summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp830
1 files changed, 830 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
new file mode 100644
index 0000000..6be1ab7
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -0,0 +1,830 @@
+//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the ScheduleDAGInstrs class, which implements re-scheduling
+// of MachineInstrs.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sched-instrs"
+#include "llvm/Operator.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/SmallSet.h"
+using namespace llvm;
+
+ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
+ const MachineLoopInfo &mli,
+ const MachineDominatorTree &mdt,
+ bool IsPostRAFlag,
+ LiveIntervals *lis)
+ : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
+ InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
+ IsPostRA(IsPostRAFlag), UnitLatencies(false), LoopRegs(MLI, MDT),
+ FirstDbgValue(0) {
+ assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
+ DbgValues.clear();
+ assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
+ "Virtual registers must be removed prior to PostRA scheduling");
+}
+
+/// getUnderlyingObjectFromInt - This is the function that does the work of
+/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
+static const Value *getUnderlyingObjectFromInt(const Value *V) {
+ do {
+ if (const Operator *U = dyn_cast<Operator>(V)) {
+ // If we find a ptrtoint, we can transfer control back to the
+ // regular getUnderlyingObjectFromInt.
+ if (U->getOpcode() == Instruction::PtrToInt)
+ return U->getOperand(0);
+ // If we find an add of a constant or a multiplied value, it's
+ // likely that the other operand will lead us to the base
+ // object. We don't have to worry about the case where the
+ // object address is somehow being computed by the multiply,
+ // because our callers only care when the result is an
+ // identifibale object.
+ if (U->getOpcode() != Instruction::Add ||
+ (!isa<ConstantInt>(U->getOperand(1)) &&
+ Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
+ return V;
+ V = U->getOperand(0);
+ } else {
+ return V;
+ }
+ assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
+ } while (1);
+}
+
+/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
+/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
+static const Value *getUnderlyingObject(const Value *V) {
+ // First just call Value::getUnderlyingObject to let it do what it does.
+ do {
+ V = GetUnderlyingObject(V);
+ // If it found an inttoptr, use special code to continue climing.
+ if (Operator::getOpcode(V) != Instruction::IntToPtr)
+ break;
+ const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
+ // If that succeeded in finding a pointer, continue the search.
+ if (!O->getType()->isPointerTy())
+ break;
+ V = O;
+ } while (1);
+ return V;
+}
+
+/// getUnderlyingObjectForInstr - If this machine instr has memory reference
+/// information and it can be tracked to a normal reference to a known
+/// object, return the Value for that object. Otherwise return null.
+static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
+ const MachineFrameInfo *MFI,
+ bool &MayAlias) {
+ MayAlias = true;
+ if (!MI->hasOneMemOperand() ||
+ !(*MI->memoperands_begin())->getValue() ||
+ (*MI->memoperands_begin())->isVolatile())
+ return 0;
+
+ const Value *V = (*MI->memoperands_begin())->getValue();
+ if (!V)
+ return 0;
+
+ V = getUnderlyingObject(V);
+ if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
+ // For now, ignore PseudoSourceValues which may alias LLVM IR values
+ // because the code that uses this function has no way to cope with
+ // such aliases.
+ if (PSV->isAliased(MFI))
+ return 0;
+
+ MayAlias = PSV->mayAlias(MFI);
+ return V;
+ }
+
+ if (isIdentifiedObject(V))
+ return V;
+
+ return 0;
+}
+
+void ScheduleDAGInstrs::startBlock(MachineBasicBlock *BB) {
+ LoopRegs.Deps.clear();
+ if (MachineLoop *ML = MLI.getLoopFor(BB))
+ if (BB == ML->getLoopLatch())
+ LoopRegs.VisitLoop(ML);
+}
+
+void ScheduleDAGInstrs::finishBlock() {
+ // Nothing to do.
+}
+
+/// Initialize the map with the number of registers.
+void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
+ PhysRegSet.setUniverse(Limit);
+ SUnits.resize(Limit);
+}
+
+/// Clear the map without deallocating storage.
+void Reg2SUnitsMap::clear() {
+ for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
+ SUnits[*I].clear();
+ }
+ PhysRegSet.clear();
+}
+
+/// Initialize the DAG and common scheduler state for the current scheduling
+/// region. This does not actually create the DAG, only clears it. The
+/// scheduling driver may call BuildSchedGraph multiple times per scheduling
+/// region.
+void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
+ MachineBasicBlock::iterator begin,
+ MachineBasicBlock::iterator end,
+ unsigned endcount) {
+ BB = bb;
+ RegionBegin = begin;
+ RegionEnd = end;
+ EndIndex = endcount;
+ MISUnitMap.clear();
+
+ // Check to see if the scheduler cares about latencies.
+ UnitLatencies = forceUnitLatencies();
+
+ ScheduleDAG::clearDAG();
+}
+
+/// Close the current scheduling region. Don't clear any state in case the
+/// driver wants to refer to the previous scheduling region.
+void ScheduleDAGInstrs::exitRegion() {
+ // Nothing to do.
+}
+
+/// addSchedBarrierDeps - Add dependencies from instructions in the current
+/// list of instructions being scheduled to scheduling barrier by adding
+/// the exit SU to the register defs and use list. This is because we want to
+/// make sure instructions which define registers that are either used by
+/// the terminator or are live-out are properly scheduled. This is
+/// especially important when the definition latency of the return value(s)
+/// are too high to be hidden by the branch or when the liveout registers
+/// used by instructions in the fallthrough block.
+void ScheduleDAGInstrs::addSchedBarrierDeps() {
+ MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
+ ExitSU.setInstr(ExitMI);
+ bool AllDepKnown = ExitMI &&
+ (ExitMI->isCall() || ExitMI->isBarrier());
+ if (ExitMI && AllDepKnown) {
+ // If it's a call or a barrier, add dependencies on the defs and uses of
+ // instruction.
+ for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = ExitMI->getOperand(i);
+ if (!MO.isReg() || MO.isDef()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ if (TRI->isPhysicalRegister(Reg))
+ Uses[Reg].push_back(&ExitSU);
+ else {
+ assert(!IsPostRA && "Virtual register encountered after regalloc.");
+ addVRegUseDeps(&ExitSU, i);
+ }
+ }
+ } else {
+ // For others, e.g. fallthrough, conditional branch, assume the exit
+ // uses all the registers that are livein to the successor blocks.
+ assert(Uses.empty() && "Uses in set before adding deps?");
+ for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+ SE = BB->succ_end(); SI != SE; ++SI)
+ for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
+ E = (*SI)->livein_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ if (!Uses.contains(Reg))
+ Uses[Reg].push_back(&ExitSU);
+ }
+ }
+}
+
+/// MO is an operand of SU's instruction that defines a physical register. Add
+/// data dependencies from SU to any uses of the physical register.
+void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
+ const MachineOperand &MO) {
+ assert(MO.isDef() && "expect physreg def");
+
+ // Ask the target if address-backscheduling is desirable, and if so how much.
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
+ unsigned DataLatency = SU->Latency;
+
+ for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
+ if (!Uses.contains(*Alias))
+ continue;
+ std::vector<SUnit*> &UseList = Uses[*Alias];
+ for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
+ SUnit *UseSU = UseList[i];
+ if (UseSU == SU)
+ continue;
+ unsigned LDataLatency = DataLatency;
+ // Optionally add in a special extra latency for nodes that
+ // feed addresses.
+ // TODO: Perhaps we should get rid of
+ // SpecialAddressLatency and just move this into
+ // adjustSchedDependency for the targets that care about it.
+ if (SpecialAddressLatency != 0 && !UnitLatencies &&
+ UseSU != &ExitSU) {
+ MachineInstr *UseMI = UseSU->getInstr();
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
+ assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
+ if (RegUseIndex >= 0 &&
+ (UseMI->mayLoad() || UseMI->mayStore()) &&
+ (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
+ UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
+ LDataLatency += SpecialAddressLatency;
+ }
+ // Adjust the dependence latency using operand def/use
+ // information (if any), and then allow the target to
+ // perform its own adjustments.
+ const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
+ if (!UnitLatencies) {
+ computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
+ ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
+ }
+ UseSU->addPred(dep);
+ }
+ }
+}
+
+/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
+/// this SUnit to following instructions in the same scheduling region that
+/// depend the physical register referenced at OperIdx.
+void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
+ const MachineInstr *MI = SU->getInstr();
+ const MachineOperand &MO = MI->getOperand(OperIdx);
+
+ // Optionally add output and anti dependencies. For anti
+ // dependencies we use a latency of 0 because for a multi-issue
+ // target we want to allow the defining instruction to issue
+ // in the same cycle as the using instruction.
+ // TODO: Using a latency of 1 here for output dependencies assumes
+ // there's no cost for reusing registers.
+ SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
+ for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
+ if (!Defs.contains(*Alias))
+ continue;
+ std::vector<SUnit *> &DefList = Defs[*Alias];
+ for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
+ SUnit *DefSU = DefList[i];
+ if (DefSU == &ExitSU)
+ continue;
+ if (DefSU != SU &&
+ (Kind != SDep::Output || !MO.isDead() ||
+ !DefSU->getInstr()->registerDefIsDead(*Alias))) {
+ if (Kind == SDep::Anti)
+ DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
+ else {
+ unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
+ DefSU->getInstr());
+ DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
+ }
+ }
+ }
+ }
+
+ if (!MO.isDef()) {
+ // Either insert a new Reg2SUnits entry with an empty SUnits list, or
+ // retrieve the existing SUnits list for this register's uses.
+ // Push this SUnit on the use list.
+ Uses[MO.getReg()].push_back(SU);
+ }
+ else {
+ addPhysRegDataDeps(SU, MO);
+
+ // Either insert a new Reg2SUnits entry with an empty SUnits list, or
+ // retrieve the existing SUnits list for this register's defs.
+ std::vector<SUnit *> &DefList = Defs[MO.getReg()];
+
+ // If a def is going to wrap back around to the top of the loop,
+ // backschedule it.
+ if (!UnitLatencies && DefList.empty()) {
+ LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
+ if (I != LoopRegs.Deps.end()) {
+ const MachineOperand *UseMO = I->second.first;
+ unsigned Count = I->second.second;
+ const MachineInstr *UseMI = UseMO->getParent();
+ unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ const TargetSubtargetInfo &ST =
+ TM.getSubtarget<TargetSubtargetInfo>();
+ unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
+ // TODO: If we knew the total depth of the region here, we could
+ // handle the case where the whole loop is inside the region but
+ // is large enough that the isScheduleHigh trick isn't needed.
+ if (UseMOIdx < UseMCID.getNumOperands()) {
+ // Currently, we only support scheduling regions consisting of
+ // single basic blocks. Check to see if the instruction is in
+ // the same region by checking to see if it has the same parent.
+ if (UseMI->getParent() != MI->getParent()) {
+ unsigned Latency = SU->Latency;
+ if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
+ Latency += SpecialAddressLatency;
+ // This is a wild guess as to the portion of the latency which
+ // will be overlapped by work done outside the current
+ // scheduling region.
+ Latency -= std::min(Latency, Count);
+ // Add the artificial edge.
+ ExitSU.addPred(SDep(SU, SDep::Order, Latency,
+ /*Reg=*/0, /*isNormalMemory=*/false,
+ /*isMustAlias=*/false,
+ /*isArtificial=*/true));
+ } else if (SpecialAddressLatency > 0 &&
+ UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
+ // The entire loop body is within the current scheduling region
+ // and the latency of this operation is assumed to be greater
+ // than the latency of the loop.
+ // TODO: Recursively mark data-edge predecessors as
+ // isScheduleHigh too.
+ SU->isScheduleHigh = true;
+ }
+ }
+ LoopRegs.Deps.erase(I);
+ }
+ }
+
+ // clear this register's use list
+ if (Uses.contains(MO.getReg()))
+ Uses[MO.getReg()].clear();
+
+ if (!MO.isDead())
+ DefList.clear();
+
+ // Calls will not be reordered because of chain dependencies (see
+ // below). Since call operands are dead, calls may continue to be added
+ // to the DefList making dependence checking quadratic in the size of
+ // the block. Instead, we leave only one call at the back of the
+ // DefList.
+ if (SU->isCall) {
+ while (!DefList.empty() && DefList.back()->isCall)
+ DefList.pop_back();
+ }
+ // Defs are pushed in the order they are visited and never reordered.
+ DefList.push_back(SU);
+ }
+}
+
+/// addVRegDefDeps - Add register output and data dependencies from this SUnit
+/// to instructions that occur later in the same scheduling region if they read
+/// from or write to the virtual register defined at OperIdx.
+///
+/// TODO: Hoist loop induction variable increments. This has to be
+/// reevaluated. Generally, IV scheduling should be done before coalescing.
+void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
+ const MachineInstr *MI = SU->getInstr();
+ unsigned Reg = MI->getOperand(OperIdx).getReg();
+
+ // SSA defs do not have output/anti dependencies.
+ // The current operand is a def, so we have at least one.
+ if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
+ return;
+
+ // Add output dependence to the next nearest def of this vreg.
+ //
+ // Unless this definition is dead, the output dependence should be
+ // transitively redundant with antidependencies from this definition's
+ // uses. We're conservative for now until we have a way to guarantee the uses
+ // are not eliminated sometime during scheduling. The output dependence edge
+ // is also useful if output latency exceeds def-use latency.
+ VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
+ if (DefI == VRegDefs.end())
+ VRegDefs.insert(VReg2SUnit(Reg, SU));
+ else {
+ SUnit *DefSU = DefI->SU;
+ if (DefSU != SU && DefSU != &ExitSU) {
+ unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
+ DefSU->getInstr());
+ DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
+ }
+ DefI->SU = SU;
+ }
+}
+
+/// addVRegUseDeps - Add a register data dependency if the instruction that
+/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
+/// register antidependency from this SUnit to instructions that occur later in
+/// the same scheduling region if they write the virtual register.
+///
+/// TODO: Handle ExitSU "uses" properly.
+void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
+ MachineInstr *MI = SU->getInstr();
+ unsigned Reg = MI->getOperand(OperIdx).getReg();
+
+ // Lookup this operand's reaching definition.
+ assert(LIS && "vreg dependencies requires LiveIntervals");
+ SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
+ LiveInterval *LI = &LIS->getInterval(Reg);
+ VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
+ // VNI will be valid because MachineOperand::readsReg() is checked by caller.
+ MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
+ // Phis and other noninstructions (after coalescing) have a NULL Def.
+ if (Def) {
+ SUnit *DefSU = getSUnit(Def);
+ if (DefSU) {
+ // The reaching Def lives within this scheduling region.
+ // Create a data dependence.
+ //
+ // TODO: Handle "special" address latencies cleanly.
+ const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
+ if (!UnitLatencies) {
+ // Adjust the dependence latency using operand def/use information, then
+ // allow the target to perform its own adjustments.
+ computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
+ }
+ SU->addPred(dep);
+ }
+ }
+
+ // Add antidependence to the following def of the vreg it uses.
+ VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
+ if (DefI != VRegDefs.end() && DefI->SU != SU)
+ DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
+}
+
+/// Create an SUnit for each real instruction, numbered in top-down toplological
+/// order. The instruction order A < B, implies that no edge exists from B to A.
+///
+/// Map each real instruction to its SUnit.
+///
+/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
+/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
+/// instead of pointers.
+///
+/// MachineScheduler relies on initSUnits numbering the nodes by their order in
+/// the original instruction list.
+void ScheduleDAGInstrs::initSUnits() {
+ // We'll be allocating one SUnit for each real instruction in the region,
+ // which is contained within a basic block.
+ SUnits.reserve(BB->size());
+
+ for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
+ MachineInstr *MI = I;
+ if (MI->isDebugValue())
+ continue;
+
+ SUnit *SU = newSUnit(MI);
+ MISUnitMap[MI] = SU;
+
+ SU->isCall = MI->isCall();
+ SU->isCommutable = MI->isCommutable();
+
+ // Assign the Latency field of SU using target-provided information.
+ if (UnitLatencies)
+ SU->Latency = 1;
+ else
+ computeLatency(SU);
+ }
+}
+
+void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA) {
+ // Create an SUnit for each real instruction.
+ initSUnits();
+
+ // We build scheduling units by walking a block's instruction list from bottom
+ // to top.
+
+ // Remember where a generic side-effecting instruction is as we procede.
+ SUnit *BarrierChain = 0, *AliasChain = 0;
+
+ // Memory references to specific known memory locations are tracked
+ // so that they can be given more precise dependencies. We track
+ // separately the known memory locations that may alias and those
+ // that are known not to alias
+ std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
+ std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
+
+ // Remove any stale debug info; sometimes BuildSchedGraph is called again
+ // without emitting the info from the previous call.
+ DbgValues.clear();
+ FirstDbgValue = NULL;
+
+ assert(Defs.empty() && Uses.empty() &&
+ "Only BuildGraph should update Defs/Uses");
+ Defs.setRegLimit(TRI->getNumRegs());
+ Uses.setRegLimit(TRI->getNumRegs());
+
+ assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
+ // FIXME: Allow SparseSet to reserve space for the creation of virtual
+ // registers during scheduling. Don't artificially inflate the Universe
+ // because we want to assert that vregs are not created during DAG building.
+ VRegDefs.setUniverse(MRI.getNumVirtRegs());
+
+ // Model data dependencies between instructions being scheduled and the
+ // ExitSU.
+ addSchedBarrierDeps();
+
+ // Walk the list of instructions, from bottom moving up.
+ MachineInstr *PrevMI = NULL;
+ for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
+ MII != MIE; --MII) {
+ MachineInstr *MI = prior(MII);
+ if (MI && PrevMI) {
+ DbgValues.push_back(std::make_pair(PrevMI, MI));
+ PrevMI = NULL;
+ }
+
+ if (MI->isDebugValue()) {
+ PrevMI = MI;
+ continue;
+ }
+
+ assert(!MI->isTerminator() && !MI->isLabel() &&
+ "Cannot schedule terminators or labels!");
+
+ SUnit *SU = MISUnitMap[MI];
+ assert(SU && "No SUnit mapped to this MI");
+
+ // Add register-based dependencies (data, anti, and output).
+ for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
+ const MachineOperand &MO = MI->getOperand(j);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ if (TRI->isPhysicalRegister(Reg))
+ addPhysRegDeps(SU, j);
+ else {
+ assert(!IsPostRA && "Virtual register encountered!");
+ if (MO.isDef())
+ addVRegDefDeps(SU, j);
+ else if (MO.readsReg()) // ignore undef operands
+ addVRegUseDeps(SU, j);
+ }
+ }
+
+ // Add chain dependencies.
+ // Chain dependencies used to enforce memory order should have
+ // latency of 0 (except for true dependency of Store followed by
+ // aliased Load... we estimate that with a single cycle of latency
+ // assuming the hardware will bypass)
+ // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
+ // after stack slots are lowered to actual addresses.
+ // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
+ // produce more precise dependence information.
+#define STORE_LOAD_LATENCY 1
+ unsigned TrueMemOrderLatency = 0;
+ if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
+ (MI->hasVolatileMemoryRef() &&
+ (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
+ // Be conservative with these and add dependencies on all memory
+ // references, even those that are known to not alias.
+ for (std::map<const Value *, SUnit *>::iterator I =
+ NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ }
+ for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
+ NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
+ for (unsigned i = 0, e = I->second.size(); i != e; ++i)
+ I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
+ }
+ NonAliasMemDefs.clear();
+ NonAliasMemUses.clear();
+ // Add SU to the barrier chain.
+ if (BarrierChain)
+ BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ BarrierChain = SU;
+
+ // fall-through
+ new_alias_chain:
+ // Chain all possibly aliasing memory references though SU.
+ if (AliasChain)
+ AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ AliasChain = SU;
+ for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
+ PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
+ for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
+ E = AliasMemDefs.end(); I != E; ++I) {
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ }
+ for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
+ AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
+ for (unsigned i = 0, e = I->second.size(); i != e; ++i)
+ I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
+ }
+ PendingLoads.clear();
+ AliasMemDefs.clear();
+ AliasMemUses.clear();
+ } else if (MI->mayStore()) {
+ bool MayAlias = true;
+ TrueMemOrderLatency = STORE_LOAD_LATENCY;
+ if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
+ // A store to a specific PseudoSourceValue. Add precise dependencies.
+ // Record the def in MemDefs, first adding a dep if there is
+ // an existing def.
+ std::map<const Value *, SUnit *>::iterator I =
+ ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
+ std::map<const Value *, SUnit *>::iterator IE =
+ ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
+ if (I != IE) {
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
+ /*isNormalMemory=*/true));
+ I->second = SU;
+ } else {
+ if (MayAlias)
+ AliasMemDefs[V] = SU;
+ else
+ NonAliasMemDefs[V] = SU;
+ }
+ // Handle the uses in MemUses, if there are any.
+ std::map<const Value *, std::vector<SUnit *> >::iterator J =
+ ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
+ std::map<const Value *, std::vector<SUnit *> >::iterator JE =
+ ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
+ if (J != JE) {
+ for (unsigned i = 0, e = J->second.size(); i != e; ++i)
+ J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
+ /*Reg=*/0, /*isNormalMemory=*/true));
+ J->second.clear();
+ }
+ if (MayAlias) {
+ // Add dependencies from all the PendingLoads, i.e. loads
+ // with no underlying object.
+ for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
+ PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
+ // Add dependence on alias chain, if needed.
+ if (AliasChain)
+ AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ }
+ // Add dependence on barrier chain, if needed.
+ if (BarrierChain)
+ BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ } else {
+ // Treat all other stores conservatively.
+ goto new_alias_chain;
+ }
+
+ if (!ExitSU.isPred(SU))
+ // Push store's up a bit to avoid them getting in between cmp
+ // and branches.
+ ExitSU.addPred(SDep(SU, SDep::Order, 0,
+ /*Reg=*/0, /*isNormalMemory=*/false,
+ /*isMustAlias=*/false,
+ /*isArtificial=*/true));
+ } else if (MI->mayLoad()) {
+ bool MayAlias = true;
+ TrueMemOrderLatency = 0;
+ if (MI->isInvariantLoad(AA)) {
+ // Invariant load, no chain dependencies needed!
+ } else {
+ if (const Value *V =
+ getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
+ // A load from a specific PseudoSourceValue. Add precise dependencies.
+ std::map<const Value *, SUnit *>::iterator I =
+ ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
+ std::map<const Value *, SUnit *>::iterator IE =
+ ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
+ if (I != IE)
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
+ /*isNormalMemory=*/true));
+ if (MayAlias)
+ AliasMemUses[V].push_back(SU);
+ else
+ NonAliasMemUses[V].push_back(SU);
+ } else {
+ // A load with no underlying object. Depend on all
+ // potentially aliasing stores.
+ for (std::map<const Value *, SUnit *>::iterator I =
+ AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+
+ PendingLoads.push_back(SU);
+ MayAlias = true;
+ }
+
+ // Add dependencies on alias and barrier chains, if needed.
+ if (MayAlias && AliasChain)
+ AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ if (BarrierChain)
+ BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ }
+ }
+ }
+ if (PrevMI)
+ FirstDbgValue = PrevMI;
+
+ Defs.clear();
+ Uses.clear();
+ VRegDefs.clear();
+ PendingLoads.clear();
+}
+
+void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
+ // Compute the latency for the node.
+ if (!InstrItins || InstrItins->isEmpty()) {
+ SU->Latency = 1;
+
+ // Simplistic target-independent heuristic: assume that loads take
+ // extra time.
+ if (SU->getInstr()->mayLoad())
+ SU->Latency += 2;
+ } else {
+ SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
+ }
+}
+
+void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
+ SDep& dep) const {
+ if (!InstrItins || InstrItins->isEmpty())
+ return;
+
+ // For a data dependency with a known register...
+ if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
+ return;
+
+ const unsigned Reg = dep.getReg();
+
+ // ... find the definition of the register in the defining
+ // instruction
+ MachineInstr *DefMI = Def->getInstr();
+ int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
+ if (DefIdx != -1) {
+ const MachineOperand &MO = DefMI->getOperand(DefIdx);
+ if (MO.isReg() && MO.isImplicit() &&
+ DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
+ // This is an implicit def, getOperandLatency() won't return the correct
+ // latency. e.g.
+ // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
+ // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
+ // What we want is to compute latency between def of %D6/%D7 and use of
+ // %Q3 instead.
+ unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
+ if (DefMI->getOperand(Op2).isReg())
+ DefIdx = Op2;
+ }
+ MachineInstr *UseMI = Use->getInstr();
+ // For all uses of the register, calculate the maxmimum latency
+ int Latency = -1;
+ if (UseMI) {
+ for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = UseMI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (MOReg != Reg)
+ continue;
+
+ int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
+ UseMI, i);
+ Latency = std::max(Latency, UseCycle);
+ }
+ } else {
+ // UseMI is null, then it must be a scheduling barrier.
+ if (!InstrItins || InstrItins->isEmpty())
+ return;
+ unsigned DefClass = DefMI->getDesc().getSchedClass();
+ Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
+ }
+
+ // If we found a latency, then replace the existing dependence latency.
+ if (Latency >= 0)
+ dep.setLatency(Latency);
+ }
+}
+
+void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
+ SU->getInstr()->dump();
+}
+
+std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
+ std::string s;
+ raw_string_ostream oss(s);
+ if (SU == &EntrySU)
+ oss << "<entry>";
+ else if (SU == &ExitSU)
+ oss << "<exit>";
+ else
+ SU->getInstr()->print(oss);
+ return oss.str();
+}
+
+/// Return the basic block label. It is not necessarilly unique because a block
+/// contains multiple scheduling regions. But it is fine for visualization.
+std::string ScheduleDAGInstrs::getDAGName() const {
+ return "dag." + BB->getFullName();
+}
OpenPOWER on IntegriCloud