summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp697
1 files changed, 697 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
new file mode 100644
index 0000000..446adfc
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -0,0 +1,697 @@
+//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the ScheduleDAGInstrs class, which implements re-scheduling
+// of MachineInstrs.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sched-instrs"
+#include "ScheduleDAGInstrs.h"
+#include "llvm/Operator.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/SmallSet.h"
+using namespace llvm;
+
+ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
+ const MachineLoopInfo &mli,
+ const MachineDominatorTree &mdt)
+ : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
+ InstrItins(mf.getTarget().getInstrItineraryData()),
+ Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
+ LoopRegs(MLI, MDT), FirstDbgValue(0) {
+ DbgValues.clear();
+}
+
+/// Run - perform scheduling.
+///
+void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
+ MachineBasicBlock::iterator begin,
+ MachineBasicBlock::iterator end,
+ unsigned endcount) {
+ BB = bb;
+ Begin = begin;
+ InsertPosIndex = endcount;
+
+ ScheduleDAG::Run(bb, end);
+}
+
+/// getUnderlyingObjectFromInt - This is the function that does the work of
+/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
+static const Value *getUnderlyingObjectFromInt(const Value *V) {
+ do {
+ if (const Operator *U = dyn_cast<Operator>(V)) {
+ // If we find a ptrtoint, we can transfer control back to the
+ // regular getUnderlyingObjectFromInt.
+ if (U->getOpcode() == Instruction::PtrToInt)
+ return U->getOperand(0);
+ // If we find an add of a constant or a multiplied value, it's
+ // likely that the other operand will lead us to the base
+ // object. We don't have to worry about the case where the
+ // object address is somehow being computed by the multiply,
+ // because our callers only care when the result is an
+ // identifibale object.
+ if (U->getOpcode() != Instruction::Add ||
+ (!isa<ConstantInt>(U->getOperand(1)) &&
+ Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
+ return V;
+ V = U->getOperand(0);
+ } else {
+ return V;
+ }
+ assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
+ } while (1);
+}
+
+/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
+/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
+static const Value *getUnderlyingObject(const Value *V) {
+ // First just call Value::getUnderlyingObject to let it do what it does.
+ do {
+ V = GetUnderlyingObject(V);
+ // If it found an inttoptr, use special code to continue climing.
+ if (Operator::getOpcode(V) != Instruction::IntToPtr)
+ break;
+ const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
+ // If that succeeded in finding a pointer, continue the search.
+ if (!O->getType()->isPointerTy())
+ break;
+ V = O;
+ } while (1);
+ return V;
+}
+
+/// getUnderlyingObjectForInstr - If this machine instr has memory reference
+/// information and it can be tracked to a normal reference to a known
+/// object, return the Value for that object. Otherwise return null.
+static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
+ const MachineFrameInfo *MFI,
+ bool &MayAlias) {
+ MayAlias = true;
+ if (!MI->hasOneMemOperand() ||
+ !(*MI->memoperands_begin())->getValue() ||
+ (*MI->memoperands_begin())->isVolatile())
+ return 0;
+
+ const Value *V = (*MI->memoperands_begin())->getValue();
+ if (!V)
+ return 0;
+
+ V = getUnderlyingObject(V);
+ if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
+ // For now, ignore PseudoSourceValues which may alias LLVM IR values
+ // because the code that uses this function has no way to cope with
+ // such aliases.
+ if (PSV->isAliased(MFI))
+ return 0;
+
+ MayAlias = PSV->mayAlias(MFI);
+ return V;
+ }
+
+ if (isIdentifiedObject(V))
+ return V;
+
+ return 0;
+}
+
+void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
+ if (MachineLoop *ML = MLI.getLoopFor(BB))
+ if (BB == ML->getLoopLatch()) {
+ MachineBasicBlock *Header = ML->getHeader();
+ for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
+ E = Header->livein_end(); I != E; ++I)
+ LoopLiveInRegs.insert(*I);
+ LoopRegs.VisitLoop(ML);
+ }
+}
+
+/// AddSchedBarrierDeps - Add dependencies from instructions in the current
+/// list of instructions being scheduled to scheduling barrier by adding
+/// the exit SU to the register defs and use list. This is because we want to
+/// make sure instructions which define registers that are either used by
+/// the terminator or are live-out are properly scheduled. This is
+/// especially important when the definition latency of the return value(s)
+/// are too high to be hidden by the branch or when the liveout registers
+/// used by instructions in the fallthrough block.
+void ScheduleDAGInstrs::AddSchedBarrierDeps() {
+ MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
+ ExitSU.setInstr(ExitMI);
+ bool AllDepKnown = ExitMI &&
+ (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
+ if (ExitMI && AllDepKnown) {
+ // If it's a call or a barrier, add dependencies on the defs and uses of
+ // instruction.
+ for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = ExitMI->getOperand(i);
+ if (!MO.isReg() || MO.isDef()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
+ Uses[Reg].push_back(&ExitSU);
+ }
+ } else {
+ // For others, e.g. fallthrough, conditional branch, assume the exit
+ // uses all the registers that are livein to the successor blocks.
+ SmallSet<unsigned, 8> Seen;
+ for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+ SE = BB->succ_end(); SI != SE; ++SI)
+ for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
+ E = (*SI)->livein_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ if (Seen.insert(Reg))
+ Uses[Reg].push_back(&ExitSU);
+ }
+ }
+}
+
+void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
+ // We'll be allocating one SUnit for each instruction, plus one for
+ // the region exit node.
+ SUnits.reserve(BB->size());
+
+ // We build scheduling units by walking a block's instruction list from bottom
+ // to top.
+
+ // Remember where a generic side-effecting instruction is as we procede.
+ SUnit *BarrierChain = 0, *AliasChain = 0;
+
+ // Memory references to specific known memory locations are tracked
+ // so that they can be given more precise dependencies. We track
+ // separately the known memory locations that may alias and those
+ // that are known not to alias
+ std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
+ std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
+
+ // Check to see if the scheduler cares about latencies.
+ bool UnitLatencies = ForceUnitLatencies();
+
+ // Ask the target if address-backscheduling is desirable, and if so how much.
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
+
+ // Remove any stale debug info; sometimes BuildSchedGraph is called again
+ // without emitting the info from the previous call.
+ DbgValues.clear();
+ FirstDbgValue = NULL;
+
+ // Model data dependencies between instructions being scheduled and the
+ // ExitSU.
+ AddSchedBarrierDeps();
+
+ for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
+ assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
+ }
+
+ // Walk the list of instructions, from bottom moving up.
+ MachineInstr *PrevMI = NULL;
+ for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
+ MII != MIE; --MII) {
+ MachineInstr *MI = prior(MII);
+ if (MI && PrevMI) {
+ DbgValues.push_back(std::make_pair(PrevMI, MI));
+ PrevMI = NULL;
+ }
+
+ if (MI->isDebugValue()) {
+ PrevMI = MI;
+ continue;
+ }
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ assert(!MCID.isTerminator() && !MI->isLabel() &&
+ "Cannot schedule terminators or labels!");
+ // Create the SUnit for this MI.
+ SUnit *SU = NewSUnit(MI);
+ SU->isCall = MCID.isCall();
+ SU->isCommutable = MCID.isCommutable();
+
+ // Assign the Latency field of SU using target-provided information.
+ if (UnitLatencies)
+ SU->Latency = 1;
+ else
+ ComputeLatency(SU);
+
+ // Add register-based dependencies (data, anti, and output).
+ for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
+ const MachineOperand &MO = MI->getOperand(j);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
+
+ std::vector<SUnit *> &UseList = Uses[Reg];
+ // Defs are push in the order they are visited and never reordered.
+ std::vector<SUnit *> &DefList = Defs[Reg];
+ // Optionally add output and anti dependencies. For anti
+ // dependencies we use a latency of 0 because for a multi-issue
+ // target we want to allow the defining instruction to issue
+ // in the same cycle as the using instruction.
+ // TODO: Using a latency of 1 here for output dependencies assumes
+ // there's no cost for reusing registers.
+ SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
+ unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
+ for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
+ SUnit *DefSU = DefList[i];
+ if (DefSU == &ExitSU)
+ continue;
+ if (DefSU != SU &&
+ (Kind != SDep::Output || !MO.isDead() ||
+ !DefSU->getInstr()->registerDefIsDead(Reg)))
+ DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
+ }
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ std::vector<SUnit *> &MemDefList = Defs[*Alias];
+ for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) {
+ SUnit *DefSU = MemDefList[i];
+ if (DefSU == &ExitSU)
+ continue;
+ if (DefSU != SU &&
+ (Kind != SDep::Output || !MO.isDead() ||
+ !DefSU->getInstr()->registerDefIsDead(*Alias)))
+ DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
+ }
+ }
+
+ if (MO.isDef()) {
+ // Add any data dependencies.
+ unsigned DataLatency = SU->Latency;
+ for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
+ SUnit *UseSU = UseList[i];
+ if (UseSU == SU)
+ continue;
+ unsigned LDataLatency = DataLatency;
+ // Optionally add in a special extra latency for nodes that
+ // feed addresses.
+ // TODO: Do this for register aliases too.
+ // TODO: Perhaps we should get rid of
+ // SpecialAddressLatency and just move this into
+ // adjustSchedDependency for the targets that care about it.
+ if (SpecialAddressLatency != 0 && !UnitLatencies &&
+ UseSU != &ExitSU) {
+ MachineInstr *UseMI = UseSU->getInstr();
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
+ assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
+ if (RegUseIndex >= 0 &&
+ (UseMCID.mayLoad() || UseMCID.mayStore()) &&
+ (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
+ UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
+ LDataLatency += SpecialAddressLatency;
+ }
+ // Adjust the dependence latency using operand def/use
+ // information (if any), and then allow the target to
+ // perform its own adjustments.
+ const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
+ if (!UnitLatencies) {
+ ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
+ ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
+ }
+ UseSU->addPred(dep);
+ }
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ std::vector<SUnit *> &UseList = Uses[*Alias];
+ for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
+ SUnit *UseSU = UseList[i];
+ if (UseSU == SU)
+ continue;
+ const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
+ if (!UnitLatencies) {
+ ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
+ ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
+ }
+ UseSU->addPred(dep);
+ }
+ }
+
+ // If a def is going to wrap back around to the top of the loop,
+ // backschedule it.
+ if (!UnitLatencies && DefList.empty()) {
+ LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
+ if (I != LoopRegs.Deps.end()) {
+ const MachineOperand *UseMO = I->second.first;
+ unsigned Count = I->second.second;
+ const MachineInstr *UseMI = UseMO->getParent();
+ unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ // TODO: If we knew the total depth of the region here, we could
+ // handle the case where the whole loop is inside the region but
+ // is large enough that the isScheduleHigh trick isn't needed.
+ if (UseMOIdx < UseMCID.getNumOperands()) {
+ // Currently, we only support scheduling regions consisting of
+ // single basic blocks. Check to see if the instruction is in
+ // the same region by checking to see if it has the same parent.
+ if (UseMI->getParent() != MI->getParent()) {
+ unsigned Latency = SU->Latency;
+ if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
+ Latency += SpecialAddressLatency;
+ // This is a wild guess as to the portion of the latency which
+ // will be overlapped by work done outside the current
+ // scheduling region.
+ Latency -= std::min(Latency, Count);
+ // Add the artificial edge.
+ ExitSU.addPred(SDep(SU, SDep::Order, Latency,
+ /*Reg=*/0, /*isNormalMemory=*/false,
+ /*isMustAlias=*/false,
+ /*isArtificial=*/true));
+ } else if (SpecialAddressLatency > 0 &&
+ UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
+ // The entire loop body is within the current scheduling region
+ // and the latency of this operation is assumed to be greater
+ // than the latency of the loop.
+ // TODO: Recursively mark data-edge predecessors as
+ // isScheduleHigh too.
+ SU->isScheduleHigh = true;
+ }
+ }
+ LoopRegs.Deps.erase(I);
+ }
+ }
+
+ UseList.clear();
+ if (!MO.isDead())
+ DefList.clear();
+
+ // Calls will not be reordered because of chain dependencies (see
+ // below). Since call operands are dead, calls may continue to be added
+ // to the DefList making dependence checking quadratic in the size of
+ // the block. Instead, we leave only one call at the back of the
+ // DefList.
+ if (SU->isCall) {
+ while (!DefList.empty() && DefList.back()->isCall)
+ DefList.pop_back();
+ }
+ DefList.push_back(SU);
+ } else {
+ UseList.push_back(SU);
+ }
+ }
+
+ // Add chain dependencies.
+ // Chain dependencies used to enforce memory order should have
+ // latency of 0 (except for true dependency of Store followed by
+ // aliased Load... we estimate that with a single cycle of latency
+ // assuming the hardware will bypass)
+ // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
+ // after stack slots are lowered to actual addresses.
+ // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
+ // produce more precise dependence information.
+#define STORE_LOAD_LATENCY 1
+ unsigned TrueMemOrderLatency = 0;
+ if (MCID.isCall() || MI->hasUnmodeledSideEffects() ||
+ (MI->hasVolatileMemoryRef() &&
+ (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) {
+ // Be conservative with these and add dependencies on all memory
+ // references, even those that are known to not alias.
+ for (std::map<const Value *, SUnit *>::iterator I =
+ NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ }
+ for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
+ NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
+ for (unsigned i = 0, e = I->second.size(); i != e; ++i)
+ I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
+ }
+ NonAliasMemDefs.clear();
+ NonAliasMemUses.clear();
+ // Add SU to the barrier chain.
+ if (BarrierChain)
+ BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ BarrierChain = SU;
+
+ // fall-through
+ new_alias_chain:
+ // Chain all possibly aliasing memory references though SU.
+ if (AliasChain)
+ AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ AliasChain = SU;
+ for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
+ PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
+ for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
+ E = AliasMemDefs.end(); I != E; ++I) {
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ }
+ for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
+ AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
+ for (unsigned i = 0, e = I->second.size(); i != e; ++i)
+ I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
+ }
+ PendingLoads.clear();
+ AliasMemDefs.clear();
+ AliasMemUses.clear();
+ } else if (MCID.mayStore()) {
+ bool MayAlias = true;
+ TrueMemOrderLatency = STORE_LOAD_LATENCY;
+ if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
+ // A store to a specific PseudoSourceValue. Add precise dependencies.
+ // Record the def in MemDefs, first adding a dep if there is
+ // an existing def.
+ std::map<const Value *, SUnit *>::iterator I =
+ ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
+ std::map<const Value *, SUnit *>::iterator IE =
+ ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
+ if (I != IE) {
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
+ /*isNormalMemory=*/true));
+ I->second = SU;
+ } else {
+ if (MayAlias)
+ AliasMemDefs[V] = SU;
+ else
+ NonAliasMemDefs[V] = SU;
+ }
+ // Handle the uses in MemUses, if there are any.
+ std::map<const Value *, std::vector<SUnit *> >::iterator J =
+ ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
+ std::map<const Value *, std::vector<SUnit *> >::iterator JE =
+ ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
+ if (J != JE) {
+ for (unsigned i = 0, e = J->second.size(); i != e; ++i)
+ J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
+ /*Reg=*/0, /*isNormalMemory=*/true));
+ J->second.clear();
+ }
+ if (MayAlias) {
+ // Add dependencies from all the PendingLoads, i.e. loads
+ // with no underlying object.
+ for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
+ PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
+ // Add dependence on alias chain, if needed.
+ if (AliasChain)
+ AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ }
+ // Add dependence on barrier chain, if needed.
+ if (BarrierChain)
+ BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ } else {
+ // Treat all other stores conservatively.
+ goto new_alias_chain;
+ }
+
+ if (!ExitSU.isPred(SU))
+ // Push store's up a bit to avoid them getting in between cmp
+ // and branches.
+ ExitSU.addPred(SDep(SU, SDep::Order, 0,
+ /*Reg=*/0, /*isNormalMemory=*/false,
+ /*isMustAlias=*/false,
+ /*isArtificial=*/true));
+ } else if (MCID.mayLoad()) {
+ bool MayAlias = true;
+ TrueMemOrderLatency = 0;
+ if (MI->isInvariantLoad(AA)) {
+ // Invariant load, no chain dependencies needed!
+ } else {
+ if (const Value *V =
+ getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
+ // A load from a specific PseudoSourceValue. Add precise dependencies.
+ std::map<const Value *, SUnit *>::iterator I =
+ ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
+ std::map<const Value *, SUnit *>::iterator IE =
+ ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
+ if (I != IE)
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
+ /*isNormalMemory=*/true));
+ if (MayAlias)
+ AliasMemUses[V].push_back(SU);
+ else
+ NonAliasMemUses[V].push_back(SU);
+ } else {
+ // A load with no underlying object. Depend on all
+ // potentially aliasing stores.
+ for (std::map<const Value *, SUnit *>::iterator I =
+ AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
+ I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+
+ PendingLoads.push_back(SU);
+ MayAlias = true;
+ }
+
+ // Add dependencies on alias and barrier chains, if needed.
+ if (MayAlias && AliasChain)
+ AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ if (BarrierChain)
+ BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
+ }
+ }
+ }
+ if (PrevMI)
+ FirstDbgValue = PrevMI;
+
+ for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
+ Defs[i].clear();
+ Uses[i].clear();
+ }
+ PendingLoads.clear();
+}
+
+void ScheduleDAGInstrs::FinishBlock() {
+ // Nothing to do.
+}
+
+void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
+ // Compute the latency for the node.
+ if (!InstrItins || InstrItins->isEmpty()) {
+ SU->Latency = 1;
+
+ // Simplistic target-independent heuristic: assume that loads take
+ // extra time.
+ if (SU->getInstr()->getDesc().mayLoad())
+ SU->Latency += 2;
+ } else {
+ SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
+ }
+}
+
+void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
+ SDep& dep) const {
+ if (!InstrItins || InstrItins->isEmpty())
+ return;
+
+ // For a data dependency with a known register...
+ if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
+ return;
+
+ const unsigned Reg = dep.getReg();
+
+ // ... find the definition of the register in the defining
+ // instruction
+ MachineInstr *DefMI = Def->getInstr();
+ int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
+ if (DefIdx != -1) {
+ const MachineOperand &MO = DefMI->getOperand(DefIdx);
+ if (MO.isReg() && MO.isImplicit() &&
+ DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
+ // This is an implicit def, getOperandLatency() won't return the correct
+ // latency. e.g.
+ // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
+ // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
+ // What we want is to compute latency between def of %D6/%D7 and use of
+ // %Q3 instead.
+ DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
+ }
+ MachineInstr *UseMI = Use->getInstr();
+ // For all uses of the register, calculate the maxmimum latency
+ int Latency = -1;
+ if (UseMI) {
+ for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = UseMI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (MOReg != Reg)
+ continue;
+
+ int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
+ UseMI, i);
+ Latency = std::max(Latency, UseCycle);
+ }
+ } else {
+ // UseMI is null, then it must be a scheduling barrier.
+ if (!InstrItins || InstrItins->isEmpty())
+ return;
+ unsigned DefClass = DefMI->getDesc().getSchedClass();
+ Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
+ }
+
+ // If we found a latency, then replace the existing dependence latency.
+ if (Latency >= 0)
+ dep.setLatency(Latency);
+ }
+}
+
+void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
+ SU->getInstr()->dump();
+}
+
+std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
+ std::string s;
+ raw_string_ostream oss(s);
+ if (SU == &EntrySU)
+ oss << "<entry>";
+ else if (SU == &ExitSU)
+ oss << "<exit>";
+ else
+ SU->getInstr()->print(oss);
+ return oss.str();
+}
+
+// EmitSchedule - Emit the machine code in scheduled order.
+MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
+ // For MachineInstr-based scheduling, we're rescheduling the instructions in
+ // the block, so start by removing them from the block.
+ while (Begin != InsertPos) {
+ MachineBasicBlock::iterator I = Begin;
+ ++Begin;
+ BB->remove(I);
+ }
+
+ // If first instruction was a DBG_VALUE then put it back.
+ if (FirstDbgValue)
+ BB->insert(InsertPos, FirstDbgValue);
+
+ // Then re-insert them according to the given schedule.
+ for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
+ if (SUnit *SU = Sequence[i])
+ BB->insert(InsertPos, SU->getInstr());
+ else
+ // Null SUnit* is a noop.
+ EmitNoop();
+ }
+
+ // Update the Begin iterator, as the first instruction in the block
+ // may have been scheduled later.
+ if (!Sequence.empty())
+ Begin = Sequence[0]->getInstr();
+
+ // Reinsert any remaining debug_values.
+ for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
+ DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
+ std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
+ MachineInstr *DbgValue = P.first;
+ MachineInstr *OrigPrivMI = P.second;
+ BB->insertAfter(OrigPrivMI, DbgValue);
+ }
+ DbgValues.clear();
+ FirstDbgValue = NULL;
+ return BB;
+}
OpenPOWER on IntegriCloud