summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp1544
1 files changed, 1544 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp b/contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp
new file mode 100644
index 0000000..0dd3c598
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp
@@ -0,0 +1,1544 @@
+//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a linear scan register allocator.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "LiveDebugVariables.h"
+#include "LiveRangeEdit.h"
+#include "VirtRegMap.h"
+#include "VirtRegRewriter.h"
+#include "RegisterClassInfo.h"
+#include "Spiller.h"
+#include "RegisterCoalescer.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Function.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <queue>
+#include <memory>
+#include <cmath>
+
+using namespace llvm;
+
+STATISTIC(NumIters , "Number of iterations performed");
+STATISTIC(NumBacktracks, "Number of times we had to backtrack");
+STATISTIC(NumCoalesce, "Number of copies coalesced");
+STATISTIC(NumDowngrade, "Number of registers downgraded");
+
+static cl::opt<bool>
+NewHeuristic("new-spilling-heuristic",
+ cl::desc("Use new spilling heuristic"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+TrivCoalesceEnds("trivial-coalesce-ends",
+ cl::desc("Attempt trivial coalescing of interval ends"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+AvoidWAWHazard("avoid-waw-hazard",
+ cl::desc("Avoid write-write hazards for some register classes"),
+ cl::init(false), cl::Hidden);
+
+static RegisterRegAlloc
+linearscanRegAlloc("linearscan", "linear scan register allocator",
+ createLinearScanRegisterAllocator);
+
+namespace {
+ // When we allocate a register, add it to a fixed-size queue of
+ // registers to skip in subsequent allocations. This trades a small
+ // amount of register pressure and increased spills for flexibility in
+ // the post-pass scheduler.
+ //
+ // Note that in a the number of registers used for reloading spills
+ // will be one greater than the value of this option.
+ //
+ // One big limitation of this is that it doesn't differentiate between
+ // different register classes. So on x86-64, if there is xmm register
+ // pressure, it can caused fewer GPRs to be held in the queue.
+ static cl::opt<unsigned>
+ NumRecentlyUsedRegs("linearscan-skip-count",
+ cl::desc("Number of registers for linearscan to remember"
+ "to skip."),
+ cl::init(0),
+ cl::Hidden);
+
+ struct RALinScan : public MachineFunctionPass {
+ static char ID;
+ RALinScan() : MachineFunctionPass(ID) {
+ initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+ initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
+ initializeRegisterCoalescerPass(
+ *PassRegistry::getPassRegistry());
+ initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
+ initializeLiveStacksPass(*PassRegistry::getPassRegistry());
+ initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
+ initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
+ initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
+ initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
+
+ // Initialize the queue to record recently-used registers.
+ if (NumRecentlyUsedRegs > 0)
+ RecentRegs.resize(NumRecentlyUsedRegs, 0);
+ RecentNext = RecentRegs.begin();
+ avoidWAW_ = 0;
+ }
+
+ typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
+ typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
+ private:
+ /// RelatedRegClasses - This structure is built the first time a function is
+ /// compiled, and keeps track of which register classes have registers that
+ /// belong to multiple classes or have aliases that are in other classes.
+ EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
+ DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
+
+ // NextReloadMap - For each register in the map, it maps to the another
+ // register which is defined by a reload from the same stack slot and
+ // both reloads are in the same basic block.
+ DenseMap<unsigned, unsigned> NextReloadMap;
+
+ // DowngradedRegs - A set of registers which are being "downgraded", i.e.
+ // un-favored for allocation.
+ SmallSet<unsigned, 8> DowngradedRegs;
+
+ // DowngradeMap - A map from virtual registers to physical registers being
+ // downgraded for the virtual registers.
+ DenseMap<unsigned, unsigned> DowngradeMap;
+
+ MachineFunction* mf_;
+ MachineRegisterInfo* mri_;
+ const TargetMachine* tm_;
+ const TargetRegisterInfo* tri_;
+ const TargetInstrInfo* tii_;
+ BitVector allocatableRegs_;
+ BitVector reservedRegs_;
+ LiveIntervals* li_;
+ MachineLoopInfo *loopInfo;
+ RegisterClassInfo RegClassInfo;
+
+ /// handled_ - Intervals are added to the handled_ set in the order of their
+ /// start value. This is uses for backtracking.
+ std::vector<LiveInterval*> handled_;
+
+ /// fixed_ - Intervals that correspond to machine registers.
+ ///
+ IntervalPtrs fixed_;
+
+ /// active_ - Intervals that are currently being processed, and which have a
+ /// live range active for the current point.
+ IntervalPtrs active_;
+
+ /// inactive_ - Intervals that are currently being processed, but which have
+ /// a hold at the current point.
+ IntervalPtrs inactive_;
+
+ typedef std::priority_queue<LiveInterval*,
+ SmallVector<LiveInterval*, 64>,
+ greater_ptr<LiveInterval> > IntervalHeap;
+ IntervalHeap unhandled_;
+
+ /// regUse_ - Tracks register usage.
+ SmallVector<unsigned, 32> regUse_;
+ SmallVector<unsigned, 32> regUseBackUp_;
+
+ /// vrm_ - Tracks register assignments.
+ VirtRegMap* vrm_;
+
+ std::auto_ptr<VirtRegRewriter> rewriter_;
+
+ std::auto_ptr<Spiller> spiller_;
+
+ // The queue of recently-used registers.
+ SmallVector<unsigned, 4> RecentRegs;
+ SmallVector<unsigned, 4>::iterator RecentNext;
+
+ // Last write-after-write register written.
+ unsigned avoidWAW_;
+
+ // Record that we just picked this register.
+ void recordRecentlyUsed(unsigned reg) {
+ assert(reg != 0 && "Recently used register is NOREG!");
+ if (!RecentRegs.empty()) {
+ *RecentNext++ = reg;
+ if (RecentNext == RecentRegs.end())
+ RecentNext = RecentRegs.begin();
+ }
+ }
+
+ public:
+ virtual const char* getPassName() const {
+ return "Linear Scan Register Allocator";
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<SlotIndexes>();
+ if (StrongPHIElim)
+ AU.addRequiredID(StrongPHIEliminationID);
+ // Make sure PassManager knows which analyses to make available
+ // to coalescing and which analyses coalescing invalidates.
+ AU.addRequiredTransitive<RegisterCoalescer>();
+ AU.addRequired<CalculateSpillWeights>();
+ AU.addRequiredID(LiveStacksID);
+ AU.addPreservedID(LiveStacksID);
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addRequired<VirtRegMap>();
+ AU.addPreserved<VirtRegMap>();
+ AU.addRequired<LiveDebugVariables>();
+ AU.addPreserved<LiveDebugVariables>();
+ AU.addRequiredID(MachineDominatorsID);
+ AU.addPreservedID(MachineDominatorsID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ /// runOnMachineFunction - register allocate the whole function
+ bool runOnMachineFunction(MachineFunction&);
+
+ // Determine if we skip this register due to its being recently used.
+ bool isRecentlyUsed(unsigned reg) const {
+ return reg == avoidWAW_ ||
+ std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end();
+ }
+
+ private:
+ /// linearScan - the linear scan algorithm
+ void linearScan();
+
+ /// initIntervalSets - initialize the interval sets.
+ ///
+ void initIntervalSets();
+
+ /// processActiveIntervals - expire old intervals and move non-overlapping
+ /// ones to the inactive list.
+ void processActiveIntervals(SlotIndex CurPoint);
+
+ /// processInactiveIntervals - expire old intervals and move overlapping
+ /// ones to the active list.
+ void processInactiveIntervals(SlotIndex CurPoint);
+
+ /// hasNextReloadInterval - Return the next liveinterval that's being
+ /// defined by a reload from the same SS as the specified one.
+ LiveInterval *hasNextReloadInterval(LiveInterval *cur);
+
+ /// DowngradeRegister - Downgrade a register for allocation.
+ void DowngradeRegister(LiveInterval *li, unsigned Reg);
+
+ /// UpgradeRegister - Upgrade a register for allocation.
+ void UpgradeRegister(unsigned Reg);
+
+ /// assignRegOrStackSlotAtInterval - assign a register if one
+ /// is available, or spill.
+ void assignRegOrStackSlotAtInterval(LiveInterval* cur);
+
+ void updateSpillWeights(std::vector<float> &Weights,
+ unsigned reg, float weight,
+ const TargetRegisterClass *RC);
+
+ /// findIntervalsToSpill - Determine the intervals to spill for the
+ /// specified interval. It's passed the physical registers whose spill
+ /// weight is the lowest among all the registers whose live intervals
+ /// conflict with the interval.
+ void findIntervalsToSpill(LiveInterval *cur,
+ std::vector<std::pair<unsigned,float> > &Candidates,
+ unsigned NumCands,
+ SmallVector<LiveInterval*, 8> &SpillIntervals);
+
+ /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
+ /// try to allocate the definition to the same register as the source,
+ /// if the register is not defined during the life time of the interval.
+ /// This eliminates a copy, and is used to coalesce copies which were not
+ /// coalesced away before allocation either due to dest and src being in
+ /// different register classes or because the coalescer was overly
+ /// conservative.
+ unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
+
+ ///
+ /// Register usage / availability tracking helpers.
+ ///
+
+ void initRegUses() {
+ regUse_.resize(tri_->getNumRegs(), 0);
+ regUseBackUp_.resize(tri_->getNumRegs(), 0);
+ }
+
+ void finalizeRegUses() {
+#ifndef NDEBUG
+ // Verify all the registers are "freed".
+ bool Error = false;
+ for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
+ if (regUse_[i] != 0) {
+ dbgs() << tri_->getName(i) << " is still in use!\n";
+ Error = true;
+ }
+ }
+ if (Error)
+ llvm_unreachable(0);
+#endif
+ regUse_.clear();
+ regUseBackUp_.clear();
+ }
+
+ void addRegUse(unsigned physReg) {
+ assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
+ "should be physical register!");
+ ++regUse_[physReg];
+ for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
+ ++regUse_[*as];
+ }
+
+ void delRegUse(unsigned physReg) {
+ assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
+ "should be physical register!");
+ assert(regUse_[physReg] != 0);
+ --regUse_[physReg];
+ for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
+ assert(regUse_[*as] != 0);
+ --regUse_[*as];
+ }
+ }
+
+ bool isRegAvail(unsigned physReg) const {
+ assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
+ "should be physical register!");
+ return regUse_[physReg] == 0;
+ }
+
+ void backUpRegUses() {
+ regUseBackUp_ = regUse_;
+ }
+
+ void restoreRegUses() {
+ regUse_ = regUseBackUp_;
+ }
+
+ ///
+ /// Register handling helpers.
+ ///
+
+ /// getFreePhysReg - return a free physical register for this virtual
+ /// register interval if we have one, otherwise return 0.
+ unsigned getFreePhysReg(LiveInterval* cur);
+ unsigned getFreePhysReg(LiveInterval* cur,
+ const TargetRegisterClass *RC,
+ unsigned MaxInactiveCount,
+ SmallVector<unsigned, 256> &inactiveCounts,
+ bool SkipDGRegs);
+
+ /// getFirstNonReservedPhysReg - return the first non-reserved physical
+ /// register in the register class.
+ unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
+ ArrayRef<unsigned> O = RegClassInfo.getOrder(RC);
+ assert(!O.empty() && "All registers reserved?!");
+ return O.front();
+ }
+
+ void ComputeRelatedRegClasses();
+
+ template <typename ItTy>
+ void printIntervals(const char* const str, ItTy i, ItTy e) const {
+ DEBUG({
+ if (str)
+ dbgs() << str << " intervals:\n";
+
+ for (; i != e; ++i) {
+ dbgs() << '\t' << *i->first << " -> ";
+
+ unsigned reg = i->first->reg;
+ if (TargetRegisterInfo::isVirtualRegister(reg))
+ reg = vrm_->getPhys(reg);
+
+ dbgs() << tri_->getName(reg) << '\n';
+ }
+ });
+ }
+ };
+ char RALinScan::ID = 0;
+}
+
+INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
+ "Linear Scan Register Allocator", false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
+INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
+INITIALIZE_PASS_DEPENDENCY(LiveStacks)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
+INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
+ "Linear Scan Register Allocator", false, false)
+
+void RALinScan::ComputeRelatedRegClasses() {
+ // First pass, add all reg classes to the union, and determine at least one
+ // reg class that each register is in.
+ bool HasAliases = false;
+ for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
+ E = tri_->regclass_end(); RCI != E; ++RCI) {
+ RelatedRegClasses.insert(*RCI);
+ for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
+ I != E; ++I) {
+ HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
+
+ const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
+ if (PRC) {
+ // Already processed this register. Just make sure we know that
+ // multiple register classes share a register.
+ RelatedRegClasses.unionSets(PRC, *RCI);
+ } else {
+ PRC = *RCI;
+ }
+ }
+ }
+
+ // Second pass, now that we know conservatively what register classes each reg
+ // belongs to, add info about aliases. We don't need to do this for targets
+ // without register aliases.
+ if (HasAliases)
+ for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
+ I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
+ I != E; ++I)
+ for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
+ const TargetRegisterClass *AliasClass =
+ OneClassForEachPhysReg.lookup(*AS);
+ if (AliasClass)
+ RelatedRegClasses.unionSets(I->second, AliasClass);
+ }
+}
+
+/// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
+/// allocate the definition the same register as the source register if the
+/// register is not defined during live time of the interval. If the interval is
+/// killed by a copy, try to use the destination register. This eliminates a
+/// copy. This is used to coalesce copies which were not coalesced away before
+/// allocation either due to dest and src being in different register classes or
+/// because the coalescer was overly conservative.
+unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
+ unsigned Preference = vrm_->getRegAllocPref(cur.reg);
+ if ((Preference && Preference == Reg) || !cur.containsOneValue())
+ return Reg;
+
+ // We cannot handle complicated live ranges. Simple linear stuff only.
+ if (cur.ranges.size() != 1)
+ return Reg;
+
+ const LiveRange &range = cur.ranges.front();
+
+ VNInfo *vni = range.valno;
+ if (vni->isUnused() || !vni->def.isValid())
+ return Reg;
+
+ unsigned CandReg;
+ {
+ MachineInstr *CopyMI;
+ if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
+ // Defined by a copy, try to extend SrcReg forward
+ CandReg = CopyMI->getOperand(1).getReg();
+ else if (TrivCoalesceEnds &&
+ (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
+ CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
+ // Only used by a copy, try to extend DstReg backwards
+ CandReg = CopyMI->getOperand(0).getReg();
+ else
+ return Reg;
+
+ // If the target of the copy is a sub-register then don't coalesce.
+ if(CopyMI->getOperand(0).getSubReg())
+ return Reg;
+ }
+
+ if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
+ if (!vrm_->isAssignedReg(CandReg))
+ return Reg;
+ CandReg = vrm_->getPhys(CandReg);
+ }
+ if (Reg == CandReg)
+ return Reg;
+
+ const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
+ if (!RC->contains(CandReg))
+ return Reg;
+
+ if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
+ return Reg;
+
+ // Try to coalesce.
+ DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
+ << '\n');
+ vrm_->clearVirt(cur.reg);
+ vrm_->assignVirt2Phys(cur.reg, CandReg);
+
+ ++NumCoalesce;
+ return CandReg;
+}
+
+bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
+ mf_ = &fn;
+ mri_ = &fn.getRegInfo();
+ tm_ = &fn.getTarget();
+ tri_ = tm_->getRegisterInfo();
+ tii_ = tm_->getInstrInfo();
+ allocatableRegs_ = tri_->getAllocatableSet(fn);
+ reservedRegs_ = tri_->getReservedRegs(fn);
+ li_ = &getAnalysis<LiveIntervals>();
+ loopInfo = &getAnalysis<MachineLoopInfo>();
+ RegClassInfo.runOnMachineFunction(fn);
+
+ // We don't run the coalescer here because we have no reason to
+ // interact with it. If the coalescer requires interaction, it
+ // won't do anything. If it doesn't require interaction, we assume
+ // it was run as a separate pass.
+
+ // If this is the first function compiled, compute the related reg classes.
+ if (RelatedRegClasses.empty())
+ ComputeRelatedRegClasses();
+
+ // Also resize register usage trackers.
+ initRegUses();
+
+ vrm_ = &getAnalysis<VirtRegMap>();
+ if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
+
+ spiller_.reset(createSpiller(*this, *mf_, *vrm_));
+
+ initIntervalSets();
+
+ linearScan();
+
+ // Rewrite spill code and update the PhysRegsUsed set.
+ rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
+
+ // Write out new DBG_VALUE instructions.
+ getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
+
+ assert(unhandled_.empty() && "Unhandled live intervals remain!");
+
+ finalizeRegUses();
+
+ fixed_.clear();
+ active_.clear();
+ inactive_.clear();
+ handled_.clear();
+ NextReloadMap.clear();
+ DowngradedRegs.clear();
+ DowngradeMap.clear();
+ spiller_.reset(0);
+
+ return true;
+}
+
+/// initIntervalSets - initialize the interval sets.
+///
+void RALinScan::initIntervalSets()
+{
+ assert(unhandled_.empty() && fixed_.empty() &&
+ active_.empty() && inactive_.empty() &&
+ "interval sets should be empty on initialization");
+
+ handled_.reserve(li_->getNumIntervals());
+
+ for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
+ if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
+ if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
+ mri_->setPhysRegUsed(i->second->reg);
+ fixed_.push_back(std::make_pair(i->second, i->second->begin()));
+ }
+ } else {
+ if (i->second->empty()) {
+ assignRegOrStackSlotAtInterval(i->second);
+ }
+ else
+ unhandled_.push(i->second);
+ }
+ }
+}
+
+void RALinScan::linearScan() {
+ // linear scan algorithm
+ DEBUG({
+ dbgs() << "********** LINEAR SCAN **********\n"
+ << "********** Function: "
+ << mf_->getFunction()->getName() << '\n';
+ printIntervals("fixed", fixed_.begin(), fixed_.end());
+ });
+
+ while (!unhandled_.empty()) {
+ // pick the interval with the earliest start point
+ LiveInterval* cur = unhandled_.top();
+ unhandled_.pop();
+ ++NumIters;
+ DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
+
+ assert(!cur->empty() && "Empty interval in unhandled set.");
+
+ processActiveIntervals(cur->beginIndex());
+ processInactiveIntervals(cur->beginIndex());
+
+ assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
+ "Can only allocate virtual registers!");
+
+ // Allocating a virtual register. try to find a free
+ // physical register or spill an interval (possibly this one) in order to
+ // assign it one.
+ assignRegOrStackSlotAtInterval(cur);
+
+ DEBUG({
+ printIntervals("active", active_.begin(), active_.end());
+ printIntervals("inactive", inactive_.begin(), inactive_.end());
+ });
+ }
+
+ // Expire any remaining active intervals
+ while (!active_.empty()) {
+ IntervalPtr &IP = active_.back();
+ unsigned reg = IP.first->reg;
+ DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
+ assert(TargetRegisterInfo::isVirtualRegister(reg) &&
+ "Can only allocate virtual registers!");
+ reg = vrm_->getPhys(reg);
+ delRegUse(reg);
+ active_.pop_back();
+ }
+
+ // Expire any remaining inactive intervals
+ DEBUG({
+ for (IntervalPtrs::reverse_iterator
+ i = inactive_.rbegin(); i != inactive_.rend(); ++i)
+ dbgs() << "\tinterval " << *i->first << " expired\n";
+ });
+ inactive_.clear();
+
+ // Add live-ins to every BB except for entry. Also perform trivial coalescing.
+ MachineFunction::iterator EntryMBB = mf_->begin();
+ SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
+ for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
+ LiveInterval &cur = *i->second;
+ unsigned Reg = 0;
+ bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
+ if (isPhys)
+ Reg = cur.reg;
+ else if (vrm_->isAssignedReg(cur.reg))
+ Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
+ if (!Reg)
+ continue;
+ // Ignore splited live intervals.
+ if (!isPhys && vrm_->getPreSplitReg(cur.reg))
+ continue;
+
+ for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
+ I != E; ++I) {
+ const LiveRange &LR = *I;
+ if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
+ for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
+ if (LiveInMBBs[i] != EntryMBB) {
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ "Adding a virtual register to livein set?");
+ LiveInMBBs[i]->addLiveIn(Reg);
+ }
+ LiveInMBBs.clear();
+ }
+ }
+ }
+
+ DEBUG(dbgs() << *vrm_);
+
+ // Look for physical registers that end up not being allocated even though
+ // register allocator had to spill other registers in its register class.
+ if (!vrm_->FindUnusedRegisters(li_))
+ return;
+}
+
+/// processActiveIntervals - expire old intervals and move non-overlapping ones
+/// to the inactive list.
+void RALinScan::processActiveIntervals(SlotIndex CurPoint)
+{
+ DEBUG(dbgs() << "\tprocessing active intervals:\n");
+
+ for (unsigned i = 0, e = active_.size(); i != e; ++i) {
+ LiveInterval *Interval = active_[i].first;
+ LiveInterval::iterator IntervalPos = active_[i].second;
+ unsigned reg = Interval->reg;
+
+ IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
+
+ if (IntervalPos == Interval->end()) { // Remove expired intervals.
+ DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
+ assert(TargetRegisterInfo::isVirtualRegister(reg) &&
+ "Can only allocate virtual registers!");
+ reg = vrm_->getPhys(reg);
+ delRegUse(reg);
+
+ // Pop off the end of the list.
+ active_[i] = active_.back();
+ active_.pop_back();
+ --i; --e;
+
+ } else if (IntervalPos->start > CurPoint) {
+ // Move inactive intervals to inactive list.
+ DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
+ assert(TargetRegisterInfo::isVirtualRegister(reg) &&
+ "Can only allocate virtual registers!");
+ reg = vrm_->getPhys(reg);
+ delRegUse(reg);
+ // add to inactive.
+ inactive_.push_back(std::make_pair(Interval, IntervalPos));
+
+ // Pop off the end of the list.
+ active_[i] = active_.back();
+ active_.pop_back();
+ --i; --e;
+ } else {
+ // Otherwise, just update the iterator position.
+ active_[i].second = IntervalPos;
+ }
+ }
+}
+
+/// processInactiveIntervals - expire old intervals and move overlapping
+/// ones to the active list.
+void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
+{
+ DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
+
+ for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
+ LiveInterval *Interval = inactive_[i].first;
+ LiveInterval::iterator IntervalPos = inactive_[i].second;
+ unsigned reg = Interval->reg;
+
+ IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
+
+ if (IntervalPos == Interval->end()) { // remove expired intervals.
+ DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
+
+ // Pop off the end of the list.
+ inactive_[i] = inactive_.back();
+ inactive_.pop_back();
+ --i; --e;
+ } else if (IntervalPos->start <= CurPoint) {
+ // move re-activated intervals in active list
+ DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
+ assert(TargetRegisterInfo::isVirtualRegister(reg) &&
+ "Can only allocate virtual registers!");
+ reg = vrm_->getPhys(reg);
+ addRegUse(reg);
+ // add to active
+ active_.push_back(std::make_pair(Interval, IntervalPos));
+
+ // Pop off the end of the list.
+ inactive_[i] = inactive_.back();
+ inactive_.pop_back();
+ --i; --e;
+ } else {
+ // Otherwise, just update the iterator position.
+ inactive_[i].second = IntervalPos;
+ }
+ }
+}
+
+/// updateSpillWeights - updates the spill weights of the specifed physical
+/// register and its weight.
+void RALinScan::updateSpillWeights(std::vector<float> &Weights,
+ unsigned reg, float weight,
+ const TargetRegisterClass *RC) {
+ SmallSet<unsigned, 4> Processed;
+ SmallSet<unsigned, 4> SuperAdded;
+ SmallVector<unsigned, 4> Supers;
+ Weights[reg] += weight;
+ Processed.insert(reg);
+ for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
+ Weights[*as] += weight;
+ Processed.insert(*as);
+ if (tri_->isSubRegister(*as, reg) &&
+ SuperAdded.insert(*as) &&
+ RC->contains(*as)) {
+ Supers.push_back(*as);
+ }
+ }
+
+ // If the alias is a super-register, and the super-register is in the
+ // register class we are trying to allocate. Then add the weight to all
+ // sub-registers of the super-register even if they are not aliases.
+ // e.g. allocating for GR32, bh is not used, updating bl spill weight.
+ // bl should get the same spill weight otherwise it will be chosen
+ // as a spill candidate since spilling bh doesn't make ebx available.
+ for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
+ for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
+ if (!Processed.count(*sr))
+ Weights[*sr] += weight;
+ }
+}
+
+static
+RALinScan::IntervalPtrs::iterator
+FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
+ for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
+ I != E; ++I)
+ if (I->first == LI) return I;
+ return IP.end();
+}
+
+static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
+ SlotIndex Point){
+ for (unsigned i = 0, e = V.size(); i != e; ++i) {
+ RALinScan::IntervalPtr &IP = V[i];
+ LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
+ IP.second, Point);
+ if (I != IP.first->begin()) --I;
+ IP.second = I;
+ }
+}
+
+/// getConflictWeight - Return the number of conflicts between cur
+/// live interval and defs and uses of Reg weighted by loop depthes.
+static
+float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
+ MachineRegisterInfo *mri_,
+ MachineLoopInfo *loopInfo) {
+ float Conflicts = 0;
+ for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
+ E = mri_->reg_end(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ if (cur->liveAt(li_->getInstructionIndex(MI))) {
+ unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
+ Conflicts += std::pow(10.0f, (float)loopDepth);
+ }
+ }
+ return Conflicts;
+}
+
+/// findIntervalsToSpill - Determine the intervals to spill for the
+/// specified interval. It's passed the physical registers whose spill
+/// weight is the lowest among all the registers whose live intervals
+/// conflict with the interval.
+void RALinScan::findIntervalsToSpill(LiveInterval *cur,
+ std::vector<std::pair<unsigned,float> > &Candidates,
+ unsigned NumCands,
+ SmallVector<LiveInterval*, 8> &SpillIntervals) {
+ // We have figured out the *best* register to spill. But there are other
+ // registers that are pretty good as well (spill weight within 3%). Spill
+ // the one that has fewest defs and uses that conflict with cur.
+ float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
+ SmallVector<LiveInterval*, 8> SLIs[3];
+
+ DEBUG({
+ dbgs() << "\tConsidering " << NumCands << " candidates: ";
+ for (unsigned i = 0; i != NumCands; ++i)
+ dbgs() << tri_->getName(Candidates[i].first) << " ";
+ dbgs() << "\n";
+ });
+
+ // Calculate the number of conflicts of each candidate.
+ for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
+ unsigned Reg = i->first->reg;
+ unsigned PhysReg = vrm_->getPhys(Reg);
+ if (!cur->overlapsFrom(*i->first, i->second))
+ continue;
+ for (unsigned j = 0; j < NumCands; ++j) {
+ unsigned Candidate = Candidates[j].first;
+ if (tri_->regsOverlap(PhysReg, Candidate)) {
+ if (NumCands > 1)
+ Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
+ SLIs[j].push_back(i->first);
+ }
+ }
+ }
+
+ for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
+ unsigned Reg = i->first->reg;
+ unsigned PhysReg = vrm_->getPhys(Reg);
+ if (!cur->overlapsFrom(*i->first, i->second-1))
+ continue;
+ for (unsigned j = 0; j < NumCands; ++j) {
+ unsigned Candidate = Candidates[j].first;
+ if (tri_->regsOverlap(PhysReg, Candidate)) {
+ if (NumCands > 1)
+ Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
+ SLIs[j].push_back(i->first);
+ }
+ }
+ }
+
+ // Which is the best candidate?
+ unsigned BestCandidate = 0;
+ float MinConflicts = Conflicts[0];
+ for (unsigned i = 1; i != NumCands; ++i) {
+ if (Conflicts[i] < MinConflicts) {
+ BestCandidate = i;
+ MinConflicts = Conflicts[i];
+ }
+ }
+
+ std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
+ std::back_inserter(SpillIntervals));
+}
+
+namespace {
+ struct WeightCompare {
+ private:
+ const RALinScan &Allocator;
+
+ public:
+ WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
+
+ typedef std::pair<unsigned, float> RegWeightPair;
+ bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
+ return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
+ }
+ };
+}
+
+static bool weightsAreClose(float w1, float w2) {
+ if (!NewHeuristic)
+ return false;
+
+ float diff = w1 - w2;
+ if (diff <= 0.02f) // Within 0.02f
+ return true;
+ return (diff / w2) <= 0.05f; // Within 5%.
+}
+
+LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
+ DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
+ if (I == NextReloadMap.end())
+ return 0;
+ return &li_->getInterval(I->second);
+}
+
+void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
+ for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
+ bool isNew = DowngradedRegs.insert(*AS);
+ (void)isNew; // Silence compiler warning.
+ assert(isNew && "Multiple reloads holding the same register?");
+ DowngradeMap.insert(std::make_pair(li->reg, *AS));
+ }
+ ++NumDowngrade;
+}
+
+void RALinScan::UpgradeRegister(unsigned Reg) {
+ if (Reg) {
+ DowngradedRegs.erase(Reg);
+ for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
+ DowngradedRegs.erase(*AS);
+ }
+}
+
+namespace {
+ struct LISorter {
+ bool operator()(LiveInterval* A, LiveInterval* B) {
+ return A->beginIndex() < B->beginIndex();
+ }
+ };
+}
+
+/// assignRegOrStackSlotAtInterval - assign a register if one is available, or
+/// spill.
+void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
+ const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
+ DEBUG(dbgs() << "\tallocating current interval from "
+ << RC->getName() << ": ");
+
+ // This is an implicitly defined live interval, just assign any register.
+ if (cur->empty()) {
+ unsigned physReg = vrm_->getRegAllocPref(cur->reg);
+ if (!physReg)
+ physReg = getFirstNonReservedPhysReg(RC);
+ DEBUG(dbgs() << tri_->getName(physReg) << '\n');
+ // Note the register is not really in use.
+ vrm_->assignVirt2Phys(cur->reg, physReg);
+ return;
+ }
+
+ backUpRegUses();
+
+ std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
+ SlotIndex StartPosition = cur->beginIndex();
+ const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
+
+ // If start of this live interval is defined by a move instruction and its
+ // source is assigned a physical register that is compatible with the target
+ // register class, then we should try to assign it the same register.
+ // This can happen when the move is from a larger register class to a smaller
+ // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
+ if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
+ VNInfo *vni = cur->begin()->valno;
+ if (!vni->isUnused() && vni->def.isValid()) {
+ MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
+ if (CopyMI && CopyMI->isCopy()) {
+ unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
+ unsigned SrcReg = CopyMI->getOperand(1).getReg();
+ unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
+ unsigned Reg = 0;
+ if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
+ Reg = SrcReg;
+ else if (vrm_->isAssignedReg(SrcReg))
+ Reg = vrm_->getPhys(SrcReg);
+ if (Reg) {
+ if (SrcSubReg)
+ Reg = tri_->getSubReg(Reg, SrcSubReg);
+ if (DstSubReg)
+ Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
+ if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
+ mri_->setRegAllocationHint(cur->reg, 0, Reg);
+ }
+ }
+ }
+ }
+
+ // For every interval in inactive we overlap with, mark the
+ // register as not free and update spill weights.
+ for (IntervalPtrs::const_iterator i = inactive_.begin(),
+ e = inactive_.end(); i != e; ++i) {
+ unsigned Reg = i->first->reg;
+ assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
+ "Can only allocate virtual registers!");
+ const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
+ // If this is not in a related reg class to the register we're allocating,
+ // don't check it.
+ if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
+ cur->overlapsFrom(*i->first, i->second-1)) {
+ Reg = vrm_->getPhys(Reg);
+ addRegUse(Reg);
+ SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
+ }
+ }
+
+ // Speculatively check to see if we can get a register right now. If not,
+ // we know we won't be able to by adding more constraints. If so, we can
+ // check to see if it is valid. Doing an exhaustive search of the fixed_ list
+ // is very bad (it contains all callee clobbered registers for any functions
+ // with a call), so we want to avoid doing that if possible.
+ unsigned physReg = getFreePhysReg(cur);
+ unsigned BestPhysReg = physReg;
+ if (physReg) {
+ // We got a register. However, if it's in the fixed_ list, we might
+ // conflict with it. Check to see if we conflict with it or any of its
+ // aliases.
+ SmallSet<unsigned, 8> RegAliases;
+ for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
+ RegAliases.insert(*AS);
+
+ bool ConflictsWithFixed = false;
+ for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
+ IntervalPtr &IP = fixed_[i];
+ if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
+ // Okay, this reg is on the fixed list. Check to see if we actually
+ // conflict.
+ LiveInterval *I = IP.first;
+ if (I->endIndex() > StartPosition) {
+ LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
+ IP.second = II;
+ if (II != I->begin() && II->start > StartPosition)
+ --II;
+ if (cur->overlapsFrom(*I, II)) {
+ ConflictsWithFixed = true;
+ break;
+ }
+ }
+ }
+ }
+
+ // Okay, the register picked by our speculative getFreePhysReg call turned
+ // out to be in use. Actually add all of the conflicting fixed registers to
+ // regUse_ so we can do an accurate query.
+ if (ConflictsWithFixed) {
+ // For every interval in fixed we overlap with, mark the register as not
+ // free and update spill weights.
+ for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
+ IntervalPtr &IP = fixed_[i];
+ LiveInterval *I = IP.first;
+
+ const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
+ if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
+ I->endIndex() > StartPosition) {
+ LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
+ IP.second = II;
+ if (II != I->begin() && II->start > StartPosition)
+ --II;
+ if (cur->overlapsFrom(*I, II)) {
+ unsigned reg = I->reg;
+ addRegUse(reg);
+ SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
+ }
+ }
+ }
+
+ // Using the newly updated regUse_ object, which includes conflicts in the
+ // future, see if there are any registers available.
+ physReg = getFreePhysReg(cur);
+ }
+ }
+
+ // Restore the physical register tracker, removing information about the
+ // future.
+ restoreRegUses();
+
+ // If we find a free register, we are done: assign this virtual to
+ // the free physical register and add this interval to the active
+ // list.
+ if (physReg) {
+ DEBUG(dbgs() << tri_->getName(physReg) << '\n');
+ assert(RC->contains(physReg) && "Invalid candidate");
+ vrm_->assignVirt2Phys(cur->reg, physReg);
+ addRegUse(physReg);
+ active_.push_back(std::make_pair(cur, cur->begin()));
+ handled_.push_back(cur);
+
+ // Remember physReg for avoiding a write-after-write hazard in the next
+ // instruction.
+ if (AvoidWAWHazard &&
+ tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg)))
+ avoidWAW_ = physReg;
+
+ // "Upgrade" the physical register since it has been allocated.
+ UpgradeRegister(physReg);
+ if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
+ // "Downgrade" physReg to try to keep physReg from being allocated until
+ // the next reload from the same SS is allocated.
+ mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
+ DowngradeRegister(cur, physReg);
+ }
+ return;
+ }
+ DEBUG(dbgs() << "no free registers\n");
+
+ // Compile the spill weights into an array that is better for scanning.
+ std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
+ for (std::vector<std::pair<unsigned, float> >::iterator
+ I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
+ updateSpillWeights(SpillWeights, I->first, I->second, RC);
+
+ // for each interval in active, update spill weights.
+ for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
+ i != e; ++i) {
+ unsigned reg = i->first->reg;
+ assert(TargetRegisterInfo::isVirtualRegister(reg) &&
+ "Can only allocate virtual registers!");
+ reg = vrm_->getPhys(reg);
+ updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
+ }
+
+ DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
+
+ // Find a register to spill.
+ float minWeight = HUGE_VALF;
+ unsigned minReg = 0;
+
+ bool Found = false;
+ std::vector<std::pair<unsigned,float> > RegsWeights;
+ ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
+ if (!minReg || SpillWeights[minReg] == HUGE_VALF)
+ for (unsigned i = 0; i != Order.size(); ++i) {
+ unsigned reg = Order[i];
+ float regWeight = SpillWeights[reg];
+ // Skip recently allocated registers and reserved registers.
+ if (minWeight > regWeight && !isRecentlyUsed(reg))
+ Found = true;
+ RegsWeights.push_back(std::make_pair(reg, regWeight));
+ }
+
+ // If we didn't find a register that is spillable, try aliases?
+ if (!Found) {
+ for (unsigned i = 0; i != Order.size(); ++i) {
+ unsigned reg = Order[i];
+ // No need to worry about if the alias register size < regsize of RC.
+ // We are going to spill all registers that alias it anyway.
+ for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
+ RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
+ }
+ }
+
+ // Sort all potential spill candidates by weight.
+ std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
+ minReg = RegsWeights[0].first;
+ minWeight = RegsWeights[0].second;
+ if (minWeight == HUGE_VALF) {
+ // All registers must have inf weight. Just grab one!
+ minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
+ if (cur->weight == HUGE_VALF ||
+ li_->getApproximateInstructionCount(*cur) == 0) {
+ // Spill a physical register around defs and uses.
+ if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
+ // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
+ // in fixed_. Reset them.
+ for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
+ IntervalPtr &IP = fixed_[i];
+ LiveInterval *I = IP.first;
+ if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
+ IP.second = I->advanceTo(I->begin(), StartPosition);
+ }
+
+ DowngradedRegs.clear();
+ assignRegOrStackSlotAtInterval(cur);
+ } else {
+ assert(false && "Ran out of registers during register allocation!");
+ report_fatal_error("Ran out of registers during register allocation!");
+ }
+ return;
+ }
+ }
+
+ // Find up to 3 registers to consider as spill candidates.
+ unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
+ while (LastCandidate > 1) {
+ if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
+ break;
+ --LastCandidate;
+ }
+
+ DEBUG({
+ dbgs() << "\t\tregister(s) with min weight(s): ";
+
+ for (unsigned i = 0; i != LastCandidate; ++i)
+ dbgs() << tri_->getName(RegsWeights[i].first)
+ << " (" << RegsWeights[i].second << ")\n";
+ });
+
+ // If the current has the minimum weight, we need to spill it and
+ // add any added intervals back to unhandled, and restart
+ // linearscan.
+ if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
+ DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
+ SmallVector<LiveInterval*, 8> added;
+ LiveRangeEdit LRE(*cur, added);
+ spiller_->spill(LRE);
+
+ std::sort(added.begin(), added.end(), LISorter());
+ if (added.empty())
+ return; // Early exit if all spills were folded.
+
+ // Merge added with unhandled. Note that we have already sorted
+ // intervals returned by addIntervalsForSpills by their starting
+ // point.
+ // This also update the NextReloadMap. That is, it adds mapping from a
+ // register defined by a reload from SS to the next reload from SS in the
+ // same basic block.
+ MachineBasicBlock *LastReloadMBB = 0;
+ LiveInterval *LastReload = 0;
+ int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
+ for (unsigned i = 0, e = added.size(); i != e; ++i) {
+ LiveInterval *ReloadLi = added[i];
+ if (ReloadLi->weight == HUGE_VALF &&
+ li_->getApproximateInstructionCount(*ReloadLi) == 0) {
+ SlotIndex ReloadIdx = ReloadLi->beginIndex();
+ MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
+ int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
+ if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
+ // Last reload of same SS is in the same MBB. We want to try to
+ // allocate both reloads the same register and make sure the reg
+ // isn't clobbered in between if at all possible.
+ assert(LastReload->beginIndex() < ReloadIdx);
+ NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
+ }
+ LastReloadMBB = ReloadMBB;
+ LastReload = ReloadLi;
+ LastReloadSS = ReloadSS;
+ }
+ unhandled_.push(ReloadLi);
+ }
+ return;
+ }
+
+ ++NumBacktracks;
+
+ // Push the current interval back to unhandled since we are going
+ // to re-run at least this iteration. Since we didn't modify it it
+ // should go back right in the front of the list
+ unhandled_.push(cur);
+
+ assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
+ "did not choose a register to spill?");
+
+ // We spill all intervals aliasing the register with
+ // minimum weight, rollback to the interval with the earliest
+ // start point and let the linear scan algorithm run again
+ SmallVector<LiveInterval*, 8> spillIs;
+
+ // Determine which intervals have to be spilled.
+ findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
+
+ // Set of spilled vregs (used later to rollback properly)
+ SmallSet<unsigned, 8> spilled;
+
+ // The earliest start of a Spilled interval indicates up to where
+ // in handled we need to roll back
+ assert(!spillIs.empty() && "No spill intervals?");
+ SlotIndex earliestStart = spillIs[0]->beginIndex();
+
+ // Spill live intervals of virtual regs mapped to the physical register we
+ // want to clear (and its aliases). We only spill those that overlap with the
+ // current interval as the rest do not affect its allocation. we also keep
+ // track of the earliest start of all spilled live intervals since this will
+ // mark our rollback point.
+ SmallVector<LiveInterval*, 8> added;
+ while (!spillIs.empty()) {
+ LiveInterval *sli = spillIs.back();
+ spillIs.pop_back();
+ DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
+ if (sli->beginIndex() < earliestStart)
+ earliestStart = sli->beginIndex();
+ LiveRangeEdit LRE(*sli, added, 0, &spillIs);
+ spiller_->spill(LRE);
+ spilled.insert(sli->reg);
+ }
+
+ // Include any added intervals in earliestStart.
+ for (unsigned i = 0, e = added.size(); i != e; ++i) {
+ SlotIndex SI = added[i]->beginIndex();
+ if (SI < earliestStart)
+ earliestStart = SI;
+ }
+
+ DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
+
+ // Scan handled in reverse order up to the earliest start of a
+ // spilled live interval and undo each one, restoring the state of
+ // unhandled.
+ while (!handled_.empty()) {
+ LiveInterval* i = handled_.back();
+ // If this interval starts before t we are done.
+ if (!i->empty() && i->beginIndex() < earliestStart)
+ break;
+ DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
+ handled_.pop_back();
+
+ // When undoing a live interval allocation we must know if it is active or
+ // inactive to properly update regUse_ and the VirtRegMap.
+ IntervalPtrs::iterator it;
+ if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
+ active_.erase(it);
+ assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
+ if (!spilled.count(i->reg))
+ unhandled_.push(i);
+ delRegUse(vrm_->getPhys(i->reg));
+ vrm_->clearVirt(i->reg);
+ } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
+ inactive_.erase(it);
+ assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
+ if (!spilled.count(i->reg))
+ unhandled_.push(i);
+ vrm_->clearVirt(i->reg);
+ } else {
+ assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
+ "Can only allocate virtual registers!");
+ vrm_->clearVirt(i->reg);
+ unhandled_.push(i);
+ }
+
+ DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
+ if (ii == DowngradeMap.end())
+ // It interval has a preference, it must be defined by a copy. Clear the
+ // preference now since the source interval allocation may have been
+ // undone as well.
+ mri_->setRegAllocationHint(i->reg, 0, 0);
+ else {
+ UpgradeRegister(ii->second);
+ }
+ }
+
+ // Rewind the iterators in the active, inactive, and fixed lists back to the
+ // point we reverted to.
+ RevertVectorIteratorsTo(active_, earliestStart);
+ RevertVectorIteratorsTo(inactive_, earliestStart);
+ RevertVectorIteratorsTo(fixed_, earliestStart);
+
+ // Scan the rest and undo each interval that expired after t and
+ // insert it in active (the next iteration of the algorithm will
+ // put it in inactive if required)
+ for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
+ LiveInterval *HI = handled_[i];
+ if (!HI->expiredAt(earliestStart) &&
+ HI->expiredAt(cur->beginIndex())) {
+ DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
+ active_.push_back(std::make_pair(HI, HI->begin()));
+ assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
+ addRegUse(vrm_->getPhys(HI->reg));
+ }
+ }
+
+ // Merge added with unhandled.
+ // This also update the NextReloadMap. That is, it adds mapping from a
+ // register defined by a reload from SS to the next reload from SS in the
+ // same basic block.
+ MachineBasicBlock *LastReloadMBB = 0;
+ LiveInterval *LastReload = 0;
+ int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
+ std::sort(added.begin(), added.end(), LISorter());
+ for (unsigned i = 0, e = added.size(); i != e; ++i) {
+ LiveInterval *ReloadLi = added[i];
+ if (ReloadLi->weight == HUGE_VALF &&
+ li_->getApproximateInstructionCount(*ReloadLi) == 0) {
+ SlotIndex ReloadIdx = ReloadLi->beginIndex();
+ MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
+ int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
+ if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
+ // Last reload of same SS is in the same MBB. We want to try to
+ // allocate both reloads the same register and make sure the reg
+ // isn't clobbered in between if at all possible.
+ assert(LastReload->beginIndex() < ReloadIdx);
+ NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
+ }
+ LastReloadMBB = ReloadMBB;
+ LastReload = ReloadLi;
+ LastReloadSS = ReloadSS;
+ }
+ unhandled_.push(ReloadLi);
+ }
+}
+
+unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
+ const TargetRegisterClass *RC,
+ unsigned MaxInactiveCount,
+ SmallVector<unsigned, 256> &inactiveCounts,
+ bool SkipDGRegs) {
+ unsigned FreeReg = 0;
+ unsigned FreeRegInactiveCount = 0;
+
+ std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
+ // Resolve second part of the hint (if possible) given the current allocation.
+ unsigned physReg = Hint.second;
+ if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
+ physReg = vrm_->getPhys(physReg);
+
+ ArrayRef<unsigned> Order;
+ if (Hint.first)
+ Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_);
+ else
+ Order = RegClassInfo.getOrder(RC);
+
+ assert(!Order.empty() && "No allocatable register in this register class!");
+
+ // Scan for the first available register.
+ for (unsigned i = 0; i != Order.size(); ++i) {
+ unsigned Reg = Order[i];
+ // Ignore "downgraded" registers.
+ if (SkipDGRegs && DowngradedRegs.count(Reg))
+ continue;
+ // Skip reserved registers.
+ if (reservedRegs_.test(Reg))
+ continue;
+ // Skip recently allocated registers.
+ if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) {
+ FreeReg = Reg;
+ if (FreeReg < inactiveCounts.size())
+ FreeRegInactiveCount = inactiveCounts[FreeReg];
+ else
+ FreeRegInactiveCount = 0;
+ break;
+ }
+ }
+
+ // If there are no free regs, or if this reg has the max inactive count,
+ // return this register.
+ if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
+ // Remember what register we picked so we can skip it next time.
+ if (FreeReg != 0) recordRecentlyUsed(FreeReg);
+ return FreeReg;
+ }
+
+ // Continue scanning the registers, looking for the one with the highest
+ // inactive count. Alkis found that this reduced register pressure very
+ // slightly on X86 (in rev 1.94 of this file), though this should probably be
+ // reevaluated now.
+ for (unsigned i = 0; i != Order.size(); ++i) {
+ unsigned Reg = Order[i];
+ // Ignore "downgraded" registers.
+ if (SkipDGRegs && DowngradedRegs.count(Reg))
+ continue;
+ // Skip reserved registers.
+ if (reservedRegs_.test(Reg))
+ continue;
+ if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
+ FreeRegInactiveCount < inactiveCounts[Reg] &&
+ (!SkipDGRegs || !isRecentlyUsed(Reg))) {
+ FreeReg = Reg;
+ FreeRegInactiveCount = inactiveCounts[Reg];
+ if (FreeRegInactiveCount == MaxInactiveCount)
+ break; // We found the one with the max inactive count.
+ }
+ }
+
+ // Remember what register we picked so we can skip it next time.
+ recordRecentlyUsed(FreeReg);
+
+ return FreeReg;
+}
+
+/// getFreePhysReg - return a free physical register for this virtual register
+/// interval if we have one, otherwise return 0.
+unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
+ SmallVector<unsigned, 256> inactiveCounts;
+ unsigned MaxInactiveCount = 0;
+
+ const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
+ const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
+
+ for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
+ i != e; ++i) {
+ unsigned reg = i->first->reg;
+ assert(TargetRegisterInfo::isVirtualRegister(reg) &&
+ "Can only allocate virtual registers!");
+
+ // If this is not in a related reg class to the register we're allocating,
+ // don't check it.
+ const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
+ if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
+ reg = vrm_->getPhys(reg);
+ if (inactiveCounts.size() <= reg)
+ inactiveCounts.resize(reg+1);
+ ++inactiveCounts[reg];
+ MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
+ }
+ }
+
+ // If copy coalescer has assigned a "preferred" register, check if it's
+ // available first.
+ unsigned Preference = vrm_->getRegAllocPref(cur->reg);
+ if (Preference) {
+ DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
+ if (isRegAvail(Preference) &&
+ RC->contains(Preference))
+ return Preference;
+ }
+
+ unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
+ true);
+ if (FreeReg)
+ return FreeReg;
+ return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
+}
+
+FunctionPass* llvm::createLinearScanRegisterAllocator() {
+ return new RALinScan();
+}
OpenPOWER on IntegriCloud