diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp | 1605 |
1 files changed, 1605 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp new file mode 100644 index 0000000..ae4b935 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp @@ -0,0 +1,1605 @@ +//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements the ScheduleDAGInstrs class, which implements re-scheduling +// of MachineInstrs. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/ScheduleDAGInstrs.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/RegisterPressure.h" +#include "llvm/CodeGen/ScheduleDFS.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <queue> + +using namespace llvm; + +#define DEBUG_TYPE "misched" + +static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, + cl::ZeroOrMore, cl::init(false), + cl::desc("Enable use of AA during MI DAG construction")); + +static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, + cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); + +ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, + const MachineLoopInfo *mli, + bool IsPostRAFlag, bool RemoveKillFlags, + LiveIntervals *lis) + : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), LIS(lis), + IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags), + CanHandleTerminators(false), FirstDbgValue(nullptr) { + assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals"); + DbgValues.clear(); + assert(!(IsPostRA && MRI.getNumVirtRegs()) && + "Virtual registers must be removed prior to PostRA scheduling"); + + const TargetSubtargetInfo &ST = mf.getSubtarget(); + SchedModel.init(ST.getSchedModel(), &ST, TII); +} + +/// getUnderlyingObjectFromInt - This is the function that does the work of +/// looking through basic ptrtoint+arithmetic+inttoptr sequences. +static const Value *getUnderlyingObjectFromInt(const Value *V) { + do { + if (const Operator *U = dyn_cast<Operator>(V)) { + // If we find a ptrtoint, we can transfer control back to the + // regular getUnderlyingObjectFromInt. + if (U->getOpcode() == Instruction::PtrToInt) + return U->getOperand(0); + // If we find an add of a constant, a multiplied value, or a phi, it's + // likely that the other operand will lead us to the base + // object. We don't have to worry about the case where the + // object address is somehow being computed by the multiply, + // because our callers only care when the result is an + // identifiable object. + if (U->getOpcode() != Instruction::Add || + (!isa<ConstantInt>(U->getOperand(1)) && + Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && + !isa<PHINode>(U->getOperand(1)))) + return V; + V = U->getOperand(0); + } else { + return V; + } + assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); + } while (1); +} + +/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects +/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences. +static void getUnderlyingObjects(const Value *V, + SmallVectorImpl<Value *> &Objects, + const DataLayout &DL) { + SmallPtrSet<const Value *, 16> Visited; + SmallVector<const Value *, 4> Working(1, V); + do { + V = Working.pop_back_val(); + + SmallVector<Value *, 4> Objs; + GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); + + for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end(); + I != IE; ++I) { + V = *I; + if (!Visited.insert(V).second) + continue; + if (Operator::getOpcode(V) == Instruction::IntToPtr) { + const Value *O = + getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); + if (O->getType()->isPointerTy()) { + Working.push_back(O); + continue; + } + } + Objects.push_back(const_cast<Value *>(V)); + } + } while (!Working.empty()); +} + +typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; +typedef SmallVector<PointerIntPair<ValueType, 1, bool>, 4> +UnderlyingObjectsVector; + +/// getUnderlyingObjectsForInstr - If this machine instr has memory reference +/// information and it can be tracked to a normal reference to a known +/// object, return the Value for that object. +static void getUnderlyingObjectsForInstr(const MachineInstr *MI, + const MachineFrameInfo *MFI, + UnderlyingObjectsVector &Objects, + const DataLayout &DL) { + if (!MI->hasOneMemOperand() || + (!(*MI->memoperands_begin())->getValue() && + !(*MI->memoperands_begin())->getPseudoValue()) || + (*MI->memoperands_begin())->isVolatile()) + return; + + if (const PseudoSourceValue *PSV = + (*MI->memoperands_begin())->getPseudoValue()) { + // Function that contain tail calls don't have unique PseudoSourceValue + // objects. Two PseudoSourceValues might refer to the same or overlapping + // locations. The client code calling this function assumes this is not the + // case. So return a conservative answer of no known object. + if (MFI->hasTailCall()) + return; + + // For now, ignore PseudoSourceValues which may alias LLVM IR values + // because the code that uses this function has no way to cope with + // such aliases. + if (!PSV->isAliased(MFI)) { + bool MayAlias = PSV->mayAlias(MFI); + Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias)); + } + return; + } + + const Value *V = (*MI->memoperands_begin())->getValue(); + if (!V) + return; + + SmallVector<Value *, 4> Objs; + getUnderlyingObjects(V, Objs, DL); + + for (Value *V : Objs) { + if (!isIdentifiedObject(V)) { + Objects.clear(); + return; + } + + Objects.push_back(UnderlyingObjectsVector::value_type(V, true)); + } +} + +void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { + BB = bb; +} + +void ScheduleDAGInstrs::finishBlock() { + // Subclasses should no longer refer to the old block. + BB = nullptr; +} + +/// Initialize the DAG and common scheduler state for the current scheduling +/// region. This does not actually create the DAG, only clears it. The +/// scheduling driver may call BuildSchedGraph multiple times per scheduling +/// region. +void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, + MachineBasicBlock::iterator begin, + MachineBasicBlock::iterator end, + unsigned regioninstrs) { + assert(bb == BB && "startBlock should set BB"); + RegionBegin = begin; + RegionEnd = end; + NumRegionInstrs = regioninstrs; +} + +/// Close the current scheduling region. Don't clear any state in case the +/// driver wants to refer to the previous scheduling region. +void ScheduleDAGInstrs::exitRegion() { + // Nothing to do. +} + +/// addSchedBarrierDeps - Add dependencies from instructions in the current +/// list of instructions being scheduled to scheduling barrier by adding +/// the exit SU to the register defs and use list. This is because we want to +/// make sure instructions which define registers that are either used by +/// the terminator or are live-out are properly scheduled. This is +/// especially important when the definition latency of the return value(s) +/// are too high to be hidden by the branch or when the liveout registers +/// used by instructions in the fallthrough block. +void ScheduleDAGInstrs::addSchedBarrierDeps() { + MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr; + ExitSU.setInstr(ExitMI); + bool AllDepKnown = ExitMI && + (ExitMI->isCall() || ExitMI->isBarrier()); + if (ExitMI && AllDepKnown) { + // If it's a call or a barrier, add dependencies on the defs and uses of + // instruction. + for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = ExitMI->getOperand(i); + if (!MO.isReg() || MO.isDef()) continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; + + if (TRI->isPhysicalRegister(Reg)) + Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); + else { + assert(!IsPostRA && "Virtual register encountered after regalloc."); + if (MO.readsReg()) // ignore undef operands + addVRegUseDeps(&ExitSU, i); + } + } + } else { + // For others, e.g. fallthrough, conditional branch, assume the exit + // uses all the registers that are livein to the successor blocks. + assert(Uses.empty() && "Uses in set before adding deps?"); + for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), + SE = BB->succ_end(); SI != SE; ++SI) + for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), + E = (*SI)->livein_end(); I != E; ++I) { + unsigned Reg = *I; + if (!Uses.contains(Reg)) + Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg)); + } + } +} + +/// MO is an operand of SU's instruction that defines a physical register. Add +/// data dependencies from SU to any uses of the physical register. +void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { + const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); + assert(MO.isDef() && "expect physreg def"); + + // Ask the target if address-backscheduling is desirable, and if so how much. + const TargetSubtargetInfo &ST = MF.getSubtarget(); + + for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); + Alias.isValid(); ++Alias) { + if (!Uses.contains(*Alias)) + continue; + for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) { + SUnit *UseSU = I->SU; + if (UseSU == SU) + continue; + + // Adjust the dependence latency using operand def/use information, + // then allow the target to perform its own adjustments. + int UseOp = I->OpIdx; + MachineInstr *RegUse = nullptr; + SDep Dep; + if (UseOp < 0) + Dep = SDep(SU, SDep::Artificial); + else { + // Set the hasPhysRegDefs only for physreg defs that have a use within + // the scheduling region. + SU->hasPhysRegDefs = true; + Dep = SDep(SU, SDep::Data, *Alias); + RegUse = UseSU->getInstr(); + } + Dep.setLatency( + SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, + UseOp)); + + ST.adjustSchedDependency(SU, UseSU, Dep); + UseSU->addPred(Dep); + } + } +} + +/// addPhysRegDeps - Add register dependencies (data, anti, and output) from +/// this SUnit to following instructions in the same scheduling region that +/// depend the physical register referenced at OperIdx. +void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { + MachineInstr *MI = SU->getInstr(); + MachineOperand &MO = MI->getOperand(OperIdx); + + // Optionally add output and anti dependencies. For anti + // dependencies we use a latency of 0 because for a multi-issue + // target we want to allow the defining instruction to issue + // in the same cycle as the using instruction. + // TODO: Using a latency of 1 here for output dependencies assumes + // there's no cost for reusing registers. + SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; + for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); + Alias.isValid(); ++Alias) { + if (!Defs.contains(*Alias)) + continue; + for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) { + SUnit *DefSU = I->SU; + if (DefSU == &ExitSU) + continue; + if (DefSU != SU && + (Kind != SDep::Output || !MO.isDead() || + !DefSU->getInstr()->registerDefIsDead(*Alias))) { + if (Kind == SDep::Anti) + DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias)); + else { + SDep Dep(SU, Kind, /*Reg=*/*Alias); + Dep.setLatency( + SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); + DefSU->addPred(Dep); + } + } + } + } + + if (!MO.isDef()) { + SU->hasPhysRegUses = true; + // Either insert a new Reg2SUnits entry with an empty SUnits list, or + // retrieve the existing SUnits list for this register's uses. + // Push this SUnit on the use list. + Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg())); + if (RemoveKillFlags) + MO.setIsKill(false); + } + else { + addPhysRegDataDeps(SU, OperIdx); + unsigned Reg = MO.getReg(); + + // clear this register's use list + if (Uses.contains(Reg)) + Uses.eraseAll(Reg); + + if (!MO.isDead()) { + Defs.eraseAll(Reg); + } else if (SU->isCall) { + // Calls will not be reordered because of chain dependencies (see + // below). Since call operands are dead, calls may continue to be added + // to the DefList making dependence checking quadratic in the size of + // the block. Instead, we leave only one call at the back of the + // DefList. + Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg); + Reg2SUnitsMap::iterator B = P.first; + Reg2SUnitsMap::iterator I = P.second; + for (bool isBegin = I == B; !isBegin; /* empty */) { + isBegin = (--I) == B; + if (!I->SU->isCall) + break; + I = Defs.erase(I); + } + } + + // Defs are pushed in the order they are visited and never reordered. + Defs.insert(PhysRegSUOper(SU, OperIdx, Reg)); + } +} + +/// addVRegDefDeps - Add register output and data dependencies from this SUnit +/// to instructions that occur later in the same scheduling region if they read +/// from or write to the virtual register defined at OperIdx. +/// +/// TODO: Hoist loop induction variable increments. This has to be +/// reevaluated. Generally, IV scheduling should be done before coalescing. +void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { + const MachineInstr *MI = SU->getInstr(); + unsigned Reg = MI->getOperand(OperIdx).getReg(); + + // Singly defined vregs do not have output/anti dependencies. + // The current operand is a def, so we have at least one. + // Check here if there are any others... + if (MRI.hasOneDef(Reg)) + return; + + // Add output dependence to the next nearest def of this vreg. + // + // Unless this definition is dead, the output dependence should be + // transitively redundant with antidependencies from this definition's + // uses. We're conservative for now until we have a way to guarantee the uses + // are not eliminated sometime during scheduling. The output dependence edge + // is also useful if output latency exceeds def-use latency. + VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); + if (DefI == VRegDefs.end()) + VRegDefs.insert(VReg2SUnit(Reg, SU)); + else { + SUnit *DefSU = DefI->SU; + if (DefSU != SU && DefSU != &ExitSU) { + SDep Dep(SU, SDep::Output, Reg); + Dep.setLatency( + SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); + DefSU->addPred(Dep); + } + DefI->SU = SU; + } +} + +/// addVRegUseDeps - Add a register data dependency if the instruction that +/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a +/// register antidependency from this SUnit to instructions that occur later in +/// the same scheduling region if they write the virtual register. +/// +/// TODO: Handle ExitSU "uses" properly. +void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { + MachineInstr *MI = SU->getInstr(); + unsigned Reg = MI->getOperand(OperIdx).getReg(); + + // Record this local VReg use. + VReg2UseMap::iterator UI = VRegUses.find(Reg); + for (; UI != VRegUses.end(); ++UI) { + if (UI->SU == SU) + break; + } + if (UI == VRegUses.end()) + VRegUses.insert(VReg2SUnit(Reg, SU)); + + // Lookup this operand's reaching definition. + assert(LIS && "vreg dependencies requires LiveIntervals"); + LiveQueryResult LRQ + = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI)); + VNInfo *VNI = LRQ.valueIn(); + + // VNI will be valid because MachineOperand::readsReg() is checked by caller. + assert(VNI && "No value to read by operand"); + MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def); + // Phis and other noninstructions (after coalescing) have a NULL Def. + if (Def) { + SUnit *DefSU = getSUnit(Def); + if (DefSU) { + // The reaching Def lives within this scheduling region. + // Create a data dependence. + SDep dep(DefSU, SDep::Data, Reg); + // Adjust the dependence latency using operand def/use information, then + // allow the target to perform its own adjustments. + int DefOp = Def->findRegisterDefOperandIdx(Reg); + dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx)); + + const TargetSubtargetInfo &ST = MF.getSubtarget(); + ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep)); + SU->addPred(dep); + } + } + + // Add antidependence to the following def of the vreg it uses. + VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); + if (DefI != VRegDefs.end() && DefI->SU != SU) + DefI->SU->addPred(SDep(SU, SDep::Anti, Reg)); +} + +/// Return true if MI is an instruction we are unable to reason about +/// (like a call or something with unmodeled side effects). +static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) { + if (MI->isCall() || MI->hasUnmodeledSideEffects() || + (MI->hasOrderedMemoryRef() && + (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) + return true; + return false; +} + +// This MI might have either incomplete info, or known to be unsafe +// to deal with (i.e. volatile object). +static inline bool isUnsafeMemoryObject(MachineInstr *MI, + const MachineFrameInfo *MFI, + const DataLayout &DL) { + if (!MI || MI->memoperands_empty()) + return true; + // We purposefully do no check for hasOneMemOperand() here + // in hope to trigger an assert downstream in order to + // finish implementation. + if ((*MI->memoperands_begin())->isVolatile() || + MI->hasUnmodeledSideEffects()) + return true; + + if ((*MI->memoperands_begin())->getPseudoValue()) { + // Similarly to getUnderlyingObjectForInstr: + // For now, ignore PseudoSourceValues which may alias LLVM IR values + // because the code that uses this function has no way to cope with + // such aliases. + return true; + } + + const Value *V = (*MI->memoperands_begin())->getValue(); + if (!V) + return true; + + SmallVector<Value *, 4> Objs; + getUnderlyingObjects(V, Objs, DL); + for (Value *V : Objs) { + // Does this pointer refer to a distinct and identifiable object? + if (!isIdentifiedObject(V)) + return true; + } + + return false; +} + +/// This returns true if the two MIs need a chain edge betwee them. +/// If these are not even memory operations, we still may need +/// chain deps between them. The question really is - could +/// these two MIs be reordered during scheduling from memory dependency +/// point of view. +static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI, + const DataLayout &DL, MachineInstr *MIa, + MachineInstr *MIb) { + const MachineFunction *MF = MIa->getParent()->getParent(); + const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); + + // Cover a trivial case - no edge is need to itself. + if (MIa == MIb) + return false; + + // Let the target decide if memory accesses cannot possibly overlap. + if ((MIa->mayLoad() || MIa->mayStore()) && + (MIb->mayLoad() || MIb->mayStore())) + if (TII->areMemAccessesTriviallyDisjoint(MIa, MIb, AA)) + return false; + + // FIXME: Need to handle multiple memory operands to support all targets. + if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) + return true; + + if (isUnsafeMemoryObject(MIa, MFI, DL) || isUnsafeMemoryObject(MIb, MFI, DL)) + return true; + + // If we are dealing with two "normal" loads, we do not need an edge + // between them - they could be reordered. + if (!MIa->mayStore() && !MIb->mayStore()) + return false; + + // To this point analysis is generic. From here on we do need AA. + if (!AA) + return true; + + MachineMemOperand *MMOa = *MIa->memoperands_begin(); + MachineMemOperand *MMOb = *MIb->memoperands_begin(); + + if (!MMOa->getValue() || !MMOb->getValue()) + return true; + + // The following interface to AA is fashioned after DAGCombiner::isAlias + // and operates with MachineMemOperand offset with some important + // assumptions: + // - LLVM fundamentally assumes flat address spaces. + // - MachineOperand offset can *only* result from legalization and + // cannot affect queries other than the trivial case of overlap + // checking. + // - These offsets never wrap and never step outside + // of allocated objects. + // - There should never be any negative offsets here. + // + // FIXME: Modify API to hide this math from "user" + // FIXME: Even before we go to AA we can reason locally about some + // memory objects. It can save compile time, and possibly catch some + // corner cases not currently covered. + + assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset"); + assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset"); + + int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset()); + int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset; + int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset; + + AliasAnalysis::AliasResult AAResult = + AA->alias(MemoryLocation(MMOa->getValue(), Overlapa, + UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), + MemoryLocation(MMOb->getValue(), Overlapb, + UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); + + return (AAResult != AliasAnalysis::NoAlias); +} + +/// This recursive function iterates over chain deps of SUb looking for +/// "latest" node that needs a chain edge to SUa. +static unsigned iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI, + const DataLayout &DL, SUnit *SUa, SUnit *SUb, + SUnit *ExitSU, unsigned *Depth, + SmallPtrSetImpl<const SUnit *> &Visited) { + if (!SUa || !SUb || SUb == ExitSU) + return *Depth; + + // Remember visited nodes. + if (!Visited.insert(SUb).second) + return *Depth; + // If there is _some_ dependency already in place, do not + // descend any further. + // TODO: Need to make sure that if that dependency got eliminated or ignored + // for any reason in the future, we would not violate DAG topology. + // Currently it does not happen, but makes an implicit assumption about + // future implementation. + // + // Independently, if we encounter node that is some sort of global + // object (like a call) we already have full set of dependencies to it + // and we can stop descending. + if (SUa->isSucc(SUb) || + isGlobalMemoryObject(AA, SUb->getInstr())) + return *Depth; + + // If we do need an edge, or we have exceeded depth budget, + // add that edge to the predecessors chain of SUb, + // and stop descending. + if (*Depth > 200 || + MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { + SUb->addPred(SDep(SUa, SDep::MayAliasMem)); + return *Depth; + } + // Track current depth. + (*Depth)++; + // Iterate over memory dependencies only. + for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end(); + I != E; ++I) + if (I->isNormalMemoryOrBarrier()) + iterateChainSucc(AA, MFI, DL, SUa, I->getSUnit(), ExitSU, Depth, Visited); + return *Depth; +} + +/// This function assumes that "downward" from SU there exist +/// tail/leaf of already constructed DAG. It iterates downward and +/// checks whether SU can be aliasing any node dominated +/// by it. +static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI, + const DataLayout &DL, SUnit *SU, SUnit *ExitSU, + std::set<SUnit *> &CheckList, + unsigned LatencyToLoad) { + if (!SU) + return; + + SmallPtrSet<const SUnit*, 16> Visited; + unsigned Depth = 0; + + for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end(); + I != IE; ++I) { + if (SU == *I) + continue; + if (MIsNeedChainEdge(AA, MFI, DL, SU->getInstr(), (*I)->getInstr())) { + SDep Dep(SU, SDep::MayAliasMem); + Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0); + (*I)->addPred(Dep); + } + + // Iterate recursively over all previously added memory chain + // successors. Keep track of visited nodes. + for (SUnit::const_succ_iterator J = (*I)->Succs.begin(), + JE = (*I)->Succs.end(); J != JE; ++J) + if (J->isNormalMemoryOrBarrier()) + iterateChainSucc(AA, MFI, DL, SU, J->getSUnit(), ExitSU, &Depth, + Visited); + } +} + +/// Check whether two objects need a chain edge, if so, add it +/// otherwise remember the rejected SU. +static inline void addChainDependency(AliasAnalysis *AA, + const MachineFrameInfo *MFI, + const DataLayout &DL, SUnit *SUa, + SUnit *SUb, std::set<SUnit *> &RejectList, + unsigned TrueMemOrderLatency = 0, + bool isNormalMemory = false) { + // If this is a false dependency, + // do not add the edge, but rememeber the rejected node. + if (MIsNeedChainEdge(AA, MFI, DL, SUa->getInstr(), SUb->getInstr())) { + SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier); + Dep.setLatency(TrueMemOrderLatency); + SUb->addPred(Dep); + } + else { + // Duplicate entries should be ignored. + RejectList.insert(SUb); + DEBUG(dbgs() << "\tReject chain dep between SU(" + << SUa->NodeNum << ") and SU(" + << SUb->NodeNum << ")\n"); + } +} + +/// Create an SUnit for each real instruction, numbered in top-down toplological +/// order. The instruction order A < B, implies that no edge exists from B to A. +/// +/// Map each real instruction to its SUnit. +/// +/// After initSUnits, the SUnits vector cannot be resized and the scheduler may +/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs +/// instead of pointers. +/// +/// MachineScheduler relies on initSUnits numbering the nodes by their order in +/// the original instruction list. +void ScheduleDAGInstrs::initSUnits() { + // We'll be allocating one SUnit for each real instruction in the region, + // which is contained within a basic block. + SUnits.reserve(NumRegionInstrs); + + for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { + MachineInstr *MI = I; + if (MI->isDebugValue()) + continue; + + SUnit *SU = newSUnit(MI); + MISUnitMap[MI] = SU; + + SU->isCall = MI->isCall(); + SU->isCommutable = MI->isCommutable(); + + // Assign the Latency field of SU using target-provided information. + SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); + + // If this SUnit uses a reserved or unbuffered resource, mark it as such. + // + // Reserved resources block an instruction from issuing and stall the + // entire pipeline. These are identified by BufferSize=0. + // + // Unbuffered resources prevent execution of subsequent instructions that + // require the same resources. This is used for in-order execution pipelines + // within an out-of-order core. These are identified by BufferSize=1. + if (SchedModel.hasInstrSchedModel()) { + const MCSchedClassDesc *SC = getSchedClass(SU); + for (TargetSchedModel::ProcResIter + PI = SchedModel.getWriteProcResBegin(SC), + PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) { + switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) { + case 0: + SU->hasReservedResource = true; + break; + case 1: + SU->isUnbuffered = true; + break; + default: + break; + } + } + } + } +} + +/// If RegPressure is non-null, compute register pressure as a side effect. The +/// DAG builder is an efficient place to do it because it already visits +/// operands. +void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA, + RegPressureTracker *RPTracker, + PressureDiffs *PDiffs) { + const TargetSubtargetInfo &ST = MF.getSubtarget(); + bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI + : ST.useAA(); + AliasAnalysis *AAForDep = UseAA ? AA : nullptr; + + MISUnitMap.clear(); + ScheduleDAG::clearDAG(); + + // Create an SUnit for each real instruction. + initSUnits(); + + if (PDiffs) + PDiffs->init(SUnits.size()); + + // We build scheduling units by walking a block's instruction list from bottom + // to top. + + // Remember where a generic side-effecting instruction is as we procede. + SUnit *BarrierChain = nullptr, *AliasChain = nullptr; + + // Memory references to specific known memory locations are tracked + // so that they can be given more precise dependencies. We track + // separately the known memory locations that may alias and those + // that are known not to alias + MapVector<ValueType, std::vector<SUnit *> > AliasMemDefs, NonAliasMemDefs; + MapVector<ValueType, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; + std::set<SUnit*> RejectMemNodes; + + // Remove any stale debug info; sometimes BuildSchedGraph is called again + // without emitting the info from the previous call. + DbgValues.clear(); + FirstDbgValue = nullptr; + + assert(Defs.empty() && Uses.empty() && + "Only BuildGraph should update Defs/Uses"); + Defs.setUniverse(TRI->getNumRegs()); + Uses.setUniverse(TRI->getNumRegs()); + + assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs"); + VRegUses.clear(); + VRegDefs.setUniverse(MRI.getNumVirtRegs()); + VRegUses.setUniverse(MRI.getNumVirtRegs()); + + // Model data dependencies between instructions being scheduled and the + // ExitSU. + addSchedBarrierDeps(); + + // Walk the list of instructions, from bottom moving up. + MachineInstr *DbgMI = nullptr; + for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; + MII != MIE; --MII) { + MachineInstr *MI = std::prev(MII); + if (MI && DbgMI) { + DbgValues.push_back(std::make_pair(DbgMI, MI)); + DbgMI = nullptr; + } + + if (MI->isDebugValue()) { + DbgMI = MI; + continue; + } + SUnit *SU = MISUnitMap[MI]; + assert(SU && "No SUnit mapped to this MI"); + + if (RPTracker) { + PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : nullptr; + RPTracker->recede(/*LiveUses=*/nullptr, PDiff); + assert(RPTracker->getPos() == std::prev(MII) && + "RPTracker can't find MI"); + } + + assert( + (CanHandleTerminators || (!MI->isTerminator() && !MI->isPosition())) && + "Cannot schedule terminators or labels!"); + + // Add register-based dependencies (data, anti, and output). + bool HasVRegDef = false; + for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { + const MachineOperand &MO = MI->getOperand(j); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; + + if (TRI->isPhysicalRegister(Reg)) + addPhysRegDeps(SU, j); + else { + assert(!IsPostRA && "Virtual register encountered!"); + if (MO.isDef()) { + HasVRegDef = true; + addVRegDefDeps(SU, j); + } + else if (MO.readsReg()) // ignore undef operands + addVRegUseDeps(SU, j); + } + } + // If we haven't seen any uses in this scheduling region, create a + // dependence edge to ExitSU to model the live-out latency. This is required + // for vreg defs with no in-region use, and prefetches with no vreg def. + // + // FIXME: NumDataSuccs would be more precise than NumSuccs here. This + // check currently relies on being called before adding chain deps. + if (SU->NumSuccs == 0 && SU->Latency > 1 + && (HasVRegDef || MI->mayLoad())) { + SDep Dep(SU, SDep::Artificial); + Dep.setLatency(SU->Latency - 1); + ExitSU.addPred(Dep); + } + + // Add chain dependencies. + // Chain dependencies used to enforce memory order should have + // latency of 0 (except for true dependency of Store followed by + // aliased Load... we estimate that with a single cycle of latency + // assuming the hardware will bypass) + // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable + // after stack slots are lowered to actual addresses. + // TODO: Use an AliasAnalysis and do real alias-analysis queries, and + // produce more precise dependence information. + unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0; + if (isGlobalMemoryObject(AA, MI)) { + // Be conservative with these and add dependencies on all memory + // references, even those that are known to not alias. + for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = + NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { + for (unsigned i = 0, e = I->second.size(); i != e; ++i) { + I->second[i]->addPred(SDep(SU, SDep::Barrier)); + } + } + for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = + NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { + for (unsigned i = 0, e = I->second.size(); i != e; ++i) { + SDep Dep(SU, SDep::Barrier); + Dep.setLatency(TrueMemOrderLatency); + I->second[i]->addPred(Dep); + } + } + // Add SU to the barrier chain. + if (BarrierChain) + BarrierChain->addPred(SDep(SU, SDep::Barrier)); + BarrierChain = SU; + // This is a barrier event that acts as a pivotal node in the DAG, + // so it is safe to clear list of exposed nodes. + adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes, + TrueMemOrderLatency); + RejectMemNodes.clear(); + NonAliasMemDefs.clear(); + NonAliasMemUses.clear(); + + // fall-through + new_alias_chain: + // Chain all possibly aliasing memory references through SU. + if (AliasChain) { + unsigned ChainLatency = 0; + if (AliasChain->getInstr()->mayLoad()) + ChainLatency = TrueMemOrderLatency; + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain, + RejectMemNodes, ChainLatency); + } + AliasChain = SU; + for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, + PendingLoads[k], RejectMemNodes, + TrueMemOrderLatency); + for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = + AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { + for (unsigned i = 0, e = I->second.size(); i != e; ++i) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, + I->second[i], RejectMemNodes); + } + for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = + AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { + for (unsigned i = 0, e = I->second.size(); i != e; ++i) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, + I->second[i], RejectMemNodes, TrueMemOrderLatency); + } + adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes, + TrueMemOrderLatency); + PendingLoads.clear(); + AliasMemDefs.clear(); + AliasMemUses.clear(); + } else if (MI->mayStore()) { + // Add dependence on barrier chain, if needed. + // There is no point to check aliasing on barrier event. Even if + // SU and barrier _could_ be reordered, they should not. In addition, + // we have lost all RejectMemNodes below barrier. + if (BarrierChain) + BarrierChain->addPred(SDep(SU, SDep::Barrier)); + + UnderlyingObjectsVector Objs; + getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout()); + + if (Objs.empty()) { + // Treat all other stores conservatively. + goto new_alias_chain; + } + + bool MayAlias = false; + for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end(); + K != KE; ++K) { + ValueType V = K->getPointer(); + bool ThisMayAlias = K->getInt(); + if (ThisMayAlias) + MayAlias = true; + + // A store to a specific PseudoSourceValue. Add precise dependencies. + // Record the def in MemDefs, first adding a dep if there is + // an existing def. + MapVector<ValueType, std::vector<SUnit *> >::iterator I = + ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); + MapVector<ValueType, std::vector<SUnit *> >::iterator IE = + ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); + if (I != IE) { + for (unsigned i = 0, e = I->second.size(); i != e; ++i) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, + I->second[i], RejectMemNodes, 0, true); + + // If we're not using AA, then we only need one store per object. + if (!AAForDep) + I->second.clear(); + I->second.push_back(SU); + } else { + if (ThisMayAlias) { + if (!AAForDep) + AliasMemDefs[V].clear(); + AliasMemDefs[V].push_back(SU); + } else { + if (!AAForDep) + NonAliasMemDefs[V].clear(); + NonAliasMemDefs[V].push_back(SU); + } + } + // Handle the uses in MemUses, if there are any. + MapVector<ValueType, std::vector<SUnit *> >::iterator J = + ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); + MapVector<ValueType, std::vector<SUnit *> >::iterator JE = + ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); + if (J != JE) { + for (unsigned i = 0, e = J->second.size(); i != e; ++i) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, + J->second[i], RejectMemNodes, + TrueMemOrderLatency, true); + J->second.clear(); + } + } + if (MayAlias) { + // Add dependencies from all the PendingLoads, i.e. loads + // with no underlying object. + for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, + PendingLoads[k], RejectMemNodes, + TrueMemOrderLatency); + // Add dependence on alias chain, if needed. + if (AliasChain) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain, + RejectMemNodes); + } + adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, RejectMemNodes, + TrueMemOrderLatency); + } else if (MI->mayLoad()) { + bool MayAlias = true; + if (MI->isInvariantLoad(AA)) { + // Invariant load, no chain dependencies needed! + } else { + UnderlyingObjectsVector Objs; + getUnderlyingObjectsForInstr(MI, MFI, Objs, *TM.getDataLayout()); + + if (Objs.empty()) { + // A load with no underlying object. Depend on all + // potentially aliasing stores. + for (MapVector<ValueType, std::vector<SUnit *> >::iterator I = + AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) + for (unsigned i = 0, e = I->second.size(); i != e; ++i) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, + I->second[i], RejectMemNodes); + + PendingLoads.push_back(SU); + MayAlias = true; + } else { + MayAlias = false; + } + + for (UnderlyingObjectsVector::iterator + J = Objs.begin(), JE = Objs.end(); J != JE; ++J) { + ValueType V = J->getPointer(); + bool ThisMayAlias = J->getInt(); + + if (ThisMayAlias) + MayAlias = true; + + // A load from a specific PseudoSourceValue. Add precise dependencies. + MapVector<ValueType, std::vector<SUnit *> >::iterator I = + ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); + MapVector<ValueType, std::vector<SUnit *> >::iterator IE = + ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); + if (I != IE) + for (unsigned i = 0, e = I->second.size(); i != e; ++i) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, + I->second[i], RejectMemNodes, 0, true); + if (ThisMayAlias) + AliasMemUses[V].push_back(SU); + else + NonAliasMemUses[V].push_back(SU); + } + if (MayAlias) + adjustChainDeps(AA, MFI, *TM.getDataLayout(), SU, &ExitSU, + RejectMemNodes, /*Latency=*/0); + // Add dependencies on alias and barrier chains, if needed. + if (MayAlias && AliasChain) + addChainDependency(AAForDep, MFI, *TM.getDataLayout(), SU, AliasChain, + RejectMemNodes); + if (BarrierChain) + BarrierChain->addPred(SDep(SU, SDep::Barrier)); + } + } + } + if (DbgMI) + FirstDbgValue = DbgMI; + + Defs.clear(); + Uses.clear(); + VRegDefs.clear(); + PendingLoads.clear(); +} + +/// \brief Initialize register live-range state for updating kills. +void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) { + // Start with no live registers. + LiveRegs.reset(); + + // Examine the live-in regs of all successors. + for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), + SE = BB->succ_end(); SI != SE; ++SI) { + for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), + E = (*SI)->livein_end(); I != E; ++I) { + unsigned Reg = *I; + // Repeat, for reg and all subregs. + for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); + SubRegs.isValid(); ++SubRegs) + LiveRegs.set(*SubRegs); + } + } +} + +/// \brief If we change a kill flag on the bundle instruction implicit register +/// operands, then we also need to propagate that to any instructions inside +/// the bundle which had the same kill state. +static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg, + bool NewKillState) { + if (MI->getOpcode() != TargetOpcode::BUNDLE) + return; + + // Walk backwards from the last instruction in the bundle to the first. + // Once we set a kill flag on an instruction, we bail out, as otherwise we + // might set it on too many operands. We will clear as many flags as we + // can though. + MachineBasicBlock::instr_iterator Begin = MI; + MachineBasicBlock::instr_iterator End = getBundleEnd(MI); + while (Begin != End) { + for (MachineOperand &MO : (--End)->operands()) { + if (!MO.isReg() || MO.isDef() || Reg != MO.getReg()) + continue; + + // DEBUG_VALUE nodes do not contribute to code generation and should + // always be ignored. Failure to do so may result in trying to modify + // KILL flags on DEBUG_VALUE nodes, which is distressing. + if (MO.isDebug()) + continue; + + // If the register has the internal flag then it could be killing an + // internal def of the register. In this case, just skip. We only want + // to toggle the flag on operands visible outside the bundle. + if (MO.isInternalRead()) + continue; + + if (MO.isKill() == NewKillState) + continue; + MO.setIsKill(NewKillState); + if (NewKillState) + return; + } + } +} + +bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) { + // Setting kill flag... + if (!MO.isKill()) { + MO.setIsKill(true); + toggleBundleKillFlag(MI, MO.getReg(), true); + return false; + } + + // If MO itself is live, clear the kill flag... + if (LiveRegs.test(MO.getReg())) { + MO.setIsKill(false); + toggleBundleKillFlag(MI, MO.getReg(), false); + return false; + } + + // If any subreg of MO is live, then create an imp-def for that + // subreg and keep MO marked as killed. + MO.setIsKill(false); + toggleBundleKillFlag(MI, MO.getReg(), false); + bool AllDead = true; + const unsigned SuperReg = MO.getReg(); + MachineInstrBuilder MIB(MF, MI); + for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { + if (LiveRegs.test(*SubRegs)) { + MIB.addReg(*SubRegs, RegState::ImplicitDefine); + AllDead = false; + } + } + + if(AllDead) { + MO.setIsKill(true); + toggleBundleKillFlag(MI, MO.getReg(), true); + } + return false; +} + +// FIXME: Reuse the LivePhysRegs utility for this. +void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) { + DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); + + LiveRegs.resize(TRI->getNumRegs()); + BitVector killedRegs(TRI->getNumRegs()); + + startBlockForKills(MBB); + + // Examine block from end to start... + unsigned Count = MBB->size(); + for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); + I != E; --Count) { + MachineInstr *MI = --I; + if (MI->isDebugValue()) + continue; + + // Update liveness. Registers that are defed but not used in this + // instruction are now dead. Mark register and all subregs as they + // are completely defined. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isRegMask()) + LiveRegs.clearBitsNotInMask(MO.getRegMask()); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; + if (!MO.isDef()) continue; + // Ignore two-addr defs. + if (MI->isRegTiedToUseOperand(i)) continue; + + // Repeat for reg and all subregs. + for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); + SubRegs.isValid(); ++SubRegs) + LiveRegs.reset(*SubRegs); + } + + // Examine all used registers and set/clear kill flag. When a + // register is used multiple times we only set the kill flag on + // the first use. Don't set kill flags on undef operands. + killedRegs.reset(); + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; + unsigned Reg = MO.getReg(); + if ((Reg == 0) || MRI.isReserved(Reg)) continue; + + bool kill = false; + if (!killedRegs.test(Reg)) { + kill = true; + // A register is not killed if any subregs are live... + for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { + if (LiveRegs.test(*SubRegs)) { + kill = false; + break; + } + } + + // If subreg is not live, then register is killed if it became + // live in this instruction + if (kill) + kill = !LiveRegs.test(Reg); + } + + if (MO.isKill() != kill) { + DEBUG(dbgs() << "Fixing " << MO << " in "); + // Warning: toggleKillFlag may invalidate MO. + toggleKillFlag(MI, MO); + DEBUG(MI->dump()); + DEBUG(if (MI->getOpcode() == TargetOpcode::BUNDLE) { + MachineBasicBlock::instr_iterator Begin = MI; + MachineBasicBlock::instr_iterator End = getBundleEnd(MI); + while (++Begin != End) + DEBUG(Begin->dump()); + }); + } + + killedRegs.set(Reg); + } + + // Mark any used register (that is not using undef) and subregs as + // now live... + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; + unsigned Reg = MO.getReg(); + if ((Reg == 0) || MRI.isReserved(Reg)) continue; + + for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true); + SubRegs.isValid(); ++SubRegs) + LiveRegs.set(*SubRegs); + } + } +} + +void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const { +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + SU->getInstr()->dump(); +#endif +} + +std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { + std::string s; + raw_string_ostream oss(s); + if (SU == &EntrySU) + oss << "<entry>"; + else if (SU == &ExitSU) + oss << "<exit>"; + else + SU->getInstr()->print(oss, /*SkipOpers=*/true); + return oss.str(); +} + +/// Return the basic block label. It is not necessarilly unique because a block +/// contains multiple scheduling regions. But it is fine for visualization. +std::string ScheduleDAGInstrs::getDAGName() const { + return "dag." + BB->getFullName(); +} + +//===----------------------------------------------------------------------===// +// SchedDFSResult Implementation +//===----------------------------------------------------------------------===// + +namespace llvm { +/// \brief Internal state used to compute SchedDFSResult. +class SchedDFSImpl { + SchedDFSResult &R; + + /// Join DAG nodes into equivalence classes by their subtree. + IntEqClasses SubtreeClasses; + /// List PredSU, SuccSU pairs that represent data edges between subtrees. + std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs; + + struct RootData { + unsigned NodeID; + unsigned ParentNodeID; // Parent node (member of the parent subtree). + unsigned SubInstrCount; // Instr count in this tree only, not children. + + RootData(unsigned id): NodeID(id), + ParentNodeID(SchedDFSResult::InvalidSubtreeID), + SubInstrCount(0) {} + + unsigned getSparseSetIndex() const { return NodeID; } + }; + + SparseSet<RootData> RootSet; + +public: + SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { + RootSet.setUniverse(R.DFSNodeData.size()); + } + + /// Return true if this node been visited by the DFS traversal. + /// + /// During visitPostorderNode the Node's SubtreeID is assigned to the Node + /// ID. Later, SubtreeID is updated but remains valid. + bool isVisited(const SUnit *SU) const { + return R.DFSNodeData[SU->NodeNum].SubtreeID + != SchedDFSResult::InvalidSubtreeID; + } + + /// Initialize this node's instruction count. We don't need to flag the node + /// visited until visitPostorder because the DAG cannot have cycles. + void visitPreorder(const SUnit *SU) { + R.DFSNodeData[SU->NodeNum].InstrCount = + SU->getInstr()->isTransient() ? 0 : 1; + } + + /// Called once for each node after all predecessors are visited. Revisit this + /// node's predecessors and potentially join them now that we know the ILP of + /// the other predecessors. + void visitPostorderNode(const SUnit *SU) { + // Mark this node as the root of a subtree. It may be joined with its + // successors later. + R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; + RootData RData(SU->NodeNum); + RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; + + // If any predecessors are still in their own subtree, they either cannot be + // joined or are large enough to remain separate. If this parent node's + // total instruction count is not greater than a child subtree by at least + // the subtree limit, then try to join it now since splitting subtrees is + // only useful if multiple high-pressure paths are possible. + unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; + for (SUnit::const_pred_iterator + PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { + if (PI->getKind() != SDep::Data) + continue; + unsigned PredNum = PI->getSUnit()->NodeNum; + if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) + joinPredSubtree(*PI, SU, /*CheckLimit=*/false); + + // Either link or merge the TreeData entry from the child to the parent. + if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { + // If the predecessor's parent is invalid, this is a tree edge and the + // current node is the parent. + if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) + RootSet[PredNum].ParentNodeID = SU->NodeNum; + } + else if (RootSet.count(PredNum)) { + // The predecessor is not a root, but is still in the root set. This + // must be the new parent that it was just joined to. Note that + // RootSet[PredNum].ParentNodeID may either be invalid or may still be + // set to the original parent. + RData.SubInstrCount += RootSet[PredNum].SubInstrCount; + RootSet.erase(PredNum); + } + } + RootSet[SU->NodeNum] = RData; + } + + /// Called once for each tree edge after calling visitPostOrderNode on the + /// predecessor. Increment the parent node's instruction count and + /// preemptively join this subtree to its parent's if it is small enough. + void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { + R.DFSNodeData[Succ->NodeNum].InstrCount + += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; + joinPredSubtree(PredDep, Succ); + } + + /// Add a connection for cross edges. + void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { + ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ)); + } + + /// Set each node's subtree ID to the representative ID and record connections + /// between trees. + void finalize() { + SubtreeClasses.compress(); + R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); + assert(SubtreeClasses.getNumClasses() == RootSet.size() + && "number of roots should match trees"); + for (SparseSet<RootData>::const_iterator + RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) { + unsigned TreeID = SubtreeClasses[RI->NodeID]; + if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID) + R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID]; + R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount; + // Note that SubInstrCount may be greater than InstrCount if we joined + // subtrees across a cross edge. InstrCount will be attributed to the + // original parent, while SubInstrCount will be attributed to the joined + // parent. + } + R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); + R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); + DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); + for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { + R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; + DEBUG(dbgs() << " SU(" << Idx << ") in tree " + << R.DFSNodeData[Idx].SubtreeID << '\n'); + } + for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator + I = ConnectionPairs.begin(), E = ConnectionPairs.end(); + I != E; ++I) { + unsigned PredTree = SubtreeClasses[I->first->NodeNum]; + unsigned SuccTree = SubtreeClasses[I->second->NodeNum]; + if (PredTree == SuccTree) + continue; + unsigned Depth = I->first->getDepth(); + addConnection(PredTree, SuccTree, Depth); + addConnection(SuccTree, PredTree, Depth); + } + } + +protected: + /// Join the predecessor subtree with the successor that is its DFS + /// parent. Apply some heuristics before joining. + bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, + bool CheckLimit = true) { + assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); + + // Check if the predecessor is already joined. + const SUnit *PredSU = PredDep.getSUnit(); + unsigned PredNum = PredSU->NodeNum; + if (R.DFSNodeData[PredNum].SubtreeID != PredNum) + return false; + + // Four is the magic number of successors before a node is considered a + // pinch point. + unsigned NumDataSucs = 0; + for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(), + SE = PredSU->Succs.end(); SI != SE; ++SI) { + if (SI->getKind() == SDep::Data) { + if (++NumDataSucs >= 4) + return false; + } + } + if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) + return false; + R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; + SubtreeClasses.join(Succ->NodeNum, PredNum); + return true; + } + + /// Called by finalize() to record a connection between trees. + void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { + if (!Depth) + return; + + do { + SmallVectorImpl<SchedDFSResult::Connection> &Connections = + R.SubtreeConnections[FromTree]; + for (SmallVectorImpl<SchedDFSResult::Connection>::iterator + I = Connections.begin(), E = Connections.end(); I != E; ++I) { + if (I->TreeID == ToTree) { + I->Level = std::max(I->Level, Depth); + return; + } + } + Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); + FromTree = R.DFSTreeData[FromTree].ParentTreeID; + } while (FromTree != SchedDFSResult::InvalidSubtreeID); + } +}; +} // namespace llvm + +namespace { +/// \brief Manage the stack used by a reverse depth-first search over the DAG. +class SchedDAGReverseDFS { + std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack; +public: + bool isComplete() const { return DFSStack.empty(); } + + void follow(const SUnit *SU) { + DFSStack.push_back(std::make_pair(SU, SU->Preds.begin())); + } + void advance() { ++DFSStack.back().second; } + + const SDep *backtrack() { + DFSStack.pop_back(); + return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); + } + + const SUnit *getCurr() const { return DFSStack.back().first; } + + SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } + + SUnit::const_pred_iterator getPredEnd() const { + return getCurr()->Preds.end(); + } +}; +} // namespace + +static bool hasDataSucc(const SUnit *SU) { + for (SUnit::const_succ_iterator + SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) { + if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode()) + return true; + } + return false; +} + +/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first +/// search from this root. +void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { + if (!IsBottomUp) + llvm_unreachable("Top-down ILP metric is unimplemnted"); + + SchedDFSImpl Impl(*this); + for (ArrayRef<SUnit>::const_iterator + SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) { + const SUnit *SU = &*SI; + if (Impl.isVisited(SU) || hasDataSucc(SU)) + continue; + + SchedDAGReverseDFS DFS; + Impl.visitPreorder(SU); + DFS.follow(SU); + for (;;) { + // Traverse the leftmost path as far as possible. + while (DFS.getPred() != DFS.getPredEnd()) { + const SDep &PredDep = *DFS.getPred(); + DFS.advance(); + // Ignore non-data edges. + if (PredDep.getKind() != SDep::Data + || PredDep.getSUnit()->isBoundaryNode()) { + continue; + } + // An already visited edge is a cross edge, assuming an acyclic DAG. + if (Impl.isVisited(PredDep.getSUnit())) { + Impl.visitCrossEdge(PredDep, DFS.getCurr()); + continue; + } + Impl.visitPreorder(PredDep.getSUnit()); + DFS.follow(PredDep.getSUnit()); + } + // Visit the top of the stack in postorder and backtrack. + const SUnit *Child = DFS.getCurr(); + const SDep *PredDep = DFS.backtrack(); + Impl.visitPostorderNode(Child); + if (PredDep) + Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); + if (DFS.isComplete()) + break; + } + } + Impl.finalize(); +} + +/// The root of the given SubtreeID was just scheduled. For all subtrees +/// connected to this tree, record the depth of the connection so that the +/// nearest connected subtrees can be prioritized. +void SchedDFSResult::scheduleTree(unsigned SubtreeID) { + for (SmallVectorImpl<Connection>::const_iterator + I = SubtreeConnections[SubtreeID].begin(), + E = SubtreeConnections[SubtreeID].end(); I != E; ++I) { + SubtreeConnectLevels[I->TreeID] = + std::max(SubtreeConnectLevels[I->TreeID], I->Level); + DEBUG(dbgs() << " Tree: " << I->TreeID + << " @" << SubtreeConnectLevels[I->TreeID] << '\n'); + } +} + +LLVM_DUMP_METHOD +void ILPValue::print(raw_ostream &OS) const { + OS << InstrCount << " / " << Length << " = "; + if (!Length) + OS << "BADILP"; + else + OS << format("%g", ((double)InstrCount / Length)); +} + +LLVM_DUMP_METHOD +void ILPValue::dump() const { + dbgs() << *this << '\n'; +} + +namespace llvm { + +LLVM_DUMP_METHOD +raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { + Val.print(OS); + return OS; +} + +} // namespace llvm |