diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp | 730 |
1 files changed, 730 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp b/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp new file mode 100644 index 0000000..eb7e563 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/RegAllocPBQP.cpp @@ -0,0 +1,730 @@ +//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based +// register allocator for LLVM. This allocator works by constructing a PBQP +// problem representing the register allocation problem under consideration, +// solving this using a PBQP solver, and mapping the solution back to a +// register assignment. If any variables are selected for spilling then spill +// code is inserted and the process repeated. +// +// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned +// for register allocation. For more information on PBQP for register +// allocation, see the following papers: +// +// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with +// PBQP. In Proceedings of the 7th Joint Modular Languages Conference +// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. +// +// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular +// architectures. In Proceedings of the Joint Conference on Languages, +// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, +// NY, USA, 139-148. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/RegAllocPBQP.h" +#include "RegisterCoalescer.h" +#include "Spiller.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/LiveRangeEdit.h" +#include "llvm/CodeGen/LiveStackAnalysis.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetSubtargetInfo.h" +#include <limits> +#include <memory> +#include <queue> +#include <set> +#include <sstream> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "regalloc" + +static RegisterRegAlloc +RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", + createDefaultPBQPRegisterAllocator); + +static cl::opt<bool> +PBQPCoalescing("pbqp-coalescing", + cl::desc("Attempt coalescing during PBQP register allocation."), + cl::init(false), cl::Hidden); + +#ifndef NDEBUG +static cl::opt<bool> +PBQPDumpGraphs("pbqp-dump-graphs", + cl::desc("Dump graphs for each function/round in the compilation unit."), + cl::init(false), cl::Hidden); +#endif + +namespace { + +/// +/// PBQP based allocators solve the register allocation problem by mapping +/// register allocation problems to Partitioned Boolean Quadratic +/// Programming problems. +class RegAllocPBQP : public MachineFunctionPass { +public: + + static char ID; + + /// Construct a PBQP register allocator. + RegAllocPBQP(char *cPassID = nullptr) + : MachineFunctionPass(ID), customPassID(cPassID) { + initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); + initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); + initializeLiveStacksPass(*PassRegistry::getPassRegistry()); + initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); + } + + /// Return the pass name. + const char* getPassName() const override { + return "PBQP Register Allocator"; + } + + /// PBQP analysis usage. + void getAnalysisUsage(AnalysisUsage &au) const override; + + /// Perform register allocation + bool runOnMachineFunction(MachineFunction &MF) override; + +private: + + typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; + typedef std::vector<const LiveInterval*> Node2LIMap; + typedef std::vector<unsigned> AllowedSet; + typedef std::vector<AllowedSet> AllowedSetMap; + typedef std::pair<unsigned, unsigned> RegPair; + typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; + typedef std::set<unsigned> RegSet; + + char *customPassID; + + RegSet VRegsToAlloc, EmptyIntervalVRegs; + + /// \brief Finds the initial set of vreg intervals to allocate. + void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); + + /// \brief Constructs an initial graph. + void initializeGraph(PBQPRAGraph &G); + + /// \brief Given a solved PBQP problem maps this solution back to a register + /// assignment. + bool mapPBQPToRegAlloc(const PBQPRAGraph &G, + const PBQP::Solution &Solution, + VirtRegMap &VRM, + Spiller &VRegSpiller); + + /// \brief Postprocessing before final spilling. Sets basic block "live in" + /// variables. + void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, + VirtRegMap &VRM) const; + +}; + +char RegAllocPBQP::ID = 0; + +/// @brief Set spill costs for each node in the PBQP reg-alloc graph. +class SpillCosts : public PBQPRAConstraint { +public: + void apply(PBQPRAGraph &G) override { + LiveIntervals &LIS = G.getMetadata().LIS; + + // A minimum spill costs, so that register constraints can can be set + // without normalization in the [0.0:MinSpillCost( interval. + const PBQP::PBQPNum MinSpillCost = 10.0; + + for (auto NId : G.nodeIds()) { + PBQP::PBQPNum SpillCost = + LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight; + if (SpillCost == 0.0) + SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); + else + SpillCost += MinSpillCost; + PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); + NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; + G.setNodeCosts(NId, std::move(NodeCosts)); + } + } +}; + +/// @brief Add interference edges between overlapping vregs. +class Interference : public PBQPRAConstraint { +private: + +private: + + typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr; + typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IMatrixKey; + typedef DenseMap<IMatrixKey, PBQPRAGraph::MatrixPtr> IMatrixCache; + + // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required + // for the fast interference graph construction algorithm. The last is there + // to save us from looking up node ids via the VRegToNode map in the graph + // metadata. + typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId> + IntervalInfo; + + static SlotIndex getStartPoint(const IntervalInfo &I) { + return std::get<0>(I)->segments[std::get<1>(I)].start; + } + + static SlotIndex getEndPoint(const IntervalInfo &I) { + return std::get<0>(I)->segments[std::get<1>(I)].end; + } + + static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { + return std::get<2>(I); + } + + static bool lowestStartPoint(const IntervalInfo &I1, + const IntervalInfo &I2) { + // Condition reversed because priority queue has the *highest* element at + // the front, rather than the lowest. + return getStartPoint(I1) > getStartPoint(I2); + } + + static bool lowestEndPoint(const IntervalInfo &I1, + const IntervalInfo &I2) { + SlotIndex E1 = getEndPoint(I1); + SlotIndex E2 = getEndPoint(I2); + + if (E1 < E2) + return true; + + if (E1 > E2) + return false; + + // If two intervals end at the same point, we need a way to break the tie or + // the set will assume they're actually equal and refuse to insert a + // "duplicate". Just compare the vregs - fast and guaranteed unique. + return std::get<0>(I1)->reg < std::get<0>(I2)->reg; + } + + static bool isAtLastSegment(const IntervalInfo &I) { + return std::get<1>(I) == std::get<0>(I)->size() - 1; + } + + static IntervalInfo nextSegment(const IntervalInfo &I) { + return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); + } + +public: + + void apply(PBQPRAGraph &G) override { + // The following is loosely based on the linear scan algorithm introduced in + // "Linear Scan Register Allocation" by Poletto and Sarkar. This version + // isn't linear, because the size of the active set isn't bound by the + // number of registers, but rather the size of the largest clique in the + // graph. Still, we expect this to be better than N^2. + LiveIntervals &LIS = G.getMetadata().LIS; + + // Interferenc matrices are incredibly regular - they're only a function of + // the allowed sets, so we cache them to avoid the overhead of constructing + // and uniquing them. + IMatrixCache C; + + typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet; + typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, + decltype(&lowestStartPoint)> IntervalQueue; + IntervalSet Active(lowestEndPoint); + IntervalQueue Inactive(lowestStartPoint); + + // Start by building the inactive set. + for (auto NId : G.nodeIds()) { + unsigned VReg = G.getNodeMetadata(NId).getVReg(); + LiveInterval &LI = LIS.getInterval(VReg); + assert(!LI.empty() && "PBQP graph contains node for empty interval"); + Inactive.push(std::make_tuple(&LI, 0, NId)); + } + + while (!Inactive.empty()) { + // Tentatively grab the "next" interval - this choice may be overriden + // below. + IntervalInfo Cur = Inactive.top(); + + // Retire any active intervals that end before Cur starts. + IntervalSet::iterator RetireItr = Active.begin(); + while (RetireItr != Active.end() && + (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { + // If this interval has subsequent segments, add the next one to the + // inactive list. + if (!isAtLastSegment(*RetireItr)) + Inactive.push(nextSegment(*RetireItr)); + + ++RetireItr; + } + Active.erase(Active.begin(), RetireItr); + + // One of the newly retired segments may actually start before the + // Cur segment, so re-grab the front of the inactive list. + Cur = Inactive.top(); + Inactive.pop(); + + // At this point we know that Cur overlaps all active intervals. Add the + // interference edges. + PBQP::GraphBase::NodeId NId = getNodeId(Cur); + for (const auto &A : Active) { + PBQP::GraphBase::NodeId MId = getNodeId(A); + + // Check that we haven't already added this edge + // FIXME: findEdge is expensive in the worst case (O(max_clique(G))). + // It might be better to replace this with a local bit-matrix. + if (G.findEdge(NId, MId) != PBQPRAGraph::invalidEdgeId()) + continue; + + // This is a new edge - add it to the graph. + createInterferenceEdge(G, NId, MId, C); + } + + // Finally, add Cur to the Active set. + Active.insert(Cur); + } + } + +private: + + void createInterferenceEdge(PBQPRAGraph &G, PBQPRAGraph::NodeId NId, + PBQPRAGraph::NodeId MId, IMatrixCache &C) { + + const TargetRegisterInfo &TRI = + *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo(); + + const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); + const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); + + // Try looking the edge costs up in the IMatrixCache first. + IMatrixKey K(&NRegs, &MRegs); + IMatrixCache::iterator I = C.find(K); + if (I != C.end()) { + G.addEdgeBypassingCostAllocator(NId, MId, I->second); + return; + } + + PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); + for (unsigned I = 0; I != NRegs.size(); ++I) { + unsigned PRegN = NRegs[I]; + for (unsigned J = 0; J != MRegs.size(); ++J) { + unsigned PRegM = MRegs[J]; + if (TRI.regsOverlap(PRegN, PRegM)) + M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); + } + } + + PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); + C[K] = G.getEdgeCostsPtr(EId); + } +}; + + +class Coalescing : public PBQPRAConstraint { +public: + void apply(PBQPRAGraph &G) override { + MachineFunction &MF = G.getMetadata().MF; + MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; + CoalescerPair CP(*MF.getTarget().getSubtargetImpl()->getRegisterInfo()); + + // Scan the machine function and add a coalescing cost whenever CoalescerPair + // gives the Ok. + for (const auto &MBB : MF) { + for (const auto &MI : MBB) { + + // Skip not-coalescable or already coalesced copies. + if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) + continue; + + unsigned DstReg = CP.getDstReg(); + unsigned SrcReg = CP.getSrcReg(); + + const float Scale = 1.0f / MBFI.getEntryFreq(); + PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale; + + if (CP.isPhys()) { + if (!MF.getRegInfo().isAllocatable(DstReg)) + continue; + + PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); + + const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = + G.getNodeMetadata(NId).getAllowedRegs(); + + unsigned PRegOpt = 0; + while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg) + ++PRegOpt; + + if (PRegOpt < Allowed.size()) { + PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); + NewCosts[PRegOpt + 1] -= CBenefit; + G.setNodeCosts(NId, std::move(NewCosts)); + } + } else { + PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); + PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); + const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = + &G.getNodeMetadata(N1Id).getAllowedRegs(); + const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = + &G.getNodeMetadata(N2Id).getAllowedRegs(); + + PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); + if (EId == G.invalidEdgeId()) { + PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, + Allowed2->size() + 1, 0); + addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); + G.addEdge(N1Id, N2Id, std::move(Costs)); + } else { + if (G.getEdgeNode1Id(EId) == N2Id) { + std::swap(N1Id, N2Id); + std::swap(Allowed1, Allowed2); + } + PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); + addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); + G.setEdgeCosts(EId, std::move(Costs)); + } + } + } + } + } + +private: + + void addVirtRegCoalesce( + PBQPRAGraph::RawMatrix &CostMat, + const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, + const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, + PBQP::PBQPNum Benefit) { + assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); + assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); + for (unsigned I = 0; I != Allowed1.size(); ++I) { + unsigned PReg1 = Allowed1[I]; + for (unsigned J = 0; J != Allowed2.size(); ++J) { + unsigned PReg2 = Allowed2[J]; + if (PReg1 == PReg2) + CostMat[I + 1][J + 1] -= Benefit; + } + } + } + +}; + +} // End anonymous namespace. + +// Out-of-line destructor/anchor for PBQPRAConstraint. +PBQPRAConstraint::~PBQPRAConstraint() {} +void PBQPRAConstraint::anchor() {} +void PBQPRAConstraintList::anchor() {} + +void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { + au.setPreservesCFG(); + au.addRequired<AliasAnalysis>(); + au.addPreserved<AliasAnalysis>(); + au.addRequired<SlotIndexes>(); + au.addPreserved<SlotIndexes>(); + au.addRequired<LiveIntervals>(); + au.addPreserved<LiveIntervals>(); + //au.addRequiredID(SplitCriticalEdgesID); + if (customPassID) + au.addRequiredID(*customPassID); + au.addRequired<LiveStacks>(); + au.addPreserved<LiveStacks>(); + au.addRequired<MachineBlockFrequencyInfo>(); + au.addPreserved<MachineBlockFrequencyInfo>(); + au.addRequired<MachineLoopInfo>(); + au.addPreserved<MachineLoopInfo>(); + au.addRequired<MachineDominatorTree>(); + au.addPreserved<MachineDominatorTree>(); + au.addRequired<VirtRegMap>(); + au.addPreserved<VirtRegMap>(); + MachineFunctionPass::getAnalysisUsage(au); +} + +void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, + LiveIntervals &LIS) { + const MachineRegisterInfo &MRI = MF.getRegInfo(); + + // Iterate over all live ranges. + for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(I); + if (MRI.reg_nodbg_empty(Reg)) + continue; + LiveInterval &LI = LIS.getInterval(Reg); + + // If this live interval is non-empty we will use pbqp to allocate it. + // Empty intervals we allocate in a simple post-processing stage in + // finalizeAlloc. + if (!LI.empty()) { + VRegsToAlloc.insert(LI.reg); + } else { + EmptyIntervalVRegs.insert(LI.reg); + } + } +} + +static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI, + const MachineFunction &MF) { + const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF); + for (unsigned i = 0; CSR[i] != 0; ++i) + if (TRI.regsOverlap(reg, CSR[i])) + return true; + return false; +} + +void RegAllocPBQP::initializeGraph(PBQPRAGraph &G) { + MachineFunction &MF = G.getMetadata().MF; + + LiveIntervals &LIS = G.getMetadata().LIS; + const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); + const TargetRegisterInfo &TRI = + *G.getMetadata().MF.getTarget().getSubtargetImpl()->getRegisterInfo(); + + for (auto VReg : VRegsToAlloc) { + const TargetRegisterClass *TRC = MRI.getRegClass(VReg); + LiveInterval &VRegLI = LIS.getInterval(VReg); + + // Record any overlaps with regmask operands. + BitVector RegMaskOverlaps; + LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); + + // Compute an initial allowed set for the current vreg. + std::vector<unsigned> VRegAllowed; + ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); + for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { + unsigned PReg = RawPRegOrder[I]; + if (MRI.isReserved(PReg)) + continue; + + // vregLI crosses a regmask operand that clobbers preg. + if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) + continue; + + // vregLI overlaps fixed regunit interference. + bool Interference = false; + for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { + if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { + Interference = true; + break; + } + } + if (Interference) + continue; + + // preg is usable for this virtual register. + VRegAllowed.push_back(PReg); + } + + PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); + + // Tweak cost of callee saved registers, as using then force spilling and + // restoring them. This would only happen in the prologue / epilogue though. + for (unsigned i = 0; i != VRegAllowed.size(); ++i) + if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) + NodeCosts[1 + i] += 1.0; + + PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); + G.getNodeMetadata(NId).setVReg(VReg); + G.getNodeMetadata(NId).setAllowedRegs( + G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); + G.getMetadata().setNodeIdForVReg(VReg, NId); + } +} + +bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, + const PBQP::Solution &Solution, + VirtRegMap &VRM, + Spiller &VRegSpiller) { + MachineFunction &MF = G.getMetadata().MF; + LiveIntervals &LIS = G.getMetadata().LIS; + const TargetRegisterInfo &TRI = + *MF.getTarget().getSubtargetImpl()->getRegisterInfo(); + (void)TRI; + + // Set to true if we have any spills + bool AnotherRoundNeeded = false; + + // Clear the existing allocation. + VRM.clearAllVirt(); + + // Iterate over the nodes mapping the PBQP solution to a register + // assignment. + for (auto NId : G.nodeIds()) { + unsigned VReg = G.getNodeMetadata(NId).getVReg(); + unsigned AllocOption = Solution.getSelection(NId); + + if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) { + unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1]; + DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> " + << TRI.getName(PReg) << "\n"); + assert(PReg != 0 && "Invalid preg selected."); + VRM.assignVirt2Phys(VReg, PReg); + } else { + VRegsToAlloc.erase(VReg); + SmallVector<unsigned, 8> NewSpills; + LiveRangeEdit LRE(&LIS.getInterval(VReg), NewSpills, MF, LIS, &VRM); + VRegSpiller.spill(LRE); + + DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: " + << LRE.getParent().weight << ", New vregs: "); + + // Copy any newly inserted live intervals into the list of regs to + // allocate. + for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); + I != E; ++I) { + LiveInterval &LI = LIS.getInterval(*I); + assert(!LI.empty() && "Empty spill range."); + DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " "); + VRegsToAlloc.insert(LI.reg); + } + + DEBUG(dbgs() << ")\n"); + + // We need another round if spill intervals were added. + AnotherRoundNeeded |= !LRE.empty(); + } + } + + return !AnotherRoundNeeded; +} + +void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, + LiveIntervals &LIS, + VirtRegMap &VRM) const { + MachineRegisterInfo &MRI = MF.getRegInfo(); + + // First allocate registers for the empty intervals. + for (RegSet::const_iterator + I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); + I != E; ++I) { + LiveInterval &LI = LIS.getInterval(*I); + + unsigned PReg = MRI.getSimpleHint(LI.reg); + + if (PReg == 0) { + const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg); + PReg = RC.getRawAllocationOrder(MF).front(); + } + + VRM.assignVirt2Phys(LI.reg, PReg); + } +} + +static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size, + unsigned NumInstr) { + // All intervals have a spill weight that is mostly proportional to the number + // of uses, with uses in loops having a bigger weight. + return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1); +} + +bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { + LiveIntervals &LIS = getAnalysis<LiveIntervals>(); + MachineBlockFrequencyInfo &MBFI = + getAnalysis<MachineBlockFrequencyInfo>(); + + calculateSpillWeightsAndHints(LIS, MF, getAnalysis<MachineLoopInfo>(), MBFI, + normalizePBQPSpillWeight); + + VirtRegMap &VRM = getAnalysis<VirtRegMap>(); + + std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); + + MF.getRegInfo().freezeReservedRegs(MF); + + DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); + + // Allocator main loop: + // + // * Map current regalloc problem to a PBQP problem + // * Solve the PBQP problem + // * Map the solution back to a register allocation + // * Spill if necessary + // + // This process is continued till no more spills are generated. + + // Find the vreg intervals in need of allocation. + findVRegIntervalsToAlloc(MF, LIS); + +#ifndef NDEBUG + const Function &F = *MF.getFunction(); + std::string FullyQualifiedName = + F.getParent()->getModuleIdentifier() + "." + F.getName().str(); +#endif + + // If there are non-empty intervals allocate them using pbqp. + if (!VRegsToAlloc.empty()) { + + const TargetSubtargetInfo &Subtarget = *MF.getTarget().getSubtargetImpl(); + std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = + llvm::make_unique<PBQPRAConstraintList>(); + ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>()); + ConstraintsRoot->addConstraint(llvm::make_unique<Interference>()); + if (PBQPCoalescing) + ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>()); + ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); + + bool PBQPAllocComplete = false; + unsigned Round = 0; + + while (!PBQPAllocComplete) { + DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); + + PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); + initializeGraph(G); + ConstraintsRoot->apply(G); + +#ifndef NDEBUG + if (PBQPDumpGraphs) { + std::ostringstream RS; + RS << Round; + std::string GraphFileName = FullyQualifiedName + "." + RS.str() + + ".pbqpgraph"; + std::error_code EC; + raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text); + DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" + << GraphFileName << "\"\n"); + G.dumpToStream(OS); + } +#endif + + PBQP::Solution Solution = PBQP::RegAlloc::solve(G); + PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); + ++Round; + } + } + + // Finalise allocation, allocate empty ranges. + finalizeAlloc(MF, LIS, VRM); + VRegsToAlloc.clear(); + EmptyIntervalVRegs.clear(); + + DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); + + return true; +} + +FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { + return new RegAllocPBQP(customPassID); +} + +FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { + return createPBQPRegisterAllocator(); +} + +#undef DEBUG_TYPE |