summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp1975
1 files changed, 1975 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp b/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
new file mode 100644
index 0000000..75f88ca
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/RegisterCoalescer.cpp
@@ -0,0 +1,1975 @@
+//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the generic RegisterCoalescer interface which
+// is used as the common interface used by all clients and
+// implementations of register coalescing.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "RegisterCoalescer.h"
+#include "LiveDebugVariables.h"
+#include "RegisterClassInfo.h"
+#include "VirtRegMap.h"
+
+#include "llvm/Pass.h"
+#include "llvm/Value.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include <algorithm>
+#include <cmath>
+using namespace llvm;
+
+STATISTIC(numJoins , "Number of interval joins performed");
+STATISTIC(numCrossRCs , "Number of cross class joins performed");
+STATISTIC(numCommutes , "Number of instruction commuting performed");
+STATISTIC(numExtends , "Number of copies extended");
+STATISTIC(NumReMats , "Number of instructions re-materialized");
+STATISTIC(numPeep , "Number of identity moves eliminated after coalescing");
+STATISTIC(numAborts , "Number of times interval joining aborted");
+STATISTIC(NumInflated , "Number of register classes inflated");
+
+static cl::opt<bool>
+EnableJoining("join-liveintervals",
+ cl::desc("Coalesce copies (default=true)"),
+ cl::init(true));
+
+static cl::opt<bool>
+DisableCrossClassJoin("disable-cross-class-join",
+ cl::desc("Avoid coalescing cross register class copies"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+EnablePhysicalJoin("join-physregs",
+ cl::desc("Join physical register copies"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+VerifyCoalescing("verify-coalescing",
+ cl::desc("Verify machine instrs before and after register coalescing"),
+ cl::Hidden);
+
+namespace {
+ class RegisterCoalescer : public MachineFunctionPass {
+ MachineFunction* MF;
+ MachineRegisterInfo* MRI;
+ const TargetMachine* TM;
+ const TargetRegisterInfo* TRI;
+ const TargetInstrInfo* TII;
+ LiveIntervals *LIS;
+ LiveDebugVariables *LDV;
+ const MachineLoopInfo* Loops;
+ AliasAnalysis *AA;
+ RegisterClassInfo RegClassInfo;
+
+ /// JoinedCopies - Keep track of copies eliminated due to coalescing.
+ ///
+ SmallPtrSet<MachineInstr*, 32> JoinedCopies;
+
+ /// ReMatCopies - Keep track of copies eliminated due to remat.
+ ///
+ SmallPtrSet<MachineInstr*, 32> ReMatCopies;
+
+ /// ReMatDefs - Keep track of definition instructions which have
+ /// been remat'ed.
+ SmallPtrSet<MachineInstr*, 8> ReMatDefs;
+
+ /// joinIntervals - join compatible live intervals
+ void joinIntervals();
+
+ /// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting
+ /// copies that cannot yet be coalesced into the "TryAgain" list.
+ void CopyCoalesceInMBB(MachineBasicBlock *MBB,
+ std::vector<MachineInstr*> &TryAgain);
+
+ /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+ /// which are the src/dst of the copy instruction CopyMI. This returns
+ /// true if the copy was successfully coalesced away. If it is not
+ /// currently possible to coalesce this interval, but it may be possible if
+ /// other things get coalesced, then it returns true by reference in
+ /// 'Again'.
+ bool JoinCopy(MachineInstr *TheCopy, bool &Again);
+
+ /// JoinIntervals - Attempt to join these two intervals. On failure, this
+ /// returns false. The output "SrcInt" will not have been modified, so we
+ /// can use this information below to update aliases.
+ bool JoinIntervals(CoalescerPair &CP);
+
+ /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
+ /// the source value number is defined by a copy from the destination reg
+ /// see if we can merge these two destination reg valno# into a single
+ /// value number, eliminating a copy.
+ bool AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
+
+ /// HasOtherReachingDefs - Return true if there are definitions of IntB
+ /// other than BValNo val# that can reach uses of AValno val# of IntA.
+ bool HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
+ VNInfo *AValNo, VNInfo *BValNo);
+
+ /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy.
+ /// If the source value number is defined by a commutable instruction and
+ /// its other operand is coalesced to the copy dest register, see if we
+ /// can transform the copy into a noop by commuting the definition.
+ bool RemoveCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
+
+ /// ReMaterializeTrivialDef - If the source of a copy is defined by a
+ /// trivial computation, replace the copy by rematerialize the definition.
+ /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
+ bool ReMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
+ unsigned DstReg, MachineInstr *CopyMI);
+
+ /// shouldJoinPhys - Return true if a physreg copy should be joined.
+ bool shouldJoinPhys(CoalescerPair &CP);
+
+ /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
+ /// two virtual registers from different register classes.
+ bool isWinToJoinCrossClass(unsigned SrcReg,
+ unsigned DstReg,
+ const TargetRegisterClass *SrcRC,
+ const TargetRegisterClass *DstRC,
+ const TargetRegisterClass *NewRC);
+
+ /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
+ /// update the subregister number if it is not zero. If DstReg is a
+ /// physical register and the existing subregister number of the def / use
+ /// being updated is not zero, make sure to set it to the correct physical
+ /// subregister.
+ void UpdateRegDefsUses(const CoalescerPair &CP);
+
+ /// RemoveDeadDef - If a def of a live interval is now determined dead,
+ /// remove the val# it defines. If the live interval becomes empty, remove
+ /// it as well.
+ bool RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI);
+
+ /// markAsJoined - Remember that CopyMI has already been joined.
+ void markAsJoined(MachineInstr *CopyMI);
+
+ /// eliminateUndefCopy - Handle copies of undef values.
+ bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
+
+ public:
+ static char ID; // Class identification, replacement for typeinfo
+ RegisterCoalescer() : MachineFunctionPass(ID) {
+ initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ virtual void releaseMemory();
+
+ /// runOnMachineFunction - pass entry point
+ virtual bool runOnMachineFunction(MachineFunction&);
+
+ /// print - Implement the dump method.
+ virtual void print(raw_ostream &O, const Module* = 0) const;
+ };
+} /// end anonymous namespace
+
+char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
+
+INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
+ "Simple Register Coalescing", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
+ "Simple Register Coalescing", false, false)
+
+char RegisterCoalescer::ID = 0;
+
+static unsigned compose(const TargetRegisterInfo &tri, unsigned a, unsigned b) {
+ if (!a) return b;
+ if (!b) return a;
+ return tri.composeSubRegIndices(a, b);
+}
+
+static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
+ unsigned &Src, unsigned &Dst,
+ unsigned &SrcSub, unsigned &DstSub) {
+ if (MI->isCopy()) {
+ Dst = MI->getOperand(0).getReg();
+ DstSub = MI->getOperand(0).getSubReg();
+ Src = MI->getOperand(1).getReg();
+ SrcSub = MI->getOperand(1).getSubReg();
+ } else if (MI->isSubregToReg()) {
+ Dst = MI->getOperand(0).getReg();
+ DstSub = compose(tri, MI->getOperand(0).getSubReg(),
+ MI->getOperand(3).getImm());
+ Src = MI->getOperand(2).getReg();
+ SrcSub = MI->getOperand(2).getSubReg();
+ } else
+ return false;
+ return true;
+}
+
+bool CoalescerPair::setRegisters(const MachineInstr *MI) {
+ SrcReg = DstReg = SubIdx = 0;
+ NewRC = 0;
+ Flipped = CrossClass = false;
+
+ unsigned Src, Dst, SrcSub, DstSub;
+ if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
+ return false;
+ Partial = SrcSub || DstSub;
+
+ // If one register is a physreg, it must be Dst.
+ if (TargetRegisterInfo::isPhysicalRegister(Src)) {
+ if (TargetRegisterInfo::isPhysicalRegister(Dst))
+ return false;
+ std::swap(Src, Dst);
+ std::swap(SrcSub, DstSub);
+ Flipped = true;
+ }
+
+ const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+
+ if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
+ // Eliminate DstSub on a physreg.
+ if (DstSub) {
+ Dst = TRI.getSubReg(Dst, DstSub);
+ if (!Dst) return false;
+ DstSub = 0;
+ }
+
+ // Eliminate SrcSub by picking a corresponding Dst superregister.
+ if (SrcSub) {
+ Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
+ if (!Dst) return false;
+ SrcSub = 0;
+ } else if (!MRI.getRegClass(Src)->contains(Dst)) {
+ return false;
+ }
+ } else {
+ // Both registers are virtual.
+
+ // Both registers have subreg indices.
+ if (SrcSub && DstSub) {
+ // For now we only handle the case of identical indices in commensurate
+ // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
+ // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
+ if (SrcSub != DstSub)
+ return false;
+ const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
+ const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
+ if (!TRI.getCommonSubClass(DstRC, SrcRC))
+ return false;
+ SrcSub = DstSub = 0;
+ }
+
+ // There can be no SrcSub.
+ if (SrcSub) {
+ std::swap(Src, Dst);
+ DstSub = SrcSub;
+ SrcSub = 0;
+ assert(!Flipped && "Unexpected flip");
+ Flipped = true;
+ }
+
+ // Find the new register class.
+ const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
+ const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
+ if (DstSub)
+ NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
+ else
+ NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
+ if (!NewRC)
+ return false;
+ CrossClass = NewRC != DstRC || NewRC != SrcRC;
+ }
+ // Check our invariants
+ assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
+ assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
+ "Cannot have a physical SubIdx");
+ SrcReg = Src;
+ DstReg = Dst;
+ SubIdx = DstSub;
+ return true;
+}
+
+bool CoalescerPair::flip() {
+ if (SubIdx || TargetRegisterInfo::isPhysicalRegister(DstReg))
+ return false;
+ std::swap(SrcReg, DstReg);
+ Flipped = !Flipped;
+ return true;
+}
+
+bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
+ if (!MI)
+ return false;
+ unsigned Src, Dst, SrcSub, DstSub;
+ if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
+ return false;
+
+ // Find the virtual register that is SrcReg.
+ if (Dst == SrcReg) {
+ std::swap(Src, Dst);
+ std::swap(SrcSub, DstSub);
+ } else if (Src != SrcReg) {
+ return false;
+ }
+
+ // Now check that Dst matches DstReg.
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
+ if (!TargetRegisterInfo::isPhysicalRegister(Dst))
+ return false;
+ assert(!SubIdx && "Inconsistent CoalescerPair state.");
+ // DstSub could be set for a physreg from INSERT_SUBREG.
+ if (DstSub)
+ Dst = TRI.getSubReg(Dst, DstSub);
+ // Full copy of Src.
+ if (!SrcSub)
+ return DstReg == Dst;
+ // This is a partial register copy. Check that the parts match.
+ return TRI.getSubReg(DstReg, SrcSub) == Dst;
+ } else {
+ // DstReg is virtual.
+ if (DstReg != Dst)
+ return false;
+ // Registers match, do the subregisters line up?
+ return compose(TRI, SubIdx, SrcSub) == DstSub;
+ }
+}
+
+void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addRequired<LiveDebugVariables>();
+ AU.addPreserved<LiveDebugVariables>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreservedID(MachineDominatorsID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
+ /// Joined copies are not deleted immediately, but kept in JoinedCopies.
+ JoinedCopies.insert(CopyMI);
+
+ /// Mark all register operands of CopyMI as <undef> so they won't affect dead
+ /// code elimination.
+ for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
+ E = CopyMI->operands_end(); I != E; ++I)
+ if (I->isReg())
+ I->setIsUndef(true);
+}
+
+/// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
+/// being the source and IntB being the dest, thus this defines a value number
+/// in IntB. If the source value number (in IntA) is defined by a copy from B,
+/// see if we can merge these two pieces of B into a single value number,
+/// eliminating a copy. For example:
+///
+/// A3 = B0
+/// ...
+/// B1 = A3 <- this copy
+///
+/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
+/// value number to be replaced with B0 (which simplifies the B liveinterval).
+///
+/// This returns true if an interval was modified.
+///
+bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
+ MachineInstr *CopyMI) {
+ // Bail if there is no dst interval - can happen when merging physical subreg
+ // operations.
+ if (!LIS->hasInterval(CP.getDstReg()))
+ return false;
+
+ LiveInterval &IntA =
+ LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LiveInterval &IntB =
+ LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+ SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // the example above.
+ LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
+ if (BLR == IntB.end()) return false;
+ VNInfo *BValNo = BLR->valno;
+
+ // Get the location that B is defined at. Two options: either this value has
+ // an unknown definition point or it is defined at CopyIdx. If unknown, we
+ // can't process it.
+ if (BValNo->def != CopyIdx) return false;
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
+ LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
+ // The live range might not exist after fun with physreg coalescing.
+ if (ALR == IntA.end()) return false;
+ VNInfo *AValNo = ALR->valno;
+
+ // If AValNo is defined as a copy from IntB, we can potentially process this.
+ // Get the instruction that defines this value number.
+ MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
+ if (!CP.isCoalescable(ACopyMI))
+ return false;
+
+ // Get the LiveRange in IntB that this value number starts with.
+ LiveInterval::iterator ValLR =
+ IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
+ if (ValLR == IntB.end())
+ return false;
+
+ // Make sure that the end of the live range is inside the same block as
+ // CopyMI.
+ MachineInstr *ValLREndInst =
+ LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
+ if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
+ return false;
+
+ // Okay, we now know that ValLR ends in the same block that the CopyMI
+ // live-range starts. If there are no intervening live ranges between them in
+ // IntB, we can merge them.
+ if (ValLR+1 != BLR) return false;
+
+ // If a live interval is a physical register, conservatively check if any
+ // of its aliases is overlapping the live interval of the virtual register.
+ // If so, do not coalesce.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
+ for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
+ if (LIS->hasInterval(*AS) && IntA.overlaps(LIS->getInterval(*AS))) {
+ DEBUG({
+ dbgs() << "\t\tInterfere with alias ";
+ LIS->getInterval(*AS).print(dbgs(), TRI);
+ });
+ return false;
+ }
+ }
+
+ DEBUG({
+ dbgs() << "Extending: ";
+ IntB.print(dbgs(), TRI);
+ });
+
+ SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
+ // We are about to delete CopyMI, so need to remove it as the 'instruction
+ // that defines this value #'. Update the valnum with the new defining
+ // instruction #.
+ BValNo->def = FillerStart;
+
+ // Okay, we can merge them. We need to insert a new liverange:
+ // [ValLR.end, BLR.begin) of either value number, then we merge the
+ // two value numbers.
+ IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
+
+ // If the IntB live range is assigned to a physical register, and if that
+ // physreg has sub-registers, update their live intervals as well.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
+ for (const uint16_t *SR = TRI->getSubRegisters(IntB.reg); *SR; ++SR) {
+ if (!LIS->hasInterval(*SR))
+ continue;
+ LiveInterval &SRLI = LIS->getInterval(*SR);
+ SRLI.addRange(LiveRange(FillerStart, FillerEnd,
+ SRLI.getNextValue(FillerStart,
+ LIS->getVNInfoAllocator())));
+ }
+ }
+
+ // Okay, merge "B1" into the same value number as "B0".
+ if (BValNo != ValLR->valno) {
+ // If B1 is killed by a PHI, then the merged live range must also be killed
+ // by the same PHI, as B0 and B1 can not overlap.
+ bool HasPHIKill = BValNo->hasPHIKill();
+ IntB.MergeValueNumberInto(BValNo, ValLR->valno);
+ if (HasPHIKill)
+ ValLR->valno->setHasPHIKill(true);
+ }
+ DEBUG({
+ dbgs() << " result = ";
+ IntB.print(dbgs(), TRI);
+ dbgs() << "\n";
+ });
+
+ // If the source instruction was killing the source register before the
+ // merge, unset the isKill marker given the live range has been extended.
+ int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
+ if (UIdx != -1) {
+ ValLREndInst->getOperand(UIdx).setIsKill(false);
+ }
+
+ // Rewrite the copy. If the copy instruction was killing the destination
+ // register before the merge, find the last use and trim the live range. That
+ // will also add the isKill marker.
+ CopyMI->substituteRegister(IntA.reg, IntB.reg, CP.getSubIdx(),
+ *TRI);
+ if (ALR->end == CopyIdx)
+ LIS->shrinkToUses(&IntA);
+
+ ++numExtends;
+ return true;
+}
+
+/// HasOtherReachingDefs - Return true if there are definitions of IntB
+/// other than BValNo val# that can reach uses of AValno val# of IntA.
+bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
+ LiveInterval &IntB,
+ VNInfo *AValNo,
+ VNInfo *BValNo) {
+ for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+ AI != AE; ++AI) {
+ if (AI->valno != AValNo) continue;
+ LiveInterval::Ranges::iterator BI =
+ std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
+ if (BI != IntB.ranges.begin())
+ --BI;
+ for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
+ if (BI->valno == BValNo)
+ continue;
+ if (BI->start <= AI->start && BI->end > AI->start)
+ return true;
+ if (BI->start > AI->start && BI->start < AI->end)
+ return true;
+ }
+ }
+ return false;
+}
+
+/// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
+/// IntA being the source and IntB being the dest, thus this defines a value
+/// number in IntB. If the source value number (in IntA) is defined by a
+/// commutable instruction and its other operand is coalesced to the copy dest
+/// register, see if we can transform the copy into a noop by commuting the
+/// definition. For example,
+///
+/// A3 = op A2 B0<kill>
+/// ...
+/// B1 = A3 <- this copy
+/// ...
+/// = op A3 <- more uses
+///
+/// ==>
+///
+/// B2 = op B0 A2<kill>
+/// ...
+/// B1 = B2 <- now an identify copy
+/// ...
+/// = op B2 <- more uses
+///
+/// This returns true if an interval was modified.
+///
+bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
+ MachineInstr *CopyMI) {
+ // FIXME: For now, only eliminate the copy by commuting its def when the
+ // source register is a virtual register. We want to guard against cases
+ // where the copy is a back edge copy and commuting the def lengthen the
+ // live interval of the source register to the entire loop.
+ if (CP.isPhys() && CP.isFlipped())
+ return false;
+
+ // Bail if there is no dst interval.
+ if (!LIS->hasInterval(CP.getDstReg()))
+ return false;
+
+ SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
+
+ LiveInterval &IntA =
+ LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
+ LiveInterval &IntB =
+ LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
+
+ // BValNo is a value number in B that is defined by a copy from A. 'B3' in
+ // the example above.
+ VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
+ if (!BValNo || BValNo->def != CopyIdx)
+ return false;
+
+ assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
+
+ // AValNo is the value number in A that defines the copy, A3 in the example.
+ VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
+ assert(AValNo && "COPY source not live");
+
+ // If other defs can reach uses of this def, then it's not safe to perform
+ // the optimization.
+ if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
+ return false;
+ MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
+ if (!DefMI)
+ return false;
+ if (!DefMI->isCommutable())
+ return false;
+ // If DefMI is a two-address instruction then commuting it will change the
+ // destination register.
+ int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
+ assert(DefIdx != -1);
+ unsigned UseOpIdx;
+ if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
+ return false;
+ unsigned Op1, Op2, NewDstIdx;
+ if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
+ return false;
+ if (Op1 == UseOpIdx)
+ NewDstIdx = Op2;
+ else if (Op2 == UseOpIdx)
+ NewDstIdx = Op1;
+ else
+ return false;
+
+ MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+ unsigned NewReg = NewDstMO.getReg();
+ if (NewReg != IntB.reg || !NewDstMO.isKill())
+ return false;
+
+ // Make sure there are no other definitions of IntB that would reach the
+ // uses which the new definition can reach.
+ if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
+ return false;
+
+ // Abort if the aliases of IntB.reg have values that are not simply the
+ // clobbers from the superreg.
+ if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
+ for (const uint16_t *AS = TRI->getAliasSet(IntB.reg); *AS; ++AS)
+ if (LIS->hasInterval(*AS) &&
+ HasOtherReachingDefs(IntA, LIS->getInterval(*AS), AValNo, 0))
+ return false;
+
+ // If some of the uses of IntA.reg is already coalesced away, return false.
+ // It's not possible to determine whether it's safe to perform the coalescing.
+ for (MachineRegisterInfo::use_nodbg_iterator UI =
+ MRI->use_nodbg_begin(IntA.reg),
+ UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
+ LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+ if (ULR == IntA.end())
+ continue;
+ if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
+ return false;
+ }
+
+ DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
+ << *DefMI);
+
+ // At this point we have decided that it is legal to do this
+ // transformation. Start by commuting the instruction.
+ MachineBasicBlock *MBB = DefMI->getParent();
+ MachineInstr *NewMI = TII->commuteInstruction(DefMI);
+ if (!NewMI)
+ return false;
+ if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
+ TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
+ !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
+ return false;
+ if (NewMI != DefMI) {
+ LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
+ MachineBasicBlock::iterator Pos = DefMI;
+ MBB->insert(Pos, NewMI);
+ MBB->erase(DefMI);
+ }
+ unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
+ NewMI->getOperand(OpIdx).setIsKill();
+
+ // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
+ // A = or A, B
+ // ...
+ // B = A
+ // ...
+ // C = A<kill>
+ // ...
+ // = B
+
+ // Update uses of IntA of the specific Val# with IntB.
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
+ UE = MRI->use_end(); UI != UE;) {
+ MachineOperand &UseMO = UI.getOperand();
+ MachineInstr *UseMI = &*UI;
+ ++UI;
+ if (JoinedCopies.count(UseMI))
+ continue;
+ if (UseMI->isDebugValue()) {
+ // FIXME These don't have an instruction index. Not clear we have enough
+ // info to decide whether to do this replacement or not. For now do it.
+ UseMO.setReg(NewReg);
+ continue;
+ }
+ SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
+ LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
+ if (ULR == IntA.end() || ULR->valno != AValNo)
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(NewReg))
+ UseMO.substPhysReg(NewReg, *TRI);
+ else
+ UseMO.setReg(NewReg);
+ if (UseMI == CopyMI)
+ continue;
+ if (!UseMI->isCopy())
+ continue;
+ if (UseMI->getOperand(0).getReg() != IntB.reg ||
+ UseMI->getOperand(0).getSubReg())
+ continue;
+
+ // This copy will become a noop. If it's defining a new val#, merge it into
+ // BValNo.
+ SlotIndex DefIdx = UseIdx.getRegSlot();
+ VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
+ if (!DVNI)
+ continue;
+ DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
+ assert(DVNI->def == DefIdx);
+ BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
+ markAsJoined(UseMI);
+ }
+
+ // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
+ // is updated.
+ VNInfo *ValNo = BValNo;
+ ValNo->def = AValNo->def;
+ for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
+ AI != AE; ++AI) {
+ if (AI->valno != AValNo) continue;
+ IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
+ }
+ DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
+
+ IntA.removeValNo(AValNo);
+ DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n');
+ ++numCommutes;
+ return true;
+}
+
+/// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
+/// computation, replace the copy by rematerialize the definition.
+bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
+ bool preserveSrcInt,
+ unsigned DstReg,
+ MachineInstr *CopyMI) {
+ SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
+ LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
+ assert(SrcLR != SrcInt.end() && "Live range not found!");
+ VNInfo *ValNo = SrcLR->valno;
+ if (ValNo->isPHIDef() || ValNo->isUnused())
+ return false;
+ MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
+ if (!DefMI)
+ return false;
+ assert(DefMI && "Defining instruction disappeared");
+ if (!DefMI->isAsCheapAsAMove())
+ return false;
+ if (!TII->isTriviallyReMaterializable(DefMI, AA))
+ return false;
+ bool SawStore = false;
+ if (!DefMI->isSafeToMove(TII, AA, SawStore))
+ return false;
+ const MCInstrDesc &MCID = DefMI->getDesc();
+ if (MCID.getNumDefs() != 1)
+ return false;
+ if (!DefMI->isImplicitDef()) {
+ // Make sure the copy destination register class fits the instruction
+ // definition register class. The mismatch can happen as a result of earlier
+ // extract_subreg, insert_subreg, subreg_to_reg coalescing.
+ const TargetRegisterClass *RC = TII->getRegClass(MCID, 0, TRI);
+ if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
+ if (MRI->getRegClass(DstReg) != RC)
+ return false;
+ } else if (!RC->contains(DstReg))
+ return false;
+ }
+
+ MachineBasicBlock *MBB = CopyMI->getParent();
+ MachineBasicBlock::iterator MII =
+ llvm::next(MachineBasicBlock::iterator(CopyMI));
+ TII->reMaterialize(*MBB, MII, DstReg, 0, DefMI, *TRI);
+ MachineInstr *NewMI = prior(MII);
+
+ // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
+ // We need to remember these so we can add intervals once we insert
+ // NewMI into SlotIndexes.
+ SmallVector<unsigned, 4> NewMIImplDefs;
+ for (unsigned i = NewMI->getDesc().getNumOperands(),
+ e = NewMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = NewMI->getOperand(i);
+ if (MO.isReg()) {
+ assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
+ TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
+ NewMIImplDefs.push_back(MO.getReg());
+ }
+ }
+
+ // CopyMI may have implicit operands, transfer them over to the newly
+ // rematerialized instruction. And update implicit def interval valnos.
+ for (unsigned i = CopyMI->getDesc().getNumOperands(),
+ e = CopyMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = CopyMI->getOperand(i);
+ if (MO.isReg()) {
+ assert(MO.isImplicit() && "No explicit operands after implict operands.");
+ // Discard VReg implicit defs.
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ NewMI->addOperand(MO);
+ }
+ }
+ }
+
+ LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
+
+ SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
+ for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
+ unsigned reg = NewMIImplDefs[i];
+ LiveInterval &li = LIS->getInterval(reg);
+ VNInfo *DeadDefVN = li.getNextValue(NewMIIdx.getRegSlot(),
+ LIS->getVNInfoAllocator());
+ LiveRange lr(NewMIIdx.getRegSlot(), NewMIIdx.getDeadSlot(), DeadDefVN);
+ li.addRange(lr);
+ }
+
+ CopyMI->eraseFromParent();
+ ReMatCopies.insert(CopyMI);
+ ReMatDefs.insert(DefMI);
+ DEBUG(dbgs() << "Remat: " << *NewMI);
+ ++NumReMats;
+
+ // The source interval can become smaller because we removed a use.
+ if (preserveSrcInt)
+ LIS->shrinkToUses(&SrcInt);
+
+ return true;
+}
+
+/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
+/// values, it only removes local variables. When we have a copy like:
+///
+/// %vreg1 = COPY %vreg2<undef>
+///
+/// We delete the copy and remove the corresponding value number from %vreg1.
+/// Any uses of that value number are marked as <undef>.
+bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
+ const CoalescerPair &CP) {
+ SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
+ LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
+ if (SrcInt->liveAt(Idx))
+ return false;
+ LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
+ if (DstInt->liveAt(Idx))
+ return false;
+
+ // No intervals are live-in to CopyMI - it is undef.
+ if (CP.isFlipped())
+ DstInt = SrcInt;
+ SrcInt = 0;
+
+ VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
+ assert(DeadVNI && "No value defined in DstInt");
+ DstInt->removeValNo(DeadVNI);
+
+ // Find new undef uses.
+ for (MachineRegisterInfo::reg_nodbg_iterator
+ I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
+ I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ if (MO.isDef() || MO.isUndef())
+ continue;
+ MachineInstr *MI = MO.getParent();
+ SlotIndex Idx = LIS->getInstructionIndex(MI);
+ if (DstInt->liveAt(Idx))
+ continue;
+ MO.setIsUndef(true);
+ DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
+ }
+ return true;
+}
+
+/// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
+/// update the subregister number if it is not zero. If DstReg is a
+/// physical register and the existing subregister number of the def / use
+/// being updated is not zero, make sure to set it to the correct physical
+/// subregister.
+void
+RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
+ bool DstIsPhys = CP.isPhys();
+ unsigned SrcReg = CP.getSrcReg();
+ unsigned DstReg = CP.getDstReg();
+ unsigned SubIdx = CP.getSubIdx();
+
+ // Update LiveDebugVariables.
+ LDV->renameRegister(SrcReg, DstReg, SubIdx);
+
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
+ MachineInstr *UseMI = I.skipInstruction();) {
+ // A PhysReg copy that won't be coalesced can perhaps be rematerialized
+ // instead.
+ if (DstIsPhys) {
+ if (UseMI->isFullCopy() &&
+ UseMI->getOperand(1).getReg() == SrcReg &&
+ UseMI->getOperand(0).getReg() != SrcReg &&
+ UseMI->getOperand(0).getReg() != DstReg &&
+ !JoinedCopies.count(UseMI) &&
+ ReMaterializeTrivialDef(LIS->getInterval(SrcReg), false,
+ UseMI->getOperand(0).getReg(), UseMI))
+ continue;
+ }
+
+ SmallVector<unsigned,8> Ops;
+ bool Reads, Writes;
+ tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
+
+ // Replace SrcReg with DstReg in all UseMI operands.
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
+ MachineOperand &MO = UseMI->getOperand(Ops[i]);
+
+ // Make sure we don't create read-modify-write defs accidentally. We
+ // assume here that a SrcReg def cannot be joined into a live DstReg. If
+ // RegisterCoalescer starts tracking partially live registers, we will
+ // need to check the actual LiveInterval to determine if DstReg is live
+ // here.
+ if (SubIdx && !Reads)
+ MO.setIsUndef();
+
+ if (DstIsPhys)
+ MO.substPhysReg(DstReg, *TRI);
+ else
+ MO.substVirtReg(DstReg, SubIdx, *TRI);
+ }
+
+ // This instruction is a copy that will be removed.
+ if (JoinedCopies.count(UseMI))
+ continue;
+
+ DEBUG({
+ dbgs() << "\t\tupdated: ";
+ if (!UseMI->isDebugValue())
+ dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
+ dbgs() << *UseMI;
+ });
+ }
+}
+
+/// removeIntervalIfEmpty - Check if the live interval of a physical register
+/// is empty, if so remove it and also remove the empty intervals of its
+/// sub-registers. Return true if live interval is removed.
+static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *LIS,
+ const TargetRegisterInfo *TRI) {
+ if (li.empty()) {
+ if (TargetRegisterInfo::isPhysicalRegister(li.reg))
+ for (const uint16_t* SR = TRI->getSubRegisters(li.reg); *SR; ++SR) {
+ if (!LIS->hasInterval(*SR))
+ continue;
+ LiveInterval &sli = LIS->getInterval(*SR);
+ if (sli.empty())
+ LIS->removeInterval(*SR);
+ }
+ LIS->removeInterval(li.reg);
+ return true;
+ }
+ return false;
+}
+
+/// RemoveDeadDef - If a def of a live interval is now determined dead, remove
+/// the val# it defines. If the live interval becomes empty, remove it as well.
+bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
+ MachineInstr *DefMI) {
+ SlotIndex DefIdx = LIS->getInstructionIndex(DefMI).getRegSlot();
+ LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
+ if (DefIdx != MLR->valno->def)
+ return false;
+ li.removeValNo(MLR->valno);
+ return removeIntervalIfEmpty(li, LIS, TRI);
+}
+
+/// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
+/// We need to be careful about coalescing a source physical register with a
+/// virtual register. Once the coalescing is done, it cannot be broken and these
+/// are not spillable! If the destination interval uses are far away, think
+/// twice about coalescing them!
+bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
+ bool Allocatable = LIS->isAllocatable(CP.getDstReg());
+ LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
+
+ /// Always join simple intervals that are defined by a single copy from a
+ /// reserved register. This doesn't increase register pressure, so it is
+ /// always beneficial.
+ if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
+ return true;
+
+ if (!EnablePhysicalJoin) {
+ DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
+ return false;
+ }
+
+ // Only coalesce to allocatable physreg, we don't want to risk modifying
+ // reserved registers.
+ if (!Allocatable) {
+ DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
+ return false; // Not coalescable.
+ }
+
+ // Don't join with physregs that have a ridiculous number of live
+ // ranges. The data structure performance is really bad when that
+ // happens.
+ if (LIS->hasInterval(CP.getDstReg()) &&
+ LIS->getInterval(CP.getDstReg()).ranges.size() > 1000) {
+ ++numAborts;
+ DEBUG(dbgs()
+ << "\tPhysical register live interval too complicated, abort!\n");
+ return false;
+ }
+
+ // FIXME: Why are we skipping this test for partial copies?
+ // CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
+ if (!CP.isPartial()) {
+ const TargetRegisterClass *RC = MRI->getRegClass(CP.getSrcReg());
+ unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
+ unsigned Length = LIS->getApproximateInstructionCount(JoinVInt);
+ if (Length > Threshold) {
+ ++numAborts;
+ DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
+ return false;
+ }
+ }
+ return true;
+}
+
+/// isWinToJoinCrossClass - Return true if it's profitable to coalesce
+/// two virtual registers from different register classes.
+bool
+RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
+ unsigned DstReg,
+ const TargetRegisterClass *SrcRC,
+ const TargetRegisterClass *DstRC,
+ const TargetRegisterClass *NewRC) {
+ unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
+ // This heuristics is good enough in practice, but it's obviously not *right*.
+ // 4 is a magic number that works well enough for x86, ARM, etc. It filter
+ // out all but the most restrictive register classes.
+ if (NewRCCount > 4 ||
+ // Early exit if the function is fairly small, coalesce aggressively if
+ // that's the case. For really special register classes with 3 or
+ // fewer registers, be a bit more careful.
+ (LIS->getFuncInstructionCount() / NewRCCount) < 8)
+ return true;
+ LiveInterval &SrcInt = LIS->getInterval(SrcReg);
+ LiveInterval &DstInt = LIS->getInterval(DstReg);
+ unsigned SrcSize = LIS->getApproximateInstructionCount(SrcInt);
+ unsigned DstSize = LIS->getApproximateInstructionCount(DstInt);
+
+ // Coalesce aggressively if the intervals are small compared to the number of
+ // registers in the new class. The number 4 is fairly arbitrary, chosen to be
+ // less aggressive than the 8 used for the whole function size.
+ const unsigned ThresSize = 4 * NewRCCount;
+ if (SrcSize <= ThresSize && DstSize <= ThresSize)
+ return true;
+
+ // Estimate *register use density*. If it doubles or more, abort.
+ unsigned SrcUses = std::distance(MRI->use_nodbg_begin(SrcReg),
+ MRI->use_nodbg_end());
+ unsigned DstUses = std::distance(MRI->use_nodbg_begin(DstReg),
+ MRI->use_nodbg_end());
+ unsigned NewUses = SrcUses + DstUses;
+ unsigned NewSize = SrcSize + DstSize;
+ if (SrcRC != NewRC && SrcSize > ThresSize) {
+ unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
+ if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
+ return false;
+ }
+ if (DstRC != NewRC && DstSize > ThresSize) {
+ unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
+ if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
+ return false;
+ }
+ return true;
+}
+
+
+/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
+/// which are the src/dst of the copy instruction CopyMI. This returns true
+/// if the copy was successfully coalesced away. If it is not currently
+/// possible to coalesce this interval, but it may be possible if other
+/// things get coalesced, then it returns true by reference in 'Again'.
+bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
+
+ Again = false;
+ if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
+ return false; // Already done.
+
+ DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
+
+ CoalescerPair CP(*TII, *TRI);
+ if (!CP.setRegisters(CopyMI)) {
+ DEBUG(dbgs() << "\tNot coalescable.\n");
+ return false;
+ }
+
+ // If they are already joined we continue.
+ if (CP.getSrcReg() == CP.getDstReg()) {
+ markAsJoined(CopyMI);
+ DEBUG(dbgs() << "\tCopy already coalesced.\n");
+ return false; // Not coalescable.
+ }
+
+ // Eliminate undefs.
+ if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
+ markAsJoined(CopyMI);
+ DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
+ return false; // Not coalescable.
+ }
+
+ DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
+ << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSubIdx())
+ << "\n");
+
+ // Enforce policies.
+ if (CP.isPhys()) {
+ if (!shouldJoinPhys(CP)) {
+ // Before giving up coalescing, if definition of source is defined by
+ // trivial computation, try rematerializing it.
+ if (!CP.isFlipped() &&
+ ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
+ CP.getDstReg(), CopyMI))
+ return true;
+ return false;
+ }
+ } else {
+ // Avoid constraining virtual register regclass too much.
+ if (CP.isCrossClass()) {
+ DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
+ if (DisableCrossClassJoin) {
+ DEBUG(dbgs() << "\tCross-class joins disabled.\n");
+ return false;
+ }
+ if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
+ MRI->getRegClass(CP.getSrcReg()),
+ MRI->getRegClass(CP.getDstReg()),
+ CP.getNewRC())) {
+ DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+ }
+
+ // When possible, let DstReg be the larger interval.
+ if (!CP.getSubIdx() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
+ LIS->getInterval(CP.getDstReg()).ranges.size())
+ CP.flip();
+ }
+
+ // Okay, attempt to join these two intervals. On failure, this returns false.
+ // Otherwise, if one of the intervals being joined is a physreg, this method
+ // always canonicalizes DstInt to be it. The output "SrcInt" will not have
+ // been modified, so we can use this information below to update aliases.
+ if (!JoinIntervals(CP)) {
+ // Coalescing failed.
+
+ // If definition of source is defined by trivial computation, try
+ // rematerializing it.
+ if (!CP.isFlipped() &&
+ ReMaterializeTrivialDef(LIS->getInterval(CP.getSrcReg()), true,
+ CP.getDstReg(), CopyMI))
+ return true;
+
+ // If we can eliminate the copy without merging the live ranges, do so now.
+ if (!CP.isPartial()) {
+ if (AdjustCopiesBackFrom(CP, CopyMI) ||
+ RemoveCopyByCommutingDef(CP, CopyMI)) {
+ markAsJoined(CopyMI);
+ DEBUG(dbgs() << "\tTrivial!\n");
+ return true;
+ }
+ }
+
+ // Otherwise, we are unable to join the intervals.
+ DEBUG(dbgs() << "\tInterference!\n");
+ Again = true; // May be possible to coalesce later.
+ return false;
+ }
+
+ // Coalescing to a virtual register that is of a sub-register class of the
+ // other. Make sure the resulting register is set to the right register class.
+ if (CP.isCrossClass()) {
+ ++numCrossRCs;
+ MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
+ }
+
+ // Remember to delete the copy instruction.
+ markAsJoined(CopyMI);
+
+ UpdateRegDefsUses(CP);
+
+ // If we have extended the live range of a physical register, make sure we
+ // update live-in lists as well.
+ if (CP.isPhys()) {
+ SmallVector<MachineBasicBlock*, 16> BlockSeq;
+ // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
+ // ranges for this, and they are preserved.
+ LiveInterval &SrcInt = LIS->getInterval(CP.getSrcReg());
+ for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
+ I != E; ++I ) {
+ LIS->findLiveInMBBs(I->start, I->end, BlockSeq);
+ for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
+ MachineBasicBlock &block = *BlockSeq[idx];
+ if (!block.isLiveIn(CP.getDstReg()))
+ block.addLiveIn(CP.getDstReg());
+ }
+ BlockSeq.clear();
+ }
+ }
+
+ // SrcReg is guaranteed to be the register whose live interval that is
+ // being merged.
+ LIS->removeInterval(CP.getSrcReg());
+
+ // Update regalloc hint.
+ TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
+
+ DEBUG({
+ LiveInterval &DstInt = LIS->getInterval(CP.getDstReg());
+ dbgs() << "\tJoined. Result = ";
+ DstInt.print(dbgs(), TRI);
+ dbgs() << "\n";
+ });
+
+ ++numJoins;
+ return true;
+}
+
+/// ComputeUltimateVN - Assuming we are going to join two live intervals,
+/// compute what the resultant value numbers for each value in the input two
+/// ranges will be. This is complicated by copies between the two which can
+/// and will commonly cause multiple value numbers to be merged into one.
+///
+/// VN is the value number that we're trying to resolve. InstDefiningValue
+/// keeps track of the new InstDefiningValue assignment for the result
+/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
+/// whether a value in this or other is a copy from the opposite set.
+/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
+/// already been assigned.
+///
+/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
+/// contains the value number the copy is from.
+///
+static unsigned ComputeUltimateVN(VNInfo *VNI,
+ SmallVector<VNInfo*, 16> &NewVNInfo,
+ DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
+ DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
+ SmallVector<int, 16> &ThisValNoAssignments,
+ SmallVector<int, 16> &OtherValNoAssignments) {
+ unsigned VN = VNI->id;
+
+ // If the VN has already been computed, just return it.
+ if (ThisValNoAssignments[VN] >= 0)
+ return ThisValNoAssignments[VN];
+ assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
+
+ // If this val is not a copy from the other val, then it must be a new value
+ // number in the destination.
+ DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
+ if (I == ThisFromOther.end()) {
+ NewVNInfo.push_back(VNI);
+ return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
+ }
+ VNInfo *OtherValNo = I->second;
+
+ // Otherwise, this *is* a copy from the RHS. If the other side has already
+ // been computed, return it.
+ if (OtherValNoAssignments[OtherValNo->id] >= 0)
+ return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
+
+ // Mark this value number as currently being computed, then ask what the
+ // ultimate value # of the other value is.
+ ThisValNoAssignments[VN] = -2;
+ unsigned UltimateVN =
+ ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
+ OtherValNoAssignments, ThisValNoAssignments);
+ return ThisValNoAssignments[VN] = UltimateVN;
+}
+
+
+// Find out if we have something like
+// A = X
+// B = X
+// if so, we can pretend this is actually
+// A = X
+// B = A
+// which allows us to coalesce A and B.
+// VNI is the definition of B. LR is the life range of A that includes
+// the slot just before B. If we return true, we add "B = X" to DupCopies.
+// This implies that A dominates B.
+static bool RegistersDefinedFromSameValue(LiveIntervals &li,
+ const TargetRegisterInfo &tri,
+ CoalescerPair &CP,
+ VNInfo *VNI,
+ LiveRange *LR,
+ SmallVector<MachineInstr*, 8> &DupCopies) {
+ // FIXME: This is very conservative. For example, we don't handle
+ // physical registers.
+
+ MachineInstr *MI = li.getInstructionFromIndex(VNI->def);
+
+ if (!MI || !MI->isFullCopy() || CP.isPartial() || CP.isPhys())
+ return false;
+
+ unsigned Dst = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+
+ if (!TargetRegisterInfo::isVirtualRegister(Src) ||
+ !TargetRegisterInfo::isVirtualRegister(Dst))
+ return false;
+
+ unsigned A = CP.getDstReg();
+ unsigned B = CP.getSrcReg();
+
+ if (B == Dst)
+ std::swap(A, B);
+ assert(Dst == A);
+
+ VNInfo *Other = LR->valno;
+ const MachineInstr *OtherMI = li.getInstructionFromIndex(Other->def);
+
+ if (!OtherMI || !OtherMI->isFullCopy())
+ return false;
+
+ unsigned OtherDst = OtherMI->getOperand(0).getReg();
+ unsigned OtherSrc = OtherMI->getOperand(1).getReg();
+
+ if (!TargetRegisterInfo::isVirtualRegister(OtherSrc) ||
+ !TargetRegisterInfo::isVirtualRegister(OtherDst))
+ return false;
+
+ assert(OtherDst == B);
+
+ if (Src != OtherSrc)
+ return false;
+
+ // If the copies use two different value numbers of X, we cannot merge
+ // A and B.
+ LiveInterval &SrcInt = li.getInterval(Src);
+ // getVNInfoBefore returns NULL for undef copies. In this case, the
+ // optimization is still safe.
+ if (SrcInt.getVNInfoBefore(Other->def) != SrcInt.getVNInfoBefore(VNI->def))
+ return false;
+
+ DupCopies.push_back(MI);
+
+ return true;
+}
+
+/// JoinIntervals - Attempt to join these two intervals. On failure, this
+/// returns false.
+bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
+ LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
+ DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), TRI); dbgs() << "\n"; });
+
+ // If a live interval is a physical register, check for interference with any
+ // aliases. The interference check implemented here is a bit more conservative
+ // than the full interfeence check below. We allow overlapping live ranges
+ // only when one is a copy of the other.
+ if (CP.isPhys()) {
+ // Optimization for reserved registers like ESP.
+ // We can only merge with a reserved physreg if RHS has a single value that
+ // is a copy of CP.DstReg(). The live range of the reserved register will
+ // look like a set of dead defs - we don't properly track the live range of
+ // reserved registers.
+ if (RegClassInfo.isReserved(CP.getDstReg())) {
+ assert(CP.isFlipped() && RHS.containsOneValue() &&
+ "Invalid join with reserved register");
+ // Deny any overlapping intervals. This depends on all the reserved
+ // register live ranges to look like dead defs.
+ for (const uint16_t *AS = TRI->getOverlaps(CP.getDstReg()); *AS; ++AS) {
+ if (!LIS->hasInterval(*AS)) {
+ // Make sure at least DstReg itself exists before attempting a join.
+ if (*AS == CP.getDstReg())
+ LIS->getOrCreateInterval(CP.getDstReg());
+ continue;
+ }
+ if (RHS.overlaps(LIS->getInterval(*AS))) {
+ DEBUG(dbgs() << "\t\tInterference: " << PrintReg(*AS, TRI) << '\n');
+ return false;
+ }
+ }
+ // Skip any value computations, we are not adding new values to the
+ // reserved register. Also skip merging the live ranges, the reserved
+ // register live range doesn't need to be accurate as long as all the
+ // defs are there.
+ return true;
+ }
+
+ // Check if a register mask clobbers DstReg.
+ BitVector UsableRegs;
+ if (LIS->checkRegMaskInterference(RHS, UsableRegs) &&
+ !UsableRegs.test(CP.getDstReg())) {
+ DEBUG(dbgs() << "\t\tRegister mask interference.\n");
+ return false;
+ }
+
+ for (const uint16_t *AS = TRI->getAliasSet(CP.getDstReg()); *AS; ++AS){
+ if (!LIS->hasInterval(*AS))
+ continue;
+ const LiveInterval &LHS = LIS->getInterval(*AS);
+ LiveInterval::const_iterator LI = LHS.begin();
+ for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
+ RI != RE; ++RI) {
+ LI = std::lower_bound(LI, LHS.end(), RI->start);
+ // Does LHS have an overlapping live range starting before RI?
+ if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
+ (RI->start != RI->valno->def ||
+ !CP.isCoalescable(LIS->getInstructionFromIndex(RI->start)))) {
+ DEBUG({
+ dbgs() << "\t\tInterference from alias: ";
+ LHS.print(dbgs(), TRI);
+ dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
+ });
+ return false;
+ }
+
+ // Check that LHS ranges beginning in this range are copies.
+ for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
+ if (LI->start != LI->valno->def ||
+ !CP.isCoalescable(LIS->getInstructionFromIndex(LI->start))) {
+ DEBUG({
+ dbgs() << "\t\tInterference from alias: ";
+ LHS.print(dbgs(), TRI);
+ dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
+ });
+ return false;
+ }
+ }
+ }
+ }
+ }
+
+ // Compute the final value assignment, assuming that the live ranges can be
+ // coalesced.
+ SmallVector<int, 16> LHSValNoAssignments;
+ SmallVector<int, 16> RHSValNoAssignments;
+ DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
+ DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
+ SmallVector<VNInfo*, 16> NewVNInfo;
+
+ SmallVector<MachineInstr*, 8> DupCopies;
+
+ LiveInterval &LHS = LIS->getOrCreateInterval(CP.getDstReg());
+ DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), TRI); dbgs() << "\n"; });
+
+ // Loop over the value numbers of the LHS, seeing if any are defined from
+ // the RHS.
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || VNI->isPHIDef())
+ continue;
+ MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
+ assert(MI && "Missing def");
+ if (!MI->isCopyLike()) // Src not defined by a copy?
+ continue;
+
+ // Figure out the value # from the RHS.
+ LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
+ // The copy could be to an aliased physreg.
+ if (!lr) continue;
+
+ // DstReg is known to be a register in the LHS interval. If the src is
+ // from the RHS interval, we can use its value #.
+ if (!CP.isCoalescable(MI) &&
+ !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
+ continue;
+
+ LHSValsDefinedFromRHS[VNI] = lr->valno;
+ }
+
+ // Loop over the value numbers of the RHS, seeing if any are defined from
+ // the LHS.
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ if (VNI->isUnused() || VNI->isPHIDef())
+ continue;
+ MachineInstr *MI = LIS->getInstructionFromIndex(VNI->def);
+ assert(MI && "Missing def");
+ if (!MI->isCopyLike()) // Src not defined by a copy?
+ continue;
+
+ // Figure out the value # from the LHS.
+ LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
+ // The copy could be to an aliased physreg.
+ if (!lr) continue;
+
+ // DstReg is known to be a register in the RHS interval. If the src is
+ // from the LHS interval, we can use its value #.
+ if (!CP.isCoalescable(MI) &&
+ !RegistersDefinedFromSameValue(*LIS, *TRI, CP, VNI, lr, DupCopies))
+ continue;
+
+ RHSValsDefinedFromLHS[VNI] = lr->valno;
+ }
+
+ LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
+ RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
+ NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
+
+ for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ ComputeUltimateVN(VNI, NewVNInfo,
+ LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
+ LHSValNoAssignments, RHSValNoAssignments);
+ }
+ for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
+ i != e; ++i) {
+ VNInfo *VNI = *i;
+ unsigned VN = VNI->id;
+ if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
+ continue;
+ // If this value number isn't a copy from the LHS, it's a new number.
+ if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
+ NewVNInfo.push_back(VNI);
+ RHSValNoAssignments[VN] = NewVNInfo.size()-1;
+ continue;
+ }
+
+ ComputeUltimateVN(VNI, NewVNInfo,
+ RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
+ RHSValNoAssignments, LHSValNoAssignments);
+ }
+
+ // Armed with the mappings of LHS/RHS values to ultimate values, walk the
+ // interval lists to see if these intervals are coalescable.
+ LiveInterval::const_iterator I = LHS.begin();
+ LiveInterval::const_iterator IE = LHS.end();
+ LiveInterval::const_iterator J = RHS.begin();
+ LiveInterval::const_iterator JE = RHS.end();
+
+ // Skip ahead until the first place of potential sharing.
+ if (I != IE && J != JE) {
+ if (I->start < J->start) {
+ I = std::upper_bound(I, IE, J->start);
+ if (I != LHS.begin()) --I;
+ } else if (J->start < I->start) {
+ J = std::upper_bound(J, JE, I->start);
+ if (J != RHS.begin()) --J;
+ }
+ }
+
+ while (I != IE && J != JE) {
+ // Determine if these two live ranges overlap.
+ bool Overlaps;
+ if (I->start < J->start) {
+ Overlaps = I->end > J->start;
+ } else {
+ Overlaps = J->end > I->start;
+ }
+
+ // If so, check value # info to determine if they are really different.
+ if (Overlaps) {
+ // If the live range overlap will map to the same value number in the
+ // result liverange, we can still coalesce them. If not, we can't.
+ if (LHSValNoAssignments[I->valno->id] !=
+ RHSValNoAssignments[J->valno->id])
+ return false;
+ }
+
+ if (I->end < J->end)
+ ++I;
+ else
+ ++J;
+ }
+
+ // Update kill info. Some live ranges are extended due to copy coalescing.
+ for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
+ E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
+ VNInfo *VNI = I->first;
+ unsigned LHSValID = LHSValNoAssignments[VNI->id];
+ if (VNI->hasPHIKill())
+ NewVNInfo[LHSValID]->setHasPHIKill(true);
+ }
+
+ // Update kill info. Some live ranges are extended due to copy coalescing.
+ for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
+ E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
+ VNInfo *VNI = I->first;
+ unsigned RHSValID = RHSValNoAssignments[VNI->id];
+ if (VNI->hasPHIKill())
+ NewVNInfo[RHSValID]->setHasPHIKill(true);
+ }
+
+ if (LHSValNoAssignments.empty())
+ LHSValNoAssignments.push_back(-1);
+ if (RHSValNoAssignments.empty())
+ RHSValNoAssignments.push_back(-1);
+
+ SmallVector<unsigned, 8> SourceRegisters;
+ for (SmallVector<MachineInstr*, 8>::iterator I = DupCopies.begin(),
+ E = DupCopies.end(); I != E; ++I) {
+ MachineInstr *MI = *I;
+
+ // We have pretended that the assignment to B in
+ // A = X
+ // B = X
+ // was actually a copy from A. Now that we decided to coalesce A and B,
+ // transform the code into
+ // A = X
+ // X = X
+ // and mark the X as coalesced to keep the illusion.
+ unsigned Src = MI->getOperand(1).getReg();
+ SourceRegisters.push_back(Src);
+ MI->getOperand(0).substVirtReg(Src, 0, *TRI);
+
+ markAsJoined(MI);
+ }
+
+ // If B = X was the last use of X in a liverange, we have to shrink it now
+ // that B = X is gone.
+ for (SmallVector<unsigned, 8>::iterator I = SourceRegisters.begin(),
+ E = SourceRegisters.end(); I != E; ++I) {
+ LIS->shrinkToUses(&LIS->getInterval(*I));
+ }
+
+ // If we get here, we know that we can coalesce the live ranges. Ask the
+ // intervals to coalesce themselves now.
+ LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
+ MRI);
+ return true;
+}
+
+namespace {
+ // DepthMBBCompare - Comparison predicate that sort first based on the loop
+ // depth of the basic block (the unsigned), and then on the MBB number.
+ struct DepthMBBCompare {
+ typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
+ bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
+ // Deeper loops first
+ if (LHS.first != RHS.first)
+ return LHS.first > RHS.first;
+
+ // Prefer blocks that are more connected in the CFG. This takes care of
+ // the most difficult copies first while intervals are short.
+ unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
+ unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
+ if (cl != cr)
+ return cl > cr;
+
+ // As a last resort, sort by block number.
+ return LHS.second->getNumber() < RHS.second->getNumber();
+ }
+ };
+}
+
+void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
+ std::vector<MachineInstr*> &TryAgain) {
+ DEBUG(dbgs() << MBB->getName() << ":\n");
+
+ SmallVector<MachineInstr*, 8> VirtCopies;
+ SmallVector<MachineInstr*, 8> PhysCopies;
+ SmallVector<MachineInstr*, 8> ImpDefCopies;
+ for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
+ MII != E;) {
+ MachineInstr *Inst = MII++;
+
+ // If this isn't a copy nor a extract_subreg, we can't join intervals.
+ unsigned SrcReg, DstReg;
+ if (Inst->isCopy()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(1).getReg();
+ } else if (Inst->isSubregToReg()) {
+ DstReg = Inst->getOperand(0).getReg();
+ SrcReg = Inst->getOperand(2).getReg();
+ } else
+ continue;
+
+ bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+ bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+ if (LIS->hasInterval(SrcReg) && LIS->getInterval(SrcReg).empty())
+ ImpDefCopies.push_back(Inst);
+ else if (SrcIsPhys || DstIsPhys)
+ PhysCopies.push_back(Inst);
+ else
+ VirtCopies.push_back(Inst);
+ }
+
+ // Try coalescing implicit copies and insert_subreg <undef> first,
+ // followed by copies to / from physical registers, then finally copies
+ // from virtual registers to virtual registers.
+ for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
+ MachineInstr *TheCopy = ImpDefCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+ for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
+ MachineInstr *TheCopy = PhysCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+ for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
+ MachineInstr *TheCopy = VirtCopies[i];
+ bool Again = false;
+ if (!JoinCopy(TheCopy, Again))
+ if (Again)
+ TryAgain.push_back(TheCopy);
+ }
+}
+
+void RegisterCoalescer::joinIntervals() {
+ DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
+
+ std::vector<MachineInstr*> TryAgainList;
+ if (Loops->empty()) {
+ // If there are no loops in the function, join intervals in function order.
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end();
+ I != E; ++I)
+ CopyCoalesceInMBB(I, TryAgainList);
+ } else {
+ // Otherwise, join intervals in inner loops before other intervals.
+ // Unfortunately we can't just iterate over loop hierarchy here because
+ // there may be more MBB's than BB's. Collect MBB's for sorting.
+
+ // Join intervals in the function prolog first. We want to join physical
+ // registers with virtual registers before the intervals got too long.
+ std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
+ for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
+ MachineBasicBlock *MBB = I;
+ MBBs.push_back(std::make_pair(Loops->getLoopDepth(MBB), I));
+ }
+
+ // Sort by loop depth.
+ std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
+
+ // Finally, join intervals in loop nest order.
+ for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
+ CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
+ }
+
+ // Joining intervals can allow other intervals to be joined. Iteratively join
+ // until we make no progress.
+ bool ProgressMade = true;
+ while (ProgressMade) {
+ ProgressMade = false;
+
+ for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
+ MachineInstr *&TheCopy = TryAgainList[i];
+ if (!TheCopy)
+ continue;
+
+ bool Again = false;
+ bool Success = JoinCopy(TheCopy, Again);
+ if (Success || !Again) {
+ TheCopy= 0; // Mark this one as done.
+ ProgressMade = true;
+ }
+ }
+ }
+}
+
+void RegisterCoalescer::releaseMemory() {
+ JoinedCopies.clear();
+ ReMatCopies.clear();
+ ReMatDefs.clear();
+}
+
+bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
+ MF = &fn;
+ MRI = &fn.getRegInfo();
+ TM = &fn.getTarget();
+ TRI = TM->getRegisterInfo();
+ TII = TM->getInstrInfo();
+ LIS = &getAnalysis<LiveIntervals>();
+ LDV = &getAnalysis<LiveDebugVariables>();
+ AA = &getAnalysis<AliasAnalysis>();
+ Loops = &getAnalysis<MachineLoopInfo>();
+
+ DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
+ << "********** Function: "
+ << ((Value*)MF->getFunction())->getName() << '\n');
+
+ if (VerifyCoalescing)
+ MF->verify(this, "Before register coalescing");
+
+ RegClassInfo.runOnMachineFunction(fn);
+
+ // Join (coalesce) intervals if requested.
+ if (EnableJoining) {
+ joinIntervals();
+ DEBUG({
+ dbgs() << "********** INTERVALS POST JOINING **********\n";
+ for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end();
+ I != E; ++I){
+ I->second->print(dbgs(), TRI);
+ dbgs() << "\n";
+ }
+ });
+ }
+
+ // Perform a final pass over the instructions and compute spill weights
+ // and remove identity moves.
+ SmallVector<unsigned, 4> DeadDefs, InflateRegs;
+ for (MachineFunction::iterator mbbi = MF->begin(), mbbe = MF->end();
+ mbbi != mbbe; ++mbbi) {
+ MachineBasicBlock* mbb = mbbi;
+ for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
+ mii != mie; ) {
+ MachineInstr *MI = mii;
+ if (JoinedCopies.count(MI)) {
+ // Delete all coalesced copies.
+ bool DoDelete = true;
+ assert(MI->isCopyLike() && "Unrecognized copy instruction");
+ unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
+ unsigned DstReg = MI->getOperand(0).getReg();
+
+ // Collect candidates for register class inflation.
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+ RegClassInfo.isProperSubClass(MRI->getRegClass(SrcReg)))
+ InflateRegs.push_back(SrcReg);
+ if (TargetRegisterInfo::isVirtualRegister(DstReg) &&
+ RegClassInfo.isProperSubClass(MRI->getRegClass(DstReg)))
+ InflateRegs.push_back(DstReg);
+
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ MI->getNumOperands() > 2)
+ // Do not delete extract_subreg, insert_subreg of physical
+ // registers unless the definition is dead. e.g.
+ // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
+ // or else the scavenger may complain. LowerSubregs will
+ // delete them later.
+ DoDelete = false;
+
+ if (MI->allDefsAreDead()) {
+ if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+ LIS->hasInterval(SrcReg))
+ LIS->shrinkToUses(&LIS->getInterval(SrcReg));
+ DoDelete = true;
+ }
+ if (!DoDelete) {
+ // We need the instruction to adjust liveness, so make it a KILL.
+ if (MI->isSubregToReg()) {
+ MI->RemoveOperand(3);
+ MI->RemoveOperand(1);
+ }
+ MI->setDesc(TII->get(TargetOpcode::KILL));
+ mii = llvm::next(mii);
+ } else {
+ LIS->RemoveMachineInstrFromMaps(MI);
+ mii = mbbi->erase(mii);
+ ++numPeep;
+ }
+ continue;
+ }
+
+ // Now check if this is a remat'ed def instruction which is now dead.
+ if (ReMatDefs.count(MI)) {
+ bool isDead = true;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ DeadDefs.push_back(Reg);
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // Remat may also enable register class inflation.
+ if (RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)))
+ InflateRegs.push_back(Reg);
+ }
+ if (MO.isDead())
+ continue;
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ !MRI->use_nodbg_empty(Reg)) {
+ isDead = false;
+ break;
+ }
+ }
+ if (isDead) {
+ while (!DeadDefs.empty()) {
+ unsigned DeadDef = DeadDefs.back();
+ DeadDefs.pop_back();
+ RemoveDeadDef(LIS->getInterval(DeadDef), MI);
+ }
+ LIS->RemoveMachineInstrFromMaps(mii);
+ mii = mbbi->erase(mii);
+ continue;
+ } else
+ DeadDefs.clear();
+ }
+
+ ++mii;
+
+ // Check for now unnecessary kill flags.
+ if (LIS->isNotInMIMap(MI)) continue;
+ SlotIndex DefIdx = LIS->getInstructionIndex(MI).getRegSlot();
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isKill()) continue;
+ unsigned reg = MO.getReg();
+ if (!reg || !LIS->hasInterval(reg)) continue;
+ if (!LIS->getInterval(reg).killedAt(DefIdx)) {
+ MO.setIsKill(false);
+ continue;
+ }
+ // When leaving a kill flag on a physreg, check if any subregs should
+ // remain alive.
+ if (!TargetRegisterInfo::isPhysicalRegister(reg))
+ continue;
+ for (const uint16_t *SR = TRI->getSubRegisters(reg);
+ unsigned S = *SR; ++SR)
+ if (LIS->hasInterval(S) && LIS->getInterval(S).liveAt(DefIdx))
+ MI->addRegisterDefined(S, TRI);
+ }
+ }
+ }
+
+ // After deleting a lot of copies, register classes may be less constrained.
+ // Removing sub-register opreands may alow GR32_ABCD -> GR32 and DPR_VFP2 ->
+ // DPR inflation.
+ array_pod_sort(InflateRegs.begin(), InflateRegs.end());
+ InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
+ InflateRegs.end());
+ DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
+ for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
+ unsigned Reg = InflateRegs[i];
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ if (MRI->recomputeRegClass(Reg, *TM)) {
+ DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
+ << MRI->getRegClass(Reg)->getName() << '\n');
+ ++NumInflated;
+ }
+ }
+
+ DEBUG(dump());
+ DEBUG(LDV->dump());
+ if (VerifyCoalescing)
+ MF->verify(this, "After register coalescing");
+ return true;
+}
+
+/// print - Implement the dump method.
+void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
+ LIS->print(O, m);
+}
OpenPOWER on IntegriCloud