return DAG.getStore(Chain, SDLoc(N), Tmp,
+ Ptr, ST->getMemOperand());
+ }
+ break;
+ case MVT::f64:
+ if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
+ !ST->isVolatile()) ||
+ TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
+ ;
+ Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
+ getZExtValue(), SDLoc(CFP), MVT::i64);
+ return DAG.getStore(Chain, SDLoc(N), Tmp,
+ Ptr, ST->getMemOperand());
+ }
+
+ if (!ST->isVolatile() &&
+ TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
+ // Many FP stores are not made apparent until after legalize, e.g. for
+ // argument passing. Since this is so common, custom legalize the
+ // 64-bit integer store into two 32-bit stores.
+ uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
+ SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
+ SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
+ if (TLI.isBigEndian()) std::swap(Lo, Hi);
+
+ unsigned Alignment = ST->getAlignment();
+ bool isVolatile = ST->isVolatile();
+ bool isNonTemporal = ST->isNonTemporal();
+ AAMDNodes AAInfo = ST->getAAInfo();
+
+ SDLoc DL(N);
+
+ SDValue St0 = DAG.getStore(Chain, SDLoc(ST), Lo,
+ Ptr, ST->getPointerInfo(),
+ isVolatile, isNonTemporal,
+ ST->getAlignment(), AAInfo);
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(4, DL, Ptr.getValueType()));
+ Alignment = MinAlign(Alignment, 4U);
+ SDValue St1 = DAG.getStore(Chain, SDLoc(ST), Hi,
+ Ptr, ST->getPointerInfo().getWithOffset(4),
+ isVolatile, isNonTemporal,
+ Alignment, AAInfo);
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ St0, St1);
+ }
+
+ break;
+ }
+ }
+ }
+
+ // Try to infer better alignment information than the store already has.
+ if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
+ if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
+ if (Align > ST->getAlignment()) {
+ SDValue NewStore =
+ DAG.getTruncStore(Chain, SDLoc(N), Value,
+ Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
+ ST->isVolatile(), ST->isNonTemporal(), Align,
+ ST->getAAInfo());
+ if (NewStore.getNode() != N)
+ return CombineTo(ST, NewStore, true);
+ }
+ }
+ }
+
+ // Try transforming a pair floating point load / store ops to integer
+ // load / store ops.
+ SDValue NewST = TransformFPLoadStorePair(N);
+ if (NewST.getNode())
+ return NewST;
+
+ bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
+ : DAG.getSubtarget().useAA();
+#ifndef NDEBUG
+ if (CombinerAAOnlyFunc.getNumOccurrences() &&
+ CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
+ UseAA = false;
+#endif
+ if (UseAA && ST->isUnindexed()) {
+ // Walk up chain skipping non-aliasing memory nodes.
+ SDValue BetterChain = FindBetterChain(N, Chain);
+
+ // If there is a better chain.
+ if (Chain != BetterChain) {
+ SDValue ReplStore;
+
+ // Replace the chain to avoid dependency.
+ if (ST->isTruncatingStore()) {
+ ReplStore = DAG.getTruncStore(BetterChain, SDLoc(N), Value, Ptr,
+ ST->getMemoryVT(), ST->getMemOperand());
+ } else {
+ ReplStore = DAG.getStore(BetterChain, SDLoc(N), Value, Ptr,
+ ST->getMemOperand());
+ }
+
+ // Create token to keep both nodes around.
+ SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
+ MVT::Other, Chain, ReplStore);
+
+ // Make sure the new and old chains are cleaned up.
+ AddToWorklist(Token.getNode());
+
+ // Don't add users to work list.
+ return CombineTo(N, Token, false);
+ }
+ }
+
+ // Try transforming N to an indexed store.
+ if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
+ return SDValue(N, 0);
+
+ // FIXME: is there such a thing as a truncating indexed store?
+ if (ST->isTruncatingStore() && ST->isUnindexed() &&
+ Value.getValueType().isInteger()) {
+ // See if we can simplify the input to this truncstore with knowledge that
+ // only the low bits are being used. For example:
+ // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
+ SDValue Shorter =
+ GetDemandedBits(Value,
+ APInt::getLowBitsSet(
+ Value.getValueType().getScalarType().getSizeInBits(),
+ ST->getMemoryVT().getScalarType().getSizeInBits()));
+ AddToWorklist(Value.getNode());
+ if (Shorter.getNode())
+ return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
+ Ptr, ST->getMemoryVT(), ST->getMemOperand());
+
+ // Otherwise, see if we can simplify the operation with
+ // SimplifyDemandedBits, which only works if the value has a single use.
+ if (SimplifyDemandedBits(Value,
+ APInt::getLowBitsSet(
+ Value.getValueType().getScalarType().getSizeInBits(),
+ ST->getMemoryVT().getScalarType().getSizeInBits())))
+ return SDValue(N, 0);
+ }
+
+ // If this is a load followed by a store to the same location, then the store
+ // is dead/noop.
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
+ if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
+ ST->isUnindexed() && !ST->isVolatile() &&
+ // There can't be any side effects between the load and store, such as
+ // a call or store.
+ Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
+ // The store is dead, remove it.
+ return Chain;
+ }
+ }
+
+ // If this is a store followed by a store with the same value to the same
+ // location, then the store is dead/noop.
+ if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
+ if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() &&
+ ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() &&
+ ST1->isUnindexed() && !ST1->isVolatile()) {
+ // The store is dead, remove it.
+ return Chain;
+ }
+ }
+
+ // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
+ // truncating store. We can do this even if this is already a truncstore.
+ if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
+ && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
+ TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
+ ST->getMemoryVT())) {
+ return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
+ Ptr, ST->getMemoryVT(), ST->getMemOperand());
+ }
+
+ // Only perform this optimization before the types are legal, because we
+ // don't want to perform this optimization on every DAGCombine invocation.
+ if (!LegalTypes) {
+ bool EverChanged = false;
+
+ do {
+ // There can be multiple store sequences on the same chain.
+ // Keep trying to merge store sequences until we are unable to do so
+ // or until we merge the last store on the chain.
+ bool Changed = MergeConsecutiveStores(ST);
+ EverChanged |= Changed;
+ if (!Changed) break;
+ } while (ST->getOpcode() != ISD::DELETED_NODE);
+
+ if (EverChanged)
+ return SDValue(N, 0);
+ }
+
+ return ReduceLoadOpStoreWidth(N);
+}
+
+SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
+ SDValue InVec = N->getOperand(0);
+ SDValue InVal = N->getOperand(1);
+ SDValue EltNo = N->getOperand(2);
+ SDLoc dl(N);
+
+ // If the inserted element is an UNDEF, just use the input vector.
+ if (InVal.getOpcode() == ISD::UNDEF)
+ return InVec;
+
+ EVT VT = InVec.getValueType();
+
+ // If we can't generate a legal BUILD_VECTOR, exit
+ if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
+ return SDValue();
+
+ // Check that we know which element is being inserted
+ if (!isa<ConstantSDNode>(EltNo))
+ return SDValue();
+ unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+
+ // Canonicalize insert_vector_elt dag nodes.
+ // Example:
+ // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
+ // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
+ //
+ // Do this only if the child insert_vector node has one use; also
+ // do this only if indices are both constants and Idx1 < Idx0.
+ if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
+ && isa<ConstantSDNode>(InVec.getOperand(2))) {
+ unsigned OtherElt =
+ cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue();
+ if (Elt < OtherElt) {
+ // Swap nodes.
+ SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT,
+ InVec.getOperand(0), InVal, EltNo);
+ AddToWorklist(NewOp.getNode());
+ return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
+ VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
+ }
+ }
+
+ // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
+ // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
+ // vector elements.
+ SmallVector<SDValue, 8> Ops;
+ // Do not combine these two vectors if the output vector will not replace
+ // the input vector.
+ if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
+ Ops.append(InVec.getNode()->op_begin(),
+ InVec.getNode()->op_end());
+ } else if (InVec.getOpcode() == ISD::UNDEF) {
+ unsigned NElts = VT.getVectorNumElements();
+ Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
+ } else {
+ return SDValue();
+ }
+
+ // Insert the element
+ if (Elt < Ops.size()) {
+ // All the operands of BUILD_VECTOR must have the same type;
+ // we enforce that here.
+ EVT OpVT = Ops[0].getValueType();
+ if (InVal.getValueType() != OpVT)
+ InVal = OpVT.bitsGT(InVal.getValueType()) ?
+ DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
+ DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
+ Ops[Elt] = InVal;
+ }
+
+ // Return the new vector
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+}
+
+SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
+ SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) {
+ EVT ResultVT = EVE->getValueType(0);
+ EVT VecEltVT = InVecVT.getVectorElementType();
+ unsigned Align = OriginalLoad->getAlignment();
+ unsigned NewAlign = TLI.getDataLayout()->getABITypeAlignment(
+ VecEltVT.getTypeForEVT(*DAG.getContext()));
+
+ if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
+ return SDValue();
+
+ Align = NewAlign;
+
+ SDValue NewPtr = OriginalLoad->getBasePtr();
+ SDValue Offset;
+ EVT PtrType = NewPtr.getValueType();
+ MachinePointerInfo MPI;
+ SDLoc DL(EVE);
+ if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
+ int Elt = ConstEltNo->getZExtValue();
+ unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
+ Offset = DAG.getConstant(PtrOff, DL, PtrType);
+ MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
+ } else {
+ Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
+ Offset = DAG.getNode(
+ ISD::MUL, DL, PtrType, Offset,
+ DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
+ MPI = OriginalLoad->getPointerInfo();
+ }
+ NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
+
+ // The replacement we need to do here is a little tricky: we need to
+ // replace an extractelement of a load with a load.
+ // Use ReplaceAllUsesOfValuesWith to do the replacement.
+ // Note that this replacement assumes that the extractvalue is the only
+ // use of the load; that's okay because we don't want to perform this
+ // transformation in other cases anyway.
+ SDValue Load;
+ SDValue Chain;
+ if (ResultVT.bitsGT(VecEltVT)) {
+ // If the result type of vextract is wider than the load, then issue an
+ // extending load instead.
+ ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
+ VecEltVT)
+ ? ISD::ZEXTLOAD
+ : ISD::EXTLOAD;
+ Load = DAG.getExtLoad(
+ ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI,
+ VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
+ OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
+ Chain = Load.getValue(1);
+ } else {
+ Load = DAG.getLoad(
+ VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI,
+ OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
+ OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
+ Chain = Load.getValue(1);
+ if (ResultVT.bitsLT(VecEltVT))
+ Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
+ else
+ Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load);
+ }
+ WorklistRemover DeadNodes(*this);
+ SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
+ SDValue To[] = { Load, Chain };
+ DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
+ // Since we're explicitly calling ReplaceAllUses, add the new node to the
+ // worklist explicitly as well.
+ AddToWorklist(Load.getNode());
+ AddUsersToWorklist(Load.getNode()); // Add users too
+ // Make sure to revisit this node to clean it up; it will usually be dead.
+ AddToWorklist(EVE);
+ ++OpsNarrowed;
+ return SDValue(EVE, 0);
+}
+
+SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
+ // (vextract (scalar_to_vector val, 0) -> val
+ SDValue InVec = N->getOperand(0);
+ EVT VT = InVec.getValueType();
+ EVT NVT = N->getValueType(0);
+
+ if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ // Check if the result type doesn't match the inserted element type. A
+ // SCALAR_TO_VECTOR may truncate the inserted element and the
+ // EXTRACT_VECTOR_ELT may widen the extracted vector.
+ SDValue InOp = InVec.getOperand(0);
+ if (InOp.getValueType() != NVT) {
+ assert(InOp.getValueType().isInteger() && NVT.isInteger());
+ return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
+ }
+ return InOp;
+ }
+
+ SDValue EltNo = N->getOperand(1);
+ bool ConstEltNo = isa<ConstantSDNode>(EltNo);
+
+ // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
+ // We only perform this optimization before the op legalization phase because
+ // we may introduce new vector instructions which are not backed by TD
+ // patterns. For example on AVX, extracting elements from a wide vector
+ // without using extract_subvector. However, if we can find an underlying
+ // scalar value, then we can always use that.
+ if (InVec.getOpcode() == ISD::VECTOR_SHUFFLE
+ && ConstEltNo) {
+ int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+ int NumElem = VT.getVectorNumElements();
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
+ // Find the new index to extract from.
+ int OrigElt = SVOp->getMaskElt(Elt);
+
+ // Extracting an undef index is undef.
+ if (OrigElt == -1)
+ return DAG.getUNDEF(NVT);
+
+ // Select the right vector half to extract from.
+ SDValue SVInVec;
+ if (OrigElt < NumElem) {
+ SVInVec = InVec->getOperand(0);
+ } else {
+ SVInVec = InVec->getOperand(1);
+ OrigElt -= NumElem;
+ }
+
+ if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
+ SDValue InOp = SVInVec.getOperand(OrigElt);
+ if (InOp.getValueType() != NVT) {
+ assert(InOp.getValueType().isInteger() && NVT.isInteger());
+ InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT);
+ }
+
+ return InOp;
+ }
+
+ // FIXME: We should handle recursing on other vector shuffles and
+ // scalar_to_vector here as well.
+
+ if (!LegalOperations) {
+ EVT IndexTy = TLI.getVectorIdxTy();
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec,
+ DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy));
+ }
+ }
+
+ bool BCNumEltsChanged = false;
+ EVT ExtVT = VT.getVectorElementType();
+ EVT LVT = ExtVT;
+
+ // If the result of load has to be truncated, then it's not necessarily
+ // profitable.
+ if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
+ return SDValue();
+
+ if (InVec.getOpcode() == ISD::BITCAST) {
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+
+ EVT BCVT = InVec.getOperand(0).getValueType();
+ if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
+ return SDValue();
+ if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
+ BCNumEltsChanged = true;
+ InVec = InVec.getOperand(0);
+ ExtVT = BCVT.getVectorElementType();
+ }
+
+ // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
+ if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() &&
+ ISD::isNormalLoad(InVec.getNode()) &&
+ !N->getOperand(1)->hasPredecessor(InVec.getNode())) {
+ SDValue Index = N->getOperand(1);
+ if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec))
+ return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index,
+ OrigLoad);
+ }
+
+ // Perform only after legalization to ensure build_vector / vector_shuffle
+ // optimizations have already been done.
+ if (!LegalOperations) return SDValue();
+
+ // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
+ // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
+ // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
+
+ if (ConstEltNo) {
+ int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+
+ LoadSDNode *LN0 = nullptr;
+ const ShuffleVectorSDNode *SVN = nullptr;
+ if (ISD::isNormalLoad(InVec.getNode())) {
+ LN0 = cast<LoadSDNode>(InVec);
+ } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ InVec.getOperand(0).getValueType() == ExtVT &&
+ ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+
+ LN0 = cast<LoadSDNode>(InVec.getOperand(0));
+ } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
+ // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
+ // =>
+ // (load $addr+1*size)
+
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+
+ // If the bit convert changed the number of elements, it is unsafe
+ // to examine the mask.
+ if (BCNumEltsChanged)
+ return SDValue();
+
+ // Select the input vector, guarding against out of range extract vector.
+ unsigned NumElems = VT.getVectorNumElements();
+ int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
+ InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
+
+ if (InVec.getOpcode() == ISD::BITCAST) {
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+
+ InVec = InVec.getOperand(0);
+ }
+ if (ISD::isNormalLoad(InVec.getNode())) {
+ LN0 = cast<LoadSDNode>(InVec);
+ Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
+ EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType());
+ }
+ }
+
+ // Make sure we found a non-volatile load and the extractelement is
+ // the only use.
+ if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
+ return SDValue();
+
+ // If Idx was -1 above, Elt is going to be -1, so just return undef.
+ if (Elt == -1)
+ return DAG.getUNDEF(LVT);
+
+ return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0);
+ }
+
+ return SDValue();
+}
+
+// Simplify (build_vec (ext )) to (bitcast (build_vec ))
+SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
+ // We perform this optimization post type-legalization because
+ // the type-legalizer often scalarizes integer-promoted vectors.
+ // Performing this optimization before may create bit-casts which
+ // will be type-legalized to complex code sequences.
+ // We perform this optimization only before the operation legalizer because we
+ // may introduce illegal operations.
+ if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
+ return SDValue();
+
+ unsigned NumInScalars = N->getNumOperands();
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // Check to see if this is a BUILD_VECTOR of a bunch of values
+ // which come from any_extend or zero_extend nodes. If so, we can create
+ // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
+ // optimizations. We do not handle sign-extend because we can't fill the sign
+ // using shuffles.
+ EVT SourceType = MVT::Other;
+ bool AllAnyExt = true;
+
+ for (unsigned i = 0; i != NumInScalars; ++i) {
+ SDValue In = N->getOperand(i);
+ // Ignore undef inputs.
+ if (In.getOpcode() == ISD::UNDEF) continue;
+
+ bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
+ bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
+
+ // Abort if the element is not an extension.
+ if (!ZeroExt && !AnyExt) {
+ SourceType = MVT::Other;
+ break;
+ }
+
+ // The input is a ZeroExt or AnyExt. Check the original type.
+ EVT InTy = In.getOperand(0).getValueType();
+
+ // Check that all of the widened source types are the same.
+ if (SourceType == MVT::Other)
+ // First time.
+ SourceType = InTy;
+ else if (InTy != SourceType) {
+ // Multiple income types. Abort.
+ SourceType = MVT::Other;
+ break;
+ }
+
+ // Check if all of the extends are ANY_EXTENDs.
+ AllAnyExt &= AnyExt;
+ }
+
+ // In order to have valid types, all of the inputs must be extended from the
+ // same source type and all of the inputs must be any or zero extend.
+ // Scalar sizes must be a power of two.
+ EVT OutScalarTy = VT.getScalarType();
+ bool ValidTypes = SourceType != MVT::Other &&
+ isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
+ isPowerOf2_32(SourceType.getSizeInBits());
+
+ // Create a new simpler BUILD_VECTOR sequence which other optimizations can
+ // turn into a single shuffle instruction.
+ if (!ValidTypes)
+ return SDValue();
+
+ bool isLE = TLI.isLittleEndian();
+ unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
+ assert(ElemRatio > 1 && "Invalid element size ratio");
+ SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
+ DAG.getConstant(0, SDLoc(N), SourceType);
+
+ unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
+ SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
+
+ // Populate the new build_vector
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ SDValue Cast = N->getOperand(i);
+ assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
+ Cast.getOpcode() == ISD::ZERO_EXTEND ||
+ Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
+ SDValue In;
+ if (Cast.getOpcode() == ISD::UNDEF)
+ In = DAG.getUNDEF(SourceType);
+ else
+ In = Cast->getOperand(0);
+ unsigned Index = isLE ? (i * ElemRatio) :
+ (i * ElemRatio + (ElemRatio - 1));
+
+ assert(Index < Ops.size() && "Invalid index");
+ Ops[Index] = In;
+ }
+
+ // The type of the new BUILD_VECTOR node.
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
+ assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
+ "Invalid vector size");
+ // Check if the new vector type is legal.
+ if (!isTypeLegal(VecVT)) return SDValue();
+
+ // Make the new BUILD_VECTOR.
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
+
+ // The new BUILD_VECTOR node has the potential to be further optimized.
+ AddToWorklist(BV.getNode());
+ // Bitcast to the desired type.
+ return DAG.getNode(ISD::BITCAST, dl, VT, BV);
+}
+
+SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
+ EVT VT = N->getValueType(0);
+
+ unsigned NumInScalars = N->getNumOperands();
+ SDLoc dl(N);
+
+ EVT SrcVT = MVT::Other;
+ unsigned Opcode = ISD::DELETED_NODE;
+ unsigned NumDefs = 0;
+
+ for (unsigned i = 0; i != NumInScalars; ++i) {
+ SDValue In = N->getOperand(i);
+ unsigned Opc = In.getOpcode();
+
+ if (Opc == ISD::UNDEF)
+ continue;
+
+ // If all scalar values are floats and converted from integers.
+ if (Opcode == ISD::DELETED_NODE &&
+ (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
+ Opcode = Opc;
+ }
+
+ if (Opc != Opcode)
+ return SDValue();
+
+ EVT InVT = In.getOperand(0).getValueType();
+
+ // If all scalar values are typed differently, bail out. It's chosen to
+ // simplify BUILD_VECTOR of integer types.
+ if (SrcVT == MVT::Other)
+ SrcVT = InVT;
+ if (SrcVT != InVT)
+ return SDValue();
+ NumDefs++;
+ }
+
+ // If the vector has just one element defined, it's not worth to fold it into
+ // a vectorized one.
+ if (NumDefs < 2)
+ return SDValue();
+
+ assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
+ && "Should only handle conversion from integer to float.");
+ assert(SrcVT != MVT::Other && "Cannot determine source type!");
+
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
+
+ if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
+ return SDValue();
+
+ // Just because the floating-point vector type is legal does not necessarily
+ // mean that the corresponding integer vector type is.
+ if (!isTypeLegal(NVT))
+ return SDValue();
+
+ SmallVector<SDValue, 8> Opnds;
+ for (unsigned i = 0; i != NumInScalars; ++i) {
+ SDValue In = N->getOperand(i);
+
+ if (In.getOpcode() == ISD::UNDEF)
+ Opnds.push_back(DAG.getUNDEF(SrcVT));
+ else
+ Opnds.push_back(In.getOperand(0));
+ }
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds);
+ AddToWorklist(BV.getNode());
+
+ return DAG.getNode(Opcode, dl, VT, BV);
+}
+
+SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
+ unsigned NumInScalars = N->getNumOperands();
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // A vector built entirely of undefs is undef.
+ if (ISD::allOperandsUndef(N))
+ return DAG.getUNDEF(VT);
+
+ if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
+ return V;
+
+ if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N))
+ return V;
+
+ // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
+ // operations. If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
+ // at most two distinct vectors, turn this into a shuffle node.
+
+ // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
+ if (!isTypeLegal(VT))
+ return SDValue();
+
+ // May only combine to shuffle after legalize if shuffle is legal.
+ if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
+ return SDValue();
+
+ SDValue VecIn1, VecIn2;
+ bool UsesZeroVector = false;
+ for (unsigned i = 0; i != NumInScalars; ++i) {
+ SDValue Op = N->getOperand(i);
+ // Ignore undef inputs.
+ if (Op.getOpcode() == ISD::UNDEF) continue;
+
+ // See if we can combine this build_vector into a blend with a zero vector.
+ if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) {
+ UsesZeroVector = true;
+ continue;
+ }
+
+ // If this input is something other than a EXTRACT_VECTOR_ELT with a
+ // constant index, bail out.
+ if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(Op.getOperand(1))) {
+ VecIn1 = VecIn2 = SDValue(nullptr, 0);
+ break;
+ }
+
+ // We allow up to two distinct input vectors.
+ SDValue ExtractedFromVec = Op.getOperand(0);
+ if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
+ continue;
+
+ if (!VecIn1.getNode()) {
+ VecIn1 = ExtractedFromVec;
+ } else if (!VecIn2.getNode() && !UsesZeroVector) {
+ VecIn2 = ExtractedFromVec;
+ } else {
+ // Too many inputs.
+ VecIn1 = VecIn2 = SDValue(nullptr, 0);
+ break;
+ }
+ }
+
+ // If everything is good, we can make a shuffle operation.
+ if (VecIn1.getNode()) {
+ unsigned InNumElements = VecIn1.getValueType().getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ for (unsigned i = 0; i != NumInScalars; ++i) {
+ unsigned Opcode = N->getOperand(i).getOpcode();
+ if (Opcode == ISD::UNDEF) {
+ Mask.push_back(-1);
+ continue;
+ }
+
+ // Operands can also be zero.
+ if (Opcode != ISD::EXTRACT_VECTOR_ELT) {
+ assert(UsesZeroVector &&
+ (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) &&
+ "Unexpected node found!");
+ Mask.push_back(NumInScalars+i);
+ continue;
+ }
+
+ // If extracting from the first vector, just use the index directly.
+ SDValue Extract = N->getOperand(i);
+ SDValue ExtVal = Extract.getOperand(1);
+ unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
+ if (Extract.getOperand(0) == VecIn1) {
+ Mask.push_back(ExtIndex);
+ continue;
+ }
+
+ // Otherwise, use InIdx + InputVecSize
+ Mask.push_back(InNumElements + ExtIndex);
+ }
+
+ // Avoid introducing illegal shuffles with zero.
+ if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT))
+ return SDValue();
+
+ // We can't generate a shuffle node with mismatched input and output types.
+ // Attempt to transform a single input vector to the correct type.
+ if ((VT != VecIn1.getValueType())) {
+ // If the input vector type has a different base type to the output
+ // vector type, bail out.
+ EVT VTElemType = VT.getVectorElementType();
+ if ((VecIn1.getValueType().getVectorElementType() != VTElemType) ||
+ (VecIn2.getNode() &&
+ (VecIn2.getValueType().getVectorElementType() != VTElemType)))
+ return SDValue();
+
+ // If the input vector is too small, widen it.
+ // We only support widening of vectors which are half the size of the
+ // output registers. For example XMM->YMM widening on X86 with AVX.
+ EVT VecInT = VecIn1.getValueType();
+ if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) {
+ // If we only have one small input, widen it by adding undef values.
+ if (!VecIn2.getNode())
+ VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1,
+ DAG.getUNDEF(VecIn1.getValueType()));
+ else if (VecIn1.getValueType() == VecIn2.getValueType()) {
+ // If we have two small inputs of the same type, try to concat them.
+ VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2);
+ VecIn2 = SDValue(nullptr, 0);
+ } else
+ return SDValue();
+ } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) {
+ // If the input vector is too large, try to split it.
+ // We don't support having two input vectors that are too large.
+ // If the zero vector was used, we can not split the vector,
+ // since we'd need 3 inputs.
+ if (UsesZeroVector || VecIn2.getNode())
+ return SDValue();
+
+ if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements()))
+ return SDValue();
+
+ // Try to replace VecIn1 with two extract_subvectors
+ // No need to update the masks, they should still be correct.
+ VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
+ DAG.getConstant(VT.getVectorNumElements(), dl, TLI.getVectorIdxTy()));
+ VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
+ DAG.getConstant(0, dl, TLI.getVectorIdxTy()));
+ } else
+ return SDValue();
+ }
+
+ if (UsesZeroVector)
+ VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) :
+ DAG.getConstantFP(0.0, dl, VT);
+ else
+ // If VecIn2 is unused then change it to undef.
+ VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
+
+ // Check that we were able to transform all incoming values to the same
+ // type.
+ if (VecIn2.getValueType() != VecIn1.getValueType() ||
+ VecIn1.getValueType() != VT)
+ return SDValue();
+
+ // Return the new VECTOR_SHUFFLE node.
+ SDValue Ops[2];
+ Ops[0] = VecIn1;
+ Ops[1] = VecIn2;
+ return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
+ }
+
+ return SDValue();
+}
+
+static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT OpVT = N->getOperand(0).getValueType();
+
+ // If the operands are legal vectors, leave them alone.
+ if (TLI.isTypeLegal(OpVT))
+ return SDValue();
+
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ SmallVector<SDValue, 8> Ops;
+
+ EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
+ SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
+
+ // Keep track of what we encounter.
+ bool AnyInteger = false;
+ bool AnyFP = false;
+ for (const SDValue &Op : N->ops()) {
+ if (ISD::BITCAST == Op.getOpcode() &&
+ !Op.getOperand(0).getValueType().isVector())
+ Ops.push_back(Op.getOperand(0));
+ else if (ISD::UNDEF == Op.getOpcode())
+ Ops.push_back(ScalarUndef);
+ else
+ return SDValue();
+
+ // Note whether we encounter an integer or floating point scalar.
+ // If it's neither, bail out, it could be something weird like x86mmx.
+ EVT LastOpVT = Ops.back().getValueType();
+ if (LastOpVT.isFloatingPoint())
+ AnyFP = true;
+ else if (LastOpVT.isInteger())
+ AnyInteger = true;
+ else
+ return SDValue();
+ }
+
+ // If any of the operands is a floating point scalar bitcast to a vector,
+ // use floating point types throughout, and bitcast everything.
+ // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
+ if (AnyFP) {
+ SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
+ ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
+ if (AnyInteger) {
+ for (SDValue &Op : Ops) {
+ if (Op.getValueType() == SVT)
+ continue;
+ if (Op.getOpcode() == ISD::UNDEF)
+ Op = ScalarUndef;
+ else
+ Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op);
+ }
+ }
+ }
+
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
+ VT.getSizeInBits() / SVT.getSizeInBits());
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, Ops));
+}
+
+SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
+ // TODO: Check to see if this is a CONCAT_VECTORS of a bunch of
+ // EXTRACT_SUBVECTOR operations. If so, and if the EXTRACT_SUBVECTOR vector
+ // inputs come from at most two distinct vectors, turn this into a shuffle
+ // node.
+
+ // If we only have one input vector, we don't need to do any concatenation.
+ if (N->getNumOperands() == 1)
+ return N->getOperand(0);
+
+ // Check if all of the operands are undefs.
+ EVT VT = N->getValueType(0);
+ if (ISD::allOperandsUndef(N))
+ return DAG.getUNDEF(VT);
+
+ // Optimize concat_vectors where all but the first of the vectors are undef.
+ if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
+ return Op.getOpcode() == ISD::UNDEF;
+ })) {
+ SDValue In = N->getOperand(0);
+ assert(In.getValueType().isVector() && "Must concat vectors");
+
+ // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
+ if (In->getOpcode() == ISD::BITCAST &&
+ !In->getOperand(0)->getValueType(0).isVector()) {
+ SDValue Scalar = In->getOperand(0);
+
+ // If the bitcast type isn't legal, it might be a trunc of a legal type;
+ // look through the trunc so we can still do the transform:
+ // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
+ if (Scalar->getOpcode() == ISD::TRUNCATE &&
+ !TLI.isTypeLegal(Scalar.getValueType()) &&
+ TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
+ Scalar = Scalar->getOperand(0);
+
+ EVT SclTy = Scalar->getValueType(0);
+
+ if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
+ return SDValue();
+
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
+ VT.getSizeInBits() / SclTy.getSizeInBits());
+ if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
+ return SDValue();
+
+ SDLoc dl = SDLoc(N);
+ SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Res);
+ }
+ }
+
+ // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
+ // We have already tested above for an UNDEF only concatenation.
+ // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
+ // -> (BUILD_VECTOR A, B, ..., C, D, ...)
+ auto IsBuildVectorOrUndef = [](const SDValue &Op) {
+ return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
+ };
+ bool AllBuildVectorsOrUndefs =
+ std::all_of(N->op_begin(), N->op_end(), IsBuildVectorOrUndef);
+ if (AllBuildVectorsOrUndefs) {
+ SmallVector<SDValue, 8> Opnds;
+ EVT SVT = VT.getScalarType();
+
+ EVT MinVT = SVT;
+ if (!SVT.isFloatingPoint()) {
+ // If BUILD_VECTOR are from built from integer, they may have different
+ // operand types. Get the smallest type and truncate all operands to it.
+ bool FoundMinVT = false;
+ for (const SDValue &Op : N->ops())
+ if (ISD::BUILD_VECTOR == Op.getOpcode()) {
+ EVT OpSVT = Op.getOperand(0)->getValueType(0);
+ MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
+ FoundMinVT = true;
+ }
+ assert(FoundMinVT && "Concat vector type mismatch");
+ }
+
+ for (const SDValue &Op : N->ops()) {
+ EVT OpVT = Op.getValueType();
+ unsigned NumElts = OpVT.getVectorNumElements();
+
+ if (ISD::UNDEF == Op.getOpcode())
+ Opnds.append(NumElts, DAG.getUNDEF(MinVT));
+
+ if (ISD::BUILD_VECTOR == Op.getOpcode()) {
+ if (SVT.isFloatingPoint()) {
+ assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
+ Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
+ } else {
+ for (unsigned i = 0; i != NumElts; ++i)
+ Opnds.push_back(
+ DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
+ }
+ }
+ }
+
+ assert(VT.getVectorNumElements() == Opnds.size() &&
+ "Concat vector type mismatch");
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
+ }
+
+ // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
+ if (SDValue V = combineConcatVectorOfScalars(N, DAG))
+ return V;
+
+ // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
+ // nodes often generate nop CONCAT_VECTOR nodes.
+ // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
+ // place the incoming vectors at the exact same location.
+ SDValue SingleSource = SDValue();
+ unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ SDValue Op = N->getOperand(i);
+
+ if (Op.getOpcode() == ISD::UNDEF)
+ continue;
+
+ // Check if this is the identity extract:
+ if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
+ return SDValue();
+
+ // Find the single incoming vector for the extract_subvector.
+ if (SingleSource.getNode()) {
+ if (Op.getOperand(0) != SingleSource)
+ return SDValue();
+ } else {
+ SingleSource = Op.getOperand(0);
+
+ // Check the source type is the same as the type of the result.
+ // If not, this concat may extend the vector, so we can not
+ // optimize it away.
+ if (SingleSource.getValueType() != N->getValueType(0))
+ return SDValue();
+ }
+
+ unsigned IdentityIndex = i * PartNumElem;
+ ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ // The extract index must be constant.
+ if (!CS)
+ return SDValue();
+
+ // Check that we are reading from the identity index.
+ if (CS->getZExtValue() != IdentityIndex)
+ return SDValue();
+ }
+
+ if (SingleSource.getNode())
+ return SingleSource;
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
+ EVT NVT = N->getValueType(0);
+ SDValue V = N->getOperand(0);
+
+ if (V->getOpcode() == ISD::CONCAT_VECTORS) {
+ // Combine:
+ // (extract_subvec (concat V1, V2, ...), i)
+ // Into:
+ // Vi if possible
+ // Only operand 0 is checked as 'concat' assumes all inputs of the same
+ // type.
+ if (V->getOperand(0).getValueType() != NVT)
+ return SDValue();
+ unsigned Idx = N->getConstantOperandVal(1);
+ unsigned NumElems = NVT.getVectorNumElements();
+ assert((Idx % NumElems) == 0 &&
+ "IDX in concat is not a multiple of the result vector length.");
+ return V->getOperand(Idx / NumElems);
+ }
+
+ // Skip bitcasting
+ if (V->getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+
+ if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
+ SDLoc dl(N);
+ // Handle only simple case where vector being inserted and vector
+ // being extracted are of same type, and are half size of larger vectors.
+ EVT BigVT = V->getOperand(0).getValueType();
+ EVT SmallVT = V->getOperand(1).getValueType();
+ if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
+ return SDValue();
+
+ // Only handle cases where both indexes are constants with the same type.
+ ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
+
+ if (InsIdx && ExtIdx &&
+ InsIdx->getValueType(0).getSizeInBits() <= 64 &&
+ ExtIdx->getValueType(0).getSizeInBits() <= 64) {
+ // Combine:
+ // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
+ // Into:
+ // indices are equal or bit offsets are equal => V1
+ // otherwise => (extract_subvec V1, ExtIdx)
+ if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
+ ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
+ return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
+ DAG.getNode(ISD::BITCAST, dl,
+ N->getOperand(0).getValueType(),
+ V->getOperand(0)), N->getOperand(1));
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements,
+ SDValue V, SelectionDAG &DAG) {
+ SDLoc DL(V);
+ EVT VT = V.getValueType();
+
+ switch (V.getOpcode()) {
+ default:
+ return V;
+
+ case ISD::CONCAT_VECTORS: {
+ EVT OpVT = V->getOperand(0).getValueType();
+ int OpSize = OpVT.getVectorNumElements();
+ SmallBitVector OpUsedElements(OpSize, false);
+ bool FoundSimplification = false;
+ SmallVector<SDValue, 4> NewOps;
+ NewOps.reserve(V->getNumOperands());
+ for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) {
+ SDValue Op = V->getOperand(i);
+ bool OpUsed = false;
+ for (int j = 0; j < OpSize; ++j)
+ if (UsedElements[i * OpSize + j]) {
+ OpUsedElements[j] = true;
+ OpUsed = true;
+ }
+ NewOps.push_back(
+ OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG)
+ : DAG.getUNDEF(OpVT));
+ FoundSimplification |= Op == NewOps.back();
+ OpUsedElements.reset();
+ }
+ if (FoundSimplification)
+ V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps);
+ return V;
+ }
+
+ case ISD::INSERT_SUBVECTOR: {
+ SDValue BaseV = V->getOperand(0);
+ SDValue SubV = V->getOperand(1);
+ auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2));
+ if (!IdxN)
+ return V;
+
+ int SubSize = SubV.getValueType().getVectorNumElements();
+ int Idx = IdxN->getZExtValue();
+ bool SubVectorUsed = false;
+ SmallBitVector SubUsedElements(SubSize, false);
+ for (int i = 0; i < SubSize; ++i)
+ if (UsedElements[i + Idx]) {
+ SubVectorUsed = true;
+ SubUsedElements[i] = true;
+ UsedElements[i + Idx] = false;
+ }
+
+ // Now recurse on both the base and sub vectors.
+ SDValue SimplifiedSubV =
+ SubVectorUsed
+ ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG)
+ : DAG.getUNDEF(SubV.getValueType());
+ SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG);
+ if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV)
+ V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
+ SimplifiedBaseV, SimplifiedSubV, V->getOperand(2));
+ return V;
+ }
+ }
+}
+
+static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0,
+ SDValue N1, SelectionDAG &DAG) {
+ EVT VT = SVN->getValueType(0);
+ int NumElts = VT.getVectorNumElements();
+ SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false);
+ for (int M : SVN->getMask())
+ if (M >= 0 && M < NumElts)
+ N0UsedElements[M] = true;
+ else if (M >= NumElts)
+ N1UsedElements[M - NumElts] = true;
+
+ SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG);
+ SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG);
+ if (S0 == N0 && S1 == N1)
+ return SDValue();
+
+ return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask());
+}
+
+// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
+// or turn a shuffle of a single concat into simpler shuffle then concat.
+static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+
+ SmallVector<SDValue, 4> Ops;
+ EVT ConcatVT = N0.getOperand(0).getValueType();
+ unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
+ unsigned NumConcats = NumElts / NumElemsPerConcat;
+
+ // Special case: shuffle(concat(A,B)) can be more efficiently represented
+ // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
+ // half vector elements.
+ if (NumElemsPerConcat * 2 == NumElts && N1.getOpcode() == ISD::UNDEF &&
+ std::all_of(SVN->getMask().begin() + NumElemsPerConcat,
+ SVN->getMask().end(), [](int i) { return i == -1; })) {
+ N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1),
+ ArrayRef<int>(SVN->getMask().begin(), NumElemsPerConcat));
+ N1 = DAG.getUNDEF(ConcatVT);
+ return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
+ }
+
+ // Look at every vector that's inserted. We're looking for exact
+ // subvector-sized copies from a concatenated vector
+ for (unsigned I = 0; I != NumConcats; ++I) {
+ // Make sure we're dealing with a copy.
+ unsigned Begin = I * NumElemsPerConcat;
+ bool AllUndef = true, NoUndef = true;
+ for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
+ if (SVN->getMaskElt(J) >= 0)
+ AllUndef = false;
+ else
+ NoUndef = false;
+ }
+
+ if (NoUndef) {
+ if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
+ return SDValue();
+
+ for (unsigned J = 1; J != NumElemsPerConcat; ++J)
+ if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
+ return SDValue();
+
+ unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
+ if (FirstElt < N0.getNumOperands())
+ Ops.push_back(N0.getOperand(FirstElt));
+ else
+ Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
+
+ } else if (AllUndef) {
+ Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
+ } else { // Mixed with general masks and undefs, can't do optimization.
+ return SDValue();
+ }
+ }
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
+}
+
+SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
+
+ // Canonicalize shuffle undef, undef -> undef
+ if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
+ return DAG.getUNDEF(VT);
+
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+
+ // Canonicalize shuffle v, v -> v, undef
+ if (N0 == N1) {
+ SmallVector<int, 8> NewMask;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int Idx = SVN->getMaskElt(i);
+ if (Idx >= (int)NumElts) Idx -= NumElts;
+ NewMask.push_back(Idx);
+ }
+ return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
+ &NewMask[0]);
+ }
+
+ // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
+ if (N0.getOpcode() == ISD::UNDEF) {
+ SmallVector<int, 8> NewMask;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int Idx = SVN->getMaskElt(i);
+ if (Idx >= 0) {
+ if (Idx >= (int)NumElts)
+ Idx -= NumElts;
+ else
+ Idx = -1; // remove reference to lhs
+ }
+ NewMask.push_back(Idx);
+ }
+ return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
+ &NewMask[0]);
+ }
+
+ // Remove references to rhs if it is undef
+ if (N1.getOpcode() == ISD::UNDEF) {
+ bool Changed = false;
+ SmallVector<int, 8> NewMask;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int Idx = SVN->getMaskElt(i);
+ if (Idx >= (int)NumElts) {
+ Idx = -1;
+ Changed = true;
+ }
+ NewMask.push_back(Idx);
+ }
+ if (Changed)
+ return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
+ }
+
+ // If it is a splat, check if the argument vector is another splat or a
+ // build_vector.
+ if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
+ SDNode *V = N0.getNode();
+
+ // If this is a bit convert that changes the element type of the vector but
+ // not the number of vector elements, look through it. Be careful not to
+ // look though conversions that change things like v4f32 to v2f64.
+ if (V->getOpcode() == ISD::BITCAST) {
+ SDValue ConvInput = V->getOperand(0);
+ if (ConvInput.getValueType().isVector() &&
+ ConvInput.getValueType().getVectorNumElements() == NumElts)
+ V = ConvInput.getNode();
+ }
+
+ if (V->getOpcode() == ISD::BUILD_VECTOR) {
+ assert(V->getNumOperands() == NumElts &&
+ "BUILD_VECTOR has wrong number of operands");
+ SDValue Base;
+ bool AllSame = true;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
+ Base = V->getOperand(i);
+ break;
+ }
+ }
+ // Splat of <u, u, u, u>, return <u, u, u, u>
+ if (!Base.getNode())
+ return N0;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (V->getOperand(i) != Base) {
+ AllSame = false;
+ break;
+ }
+ }
+ // Splat of <x, x, x, x>, return <x, x, x, x>
+ if (AllSame)
+ return N0;
+
+ // Canonicalize any other splat as a build_vector.
+ const SDValue &Splatted = V->getOperand(SVN->getSplatIndex());
+ SmallVector<SDValue, 8> Ops(NumElts, Splatted);
+ SDValue NewBV = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
+ V->getValueType(0), Ops);
+
+ // We may have jumped through bitcasts, so the type of the
+ // BUILD_VECTOR may not match the type of the shuffle.
+ if (V->getValueType(0) != VT)
+ NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV);
+ return NewBV;
+ }
+ }
+
+ // There are various patterns used to build up a vector from smaller vectors,
+ // subvectors, or elements. Scan chains of these and replace unused insertions
+ // or components with undef.
+ if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG))
+ return S;
+
+ if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
+ Level < AfterLegalizeVectorOps &&
+ (N1.getOpcode() == ISD::UNDEF ||
+ (N1.getOpcode() == ISD::CONCAT_VECTORS &&
+ N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
+ SDValue V = partitionShuffleOfConcats(N, DAG);
+
+ if (V.getNode())
+ return V;
+ }
+
+ // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
+ // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
+ if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
+ SmallVector<SDValue, 8> Ops;
+ for (int M : SVN->getMask()) {
+ SDValue Op = DAG.getUNDEF(VT.getScalarType());
+ if (M >= 0) {
+ int Idx = M % NumElts;
+ SDValue &S = (M < (int)NumElts ? N0 : N1);
+ if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) {
+ Op = S.getOperand(Idx);
+ } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) {
+ if (Idx == 0)
+ Op = S.getOperand(0);
+ } else {
+ // Operand can't be combined - bail out.
+ break;
+ }
+ }
+ Ops.push_back(Op);
+ }
+ if (Ops.size() == VT.getVectorNumElements()) {
+ // BUILD_VECTOR requires all inputs to be of the same type, find the
+ // maximum type and extend them all.
+ EVT SVT = VT.getScalarType();
+ if (SVT.isInteger())
+ for (SDValue &Op : Ops)
+ SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
+ if (SVT != VT.getScalarType())
+ for (SDValue &Op : Ops)
+ Op = TLI.isZExtFree(Op.getValueType(), SVT)
+ ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT)
+ : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT);
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Ops);
+ }
+ }
+
+ // If this shuffle only has a single input that is a bitcasted shuffle,
+ // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
+ // back to their original types.
+ if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
+ N1.getOpcode() == ISD::UNDEF && Level < AfterLegalizeVectorOps &&
+ TLI.isTypeLegal(VT)) {
+
+ // Peek through the bitcast only if there is one user.
+ SDValue BC0 = N0;
+ while (BC0.getOpcode() == ISD::BITCAST) {
+ if (!BC0.hasOneUse())
+ break;
+ BC0 = BC0.getOperand(0);
+ }
+
+ auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
+ if (Scale == 1)
+ return SmallVector<int, 8>(Mask.begin(), Mask.end());
+
+ SmallVector<int, 8> NewMask;
+ for (int M : Mask)
+ for (int s = 0; s != Scale; ++s)
+ NewMask.push_back(M < 0 ? -1 : Scale * M + s);
+ return NewMask;
+ };
+
+ if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
+ EVT SVT = VT.getScalarType();
+ EVT InnerVT = BC0->getValueType(0);
+ EVT InnerSVT = InnerVT.getScalarType();
+
+ // Determine which shuffle works with the smaller scalar type.
+ EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
+ EVT ScaleSVT = ScaleVT.getScalarType();
+
+ if (TLI.isTypeLegal(ScaleVT) &&
+ 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
+ 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
+
+ int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
+ int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
+
+ // Scale the shuffle masks to the smaller scalar type.
+ ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
+ SmallVector<int, 8> InnerMask =
+ ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
+ SmallVector<int, 8> OuterMask =
+ ScaleShuffleMask(SVN->getMask(), OuterScale);
+
+ // Merge the shuffle masks.
+ SmallVector<int, 8> NewMask;
+ for (int M : OuterMask)
+ NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
+
+ // Test for shuffle mask legality over both commutations.
+ SDValue SV0 = BC0->getOperand(0);
+ SDValue SV1 = BC0->getOperand(1);
+ bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
+ if (!LegalMask) {
+ std::swap(SV0, SV1);
+ ShuffleVectorSDNode::commuteMask(NewMask);
+ LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
+ }
+
+ if (LegalMask) {
+ SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0);
+ SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1);
+ return DAG.getNode(
+ ISD::BITCAST, SDLoc(N), VT,
+ DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
+ }
+ }
+ }
+ }
+
+ // Canonicalize shuffles according to rules:
+ // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
+ // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
+ // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
+ if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
+ N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
+ TLI.isTypeLegal(VT)) {
+ // The incoming shuffle must be of the same type as the result of the
+ // current shuffle.
+ assert(N1->getOperand(0).getValueType() == VT &&
+ "Shuffle types don't match");
+
+ SDValue SV0 = N1->getOperand(0);
+ SDValue SV1 = N1->getOperand(1);
+ bool HasSameOp0 = N0 == SV0;
+ bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF;
+ if (HasSameOp0 || IsSV1Undef || N0 == SV1)
+ // Commute the operands of this shuffle so that next rule
+ // will trigger.
+ return DAG.getCommutedVectorShuffle(*SVN);
+ }
+
+ // Try to fold according to rules:
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
+ // Don't try to fold shuffles with illegal type.
+ // Only fold if this shuffle is the only user of the other shuffle.
+ if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
+ Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
+ ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
+
+ // The incoming shuffle must be of the same type as the result of the
+ // current shuffle.
+ assert(OtherSV->getOperand(0).getValueType() == VT &&
+ "Shuffle types don't match");
+
+ SDValue SV0, SV1;
+ SmallVector<int, 4> Mask;
+ // Compute the combined shuffle mask for a shuffle with SV0 as the first
+ // operand, and SV1 as the second operand.
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int Idx = SVN->getMaskElt(i);
+ if (Idx < 0) {
+ // Propagate Undef.
+ Mask.push_back(Idx);
+ continue;
+ }
+
+ SDValue CurrentVec;
+ if (Idx < (int)NumElts) {
+ // This shuffle index refers to the inner shuffle N0. Lookup the inner
+ // shuffle mask to identify which vector is actually referenced.
+ Idx = OtherSV->getMaskElt(Idx);
+ if (Idx < 0) {
+ // Propagate Undef.
+ Mask.push_back(Idx);
+ continue;
+ }
+
+ CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
+ : OtherSV->getOperand(1);
+ } else {
+ // This shuffle index references an element within N1.
+ CurrentVec = N1;
+ }
+
+ // Simple case where 'CurrentVec' is UNDEF.
+ if (CurrentVec.getOpcode() == ISD::UNDEF) {
+ Mask.push_back(-1);
+ continue;
+ }
+
+ // Canonicalize the shuffle index. We don't know yet if CurrentVec
+ // will be the first or second operand of the combined shuffle.
+ Idx = Idx % NumElts;
+ if (!SV0.getNode() || SV0 == CurrentVec) {
+ // Ok. CurrentVec is the left hand side.
+ // Update the mask accordingly.
+ SV0 = CurrentVec;
+ Mask.push_back(Idx);
+ continue;
+ }
+
+ // Bail out if we cannot convert the shuffle pair into a single shuffle.
+ if (SV1.getNode() && SV1 != CurrentVec)
+ return SDValue();
+
+ // Ok. CurrentVec is the right hand side.
+ // Update the mask accordingly.
+ SV1 = CurrentVec;
+ Mask.push_back(Idx + NumElts);
+ }
+
+ // Check if all indices in Mask are Undef. In case, propagate Undef.
+ bool isUndefMask = true;
+ for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
+ isUndefMask &= Mask[i] < 0;
+
+ if (isUndefMask)
+ return DAG.getUNDEF(VT);
+
+ if (!SV0.getNode())
+ SV0 = DAG.getUNDEF(VT);
+ if (!SV1.getNode())
+ SV1 = DAG.getUNDEF(VT);
+
+ // Avoid introducing shuffles with illegal mask.
+ if (!TLI.isShuffleMaskLegal(Mask, VT)) {
+ ShuffleVectorSDNode::commuteMask(Mask);
+
+ if (!TLI.isShuffleMaskLegal(Mask, VT))
+ return SDValue();
+
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
+ std::swap(SV0, SV1);
+ }
+
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
+ // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
+ return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]);
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
+ SDValue InVal = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
+ // with a VECTOR_SHUFFLE.
+ if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ SDValue InVec = InVal->getOperand(0);
+ SDValue EltNo = InVal->getOperand(1);
+
+ // FIXME: We could support implicit truncation if the shuffle can be
+ // scaled to a smaller vector scalar type.
+ ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo);
+ if (C0 && VT == InVec.getValueType() &&
+ VT.getScalarType() == InVal.getValueType()) {
+ SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1);
+ int Elt = C0->getZExtValue();
+ NewMask[0] = Elt;
+
+ if (TLI.isShuffleMaskLegal(NewMask, VT))
+ return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT),
+ NewMask);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N2 = N->getOperand(2);
+
+ // If the input vector is a concatenation, and the insert replaces
+ // one of the halves, we can optimize into a single concat_vectors.
+ if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
+ N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) {
+ APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue();
+ EVT VT = N->getValueType(0);
+
+ // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
+ // (concat_vectors Z, Y)
+ if (InsIdx == 0)
+ return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
+ N->getOperand(1), N0.getOperand(1));
+
+ // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) ->
+ // (concat_vectors X, Z)
+ if (InsIdx == VT.getVectorNumElements()/2)
+ return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
+ N0.getOperand(0), N->getOperand(1));
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
+ SDValue N0 = N->getOperand(0);
+
+ // fold (fp_to_fp16 (fp16_to_fp op)) -> op
+ if (N0->getOpcode() == ISD::FP16_TO_FP)
+ return N0->getOperand(0);
+
+ return SDValue();
+}
+
+/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
+/// with the destination vector and a zero vector.
+/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
+/// vector_shuffle V, Zero, <0, 4, 2, 4>
+SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ SDLoc dl(N);
+
+ // Make sure we're not running after operation legalization where it
+ // may have custom lowered the vector shuffles.
+ if (LegalOperations)
+ return SDValue();
+
+ if (N->getOpcode() != ISD::AND)
+ return SDValue();
+
+ if (RHS.getOpcode() == ISD::BITCAST)
+ RHS = RHS.getOperand(0);
+
+ if (RHS.getOpcode() == ISD::BUILD_VECTOR) {
+ SmallVector<int, 8> Indices;
+ unsigned NumElts = RHS.getNumOperands();
+
+ for (unsigned i = 0; i != NumElts; ++i) {
+ SDValue Elt = RHS.getOperand(i);
+ if (isAllOnesConstant(Elt))
+ Indices.push_back(i);
+ else if (isNullConstant(Elt))
+ Indices.push_back(NumElts+i);
+ else
+ return SDValue();
+ }
+
+ // Let's see if the target supports this vector_shuffle.
+ EVT RVT = RHS.getValueType();
+ if (!TLI.isVectorClearMaskLegal(Indices, RVT))
+ return SDValue();
+
+ // Return the new VECTOR_SHUFFLE node.
+ EVT EltVT = RVT.getVectorElementType();
+ SmallVector<SDValue,8> ZeroOps(RVT.getVectorNumElements(),
+ DAG.getConstant(0, dl, EltVT));
+ SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, RVT, ZeroOps);
+ LHS = DAG.getNode(ISD::BITCAST, dl, RVT, LHS);
+ SDValue Shuf = DAG.getVectorShuffle(RVT, dl, LHS, Zero, &Indices[0]);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Shuf);
+ }
+
+ return SDValue();
+}
+
+/// Visit a binary vector operation, like ADD.
+SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
+ assert(N->getValueType(0).isVector() &&
+ "SimplifyVBinOp only works on vectors!");
+
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ if (SDValue Shuffle = XformToShuffleWithZero(N))
+ return Shuffle;
+
+ // If the LHS and RHS are BUILD_VECTOR nodes, see if we can constant fold
+ // this operation.
+ if (LHS.getOpcode() == ISD::BUILD_VECTOR &&
+ RHS.getOpcode() == ISD::BUILD_VECTOR) {
+ // Check if both vectors are constants. If not bail out.
+ if (!(cast<BuildVectorSDNode>(LHS)->isConstant() &&
+ cast<BuildVectorSDNode>(RHS)->isConstant()))
+ return SDValue();
+
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
+ SDValue LHSOp = LHS.getOperand(i);
+ SDValue RHSOp = RHS.getOperand(i);
+
+ // Can't fold divide by zero.
+ if (N->getOpcode() == ISD::SDIV || N->getOpcode() == ISD::UDIV ||
+ N->getOpcode() == ISD::FDIV) {
+ if (isNullConstant(RHSOp) || (RHSOp.getOpcode() == ISD::ConstantFP &&
+ cast<ConstantFPSDNode>(RHSOp.getNode())->isZero()))
+ break;
+ }
+
+ EVT VT = LHSOp.getValueType();
+ EVT RVT = RHSOp.getValueType();
+ if (RVT != VT) {
+ // Integer BUILD_VECTOR operands may have types larger than the element
+ // size (e.g., when the element type is not legal). Prior to type
+ // legalization, the types may not match between the two BUILD_VECTORS.
+ // Truncate one of the operands to make them match.
+ if (RVT.getSizeInBits() > VT.getSizeInBits()) {
+ RHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, RHSOp);
+ } else {
+ LHSOp = DAG.getNode(ISD::TRUNCATE, SDLoc(N), RVT, LHSOp);
+ VT = RVT;
+ }
+ }
+ SDValue FoldOp = DAG.getNode(N->getOpcode(), SDLoc(LHS), VT,
+ LHSOp, RHSOp);
+ if (FoldOp.getOpcode() != ISD::UNDEF &&
+ FoldOp.getOpcode() != ISD::Constant &&
+ FoldOp.getOpcode() != ISD::ConstantFP)
+ break;
+ Ops.push_back(FoldOp);
+ AddToWorklist(FoldOp.getNode());
+ }
+
+ if (Ops.size() == LHS.getNumOperands())
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), LHS.getValueType(), Ops);
+ }
+
+ // Type legalization might introduce new shuffles in the DAG.
+ // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
+ // -> (shuffle (VBinOp (A, B)), Undef, Mask).
+ if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
+ isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
+ LHS.getOperand(1).getOpcode() == ISD::UNDEF &&
+ RHS.getOperand(1).getOpcode() == ISD::UNDEF) {
+ ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
+ ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
+
+ if (SVN0->getMask().equals(SVN1->getMask())) {
+ EVT VT = N->getValueType(0);
+ SDValue UndefVector = LHS.getOperand(1);
+ SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
+ LHS.getOperand(0), RHS.getOperand(0));
+ AddUsersToWorklist(N);
+ return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
+ &SVN0->getMask()[0]);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
+ SDValue N1, SDValue N2){
+ assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
+
+ SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
+ cast<CondCodeSDNode>(N0.getOperand(2))->get());
+
+ // If we got a simplified select_cc node back from SimplifySelectCC, then
+ // break it down into a new SETCC node, and a new SELECT node, and then return
+ // the SELECT node, since we were called with a SELECT node.
+ if (SCC.getNode()) {
+ // Check to see if we got a select_cc back (to turn into setcc/select).
+ // Otherwise, just return whatever node we got back, like fabs.
+ if (SCC.getOpcode() == ISD::SELECT_CC) {
+ SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
+ N0.getValueType(),
+ SCC.getOperand(0), SCC.getOperand(1),
+ SCC.getOperand(4));
+ AddToWorklist(SETCC.getNode());
+ return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
+ SCC.getOperand(2), SCC.getOperand(3));
+ }
+
+ return SCC;
+ }
+ return SDValue();
+}
+
+/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
+/// being selected between, see if we can simplify the select. Callers of this
+/// should assume that TheSelect is deleted if this returns true. As such, they
+/// should return the appropriate thing (e.g. the node) back to the top-level of
+/// the DAG combiner loop to avoid it being looked at.
+bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
+ SDValue RHS) {
+
+ // fold (select (setcc x, -0.0, *lt), NaN, (fsqrt x))
+ // The select + setcc is redundant, because fsqrt returns NaN for X < -0.
+ if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
+ if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
+ // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
+ SDValue Sqrt = RHS;
+ ISD::CondCode CC;
+ SDValue CmpLHS;
+ const ConstantFPSDNode *NegZero = nullptr;
+
+ if (TheSelect->getOpcode() == ISD::SELECT_CC) {
+ CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
+ CmpLHS = TheSelect->getOperand(0);
+ NegZero = isConstOrConstSplatFP(TheSelect->getOperand(1));
+ } else {
+ // SELECT or VSELECT
+ SDValue Cmp = TheSelect->getOperand(0);
+ if (Cmp.getOpcode() == ISD::SETCC) {
+ CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
+ CmpLHS = Cmp.getOperand(0);
+ NegZero = isConstOrConstSplatFP(Cmp.getOperand(1));
+ }
+ }
+ if (NegZero && NegZero->isNegative() && NegZero->isZero() &&
+ Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
+ CC == ISD::SETULT || CC == ISD::SETLT)) {
+ // We have: (select (setcc x, -0.0, *lt), NaN, (fsqrt x))
+ CombineTo(TheSelect, Sqrt);
+ return true;
+ }
+ }
+ }
+ // Cannot simplify select with vector condition
+ if (TheSelect->getOperand(0).getValueType().isVector()) return false;
+
+ // If this is a select from two identical things, try to pull the operation
+ // through the select.
+ if (LHS.getOpcode() != RHS.getOpcode() ||
+ !LHS.hasOneUse() || !RHS.hasOneUse())
+ return false;
+
+ // If this is a load and the token chain is identical, replace the select
+ // of two loads with a load through a select of the address to load from.
+ // This triggers in things like "select bool X, 10.0, 123.0" after the FP
+ // constants have been dropped into the constant pool.
+ if (LHS.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LLD = cast<LoadSDNode>(LHS);
+ LoadSDNode *RLD = cast<LoadSDNode>(RHS);
+
+ // Token chains must be identical.
+ if (LHS.getOperand(0) != RHS.getOperand(0) ||
+ // Do not let this transformation reduce the number of volatile loads.
+ LLD->isVolatile() || RLD->isVolatile() ||
+ // FIXME: If either is a pre/post inc/dec load,
+ // we'd need to split out the address adjustment.
+ LLD->isIndexed() || RLD->isIndexed() ||
+ // If this is an EXTLOAD, the VT's must match.
+ LLD->getMemoryVT() != RLD->getMemoryVT() ||
+ // If this is an EXTLOAD, the kind of extension must match.
+ (LLD->getExtensionType() != RLD->getExtensionType() &&
+ // The only exception is if one of the extensions is anyext.
+ LLD->getExtensionType() != ISD::EXTLOAD &&
+ RLD->getExtensionType() != ISD::EXTLOAD) ||
+ // FIXME: this discards src value information. This is
+ // over-conservative. It would be beneficial to be able to remember
+ // both potential memory locations. Since we are discarding
+ // src value info, don't do the transformation if the memory
+ // locations are not in the default address space.
+ LLD->getPointerInfo().getAddrSpace() != 0 ||
+ RLD->getPointerInfo().getAddrSpace() != 0 ||
+ !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
+ LLD->getBasePtr().getValueType()))
+ return false;
+
+ // Check that the select condition doesn't reach either load. If so,
+ // folding this will induce a cycle into the DAG. If not, this is safe to
+ // xform, so create a select of the addresses.
+ SDValue Addr;
+ if (TheSelect->getOpcode() == ISD::SELECT) {
+ SDNode *CondNode = TheSelect->getOperand(0).getNode();
+ if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
+ (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
+ return false;
+ // The loads must not depend on one another.
+ if (LLD->isPredecessorOf(RLD) ||
+ RLD->isPredecessorOf(LLD))
+ return false;
+ Addr = DAG.getSelect(SDLoc(TheSelect),
+ LLD->getBasePtr().getValueType(),
+ TheSelect->getOperand(0), LLD->getBasePtr(),
+ RLD->getBasePtr());
+ } else { // Otherwise SELECT_CC
+ SDNode *CondLHS = TheSelect->getOperand(0).getNode();
+ SDNode *CondRHS = TheSelect->getOperand(1).getNode();
+
+ if ((LLD->hasAnyUseOfValue(1) &&
+ (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
+ (RLD->hasAnyUseOfValue(1) &&
+ (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
+ return false;
+
+ Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
+ LLD->getBasePtr().getValueType(),
+ TheSelect->getOperand(0),
+ TheSelect->getOperand(1),
+ LLD->getBasePtr(), RLD->getBasePtr(),
+ TheSelect->getOperand(4));
+ }
+
+ SDValue Load;
+ // It is safe to replace the two loads if they have different alignments,
+ // but the new load must be the minimum (most restrictive) alignment of the
+ // inputs.
+ bool isInvariant = LLD->isInvariant() & RLD->isInvariant();
+ unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
+ if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
+ Load = DAG.getLoad(TheSelect->getValueType(0),
+ SDLoc(TheSelect),
+ // FIXME: Discards pointer and AA info.
+ LLD->getChain(), Addr, MachinePointerInfo(),
+ LLD->isVolatile(), LLD->isNonTemporal(),
+ isInvariant, Alignment);
+ } else {
+ Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
+ RLD->getExtensionType() : LLD->getExtensionType(),
+ SDLoc(TheSelect),
+ TheSelect->getValueType(0),
+ // FIXME: Discards pointer and AA info.
+ LLD->getChain(), Addr, MachinePointerInfo(),
+ LLD->getMemoryVT(), LLD->isVolatile(),
+ LLD->isNonTemporal(), isInvariant, Alignment);
+ }
+
+ // Users of the select now use the result of the load.
+ CombineTo(TheSelect, Load);
+
+ // Users of the old loads now use the new load's chain. We know the
+ // old-load value is dead now.
+ CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
+ CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
+ return true;
+ }
+
+ return false;
+}
+
+/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
+/// where 'cond' is the comparison specified by CC.
+SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
+ SDValue N2, SDValue N3,
+ ISD::CondCode CC, bool NotExtCompare) {
+ // (x ? y : y) -> y.
+ if (N2 == N3) return N2;
+
+ EVT VT = N2.getValueType();
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
+
+ // Determine if the condition we're dealing with is constant
+ SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
+ N0, N1, CC, DL, false);
+ if (SCC.getNode()) AddToWorklist(SCC.getNode());
+
+ if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
+ // fold select_cc true, x, y -> x
+ // fold select_cc false, x, y -> y
+ return !SCCC->isNullValue() ? N2 : N3;
+ }
+
+ // Check to see if we can simplify the select into an fabs node
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
+ // Allow either -0.0 or 0.0
+ if (CFP->isZero()) {
+ // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
+ if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
+ N0 == N2 && N3.getOpcode() == ISD::FNEG &&
+ N2 == N3.getOperand(0))
+ return DAG.getNode(ISD::FABS, DL, VT, N0);
+
+ // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
+ if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
+ N0 == N3 && N2.getOpcode() == ISD::FNEG &&
+ N2.getOperand(0) == N3)
+ return DAG.getNode(ISD::FABS, DL, VT, N3);
+ }
+ }
+
+ // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
+ // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
+ // in it. This is a win when the constant is not otherwise available because
+ // it replaces two constant pool loads with one. We only do this if the FP
+ // type is known to be legal, because if it isn't, then we are before legalize
+ // types an we want the other legalization to happen first (e.g. to avoid
+ // messing with soft float) and if the ConstantFP is not legal, because if
+ // it is legal, we may not need to store the FP constant in a constant pool.
+ if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
+ if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
+ if (TLI.isTypeLegal(N2.getValueType()) &&
+ (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
+ TargetLowering::Legal &&
+ !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) &&
+ !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) &&
+ // If both constants have multiple uses, then we won't need to do an
+ // extra load, they are likely around in registers for other users.
+ (TV->hasOneUse() || FV->hasOneUse())) {
+ Constant *Elts[] = {
+ const_cast<ConstantFP*>(FV->getConstantFPValue()),
+ const_cast<ConstantFP*>(TV->getConstantFPValue())
+ };
+ Type *FPTy = Elts[0]->getType();
+ const DataLayout &TD = *TLI.getDataLayout();
+
+ // Create a ConstantArray of the two constants.
+ Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
+ SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(),
+ TD.getPrefTypeAlignment(FPTy));
+ unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
+
+ // Get the offsets to the 0 and 1 element of the array so that we can
+ // select between them.
+ SDValue Zero = DAG.getIntPtrConstant(0, DL);
+ unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
+ SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
+
+ SDValue Cond = DAG.getSetCC(DL,
+ getSetCCResultType(N0.getValueType()),
+ N0, N1, CC);
+ AddToWorklist(Cond.getNode());
+ SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
+ Cond, One, Zero);
+ AddToWorklist(CstOffset.getNode());
+ CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
+ CstOffset);
+ AddToWorklist(CPIdx.getNode());
+ return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(), false,
+ false, false, Alignment);
+ }
+ }
+
+ // Check to see if we can perform the "gzip trick", transforming
+ // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
+ if (isNullConstant(N3) && CC == ISD::SETLT &&
+ (isNullConstant(N1) || // (a < 0) ? b : 0
+ (isOneConstant(N1) && N0 == N2))) { // (a < 1) ? a : 0
+ EVT XType = N0.getValueType();
+ EVT AType = N2.getValueType();
+ if (XType.bitsGE(AType)) {
+ // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
+ // single-bit constant.
+ if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
+ unsigned ShCtV = N2C->getAPIntValue().logBase2();
+ ShCtV = XType.getSizeInBits() - ShCtV - 1;
+ SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0),
+ getShiftAmountTy(N0.getValueType()));
+ SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
+ XType, N0, ShCt);
+ AddToWorklist(Shift.getNode());
+
+ if (XType.bitsGT(AType)) {
+ Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
+ AddToWorklist(Shift.getNode());
+ }
+
+ return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
+ }
+
+ SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
+ XType, N0,
+ DAG.getConstant(XType.getSizeInBits() - 1,
+ SDLoc(N0),
+ getShiftAmountTy(N0.getValueType())));
+ AddToWorklist(Shift.getNode());
+
+ if (XType.bitsGT(AType)) {
+ Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
+ AddToWorklist(Shift.getNode());
+ }
+
+ return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
+ }
+ }
+
+ // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
+ // where y is has a single bit set.
+ // A plaintext description would be, we can turn the SELECT_CC into an AND
+ // when the condition can be materialized as an all-ones register. Any
+ // single bit-test can be materialized as an all-ones register with
+ // shift-left and shift-right-arith.
+ if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
+ N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
+ SDValue AndLHS = N0->getOperand(0);
+ ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
+ if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
+ // Shift the tested bit over the sign bit.
+ APInt AndMask = ConstAndRHS->getAPIntValue();
+ SDValue ShlAmt =
+ DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
+ getShiftAmountTy(AndLHS.getValueType()));
+ SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
+
+ // Now arithmetic right shift it all the way over, so the result is either
+ // all-ones, or zero.
+ SDValue ShrAmt =
+ DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
+ getShiftAmountTy(Shl.getValueType()));
+ SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
+
+ return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
+ }
+ }
+
+ // fold select C, 16, 0 -> shl C, 4
+ if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() &&
+ TLI.getBooleanContents(N0.getValueType()) ==
+ TargetLowering::ZeroOrOneBooleanContent) {
+
+ // If the caller doesn't want us to simplify this into a zext of a compare,
+ // don't do it.
+ if (NotExtCompare && N2C->isOne())
+ return SDValue();
+
+ // Get a SetCC of the condition
+ // NOTE: Don't create a SETCC if it's not legal on this target.
+ if (!LegalOperations ||
+ TLI.isOperationLegal(ISD::SETCC,
+ LegalTypes ? getSetCCResultType(N0.getValueType()) : MVT::i1)) {
+ SDValue Temp, SCC;
+ // cast from setcc result type to select result type
+ if (LegalTypes) {
+ SCC = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
+ N0, N1, CC);
+ if (N2.getValueType().bitsLT(SCC.getValueType()))
+ Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
+ N2.getValueType());
+ else
+ Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
+ N2.getValueType(), SCC);
+ } else {
+ SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
+ Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
+ N2.getValueType(), SCC);
+ }
+
+ AddToWorklist(SCC.getNode());
+ AddToWorklist(Temp.getNode());
+
+ if (N2C->isOne())
+ return Temp;
+
+ // shl setcc result by log2 n2c
+ return DAG.getNode(
+ ISD::SHL, DL, N2.getValueType(), Temp,
+ DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp),
+ getShiftAmountTy(Temp.getValueType())));
+ }
+ }
+
+ // Check to see if this is the equivalent of setcc
+ // FIXME: Turn all of these into setcc if setcc if setcc is legal
+ // otherwise, go ahead with the folds.
+ if (0 && isNullConstant(N3) && isOneConstant(N2)) {
+ EVT XType = N0.getValueType();
+ if (!LegalOperations ||
+ TLI.isOperationLegal(ISD::SETCC, getSetCCResultType(XType))) {
+ SDValue Res = DAG.getSetCC(DL, getSetCCResultType(XType), N0, N1, CC);
+ if (Res.getValueType() != VT)
+ Res = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Res);
+ return Res;
+ }
+
+ // fold (seteq X, 0) -> (srl (ctlz X, log2(size(X))))
+ if (isNullConstant(N1) && CC == ISD::SETEQ &&
+ (!LegalOperations ||
+ TLI.isOperationLegal(ISD::CTLZ, XType))) {
+ SDValue Ctlz = DAG.getNode(ISD::CTLZ, SDLoc(N0), XType, N0);
+ return DAG.getNode(ISD::SRL, DL, XType, Ctlz,
+ DAG.getConstant(Log2_32(XType.getSizeInBits()),
+ SDLoc(Ctlz),
+ getShiftAmountTy(Ctlz.getValueType())));
+ }
+ // fold (setgt X, 0) -> (srl (and (-X, ~X), size(X)-1))
+ if (isNullConstant(N1) && CC == ISD::SETGT) {
+ SDLoc DL(N0);
+ SDValue NegN0 = DAG.getNode(ISD::SUB, DL,
+ XType, DAG.getConstant(0, DL, XType), N0);
+ SDValue NotN0 = DAG.getNOT(DL, N0, XType);
+ return DAG.getNode(ISD::SRL, DL, XType,
+ DAG.getNode(ISD::AND, DL, XType, NegN0, NotN0),
+ DAG.getConstant(XType.getSizeInBits() - 1, DL,
+ getShiftAmountTy(XType)));
+ }
+ // fold (setgt X, -1) -> (xor (srl (X, size(X)-1), 1))
+ if (isAllOnesConstant(N1) && CC == ISD::SETGT) {
+ SDLoc DL(N0);
+ SDValue Sign = DAG.getNode(ISD::SRL, DL, XType, N0,
+ DAG.getConstant(XType.getSizeInBits() - 1, DL,
+ getShiftAmountTy(N0.getValueType())));
+ return DAG.getNode(ISD::XOR, DL, XType, Sign, DAG.getConstant(1, DL,
+ XType));
+ }
+ }
+
+ // Check to see if this is an integer abs.
+ // select_cc setg[te] X, 0, X, -X ->
+ // select_cc setgt X, -1, X, -X ->
+ // select_cc setl[te] X, 0, -X, X ->
+ // select_cc setlt X, 1, -X, X ->
+ // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
+ if (N1C) {
+ ConstantSDNode *SubC = nullptr;
+ if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
+ (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
+ N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
+ SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
+ else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
+ (N1C->isOne() && CC == ISD::SETLT)) &&
+ N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
+ SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
+
+ EVT XType = N0.getValueType();
+ if (SubC && SubC->isNullValue() && XType.isInteger()) {
+ SDLoc DL(N0);
+ SDValue Shift = DAG.getNode(ISD::SRA, DL, XType,
+ N0,
+ DAG.getConstant(XType.getSizeInBits() - 1, DL,
+ getShiftAmountTy(N0.getValueType())));
+ SDValue Add = DAG.getNode(ISD::ADD, DL,
+ XType, N0, Shift);
+ AddToWorklist(Shift.getNode());
+ AddToWorklist(Add.getNode());
+ return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
+ }
+ }
+
+ return SDValue();
+}
+
+/// This is a stub for TargetLowering::SimplifySetCC.
+SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
+ SDValue N1, ISD::CondCode Cond,
+ SDLoc DL, bool foldBooleans) {
+ TargetLowering::DAGCombinerInfo
+ DagCombineInfo(DAG, Level, false, this);
+ return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
+}
+
+/// Given an ISD::SDIV node expressing a divide by constant, return
+/// a DAG expression to select that will generate the same value by multiplying
+/// by a magic number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
+SDValue DAGCombiner::BuildSDIV(SDNode *N) {
+ ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
+ if (!C)
+ return SDValue();
+
+ // Avoid division by zero.
+ if (C->isNullValue())
+ return SDValue();
+
+ std::vector<SDNode*> Built;
+ SDValue S =
+ TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
+
+ for (SDNode *N : Built)
+ AddToWorklist(N);
+ return S;
+}
+
+/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
+/// DAG expression that will generate the same value by right shifting.
+SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
+ ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
+ if (!C)
+ return SDValue();
+
+ // Avoid division by zero.
+ if (C->isNullValue())
+ return SDValue();
+
+ std::vector<SDNode *> Built;
+ SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built);
+
+ for (SDNode *N : Built)
+ AddToWorklist(N);
+ return S;
+}
+
+/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
+/// expression that will generate the same value by multiplying by a magic
+/// number.
+/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
+SDValue DAGCombiner::BuildUDIV(SDNode *N) {
+ ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
+ if (!C)
+ return SDValue();
+
+ // Avoid division by zero.
+ if (C->isNullValue())
+ return SDValue();
+
+ std::vector<SDNode*> Built;
+ SDValue S =
+ TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
+
+ for (SDNode *N : Built)
+ AddToWorklist(N);
+ return S;
+}
+
+SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op) {
+ if (Level >= AfterLegalizeDAG)
+ return SDValue();
+
+ // Expose the DAG combiner to the target combiner implementations.
+ TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
+
+ unsigned Iterations = 0;
+ if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) {
+ if (Iterations) {
+ // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+ // For the reciprocal, we need to find the zero of the function:
+ // F(X) = A X - 1 [which has a zero at X = 1/A]
+ // =>
+ // X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
+ // does not require additional intermediate precision]
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
+
+ AddToWorklist(Est.getNode());
+
+ // Newton iterations: Est = Est + Est (1 - Arg * Est)
+ for (unsigned i = 0; i < Iterations; ++i) {
+ SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est);
+ AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst);
+ AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst);
+ AddToWorklist(NewEst.getNode());
+
+ Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst);
+ AddToWorklist(Est.getNode());
+ }
+ }
+ return Est;
+ }
+
+ return SDValue();
+}
+
+/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+/// For the reciprocal sqrt, we need to find the zero of the function:
+/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
+/// =>
+/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
+/// As a result, we precompute A/2 prior to the iteration loop.
+SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est,
+ unsigned Iterations) {
+ EVT VT = Arg.getValueType();
+ SDLoc DL(Arg);
+ SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
+
+ // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
+ // this entire sequence requires only one FP constant.
+ SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg);
+ AddToWorklist(HalfArg.getNode());
+
+ HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg);
+ AddToWorklist(HalfArg.getNode());
+
+ // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
+ for (unsigned i = 0; i < Iterations; ++i) {
+ SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est);
+ AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst);
+ AddToWorklist(NewEst.getNode());
+
+ NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst);
+ AddToWorklist(NewEst.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst);
+ AddToWorklist(Est.getNode());
+ }
+ return Est;
+}
+
+/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
+/// For the reciprocal sqrt, we need to find the zero of the function:
+/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
+/// =>
+/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
+SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est,
+ unsigned Iterations) {
+ EVT VT = Arg.getValueType();
+ SDLoc DL(Arg);
+ SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
+ SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
+
+ // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est)
+ for (unsigned i = 0; i < Iterations; ++i) {
+ SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf);
+ AddToWorklist(HalfEst.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est);
+ AddToWorklist(Est.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg);
+ AddToWorklist(Est.getNode());
+
+ Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree);
+ AddToWorklist(Est.getNode());
+
+ Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst);
+ AddToWorklist(Est.getNode());
+ }
+ return Est;
+}
+
+SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op) {
+ if (Level >= AfterLegalizeDAG)
+ return SDValue();
+
+ // Expose the DAG combiner to the target combiner implementations.
+ TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
+ unsigned Iterations = 0;
+ bool UseOneConstNR = false;
+ if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) {
+ AddToWorklist(Est.getNode());
+ if (Iterations) {
+ Est = UseOneConstNR ?
+ BuildRsqrtNROneConst(Op, Est, Iterations) :
+ BuildRsqrtNRTwoConst(Op, Est, Iterations);
+ }
+ return Est;
+ }
+
+ return SDValue();
+}
+
+/// Return true if base is a frame index, which is known not to alias with
+/// anything but itself. Provides base object and offset as results.
+static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
+ const GlobalValue *&GV, const void *&CV) {
+ // Assume it is a primitive operation.
+ Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr;
+
+ // If it's an adding a simple constant then integrate the offset.
+ if (Base.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
+ Base = Base.getOperand(0);
+ Offset += C->getZExtValue();
+ }
+ }
+
+ // Return the underlying GlobalValue, and update the Offset. Return false
+ // for GlobalAddressSDNode since the same GlobalAddress may be represented
+ // by multiple nodes with different offsets.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
+ GV = G->getGlobal();
+ Offset += G->getOffset();
+ return false;
+ }
+
+ // Return the underlying Constant value, and update the Offset. Return false
+ // for ConstantSDNodes since the same constant pool entry may be represented
+ // by multiple nodes with different offsets.
+ if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
+ CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
+ : (const void *)C->getConstVal();
+ Offset += C->getOffset();
+ return false;
+ }
+ // If it's any of the following then it can't alias with anything but itself.
+ return isa<FrameIndexSDNode>(Base);
+}
+
+/// Return true if there is any possibility that the two addresses overlap.
+bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
+ // If they are the same then they must be aliases.
+ if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
+
+ // If they are both volatile then they cannot be reordered.
+ if (Op0->isVolatile() && Op1->isVolatile()) return true;
+
+ // Gather base node and offset information.
+ SDValue Base1, Base2;
+ int64_t Offset1, Offset2;
+ const GlobalValue *GV1, *GV2;
+ const void *CV1, *CV2;
+ bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(),
+ Base1, Offset1, GV1, CV1);
+ bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(),
+ Base2, Offset2, GV2, CV2);
+
+ // If they have a same base address then check to see if they overlap.
+ if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
+ return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
+ (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
+
+ // It is possible for different frame indices to alias each other, mostly
+ // when tail call optimization reuses return address slots for arguments.
+ // To catch this case, look up the actual index of frame indices to compute
+ // the real alias relationship.
+ if (isFrameIndex1 && isFrameIndex2) {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
+ Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
+ return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
+ (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
+ }
+
+ // Otherwise, if we know what the bases are, and they aren't identical, then
+ // we know they cannot alias.
+ if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
+ return false;
+
+ // If we know required SrcValue1 and SrcValue2 have relatively large alignment
+ // compared to the size and offset of the access, we may be able to prove they
+ // do not alias. This check is conservative for now to catch cases created by
+ // splitting vector types.
+ if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) &&
+ (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) &&
+ (Op0->getMemoryVT().getSizeInBits() >> 3 ==
+ Op1->getMemoryVT().getSizeInBits() >> 3) &&
+ (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) {
+ int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment();
+ int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment();
+
+ // There is no overlap between these relatively aligned accesses of similar
+ // size, return no alias.
+ if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 ||
+ (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1)
+ return false;
+ }
+
+ bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
+ ? CombinerGlobalAA
+ : DAG.getSubtarget().useAA();
+#ifndef NDEBUG
+ if (CombinerAAOnlyFunc.getNumOccurrences() &&
+ CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
+ UseAA = false;
+#endif
+ if (UseAA &&
+ Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
+ // Use alias analysis information.
+ int64_t MinOffset = std::min(Op0->getSrcValueOffset(),
+ Op1->getSrcValueOffset());
+ int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) +
+ Op0->getSrcValueOffset() - MinOffset;
+ int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) +
+ Op1->getSrcValueOffset() - MinOffset;
+ AliasAnalysis::AliasResult AAResult =
+ AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1,
+ UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
+ MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2,
+ UseTBAA ? Op1->getAAInfo() : AAMDNodes()));
+ if (AAResult == AliasAnalysis::NoAlias)
+ return false;
+ }
+
+ // Otherwise we have to assume they alias.
+ return true;
+}
+
+/// Walk up chain skipping non-aliasing memory nodes,
+/// looking for aliasing nodes and adding them to the Aliases vector.
+void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
+ SmallVectorImpl<SDValue> &Aliases) {
+ SmallVector<SDValue, 8> Chains; // List of chains to visit.
+ SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
+
+ // Get alias information for node.
+ bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile();
+
+ // Starting off.
+ Chains.push_back(OriginalChain);
+ unsigned Depth = 0;
+
+ // Look at each chain and determine if it is an alias. If so, add it to the
+ // aliases list. If not, then continue up the chain looking for the next
+ // candidate.
+ while (!Chains.empty()) {
+ SDValue Chain = Chains.back();
+ Chains.pop_back();
+
+ // For TokenFactor nodes, look at each operand and only continue up the
+ // chain until we find two aliases. If we've seen two aliases, assume we'll
+ // find more and revert to original chain since the xform is unlikely to be
+ // profitable.
+ //
+ // FIXME: The depth check could be made to return the last non-aliasing
+ // chain we found before we hit a tokenfactor rather than the original
+ // chain.
+ if (Depth > 6 || Aliases.size() == 2) {
+ Aliases.clear();
+ Aliases.push_back(OriginalChain);
+ return;
+ }
+
+ // Don't bother if we've been before.
+ if (!Visited.insert(Chain.getNode()).second)
+ continue;
+
+ switch (Chain.getOpcode()) {
+ case ISD::EntryToken:
+ // Entry token is ideal chain operand, but handled in FindBetterChain.
+ break;
+
+ case ISD::LOAD:
+ case ISD::STORE: {
+ // Get alias information for Chain.
+ bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
+ !cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
+
+ // If chain is alias then stop here.
+ if (!(IsLoad && IsOpLoad) &&
+ isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) {
+ Aliases.push_back(Chain);
+ } else {
+ // Look further up the chain.
+ Chains.push_back(Chain.getOperand(0));
+ ++Depth;
+ }
+ break;
+ }
+
+ case ISD::TokenFactor:
+ // We have to check each of the operands of the token factor for "small"
+ // token factors, so we queue them up. Adding the operands to the queue
+ // (stack) in reverse order maintains the original order and increases the
+ // likelihood that getNode will find a matching token factor (CSE.)
+ if (Chain.getNumOperands() > 16) {
+ Aliases.push_back(Chain);
+ break;
+ }
+ for (unsigned n = Chain.getNumOperands(); n;)
+ Chains.push_back(Chain.getOperand(--n));
+ ++Depth;
+ break;
+
+ default:
+ // For all other instructions we will just have to take what we can get.
+ Aliases.push_back(Chain);
+ break;
+ }
+ }
+
+ // We need to be careful here to also search for aliases through the
+ // value operand of a store, etc. Consider the following situation:
+ // Token1 = ...
+ // L1 = load Token1, %52
+ // S1 = store Token1, L1, %51
+ // L2 = load Token1, %52+8
+ // S2 = store Token1, L2, %51+8
+ // Token2 = Token(S1, S2)
+ // L3 = load Token2, %53
+ // S3 = store Token2, L3, %52
+ // L4 = load Token2, %53+8
+ // S4 = store Token2, L4, %52+8
+ // If we search for aliases of S3 (which loads address %52), and we look
+ // only through the chain, then we'll miss the trivial dependence on L1
+ // (which also loads from %52). We then might change all loads and
+ // stores to use Token1 as their chain operand, which could result in
+ // copying %53 into %52 before copying %52 into %51 (which should
+ // happen first).
+ //
+ // The problem is, however, that searching for such data dependencies
+ // can become expensive, and the cost is not directly related to the
+ // chain depth. Instead, we'll rule out such configurations here by
+ // insisting that we've visited all chain users (except for users
+ // of the original chain, which is not necessary). When doing this,
+ // we need to look through nodes we don't care about (otherwise, things
+ // like register copies will interfere with trivial cases).
+
+ SmallVector<const SDNode *, 16> Worklist;
+ for (const SDNode *N : Visited)
+ if (N != OriginalChain.getNode())
+ Worklist.push_back(N);
+
+ while (!Worklist.empty()) {
+ const SDNode *M = Worklist.pop_back_val();
+
+ // We have already visited M, and want to make sure we've visited any uses
+ // of M that we care about. For uses that we've not visisted, and don't
+ // care about, queue them to the worklist.
+
+ for (SDNode::use_iterator UI = M->use_begin(),
+ UIE = M->use_end(); UI != UIE; ++UI)
+ if (UI.getUse().getValueType() == MVT::Other &&
+ Visited.insert(*UI).second) {
+ if (isa<MemIntrinsicSDNode>(*UI) || isa<MemSDNode>(*UI)) {
+ // We've not visited this use, and we care about it (it could have an
+ // ordering dependency with the original node).
+ Aliases.clear();
+ Aliases.push_back(OriginalChain);
+ return;
+ }
+
+ // We've not visited this use, but we don't care about it. Mark it as
+ // visited and enqueue it to the worklist.
+ Worklist.push_back(*UI);
+ }
+ }
+}
+
+/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
+/// (aliasing node.)
+SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
+ SmallVector<SDValue, 8> Aliases; // Ops for replacing token factor.
+
+ // Accumulate all the aliases to this node.
+ GatherAllAliases(N, OldChain, Aliases);
+
+ // If no operands then chain to entry token.
+ if (Aliases.size() == 0)
+ return DAG.getEntryNode();
+
+ // If a single operand then chain to it. We don't need to revisit it.
+ if (Aliases.size() == 1)
+ return Aliases[0];
+
+ // Construct a custom tailored token factor.
+ return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
+}
+
+/// This is the entry point for the file.
+void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
+ CodeGenOpt::Level OptLevel) {
+ /// This is the main entry point to this class.
+ DAGCombiner(*this, AA, OptLevel).Run(Level);
+}
OpenPOWER on IntegriCloud