diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocLocal.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/RegAllocLocal.cpp | 1254 |
1 files changed, 1254 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocLocal.cpp b/contrib/llvm/lib/CodeGen/RegAllocLocal.cpp new file mode 100644 index 0000000..321ae12 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/RegAllocLocal.cpp @@ -0,0 +1,1254 @@ +//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This register allocator allocates registers to a basic block at a time, +// attempting to keep values in registers and reusing registers as appropriate. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "llvm/BasicBlock.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/IndexedMap.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumStores, "Number of stores added"); +STATISTIC(NumLoads , "Number of loads added"); +STATISTIC(NumCopies, "Number of copies coalesced"); + +static RegisterRegAlloc + localRegAlloc("local", "local register allocator", + createLocalRegisterAllocator); + +namespace { + class RALocal : public MachineFunctionPass { + public: + static char ID; + RALocal() : MachineFunctionPass(&ID), StackSlotForVirtReg(-1) {} + private: + const TargetMachine *TM; + MachineFunction *MF; + MachineRegisterInfo *MRI; + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + + // StackSlotForVirtReg - Maps virtual regs to the frame index where these + // values are spilled. + IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; + + // Virt2PhysRegMap - This map contains entries for each virtual register + // that is currently available in a physical register. + IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap; + + unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) { + return Virt2PhysRegMap[VirtReg]; + } + + // PhysRegsUsed - This array is effectively a map, containing entries for + // each physical register that currently has a value (ie, it is in + // Virt2PhysRegMap). The value mapped to is the virtual register + // corresponding to the physical register (the inverse of the + // Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned + // because it is used by a future instruction, and to -2 if it is not + // allocatable. If the entry for a physical register is -1, then the + // physical register is "not in the map". + // + std::vector<int> PhysRegsUsed; + + // PhysRegsUseOrder - This contains a list of the physical registers that + // currently have a virtual register value in them. This list provides an + // ordering of registers, imposing a reallocation order. This list is only + // used if all registers are allocated and we have to spill one, in which + // case we spill the least recently used register. Entries at the front of + // the list are the least recently used registers, entries at the back are + // the most recently used. + // + std::vector<unsigned> PhysRegsUseOrder; + + // Virt2LastUseMap - This maps each virtual register to its last use + // (MachineInstr*, operand index pair). + IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor> + Virt2LastUseMap; + + std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) { + assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); + return Virt2LastUseMap[Reg]; + } + + // VirtRegModified - This bitset contains information about which virtual + // registers need to be spilled back to memory when their registers are + // scavenged. If a virtual register has simply been rematerialized, there + // is no reason to spill it to memory when we need the register back. + // + BitVector VirtRegModified; + + // UsedInMultipleBlocks - Tracks whether a particular register is used in + // more than one block. + BitVector UsedInMultipleBlocks; + + void markVirtRegModified(unsigned Reg, bool Val = true) { + assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); + Reg -= TargetRegisterInfo::FirstVirtualRegister; + if (Val) + VirtRegModified.set(Reg); + else + VirtRegModified.reset(Reg); + } + + bool isVirtRegModified(unsigned Reg) const { + assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!"); + assert(Reg - TargetRegisterInfo::FirstVirtualRegister < + VirtRegModified.size() && "Illegal virtual register!"); + return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister]; + } + + void AddToPhysRegsUseOrder(unsigned Reg) { + std::vector<unsigned>::iterator It = + std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg); + if (It != PhysRegsUseOrder.end()) + PhysRegsUseOrder.erase(It); + PhysRegsUseOrder.push_back(Reg); + } + + void MarkPhysRegRecentlyUsed(unsigned Reg) { + if (PhysRegsUseOrder.empty() || + PhysRegsUseOrder.back() == Reg) return; // Already most recently used + + for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i) { + unsigned RegMatch = PhysRegsUseOrder[i-1]; // remove from middle + if (!areRegsEqual(Reg, RegMatch)) continue; + + PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1); + // Add it to the end of the list + PhysRegsUseOrder.push_back(RegMatch); + if (RegMatch == Reg) + return; // Found an exact match, exit early + } + } + + public: + virtual const char *getPassName() const { + return "Local Register Allocator"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequiredID(PHIEliminationID); + AU.addRequiredID(TwoAddressInstructionPassID); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + /// runOnMachineFunction - Register allocate the whole function + bool runOnMachineFunction(MachineFunction &Fn); + + /// AllocateBasicBlock - Register allocate the specified basic block. + void AllocateBasicBlock(MachineBasicBlock &MBB); + + + /// areRegsEqual - This method returns true if the specified registers are + /// related to each other. To do this, it checks to see if they are equal + /// or if the first register is in the alias set of the second register. + /// + bool areRegsEqual(unsigned R1, unsigned R2) const { + if (R1 == R2) return true; + for (const unsigned *AliasSet = TRI->getAliasSet(R2); + *AliasSet; ++AliasSet) { + if (*AliasSet == R1) return true; + } + return false; + } + + /// getStackSpaceFor - This returns the frame index of the specified virtual + /// register on the stack, allocating space if necessary. + int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); + + /// removePhysReg - This method marks the specified physical register as no + /// longer being in use. + /// + void removePhysReg(unsigned PhysReg); + + void storeVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, + unsigned VirtReg, unsigned PhysReg, bool isKill); + + /// spillVirtReg - This method spills the value specified by PhysReg into + /// the virtual register slot specified by VirtReg. It then updates the RA + /// data structures to indicate the fact that PhysReg is now available. + /// + void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, + unsigned VirtReg, unsigned PhysReg); + + /// spillPhysReg - This method spills the specified physical register into + /// the virtual register slot associated with it. If OnlyVirtRegs is set to + /// true, then the request is ignored if the physical register does not + /// contain a virtual register. + /// + void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, + unsigned PhysReg, bool OnlyVirtRegs = false); + + /// assignVirtToPhysReg - This method updates local state so that we know + /// that PhysReg is the proper container for VirtReg now. The physical + /// register must not be used for anything else when this is called. + /// + void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg); + + /// isPhysRegAvailable - Return true if the specified physical register is + /// free and available for use. This also includes checking to see if + /// aliased registers are all free... + /// + bool isPhysRegAvailable(unsigned PhysReg) const; + + /// getFreeReg - Look to see if there is a free register available in the + /// specified register class. If not, return 0. + /// + unsigned getFreeReg(const TargetRegisterClass *RC); + + /// getReg - Find a physical register to hold the specified virtual + /// register. If all compatible physical registers are used, this method + /// spills the last used virtual register to the stack, and uses that + /// register. If NoFree is true, that means the caller knows there isn't + /// a free register, do not call getFreeReg(). + unsigned getReg(MachineBasicBlock &MBB, MachineInstr *MI, + unsigned VirtReg, bool NoFree = false); + + /// reloadVirtReg - This method transforms the specified virtual + /// register use to refer to a physical register. This method may do this + /// in one of several ways: if the register is available in a physical + /// register already, it uses that physical register. If the value is not + /// in a physical register, and if there are physical registers available, + /// it loads it into a register: PhysReg if that is an available physical + /// register, otherwise any physical register of the right class. + /// If register pressure is high, and it is possible, it tries to fold the + /// load of the virtual register into the instruction itself. It avoids + /// doing this if register pressure is low to improve the chance that + /// subsequent instructions can use the reloaded value. This method + /// returns the modified instruction. + /// + MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, + unsigned OpNum, SmallSet<unsigned, 4> &RRegs, + unsigned PhysReg); + + /// ComputeLocalLiveness - Computes liveness of registers within a basic + /// block, setting the killed/dead flags as appropriate. + void ComputeLocalLiveness(MachineBasicBlock& MBB); + + void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I, + unsigned PhysReg); + }; + char RALocal::ID = 0; +} + +/// getStackSpaceFor - This allocates space for the specified virtual register +/// to be held on the stack. +int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { + // Find the location Reg would belong... + int SS = StackSlotForVirtReg[VirtReg]; + if (SS != -1) + return SS; // Already has space allocated? + + // Allocate a new stack object for this spill location... + int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), + RC->getAlignment()); + + // Assign the slot. + StackSlotForVirtReg[VirtReg] = FrameIdx; + return FrameIdx; +} + + +/// removePhysReg - This method marks the specified physical register as no +/// longer being in use. +/// +void RALocal::removePhysReg(unsigned PhysReg) { + PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used + + std::vector<unsigned>::iterator It = + std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg); + if (It != PhysRegsUseOrder.end()) + PhysRegsUseOrder.erase(It); +} + +/// storeVirtReg - Store a virtual register to its assigned stack slot. +void RALocal::storeVirtReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + unsigned VirtReg, unsigned PhysReg, + bool isKill) { + const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); + int FrameIndex = getStackSpaceFor(VirtReg, RC); + DEBUG(dbgs() << " to stack slot #" << FrameIndex); + TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC, TRI); + ++NumStores; // Update statistics + + // Mark the spill instruction as last use if we're not killing the register. + if (!isKill) { + MachineInstr *Spill = llvm::prior(I); + int OpNum = Spill->findRegisterUseOperandIdx(PhysReg); + if (OpNum < 0) + getVirtRegLastUse(VirtReg) = std::make_pair((MachineInstr*)0, 0); + else + getVirtRegLastUse(VirtReg) = std::make_pair(Spill, OpNum); + } +} + +/// spillVirtReg - This method spills the value specified by PhysReg into the +/// virtual register slot specified by VirtReg. It then updates the RA data +/// structures to indicate the fact that PhysReg is now available. +/// +void RALocal::spillVirtReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + unsigned VirtReg, unsigned PhysReg) { + assert(VirtReg && "Spilling a physical register is illegal!" + " Must not have appropriate kill for the register or use exists beyond" + " the intended one."); + DEBUG(dbgs() << " Spilling register " << TRI->getName(PhysReg) + << " containing %reg" << VirtReg); + + if (!isVirtRegModified(VirtReg)) { + DEBUG(dbgs() << " which has not been modified, so no store necessary!"); + std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg); + if (LastUse.first) + LastUse.first->getOperand(LastUse.second).setIsKill(); + } else { + // Otherwise, there is a virtual register corresponding to this physical + // register. We only need to spill it into its stack slot if it has been + // modified. + // If the instruction reads the register that's spilled, (e.g. this can + // happen if it is a move to a physical register), then the spill + // instruction is not a kill. + bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg)); + storeVirtReg(MBB, I, VirtReg, PhysReg, isKill); + } + + getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available + + DEBUG(dbgs() << '\n'); + removePhysReg(PhysReg); +} + + +/// spillPhysReg - This method spills the specified physical register into the +/// virtual register slot associated with it. If OnlyVirtRegs is set to true, +/// then the request is ignored if the physical register does not contain a +/// virtual register. +/// +void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I, + unsigned PhysReg, bool OnlyVirtRegs) { + if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used! + assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!"); + if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs) + spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg); + return; + } + + // If the selected register aliases any other registers, we must make + // sure that one of the aliases isn't alive. + for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); + *AliasSet; ++AliasSet) { + if (PhysRegsUsed[*AliasSet] == -1 || // Spill aliased register. + PhysRegsUsed[*AliasSet] == -2) // If allocatable. + continue; + + if (PhysRegsUsed[*AliasSet]) + spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet); + } +} + + +/// assignVirtToPhysReg - This method updates local state so that we know +/// that PhysReg is the proper container for VirtReg now. The physical +/// register must not be used for anything else when this is called. +/// +void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { + assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!"); + // Update information to note the fact that this register was just used, and + // it holds VirtReg. + PhysRegsUsed[PhysReg] = VirtReg; + getVirt2PhysRegMapSlot(VirtReg) = PhysReg; + AddToPhysRegsUseOrder(PhysReg); // New use of PhysReg +} + + +/// isPhysRegAvailable - Return true if the specified physical register is free +/// and available for use. This also includes checking to see if aliased +/// registers are all free... +/// +bool RALocal::isPhysRegAvailable(unsigned PhysReg) const { + if (PhysRegsUsed[PhysReg] != -1) return false; + + // If the selected register aliases any other allocated registers, it is + // not free! + for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); + *AliasSet; ++AliasSet) + if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use? + return false; // Can't use this reg then. + return true; +} + + +/// getFreeReg - Look to see if there is a free register available in the +/// specified register class. If not, return 0. +/// +unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) { + // Get iterators defining the range of registers that are valid to allocate in + // this class, which also specifies the preferred allocation order. + TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF); + TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF); + + for (; RI != RE; ++RI) + if (isPhysRegAvailable(*RI)) { // Is reg unused? + assert(*RI != 0 && "Cannot use register!"); + return *RI; // Found an unused register! + } + return 0; +} + + +/// getReg - Find a physical register to hold the specified virtual +/// register. If all compatible physical registers are used, this method spills +/// the last used virtual register to the stack, and uses that register. +/// +unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I, + unsigned VirtReg, bool NoFree) { + const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); + + // First check to see if we have a free register of the requested type... + unsigned PhysReg = NoFree ? 0 : getFreeReg(RC); + + if (PhysReg != 0) { + // Assign the register. + assignVirtToPhysReg(VirtReg, PhysReg); + return PhysReg; + } + + // If we didn't find an unused register, scavenge one now! + assert(!PhysRegsUseOrder.empty() && "No allocated registers??"); + + // Loop over all of the preallocated registers from the least recently used + // to the most recently used. When we find one that is capable of holding + // our register, use it. + for (unsigned i = 0; PhysReg == 0; ++i) { + assert(i != PhysRegsUseOrder.size() && + "Couldn't find a register of the appropriate class!"); + + unsigned R = PhysRegsUseOrder[i]; + + // We can only use this register if it holds a virtual register (ie, it + // can be spilled). Do not use it if it is an explicitly allocated + // physical register! + assert(PhysRegsUsed[R] != -1 && + "PhysReg in PhysRegsUseOrder, but is not allocated?"); + if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) { + // If the current register is compatible, use it. + if (RC->contains(R)) { + PhysReg = R; + break; + } + + // If one of the registers aliased to the current register is + // compatible, use it. + for (const unsigned *AliasIt = TRI->getAliasSet(R); + *AliasIt; ++AliasIt) { + if (!RC->contains(*AliasIt)) continue; + + // If this is pinned down for some reason, don't use it. For + // example, if CL is pinned, and we run across CH, don't use + // CH as justification for using scavenging ECX (which will + // fail). + if (PhysRegsUsed[*AliasIt] == 0) continue; + + // Make sure the register is allocatable. Don't allocate SIL on + // x86-32. + if (PhysRegsUsed[*AliasIt] == -2) continue; + + PhysReg = *AliasIt; // Take an aliased register + break; + } + } + } + + assert(PhysReg && "Physical register not assigned!?!?"); + + // At this point PhysRegsUseOrder[i] is the least recently used register of + // compatible register class. Spill it to memory and reap its remains. + spillPhysReg(MBB, I, PhysReg); + + // Now that we know which register we need to assign this to, do it now! + assignVirtToPhysReg(VirtReg, PhysReg); + return PhysReg; +} + + +/// reloadVirtReg - This method transforms the specified virtual +/// register use to refer to a physical register. This method may do this in +/// one of several ways: if the register is available in a physical register +/// already, it uses that physical register. If the value is not in a physical +/// register, and if there are physical registers available, it loads it into a +/// register: PhysReg if that is an available physical register, otherwise any +/// register. If register pressure is high, and it is possible, it tries to +/// fold the load of the virtual register into the instruction itself. It +/// avoids doing this if register pressure is low to improve the chance that +/// subsequent instructions can use the reloaded value. This method returns +/// the modified instruction. +/// +MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI, + unsigned OpNum, + SmallSet<unsigned, 4> &ReloadedRegs, + unsigned PhysReg) { + unsigned VirtReg = MI->getOperand(OpNum).getReg(); + unsigned SubIdx = MI->getOperand(OpNum).getSubReg(); + + // If the virtual register is already available, just update the instruction + // and return. + if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) { + if (SubIdx) { + PR = TRI->getSubReg(PR, SubIdx); + MI->getOperand(OpNum).setSubReg(0); + } + MI->getOperand(OpNum).setReg(PR); // Assign the input register + if (!MI->isDebugValue()) { + // Do not do these for DBG_VALUE as they can affect codegen. + MarkPhysRegRecentlyUsed(PR); // Already have this value available! + getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); + } + return MI; + } + + // Otherwise, we need to fold it into the current instruction, or reload it. + // If we have registers available to hold the value, use them. + const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg); + // If we already have a PhysReg (this happens when the instruction is a + // reg-to-reg copy with a PhysReg destination) use that. + if (!PhysReg || !TargetRegisterInfo::isPhysicalRegister(PhysReg) || + !isPhysRegAvailable(PhysReg)) + PhysReg = getFreeReg(RC); + int FrameIndex = getStackSpaceFor(VirtReg, RC); + + if (PhysReg) { // Register is available, allocate it! + assignVirtToPhysReg(VirtReg, PhysReg); + } else { // No registers available. + // Force some poor hapless value out of the register file to + // make room for the new register, and reload it. + PhysReg = getReg(MBB, MI, VirtReg, true); + } + + markVirtRegModified(VirtReg, false); // Note that this reg was just reloaded + + DEBUG(dbgs() << " Reloading %reg" << VirtReg << " into " + << TRI->getName(PhysReg) << "\n"); + + // Add move instruction(s) + TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC, TRI); + ++NumLoads; // Update statistics + + MF->getRegInfo().setPhysRegUsed(PhysReg); + // Assign the input register. + if (SubIdx) { + MI->getOperand(OpNum).setSubReg(0); + MI->getOperand(OpNum).setReg(TRI->getSubReg(PhysReg, SubIdx)); + } else + MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register + getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum); + + if (!ReloadedRegs.insert(PhysReg)) { + std::string msg; + raw_string_ostream Msg(msg); + Msg << "Ran out of registers during register allocation!"; + if (MI->isInlineAsm()) { + Msg << "\nPlease check your inline asm statement for invalid " + << "constraints:\n"; + MI->print(Msg, TM); + } + report_fatal_error(Msg.str()); + } + for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg); + *SubRegs; ++SubRegs) { + if (ReloadedRegs.insert(*SubRegs)) continue; + + std::string msg; + raw_string_ostream Msg(msg); + Msg << "Ran out of registers during register allocation!"; + if (MI->isInlineAsm()) { + Msg << "\nPlease check your inline asm statement for invalid " + << "constraints:\n"; + MI->print(Msg, TM); + } + report_fatal_error(Msg.str()); + } + + return MI; +} + +/// isReadModWriteImplicitKill - True if this is an implicit kill for a +/// read/mod/write register, i.e. update partial register. +static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && + MO.isDef() && !MO.isDead()) + return true; + } + return false; +} + +/// isReadModWriteImplicitDef - True if this is an implicit def for a +/// read/mod/write register, i.e. update partial register. +static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.getReg() == Reg && MO.isImplicit() && + !MO.isDef() && MO.isKill()) + return true; + } + return false; +} + +// precedes - Helper function to determine with MachineInstr A +// precedes MachineInstr B within the same MBB. +static bool precedes(MachineBasicBlock::iterator A, + MachineBasicBlock::iterator B) { + if (A == B) + return false; + + MachineBasicBlock::iterator I = A->getParent()->begin(); + while (I != A->getParent()->end()) { + if (I == A) + return true; + else if (I == B) + return false; + + ++I; + } + + return false; +} + +/// ComputeLocalLiveness - Computes liveness of registers within a basic +/// block, setting the killed/dead flags as appropriate. +void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) { + // Keep track of the most recently seen previous use or def of each reg, + // so that we can update them with dead/kill markers. + DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef; + for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); + I != E; ++I) { + if (I->isDebugValue()) + continue; + + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + MachineOperand &MO = I->getOperand(i); + // Uses don't trigger any flags, but we need to save + // them for later. Also, we have to process these + // _before_ processing the defs, since an instr + // uses regs before it defs them. + if (!MO.isReg() || !MO.getReg() || !MO.isUse()) + continue; + + // Ignore helpful kill flags from earlier passes. + MO.setIsKill(false); + + LastUseDef[MO.getReg()] = std::make_pair(I, i); + + if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; + + const unsigned *Aliases = TRI->getAliasSet(MO.getReg()); + if (Aliases == 0) + continue; + + while (*Aliases) { + DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator + alias = LastUseDef.find(*Aliases); + + if (alias != LastUseDef.end() && alias->second.first != I) + LastUseDef[*Aliases] = std::make_pair(I, i); + + ++Aliases; + } + } + + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + MachineOperand &MO = I->getOperand(i); + // Defs others than 2-addr redefs _do_ trigger flag changes: + // - A def followed by a def is dead + // - A use followed by a def is a kill + if (!MO.isReg() || !MO.getReg() || !MO.isDef()) continue; + + unsigned SubIdx = MO.getSubReg(); + DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator + last = LastUseDef.find(MO.getReg()); + if (last != LastUseDef.end()) { + // Check if this is a two address instruction. If so, then + // the def does not kill the use. + if (last->second.first == I && I->isRegTiedToUseOperand(i)) + continue; + + MachineOperand &lastUD = + last->second.first->getOperand(last->second.second); + if (SubIdx && lastUD.getSubReg() != SubIdx) + // Partial re-def, the last def is not dead. + // %reg1024:5<def> = + // %reg1024:6<def> = + // or + // %reg1024:5<def> = op %reg1024, 5 + continue; + + if (lastUD.isDef()) + lastUD.setIsDead(true); + else + lastUD.setIsKill(true); + } + + LastUseDef[MO.getReg()] = std::make_pair(I, i); + } + } + + // Live-out (of the function) registers contain return values of the function, + // so we need to make sure they are alive at return time. + MachineBasicBlock::iterator Ret = MBB.getFirstTerminator(); + bool BBEndsInReturn = (Ret != MBB.end() && Ret->getDesc().isReturn()); + + if (BBEndsInReturn) + for (MachineRegisterInfo::liveout_iterator + I = MF->getRegInfo().liveout_begin(), + E = MF->getRegInfo().liveout_end(); I != E; ++I) + if (!Ret->readsRegister(*I)) { + Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); + LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1); + } + + // Finally, loop over the final use/def of each reg + // in the block and determine if it is dead. + for (DenseMap<unsigned, std::pair<MachineInstr*, unsigned> >::iterator + I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) { + MachineInstr *MI = I->second.first; + unsigned idx = I->second.second; + MachineOperand &MO = MI->getOperand(idx); + + bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg()); + + // A crude approximation of "live-out" calculation + bool usedOutsideBlock = isPhysReg ? false : + UsedInMultipleBlocks.test(MO.getReg() - + TargetRegisterInfo::FirstVirtualRegister); + + // If the machine BB ends in a return instruction, then the value isn't used + // outside of the BB. + if (!isPhysReg && (!usedOutsideBlock || BBEndsInReturn)) { + // DBG_VALUE complicates this: if the only refs of a register outside + // this block are DBG_VALUE, we can't keep the reg live just for that, + // as it will cause the reg to be spilled at the end of this block when + // it wouldn't have been otherwise. Nullify the DBG_VALUEs when that + // happens. + bool UsedByDebugValueOnly = false; + for (MachineRegisterInfo::reg_iterator UI = MRI->reg_begin(MO.getReg()), + UE = MRI->reg_end(); UI != UE; ++UI) { + // Two cases: + // - used in another block + // - used in the same block before it is defined (loop) + if (UI->getParent() == &MBB && + !(MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) + continue; + + if (UI->isDebugValue()) { + UsedByDebugValueOnly = true; + continue; + } + + // A non-DBG_VALUE use means we can leave DBG_VALUE uses alone. + UsedInMultipleBlocks.set(MO.getReg() - + TargetRegisterInfo::FirstVirtualRegister); + usedOutsideBlock = true; + UsedByDebugValueOnly = false; + break; + } + + if (UsedByDebugValueOnly) + for (MachineRegisterInfo::reg_iterator UI = MRI->reg_begin(MO.getReg()), + UE = MRI->reg_end(); UI != UE; ++UI) + if (UI->isDebugValue() && + (UI->getParent() != &MBB || + (MO.isDef() && precedes(&*UI, MI)))) + UI.getOperand().setReg(0U); + } + + // Physical registers and those that are not live-out of the block are + // killed/dead at their last use/def within this block. + if (isPhysReg || !usedOutsideBlock || BBEndsInReturn) { + if (MO.isUse()) { + // Don't mark uses that are tied to defs as kills. + if (!MI->isRegTiedToDefOperand(idx)) + MO.setIsKill(true); + } else { + MO.setIsDead(true); + } + } + } +} + +void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) { + // loop over each instruction + MachineBasicBlock::iterator MII = MBB.begin(); + + DEBUG({ + const BasicBlock *LBB = MBB.getBasicBlock(); + if (LBB) + dbgs() << "\nStarting RegAlloc of BB: " << LBB->getName(); + }); + + // Add live-in registers as active. + for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(), + E = MBB.livein_end(); I != E; ++I) { + unsigned Reg = *I; + MF->getRegInfo().setPhysRegUsed(Reg); + PhysRegsUsed[Reg] = 0; // It is free and reserved now + AddToPhysRegsUseOrder(Reg); + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + *SubRegs; ++SubRegs) { + if (PhysRegsUsed[*SubRegs] == -2) continue; + + AddToPhysRegsUseOrder(*SubRegs); + PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now + MF->getRegInfo().setPhysRegUsed(*SubRegs); + } + } + + ComputeLocalLiveness(MBB); + + // Otherwise, sequentially allocate each instruction in the MBB. + while (MII != MBB.end()) { + MachineInstr *MI = MII++; + const TargetInstrDesc &TID = MI->getDesc(); + DEBUG({ + dbgs() << "\nStarting RegAlloc of: " << *MI; + dbgs() << " Regs have values: "; + for (unsigned i = 0; i != TRI->getNumRegs(); ++i) + if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { + if (PhysRegsUsed[i] && isVirtRegModified(PhysRegsUsed[i])) + dbgs() << "*"; + dbgs() << "[" << TRI->getName(i) + << ",%reg" << PhysRegsUsed[i] << "] "; + } + dbgs() << '\n'; + }); + + // Determine whether this is a copy instruction. The cases where the + // source or destination are phys regs are handled specially. + unsigned SrcCopyReg, DstCopyReg, SrcCopySubReg, DstCopySubReg; + unsigned SrcCopyPhysReg = 0U; + bool isCopy = TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg, + SrcCopySubReg, DstCopySubReg) && + SrcCopySubReg == DstCopySubReg; + if (isCopy && TargetRegisterInfo::isVirtualRegister(SrcCopyReg)) + SrcCopyPhysReg = getVirt2PhysRegMapSlot(SrcCopyReg); + + // Loop over the implicit uses, making sure that they are at the head of the + // use order list, so they don't get reallocated. + if (TID.ImplicitUses) { + for (const unsigned *ImplicitUses = TID.ImplicitUses; + *ImplicitUses; ++ImplicitUses) + MarkPhysRegRecentlyUsed(*ImplicitUses); + } + + SmallVector<unsigned, 8> Kills; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isKill()) continue; + + if (!MO.isImplicit()) + Kills.push_back(MO.getReg()); + else if (!isReadModWriteImplicitKill(MI, MO.getReg())) + // These are extra physical register kills when a sub-register + // is defined (def of a sub-register is a read/mod/write of the + // larger registers). Ignore. + Kills.push_back(MO.getReg()); + } + + // If any physical regs are earlyclobber, spill any value they might + // have in them, then mark them unallocatable. + // If any virtual regs are earlyclobber, allocate them now (before + // freeing inputs that are killed). + if (MI->isInlineAsm()) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber() || + !MO.getReg()) + continue; + + if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { + unsigned DestVirtReg = MO.getReg(); + unsigned DestPhysReg; + + // If DestVirtReg already has a value, use it. + if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) + DestPhysReg = getReg(MBB, MI, DestVirtReg); + MF->getRegInfo().setPhysRegUsed(DestPhysReg); + markVirtRegModified(DestVirtReg); + getVirtRegLastUse(DestVirtReg) = + std::make_pair((MachineInstr*)0, 0); + DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg) + << " to %reg" << DestVirtReg << "\n"); + if (unsigned DestSubIdx = MO.getSubReg()) { + MO.setSubReg(0); + DestPhysReg = TRI->getSubReg(DestPhysReg, DestSubIdx); + } + MO.setReg(DestPhysReg); // Assign the earlyclobber register + } else { + unsigned Reg = MO.getReg(); + if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. + // These are extra physical register defs when a sub-register + // is defined (def of a sub-register is a read/mod/write of the + // larger registers). Ignore. + if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; + + MF->getRegInfo().setPhysRegUsed(Reg); + spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg + PhysRegsUsed[Reg] = 0; // It is free and reserved now + AddToPhysRegsUseOrder(Reg); + + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + *SubRegs; ++SubRegs) { + if (PhysRegsUsed[*SubRegs] == -2) continue; + MF->getRegInfo().setPhysRegUsed(*SubRegs); + PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now + AddToPhysRegsUseOrder(*SubRegs); + } + } + } + } + + // If a DBG_VALUE says something is located in a spilled register, + // change the DBG_VALUE to be undef, which prevents the register + // from being reloaded here. Doing that would change the generated + // code, unless another use immediately follows this instruction. + if (MI->isDebugValue() && + MI->getNumOperands()==3 && MI->getOperand(0).isReg()) { + unsigned VirtReg = MI->getOperand(0).getReg(); + if (VirtReg && TargetRegisterInfo::isVirtualRegister(VirtReg) && + !getVirt2PhysRegMapSlot(VirtReg)) + MI->getOperand(0).setReg(0U); + } + + // Get the used operands into registers. This has the potential to spill + // incoming values if we are out of registers. Note that we completely + // ignore physical register uses here. We assume that if an explicit + // physical register is referenced by the instruction, that it is guaranteed + // to be live-in, or the input is badly hosed. + // + SmallSet<unsigned, 4> ReloadedRegs; + for (unsigned i = 0; i != MI->getNumOperands(); ++i) { + MachineOperand &MO = MI->getOperand(i); + // here we are looking for only used operands (never def&use) + if (MO.isReg() && !MO.isDef() && MO.getReg() && !MO.isImplicit() && + TargetRegisterInfo::isVirtualRegister(MO.getReg())) + MI = reloadVirtReg(MBB, MI, i, ReloadedRegs, + isCopy ? DstCopyReg : 0); + } + + // If this instruction is the last user of this register, kill the + // value, freeing the register being used, so it doesn't need to be + // spilled to memory. + // + for (unsigned i = 0, e = Kills.size(); i != e; ++i) { + unsigned VirtReg = Kills[i]; + unsigned PhysReg = VirtReg; + if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { + // If the virtual register was never materialized into a register, it + // might not be in the map, but it won't hurt to zero it out anyway. + unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); + PhysReg = PhysRegSlot; + PhysRegSlot = 0; + } else if (PhysRegsUsed[PhysReg] == -2) { + // Unallocatable register dead, ignore. + continue; + } else { + assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) && + "Silently clearing a virtual register?"); + } + + if (!PhysReg) continue; + + DEBUG(dbgs() << " Last use of " << TRI->getName(PhysReg) + << "[%reg" << VirtReg <<"], removing it from live set\n"); + removePhysReg(PhysReg); + for (const unsigned *SubRegs = TRI->getSubRegisters(PhysReg); + *SubRegs; ++SubRegs) { + if (PhysRegsUsed[*SubRegs] != -2) { + DEBUG(dbgs() << " Last use of " + << TRI->getName(*SubRegs) << "[%reg" << VirtReg + <<"], removing it from live set\n"); + removePhysReg(*SubRegs); + } + } + } + + // Loop over all of the operands of the instruction, spilling registers that + // are defined, and marking explicit destinations in the PhysRegsUsed map. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isDef() || MO.isImplicit() || !MO.getReg() || + MO.isEarlyClobber() || + !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) + continue; + + unsigned Reg = MO.getReg(); + if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP. + // These are extra physical register defs when a sub-register + // is defined (def of a sub-register is a read/mod/write of the + // larger registers). Ignore. + if (isReadModWriteImplicitDef(MI, MO.getReg())) continue; + + MF->getRegInfo().setPhysRegUsed(Reg); + spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg + PhysRegsUsed[Reg] = 0; // It is free and reserved now + AddToPhysRegsUseOrder(Reg); + + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + *SubRegs; ++SubRegs) { + if (PhysRegsUsed[*SubRegs] == -2) continue; + + MF->getRegInfo().setPhysRegUsed(*SubRegs); + PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now + AddToPhysRegsUseOrder(*SubRegs); + } + } + + // Loop over the implicit defs, spilling them as well. + if (TID.ImplicitDefs) { + for (const unsigned *ImplicitDefs = TID.ImplicitDefs; + *ImplicitDefs; ++ImplicitDefs) { + unsigned Reg = *ImplicitDefs; + if (PhysRegsUsed[Reg] != -2) { + spillPhysReg(MBB, MI, Reg, true); + AddToPhysRegsUseOrder(Reg); + PhysRegsUsed[Reg] = 0; // It is free and reserved now + } + MF->getRegInfo().setPhysRegUsed(Reg); + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + *SubRegs; ++SubRegs) { + if (PhysRegsUsed[*SubRegs] == -2) continue; + + AddToPhysRegsUseOrder(*SubRegs); + PhysRegsUsed[*SubRegs] = 0; // It is free and reserved now + MF->getRegInfo().setPhysRegUsed(*SubRegs); + } + } + } + + SmallVector<unsigned, 8> DeadDefs; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDead()) + DeadDefs.push_back(MO.getReg()); + } + + // Okay, we have allocated all of the source operands and spilled any values + // that would be destroyed by defs of this instruction. Loop over the + // explicit defs and assign them to a register, spilling incoming values if + // we need to scavenge a register. + // + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isDef() || !MO.getReg() || + MO.isEarlyClobber() || + !TargetRegisterInfo::isVirtualRegister(MO.getReg())) + continue; + + unsigned DestVirtReg = MO.getReg(); + unsigned DestPhysReg; + + // If DestVirtReg already has a value, use it. + if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg))) { + // If this is a copy try to reuse the input as the output; + // that will make the copy go away. + // If this is a copy, the source reg is a phys reg, and + // that reg is available, use that phys reg for DestPhysReg. + // If this is a copy, the source reg is a virtual reg, and + // the phys reg that was assigned to that virtual reg is now + // available, use that phys reg for DestPhysReg. (If it's now + // available that means this was the last use of the source.) + if (isCopy && + TargetRegisterInfo::isPhysicalRegister(SrcCopyReg) && + isPhysRegAvailable(SrcCopyReg)) { + DestPhysReg = SrcCopyReg; + assignVirtToPhysReg(DestVirtReg, DestPhysReg); + } else if (isCopy && + TargetRegisterInfo::isVirtualRegister(SrcCopyReg) && + SrcCopyPhysReg && isPhysRegAvailable(SrcCopyPhysReg) && + MF->getRegInfo().getRegClass(DestVirtReg)-> + contains(SrcCopyPhysReg)) { + DestPhysReg = SrcCopyPhysReg; + assignVirtToPhysReg(DestVirtReg, DestPhysReg); + } else + DestPhysReg = getReg(MBB, MI, DestVirtReg); + } + MF->getRegInfo().setPhysRegUsed(DestPhysReg); + markVirtRegModified(DestVirtReg); + getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0); + DEBUG(dbgs() << " Assigning " << TRI->getName(DestPhysReg) + << " to %reg" << DestVirtReg << "\n"); + + if (unsigned DestSubIdx = MO.getSubReg()) { + MO.setSubReg(0); + DestPhysReg = TRI->getSubReg(DestPhysReg, DestSubIdx); + } + MO.setReg(DestPhysReg); // Assign the output register + } + + // If this instruction defines any registers that are immediately dead, + // kill them now. + // + for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) { + unsigned VirtReg = DeadDefs[i]; + unsigned PhysReg = VirtReg; + if (TargetRegisterInfo::isVirtualRegister(VirtReg)) { + unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg); + PhysReg = PhysRegSlot; + assert(PhysReg != 0); + PhysRegSlot = 0; + } else if (PhysRegsUsed[PhysReg] == -2) { + // Unallocatable register dead, ignore. + continue; + } else if (!PhysReg) + continue; + + DEBUG(dbgs() << " Register " << TRI->getName(PhysReg) + << " [%reg" << VirtReg + << "] is never used, removing it from live set\n"); + removePhysReg(PhysReg); + for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg); + *AliasSet; ++AliasSet) { + if (PhysRegsUsed[*AliasSet] != -2) { + DEBUG(dbgs() << " Register " << TRI->getName(*AliasSet) + << " [%reg" << *AliasSet + << "] is never used, removing it from live set\n"); + removePhysReg(*AliasSet); + } + } + } + + // If this instruction is a call, make sure there are no dirty registers. The + // call might throw an exception, and the landing pad expects to find all + // registers in stack slots. + if (TID.isCall()) + for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { + if (PhysRegsUsed[i] <= 0) continue; + unsigned VirtReg = PhysRegsUsed[i]; + if (!isVirtRegModified(VirtReg)) continue; + DEBUG(dbgs() << " Storing dirty %reg" << VirtReg); + storeVirtReg(MBB, MI, VirtReg, i, false); + markVirtRegModified(VirtReg, false); + DEBUG(dbgs() << " because the call might throw\n"); + } + + // Finally, if this is a noop copy instruction, zap it. (Except that if + // the copy is dead, it must be kept to avoid messing up liveness info for + // the register scavenger. See pr4100.) + if (TII->isMoveInstr(*MI, SrcCopyReg, DstCopyReg, + SrcCopySubReg, DstCopySubReg) && + SrcCopyReg == DstCopyReg && SrcCopySubReg == DstCopySubReg && + DeadDefs.empty()) { + ++NumCopies; + MBB.erase(MI); + } + } + + MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); + + // Spill all physical registers holding virtual registers now. + for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) + if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) { + if (unsigned VirtReg = PhysRegsUsed[i]) + spillVirtReg(MBB, MI, VirtReg, i); + else + removePhysReg(i); + } + +#if 0 + // This checking code is very expensive. + bool AllOk = true; + for (unsigned i = TargetRegisterInfo::FirstVirtualRegister, + e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i) + if (unsigned PR = Virt2PhysRegMap[i]) { + cerr << "Register still mapped: " << i << " -> " << PR << "\n"; + AllOk = false; + } + assert(AllOk && "Virtual registers still in phys regs?"); +#endif + + // Clear any physical register which appear live at the end of the basic + // block, but which do not hold any virtual registers. e.g., the stack + // pointer. + PhysRegsUseOrder.clear(); +} + +/// runOnMachineFunction - Register allocate the whole function +/// +bool RALocal::runOnMachineFunction(MachineFunction &Fn) { + DEBUG(dbgs() << "Machine Function\n"); + MF = &Fn; + MRI = &Fn.getRegInfo(); + TM = &Fn.getTarget(); + TRI = TM->getRegisterInfo(); + TII = TM->getInstrInfo(); + + PhysRegsUsed.assign(TRI->getNumRegs(), -1); + + // At various places we want to efficiently check to see whether a register + // is allocatable. To handle this, we mark all unallocatable registers as + // being pinned down, permanently. + { + BitVector Allocable = TRI->getAllocatableSet(Fn); + for (unsigned i = 0, e = Allocable.size(); i != e; ++i) + if (!Allocable[i]) + PhysRegsUsed[i] = -2; // Mark the reg unallocable. + } + + // initialize the virtual->physical register map to have a 'null' + // mapping for all virtual registers + unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg(); + StackSlotForVirtReg.grow(LastVirtReg); + Virt2PhysRegMap.grow(LastVirtReg); + Virt2LastUseMap.grow(LastVirtReg); + VirtRegModified.resize(LastVirtReg+1 - + TargetRegisterInfo::FirstVirtualRegister); + UsedInMultipleBlocks.resize(LastVirtReg+1 - + TargetRegisterInfo::FirstVirtualRegister); + + // Loop over all of the basic blocks, eliminating virtual register references + for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); + MBB != MBBe; ++MBB) + AllocateBasicBlock(*MBB); + + StackSlotForVirtReg.clear(); + PhysRegsUsed.clear(); + VirtRegModified.clear(); + UsedInMultipleBlocks.clear(); + Virt2PhysRegMap.clear(); + Virt2LastUseMap.clear(); + return true; +} + +FunctionPass *llvm::createLocalRegisterAllocator() { + return new RALocal(); +} |