summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp654
1 files changed, 393 insertions, 261 deletions
diff --git a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
index 34b8ab0..6be1ab7 100644
--- a/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
+++ b/contrib/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
@@ -13,14 +13,15 @@
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sched-instrs"
-#include "ScheduleDAGInstrs.h"
#include "llvm/Operator.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
@@ -33,25 +34,17 @@ using namespace llvm;
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
const MachineLoopInfo &mli,
- const MachineDominatorTree &mdt)
+ const MachineDominatorTree &mdt,
+ bool IsPostRAFlag,
+ LiveIntervals *lis)
: ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
- InstrItins(mf.getTarget().getInstrItineraryData()),
- Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
- LoopRegs(MLI, MDT), FirstDbgValue(0) {
+ InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
+ IsPostRA(IsPostRAFlag), UnitLatencies(false), LoopRegs(MLI, MDT),
+ FirstDbgValue(0) {
+ assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
DbgValues.clear();
-}
-
-/// Run - perform scheduling.
-///
-void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
- MachineBasicBlock::iterator begin,
- MachineBasicBlock::iterator end,
- unsigned endcount) {
- BB = bb;
- Begin = begin;
- InsertPosIndex = endcount;
-
- ScheduleDAG::Run(bb, end);
+ assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
+ "Virtual registers must be removed prior to PostRA scheduling");
}
/// getUnderlyingObjectFromInt - This is the function that does the work of
@@ -133,19 +126,58 @@ static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
return 0;
}
-void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
+void ScheduleDAGInstrs::startBlock(MachineBasicBlock *BB) {
LoopRegs.Deps.clear();
if (MachineLoop *ML = MLI.getLoopFor(BB))
- if (BB == ML->getLoopLatch()) {
- MachineBasicBlock *Header = ML->getHeader();
- for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
- E = Header->livein_end(); I != E; ++I)
- LoopLiveInRegs.insert(*I);
+ if (BB == ML->getLoopLatch())
LoopRegs.VisitLoop(ML);
- }
}
-/// AddSchedBarrierDeps - Add dependencies from instructions in the current
+void ScheduleDAGInstrs::finishBlock() {
+ // Nothing to do.
+}
+
+/// Initialize the map with the number of registers.
+void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
+ PhysRegSet.setUniverse(Limit);
+ SUnits.resize(Limit);
+}
+
+/// Clear the map without deallocating storage.
+void Reg2SUnitsMap::clear() {
+ for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
+ SUnits[*I].clear();
+ }
+ PhysRegSet.clear();
+}
+
+/// Initialize the DAG and common scheduler state for the current scheduling
+/// region. This does not actually create the DAG, only clears it. The
+/// scheduling driver may call BuildSchedGraph multiple times per scheduling
+/// region.
+void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
+ MachineBasicBlock::iterator begin,
+ MachineBasicBlock::iterator end,
+ unsigned endcount) {
+ BB = bb;
+ RegionBegin = begin;
+ RegionEnd = end;
+ EndIndex = endcount;
+ MISUnitMap.clear();
+
+ // Check to see if the scheduler cares about latencies.
+ UnitLatencies = forceUnitLatencies();
+
+ ScheduleDAG::clearDAG();
+}
+
+/// Close the current scheduling region. Don't clear any state in case the
+/// driver wants to refer to the previous scheduling region.
+void ScheduleDAGInstrs::exitRegion() {
+ // Nothing to do.
+}
+
+/// addSchedBarrierDeps - Add dependencies from instructions in the current
/// list of instructions being scheduled to scheduling barrier by adding
/// the exit SU to the register defs and use list. This is because we want to
/// make sure instructions which define registers that are either used by
@@ -153,11 +185,11 @@ void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
/// especially important when the definition latency of the return value(s)
/// are too high to be hidden by the branch or when the liveout registers
/// used by instructions in the fallthrough block.
-void ScheduleDAGInstrs::AddSchedBarrierDeps() {
- MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
+void ScheduleDAGInstrs::addSchedBarrierDeps() {
+ MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
ExitSU.setInstr(ExitMI);
bool AllDepKnown = ExitMI &&
- (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
+ (ExitMI->isCall() || ExitMI->isBarrier());
if (ExitMI && AllDepKnown) {
// If it's a call or a barrier, add dependencies on the defs and uses of
// instruction.
@@ -167,29 +199,313 @@ void ScheduleDAGInstrs::AddSchedBarrierDeps() {
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
- assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
- Uses[Reg].push_back(&ExitSU);
+ if (TRI->isPhysicalRegister(Reg))
+ Uses[Reg].push_back(&ExitSU);
+ else {
+ assert(!IsPostRA && "Virtual register encountered after regalloc.");
+ addVRegUseDeps(&ExitSU, i);
+ }
}
} else {
// For others, e.g. fallthrough, conditional branch, assume the exit
// uses all the registers that are livein to the successor blocks.
- SmallSet<unsigned, 8> Seen;
+ assert(Uses.empty() && "Uses in set before adding deps?");
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
SE = BB->succ_end(); SI != SE; ++SI)
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
E = (*SI)->livein_end(); I != E; ++I) {
unsigned Reg = *I;
- if (Seen.insert(Reg))
+ if (!Uses.contains(Reg))
Uses[Reg].push_back(&ExitSU);
}
}
}
-void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
- // We'll be allocating one SUnit for each instruction, plus one for
- // the region exit node.
+/// MO is an operand of SU's instruction that defines a physical register. Add
+/// data dependencies from SU to any uses of the physical register.
+void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
+ const MachineOperand &MO) {
+ assert(MO.isDef() && "expect physreg def");
+
+ // Ask the target if address-backscheduling is desirable, and if so how much.
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
+ unsigned DataLatency = SU->Latency;
+
+ for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
+ if (!Uses.contains(*Alias))
+ continue;
+ std::vector<SUnit*> &UseList = Uses[*Alias];
+ for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
+ SUnit *UseSU = UseList[i];
+ if (UseSU == SU)
+ continue;
+ unsigned LDataLatency = DataLatency;
+ // Optionally add in a special extra latency for nodes that
+ // feed addresses.
+ // TODO: Perhaps we should get rid of
+ // SpecialAddressLatency and just move this into
+ // adjustSchedDependency for the targets that care about it.
+ if (SpecialAddressLatency != 0 && !UnitLatencies &&
+ UseSU != &ExitSU) {
+ MachineInstr *UseMI = UseSU->getInstr();
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
+ assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
+ if (RegUseIndex >= 0 &&
+ (UseMI->mayLoad() || UseMI->mayStore()) &&
+ (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
+ UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
+ LDataLatency += SpecialAddressLatency;
+ }
+ // Adjust the dependence latency using operand def/use
+ // information (if any), and then allow the target to
+ // perform its own adjustments.
+ const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
+ if (!UnitLatencies) {
+ computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
+ ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
+ }
+ UseSU->addPred(dep);
+ }
+ }
+}
+
+/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
+/// this SUnit to following instructions in the same scheduling region that
+/// depend the physical register referenced at OperIdx.
+void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
+ const MachineInstr *MI = SU->getInstr();
+ const MachineOperand &MO = MI->getOperand(OperIdx);
+
+ // Optionally add output and anti dependencies. For anti
+ // dependencies we use a latency of 0 because for a multi-issue
+ // target we want to allow the defining instruction to issue
+ // in the same cycle as the using instruction.
+ // TODO: Using a latency of 1 here for output dependencies assumes
+ // there's no cost for reusing registers.
+ SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
+ for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
+ if (!Defs.contains(*Alias))
+ continue;
+ std::vector<SUnit *> &DefList = Defs[*Alias];
+ for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
+ SUnit *DefSU = DefList[i];
+ if (DefSU == &ExitSU)
+ continue;
+ if (DefSU != SU &&
+ (Kind != SDep::Output || !MO.isDead() ||
+ !DefSU->getInstr()->registerDefIsDead(*Alias))) {
+ if (Kind == SDep::Anti)
+ DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
+ else {
+ unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
+ DefSU->getInstr());
+ DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
+ }
+ }
+ }
+ }
+
+ if (!MO.isDef()) {
+ // Either insert a new Reg2SUnits entry with an empty SUnits list, or
+ // retrieve the existing SUnits list for this register's uses.
+ // Push this SUnit on the use list.
+ Uses[MO.getReg()].push_back(SU);
+ }
+ else {
+ addPhysRegDataDeps(SU, MO);
+
+ // Either insert a new Reg2SUnits entry with an empty SUnits list, or
+ // retrieve the existing SUnits list for this register's defs.
+ std::vector<SUnit *> &DefList = Defs[MO.getReg()];
+
+ // If a def is going to wrap back around to the top of the loop,
+ // backschedule it.
+ if (!UnitLatencies && DefList.empty()) {
+ LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
+ if (I != LoopRegs.Deps.end()) {
+ const MachineOperand *UseMO = I->second.first;
+ unsigned Count = I->second.second;
+ const MachineInstr *UseMI = UseMO->getParent();
+ unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
+ const MCInstrDesc &UseMCID = UseMI->getDesc();
+ const TargetSubtargetInfo &ST =
+ TM.getSubtarget<TargetSubtargetInfo>();
+ unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
+ // TODO: If we knew the total depth of the region here, we could
+ // handle the case where the whole loop is inside the region but
+ // is large enough that the isScheduleHigh trick isn't needed.
+ if (UseMOIdx < UseMCID.getNumOperands()) {
+ // Currently, we only support scheduling regions consisting of
+ // single basic blocks. Check to see if the instruction is in
+ // the same region by checking to see if it has the same parent.
+ if (UseMI->getParent() != MI->getParent()) {
+ unsigned Latency = SU->Latency;
+ if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
+ Latency += SpecialAddressLatency;
+ // This is a wild guess as to the portion of the latency which
+ // will be overlapped by work done outside the current
+ // scheduling region.
+ Latency -= std::min(Latency, Count);
+ // Add the artificial edge.
+ ExitSU.addPred(SDep(SU, SDep::Order, Latency,
+ /*Reg=*/0, /*isNormalMemory=*/false,
+ /*isMustAlias=*/false,
+ /*isArtificial=*/true));
+ } else if (SpecialAddressLatency > 0 &&
+ UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
+ // The entire loop body is within the current scheduling region
+ // and the latency of this operation is assumed to be greater
+ // than the latency of the loop.
+ // TODO: Recursively mark data-edge predecessors as
+ // isScheduleHigh too.
+ SU->isScheduleHigh = true;
+ }
+ }
+ LoopRegs.Deps.erase(I);
+ }
+ }
+
+ // clear this register's use list
+ if (Uses.contains(MO.getReg()))
+ Uses[MO.getReg()].clear();
+
+ if (!MO.isDead())
+ DefList.clear();
+
+ // Calls will not be reordered because of chain dependencies (see
+ // below). Since call operands are dead, calls may continue to be added
+ // to the DefList making dependence checking quadratic in the size of
+ // the block. Instead, we leave only one call at the back of the
+ // DefList.
+ if (SU->isCall) {
+ while (!DefList.empty() && DefList.back()->isCall)
+ DefList.pop_back();
+ }
+ // Defs are pushed in the order they are visited and never reordered.
+ DefList.push_back(SU);
+ }
+}
+
+/// addVRegDefDeps - Add register output and data dependencies from this SUnit
+/// to instructions that occur later in the same scheduling region if they read
+/// from or write to the virtual register defined at OperIdx.
+///
+/// TODO: Hoist loop induction variable increments. This has to be
+/// reevaluated. Generally, IV scheduling should be done before coalescing.
+void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
+ const MachineInstr *MI = SU->getInstr();
+ unsigned Reg = MI->getOperand(OperIdx).getReg();
+
+ // SSA defs do not have output/anti dependencies.
+ // The current operand is a def, so we have at least one.
+ if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
+ return;
+
+ // Add output dependence to the next nearest def of this vreg.
+ //
+ // Unless this definition is dead, the output dependence should be
+ // transitively redundant with antidependencies from this definition's
+ // uses. We're conservative for now until we have a way to guarantee the uses
+ // are not eliminated sometime during scheduling. The output dependence edge
+ // is also useful if output latency exceeds def-use latency.
+ VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
+ if (DefI == VRegDefs.end())
+ VRegDefs.insert(VReg2SUnit(Reg, SU));
+ else {
+ SUnit *DefSU = DefI->SU;
+ if (DefSU != SU && DefSU != &ExitSU) {
+ unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
+ DefSU->getInstr());
+ DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
+ }
+ DefI->SU = SU;
+ }
+}
+
+/// addVRegUseDeps - Add a register data dependency if the instruction that
+/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
+/// register antidependency from this SUnit to instructions that occur later in
+/// the same scheduling region if they write the virtual register.
+///
+/// TODO: Handle ExitSU "uses" properly.
+void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
+ MachineInstr *MI = SU->getInstr();
+ unsigned Reg = MI->getOperand(OperIdx).getReg();
+
+ // Lookup this operand's reaching definition.
+ assert(LIS && "vreg dependencies requires LiveIntervals");
+ SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
+ LiveInterval *LI = &LIS->getInterval(Reg);
+ VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
+ // VNI will be valid because MachineOperand::readsReg() is checked by caller.
+ MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
+ // Phis and other noninstructions (after coalescing) have a NULL Def.
+ if (Def) {
+ SUnit *DefSU = getSUnit(Def);
+ if (DefSU) {
+ // The reaching Def lives within this scheduling region.
+ // Create a data dependence.
+ //
+ // TODO: Handle "special" address latencies cleanly.
+ const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
+ if (!UnitLatencies) {
+ // Adjust the dependence latency using operand def/use information, then
+ // allow the target to perform its own adjustments.
+ computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
+ }
+ SU->addPred(dep);
+ }
+ }
+
+ // Add antidependence to the following def of the vreg it uses.
+ VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
+ if (DefI != VRegDefs.end() && DefI->SU != SU)
+ DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
+}
+
+/// Create an SUnit for each real instruction, numbered in top-down toplological
+/// order. The instruction order A < B, implies that no edge exists from B to A.
+///
+/// Map each real instruction to its SUnit.
+///
+/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
+/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
+/// instead of pointers.
+///
+/// MachineScheduler relies on initSUnits numbering the nodes by their order in
+/// the original instruction list.
+void ScheduleDAGInstrs::initSUnits() {
+ // We'll be allocating one SUnit for each real instruction in the region,
+ // which is contained within a basic block.
SUnits.reserve(BB->size());
+ for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
+ MachineInstr *MI = I;
+ if (MI->isDebugValue())
+ continue;
+
+ SUnit *SU = newSUnit(MI);
+ MISUnitMap[MI] = SU;
+
+ SU->isCall = MI->isCall();
+ SU->isCommutable = MI->isCommutable();
+
+ // Assign the Latency field of SU using target-provided information.
+ if (UnitLatencies)
+ SU->Latency = 1;
+ else
+ computeLatency(SU);
+ }
+}
+
+void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA) {
+ // Create an SUnit for each real instruction.
+ initSUnits();
+
// We build scheduling units by walking a block's instruction list from bottom
// to top.
@@ -203,29 +519,29 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
- // Check to see if the scheduler cares about latencies.
- bool UnitLatencies = ForceUnitLatencies();
-
- // Ask the target if address-backscheduling is desirable, and if so how much.
- const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
- unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
-
// Remove any stale debug info; sometimes BuildSchedGraph is called again
// without emitting the info from the previous call.
DbgValues.clear();
FirstDbgValue = NULL;
+ assert(Defs.empty() && Uses.empty() &&
+ "Only BuildGraph should update Defs/Uses");
+ Defs.setRegLimit(TRI->getNumRegs());
+ Uses.setRegLimit(TRI->getNumRegs());
+
+ assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
+ // FIXME: Allow SparseSet to reserve space for the creation of virtual
+ // registers during scheduling. Don't artificially inflate the Universe
+ // because we want to assert that vregs are not created during DAG building.
+ VRegDefs.setUniverse(MRI.getNumVirtRegs());
+
// Model data dependencies between instructions being scheduled and the
// ExitSU.
- AddSchedBarrierDeps();
-
- for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
- assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
- }
+ addSchedBarrierDeps();
// Walk the list of instructions, from bottom moving up.
MachineInstr *PrevMI = NULL;
- for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
+ for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
MII != MIE; --MII) {
MachineInstr *MI = prior(MII);
if (MI && PrevMI) {
@@ -238,19 +554,11 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
continue;
}
- const MCInstrDesc &MCID = MI->getDesc();
- assert(!MCID.isTerminator() && !MI->isLabel() &&
+ assert(!MI->isTerminator() && !MI->isLabel() &&
"Cannot schedule terminators or labels!");
- // Create the SUnit for this MI.
- SUnit *SU = NewSUnit(MI);
- SU->isCall = MCID.isCall();
- SU->isCommutable = MCID.isCommutable();
- // Assign the Latency field of SU using target-provided information.
- if (UnitLatencies)
- SU->Latency = 1;
- else
- ComputeLatency(SU);
+ SUnit *SU = MISUnitMap[MI];
+ assert(SU && "No SUnit mapped to this MI");
// Add register-based dependencies (data, anti, and output).
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
@@ -259,152 +567,14 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
- assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
-
- std::vector<SUnit *> &UseList = Uses[Reg];
- // Defs are push in the order they are visited and never reordered.
- std::vector<SUnit *> &DefList = Defs[Reg];
- // Optionally add output and anti dependencies. For anti
- // dependencies we use a latency of 0 because for a multi-issue
- // target we want to allow the defining instruction to issue
- // in the same cycle as the using instruction.
- // TODO: Using a latency of 1 here for output dependencies assumes
- // there's no cost for reusing registers.
- SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
- unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
- for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
- SUnit *DefSU = DefList[i];
- if (DefSU == &ExitSU)
- continue;
- if (DefSU != SU &&
- (Kind != SDep::Output || !MO.isDead() ||
- !DefSU->getInstr()->registerDefIsDead(Reg)))
- DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
- }
- for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
- std::vector<SUnit *> &MemDefList = Defs[*Alias];
- for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) {
- SUnit *DefSU = MemDefList[i];
- if (DefSU == &ExitSU)
- continue;
- if (DefSU != SU &&
- (Kind != SDep::Output || !MO.isDead() ||
- !DefSU->getInstr()->registerDefIsDead(*Alias)))
- DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
- }
- }
-
- if (MO.isDef()) {
- // Add any data dependencies.
- unsigned DataLatency = SU->Latency;
- for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
- SUnit *UseSU = UseList[i];
- if (UseSU == SU)
- continue;
- unsigned LDataLatency = DataLatency;
- // Optionally add in a special extra latency for nodes that
- // feed addresses.
- // TODO: Do this for register aliases too.
- // TODO: Perhaps we should get rid of
- // SpecialAddressLatency and just move this into
- // adjustSchedDependency for the targets that care about it.
- if (SpecialAddressLatency != 0 && !UnitLatencies &&
- UseSU != &ExitSU) {
- MachineInstr *UseMI = UseSU->getInstr();
- const MCInstrDesc &UseMCID = UseMI->getDesc();
- int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
- assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
- if (RegUseIndex >= 0 &&
- (UseMCID.mayLoad() || UseMCID.mayStore()) &&
- (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
- UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
- LDataLatency += SpecialAddressLatency;
- }
- // Adjust the dependence latency using operand def/use
- // information (if any), and then allow the target to
- // perform its own adjustments.
- const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
- if (!UnitLatencies) {
- ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
- ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
- }
- UseSU->addPred(dep);
- }
- for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
- std::vector<SUnit *> &UseList = Uses[*Alias];
- for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
- SUnit *UseSU = UseList[i];
- if (UseSU == SU)
- continue;
- const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
- if (!UnitLatencies) {
- ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
- ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
- }
- UseSU->addPred(dep);
- }
- }
-
- // If a def is going to wrap back around to the top of the loop,
- // backschedule it.
- if (!UnitLatencies && DefList.empty()) {
- LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
- if (I != LoopRegs.Deps.end()) {
- const MachineOperand *UseMO = I->second.first;
- unsigned Count = I->second.second;
- const MachineInstr *UseMI = UseMO->getParent();
- unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
- const MCInstrDesc &UseMCID = UseMI->getDesc();
- // TODO: If we knew the total depth of the region here, we could
- // handle the case where the whole loop is inside the region but
- // is large enough that the isScheduleHigh trick isn't needed.
- if (UseMOIdx < UseMCID.getNumOperands()) {
- // Currently, we only support scheduling regions consisting of
- // single basic blocks. Check to see if the instruction is in
- // the same region by checking to see if it has the same parent.
- if (UseMI->getParent() != MI->getParent()) {
- unsigned Latency = SU->Latency;
- if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
- Latency += SpecialAddressLatency;
- // This is a wild guess as to the portion of the latency which
- // will be overlapped by work done outside the current
- // scheduling region.
- Latency -= std::min(Latency, Count);
- // Add the artificial edge.
- ExitSU.addPred(SDep(SU, SDep::Order, Latency,
- /*Reg=*/0, /*isNormalMemory=*/false,
- /*isMustAlias=*/false,
- /*isArtificial=*/true));
- } else if (SpecialAddressLatency > 0 &&
- UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
- // The entire loop body is within the current scheduling region
- // and the latency of this operation is assumed to be greater
- // than the latency of the loop.
- // TODO: Recursively mark data-edge predecessors as
- // isScheduleHigh too.
- SU->isScheduleHigh = true;
- }
- }
- LoopRegs.Deps.erase(I);
- }
- }
-
- UseList.clear();
- if (!MO.isDead())
- DefList.clear();
-
- // Calls will not be reordered because of chain dependencies (see
- // below). Since call operands are dead, calls may continue to be added
- // to the DefList making dependence checking quadratic in the size of
- // the block. Instead, we leave only one call at the back of the
- // DefList.
- if (SU->isCall) {
- while (!DefList.empty() && DefList.back()->isCall)
- DefList.pop_back();
- }
- DefList.push_back(SU);
- } else {
- UseList.push_back(SU);
+ if (TRI->isPhysicalRegister(Reg))
+ addPhysRegDeps(SU, j);
+ else {
+ assert(!IsPostRA && "Virtual register encountered!");
+ if (MO.isDef())
+ addVRegDefDeps(SU, j);
+ else if (MO.readsReg()) // ignore undef operands
+ addVRegUseDeps(SU, j);
}
}
@@ -419,9 +589,9 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
// produce more precise dependence information.
#define STORE_LOAD_LATENCY 1
unsigned TrueMemOrderLatency = 0;
- if (MCID.isCall() || MI->hasUnmodeledSideEffects() ||
+ if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
(MI->hasVolatileMemoryRef() &&
- (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) {
+ (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
// Be conservative with these and add dependencies on all memory
// references, even those that are known to not alias.
for (std::map<const Value *, SUnit *>::iterator I =
@@ -460,7 +630,7 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
PendingLoads.clear();
AliasMemDefs.clear();
AliasMemUses.clear();
- } else if (MCID.mayStore()) {
+ } else if (MI->mayStore()) {
bool MayAlias = true;
TrueMemOrderLatency = STORE_LOAD_LATENCY;
if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
@@ -516,7 +686,7 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
/*Reg=*/0, /*isNormalMemory=*/false,
/*isMustAlias=*/false,
/*isArtificial=*/true));
- } else if (MCID.mayLoad()) {
+ } else if (MI->mayLoad()) {
bool MayAlias = true;
TrueMemOrderLatency = 0;
if (MI->isInvariantLoad(AA)) {
@@ -558,32 +728,27 @@ void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
if (PrevMI)
FirstDbgValue = PrevMI;
- for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
- Defs[i].clear();
- Uses[i].clear();
- }
+ Defs.clear();
+ Uses.clear();
+ VRegDefs.clear();
PendingLoads.clear();
}
-void ScheduleDAGInstrs::FinishBlock() {
- // Nothing to do.
-}
-
-void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
+void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
// Compute the latency for the node.
if (!InstrItins || InstrItins->isEmpty()) {
SU->Latency = 1;
// Simplistic target-independent heuristic: assume that loads take
// extra time.
- if (SU->getInstr()->getDesc().mayLoad())
+ if (SU->getInstr()->mayLoad())
SU->Latency += 2;
} else {
SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
}
}
-void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
+void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
SDep& dep) const {
if (!InstrItins || InstrItins->isEmpty())
return;
@@ -608,7 +773,9 @@ void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
// %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
// What we want is to compute latency between def of %D6/%D7 and use of
// %Q3 instead.
- DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
+ unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
+ if (DefMI->getOperand(Op2).isReg())
+ DefIdx = Op2;
}
MachineInstr *UseMI = Use->getInstr();
// For all uses of the register, calculate the maxmimum latency
@@ -656,43 +823,8 @@ std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
return oss.str();
}
-// EmitSchedule - Emit the machine code in scheduled order.
-MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
- // For MachineInstr-based scheduling, we're rescheduling the instructions in
- // the block, so start by removing them from the block.
- while (Begin != InsertPos) {
- MachineBasicBlock::iterator I = Begin;
- ++Begin;
- BB->remove(I);
- }
-
- // If first instruction was a DBG_VALUE then put it back.
- if (FirstDbgValue)
- BB->insert(InsertPos, FirstDbgValue);
-
- // Then re-insert them according to the given schedule.
- for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
- if (SUnit *SU = Sequence[i])
- BB->insert(InsertPos, SU->getInstr());
- else
- // Null SUnit* is a noop.
- EmitNoop();
- }
-
- // Update the Begin iterator, as the first instruction in the block
- // may have been scheduled later.
- if (!Sequence.empty())
- Begin = Sequence[0]->getInstr();
-
- // Reinsert any remaining debug_values.
- for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
- DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
- std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
- MachineInstr *DbgValue = P.first;
- MachineInstr *OrigPrivMI = P.second;
- BB->insertAfter(OrigPrivMI, DbgValue);
- }
- DbgValues.clear();
- FirstDbgValue = NULL;
- return BB;
+/// Return the basic block label. It is not necessarilly unique because a block
+/// contains multiple scheduling regions. But it is fine for visualization.
+std::string ScheduleDAGInstrs::getDAGName() const {
+ return "dag." + BB->getFullName();
}
OpenPOWER on IntegriCloud