diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp | 1544 |
1 files changed, 1544 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp b/contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp new file mode 100644 index 0000000..0dd3c598 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/RegAllocLinearScan.cpp @@ -0,0 +1,1544 @@ +//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements a linear scan register allocator. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "LiveDebugVariables.h" +#include "LiveRangeEdit.h" +#include "VirtRegMap.h" +#include "VirtRegRewriter.h" +#include "RegisterClassInfo.h" +#include "Spiller.h" +#include "RegisterCoalescer.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/ADT/EquivalenceClasses.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <queue> +#include <memory> +#include <cmath> + +using namespace llvm; + +STATISTIC(NumIters , "Number of iterations performed"); +STATISTIC(NumBacktracks, "Number of times we had to backtrack"); +STATISTIC(NumCoalesce, "Number of copies coalesced"); +STATISTIC(NumDowngrade, "Number of registers downgraded"); + +static cl::opt<bool> +NewHeuristic("new-spilling-heuristic", + cl::desc("Use new spilling heuristic"), + cl::init(false), cl::Hidden); + +static cl::opt<bool> +TrivCoalesceEnds("trivial-coalesce-ends", + cl::desc("Attempt trivial coalescing of interval ends"), + cl::init(false), cl::Hidden); + +static cl::opt<bool> +AvoidWAWHazard("avoid-waw-hazard", + cl::desc("Avoid write-write hazards for some register classes"), + cl::init(false), cl::Hidden); + +static RegisterRegAlloc +linearscanRegAlloc("linearscan", "linear scan register allocator", + createLinearScanRegisterAllocator); + +namespace { + // When we allocate a register, add it to a fixed-size queue of + // registers to skip in subsequent allocations. This trades a small + // amount of register pressure and increased spills for flexibility in + // the post-pass scheduler. + // + // Note that in a the number of registers used for reloading spills + // will be one greater than the value of this option. + // + // One big limitation of this is that it doesn't differentiate between + // different register classes. So on x86-64, if there is xmm register + // pressure, it can caused fewer GPRs to be held in the queue. + static cl::opt<unsigned> + NumRecentlyUsedRegs("linearscan-skip-count", + cl::desc("Number of registers for linearscan to remember" + "to skip."), + cl::init(0), + cl::Hidden); + + struct RALinScan : public MachineFunctionPass { + static char ID; + RALinScan() : MachineFunctionPass(ID) { + initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); + initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); + initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); + initializeRegisterCoalescerPass( + *PassRegistry::getPassRegistry()); + initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); + initializeLiveStacksPass(*PassRegistry::getPassRegistry()); + initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); + initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); + initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); + initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); + + // Initialize the queue to record recently-used registers. + if (NumRecentlyUsedRegs > 0) + RecentRegs.resize(NumRecentlyUsedRegs, 0); + RecentNext = RecentRegs.begin(); + avoidWAW_ = 0; + } + + typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr; + typedef SmallVector<IntervalPtr, 32> IntervalPtrs; + private: + /// RelatedRegClasses - This structure is built the first time a function is + /// compiled, and keeps track of which register classes have registers that + /// belong to multiple classes or have aliases that are in other classes. + EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses; + DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg; + + // NextReloadMap - For each register in the map, it maps to the another + // register which is defined by a reload from the same stack slot and + // both reloads are in the same basic block. + DenseMap<unsigned, unsigned> NextReloadMap; + + // DowngradedRegs - A set of registers which are being "downgraded", i.e. + // un-favored for allocation. + SmallSet<unsigned, 8> DowngradedRegs; + + // DowngradeMap - A map from virtual registers to physical registers being + // downgraded for the virtual registers. + DenseMap<unsigned, unsigned> DowngradeMap; + + MachineFunction* mf_; + MachineRegisterInfo* mri_; + const TargetMachine* tm_; + const TargetRegisterInfo* tri_; + const TargetInstrInfo* tii_; + BitVector allocatableRegs_; + BitVector reservedRegs_; + LiveIntervals* li_; + MachineLoopInfo *loopInfo; + RegisterClassInfo RegClassInfo; + + /// handled_ - Intervals are added to the handled_ set in the order of their + /// start value. This is uses for backtracking. + std::vector<LiveInterval*> handled_; + + /// fixed_ - Intervals that correspond to machine registers. + /// + IntervalPtrs fixed_; + + /// active_ - Intervals that are currently being processed, and which have a + /// live range active for the current point. + IntervalPtrs active_; + + /// inactive_ - Intervals that are currently being processed, but which have + /// a hold at the current point. + IntervalPtrs inactive_; + + typedef std::priority_queue<LiveInterval*, + SmallVector<LiveInterval*, 64>, + greater_ptr<LiveInterval> > IntervalHeap; + IntervalHeap unhandled_; + + /// regUse_ - Tracks register usage. + SmallVector<unsigned, 32> regUse_; + SmallVector<unsigned, 32> regUseBackUp_; + + /// vrm_ - Tracks register assignments. + VirtRegMap* vrm_; + + std::auto_ptr<VirtRegRewriter> rewriter_; + + std::auto_ptr<Spiller> spiller_; + + // The queue of recently-used registers. + SmallVector<unsigned, 4> RecentRegs; + SmallVector<unsigned, 4>::iterator RecentNext; + + // Last write-after-write register written. + unsigned avoidWAW_; + + // Record that we just picked this register. + void recordRecentlyUsed(unsigned reg) { + assert(reg != 0 && "Recently used register is NOREG!"); + if (!RecentRegs.empty()) { + *RecentNext++ = reg; + if (RecentNext == RecentRegs.end()) + RecentNext = RecentRegs.begin(); + } + } + + public: + virtual const char* getPassName() const { + return "Linear Scan Register Allocator"; + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<AliasAnalysis>(); + AU.addPreserved<AliasAnalysis>(); + AU.addRequired<LiveIntervals>(); + AU.addPreserved<SlotIndexes>(); + if (StrongPHIElim) + AU.addRequiredID(StrongPHIEliminationID); + // Make sure PassManager knows which analyses to make available + // to coalescing and which analyses coalescing invalidates. + AU.addRequiredTransitive<RegisterCoalescer>(); + AU.addRequired<CalculateSpillWeights>(); + AU.addRequiredID(LiveStacksID); + AU.addPreservedID(LiveStacksID); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineLoopInfo>(); + AU.addRequired<VirtRegMap>(); + AU.addPreserved<VirtRegMap>(); + AU.addRequired<LiveDebugVariables>(); + AU.addPreserved<LiveDebugVariables>(); + AU.addRequiredID(MachineDominatorsID); + AU.addPreservedID(MachineDominatorsID); + MachineFunctionPass::getAnalysisUsage(AU); + } + + /// runOnMachineFunction - register allocate the whole function + bool runOnMachineFunction(MachineFunction&); + + // Determine if we skip this register due to its being recently used. + bool isRecentlyUsed(unsigned reg) const { + return reg == avoidWAW_ || + std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end(); + } + + private: + /// linearScan - the linear scan algorithm + void linearScan(); + + /// initIntervalSets - initialize the interval sets. + /// + void initIntervalSets(); + + /// processActiveIntervals - expire old intervals and move non-overlapping + /// ones to the inactive list. + void processActiveIntervals(SlotIndex CurPoint); + + /// processInactiveIntervals - expire old intervals and move overlapping + /// ones to the active list. + void processInactiveIntervals(SlotIndex CurPoint); + + /// hasNextReloadInterval - Return the next liveinterval that's being + /// defined by a reload from the same SS as the specified one. + LiveInterval *hasNextReloadInterval(LiveInterval *cur); + + /// DowngradeRegister - Downgrade a register for allocation. + void DowngradeRegister(LiveInterval *li, unsigned Reg); + + /// UpgradeRegister - Upgrade a register for allocation. + void UpgradeRegister(unsigned Reg); + + /// assignRegOrStackSlotAtInterval - assign a register if one + /// is available, or spill. + void assignRegOrStackSlotAtInterval(LiveInterval* cur); + + void updateSpillWeights(std::vector<float> &Weights, + unsigned reg, float weight, + const TargetRegisterClass *RC); + + /// findIntervalsToSpill - Determine the intervals to spill for the + /// specified interval. It's passed the physical registers whose spill + /// weight is the lowest among all the registers whose live intervals + /// conflict with the interval. + void findIntervalsToSpill(LiveInterval *cur, + std::vector<std::pair<unsigned,float> > &Candidates, + unsigned NumCands, + SmallVector<LiveInterval*, 8> &SpillIntervals); + + /// attemptTrivialCoalescing - If a simple interval is defined by a copy, + /// try to allocate the definition to the same register as the source, + /// if the register is not defined during the life time of the interval. + /// This eliminates a copy, and is used to coalesce copies which were not + /// coalesced away before allocation either due to dest and src being in + /// different register classes or because the coalescer was overly + /// conservative. + unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg); + + /// + /// Register usage / availability tracking helpers. + /// + + void initRegUses() { + regUse_.resize(tri_->getNumRegs(), 0); + regUseBackUp_.resize(tri_->getNumRegs(), 0); + } + + void finalizeRegUses() { +#ifndef NDEBUG + // Verify all the registers are "freed". + bool Error = false; + for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) { + if (regUse_[i] != 0) { + dbgs() << tri_->getName(i) << " is still in use!\n"; + Error = true; + } + } + if (Error) + llvm_unreachable(0); +#endif + regUse_.clear(); + regUseBackUp_.clear(); + } + + void addRegUse(unsigned physReg) { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + ++regUse_[physReg]; + for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) + ++regUse_[*as]; + } + + void delRegUse(unsigned physReg) { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + assert(regUse_[physReg] != 0); + --regUse_[physReg]; + for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) { + assert(regUse_[*as] != 0); + --regUse_[*as]; + } + } + + bool isRegAvail(unsigned physReg) const { + assert(TargetRegisterInfo::isPhysicalRegister(physReg) && + "should be physical register!"); + return regUse_[physReg] == 0; + } + + void backUpRegUses() { + regUseBackUp_ = regUse_; + } + + void restoreRegUses() { + regUse_ = regUseBackUp_; + } + + /// + /// Register handling helpers. + /// + + /// getFreePhysReg - return a free physical register for this virtual + /// register interval if we have one, otherwise return 0. + unsigned getFreePhysReg(LiveInterval* cur); + unsigned getFreePhysReg(LiveInterval* cur, + const TargetRegisterClass *RC, + unsigned MaxInactiveCount, + SmallVector<unsigned, 256> &inactiveCounts, + bool SkipDGRegs); + + /// getFirstNonReservedPhysReg - return the first non-reserved physical + /// register in the register class. + unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) { + ArrayRef<unsigned> O = RegClassInfo.getOrder(RC); + assert(!O.empty() && "All registers reserved?!"); + return O.front(); + } + + void ComputeRelatedRegClasses(); + + template <typename ItTy> + void printIntervals(const char* const str, ItTy i, ItTy e) const { + DEBUG({ + if (str) + dbgs() << str << " intervals:\n"; + + for (; i != e; ++i) { + dbgs() << '\t' << *i->first << " -> "; + + unsigned reg = i->first->reg; + if (TargetRegisterInfo::isVirtualRegister(reg)) + reg = vrm_->getPhys(reg); + + dbgs() << tri_->getName(reg) << '\n'; + } + }); + } + }; + char RALinScan::ID = 0; +} + +INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc", + "Linear Scan Register Allocator", false, false) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination) +INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights) +INITIALIZE_PASS_DEPENDENCY(LiveStacks) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(VirtRegMap) +INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc", + "Linear Scan Register Allocator", false, false) + +void RALinScan::ComputeRelatedRegClasses() { + // First pass, add all reg classes to the union, and determine at least one + // reg class that each register is in. + bool HasAliases = false; + for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(), + E = tri_->regclass_end(); RCI != E; ++RCI) { + RelatedRegClasses.insert(*RCI); + for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end(); + I != E; ++I) { + HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0; + + const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I]; + if (PRC) { + // Already processed this register. Just make sure we know that + // multiple register classes share a register. + RelatedRegClasses.unionSets(PRC, *RCI); + } else { + PRC = *RCI; + } + } + } + + // Second pass, now that we know conservatively what register classes each reg + // belongs to, add info about aliases. We don't need to do this for targets + // without register aliases. + if (HasAliases) + for (DenseMap<unsigned, const TargetRegisterClass*>::iterator + I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end(); + I != E; ++I) + for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) { + const TargetRegisterClass *AliasClass = + OneClassForEachPhysReg.lookup(*AS); + if (AliasClass) + RelatedRegClasses.unionSets(I->second, AliasClass); + } +} + +/// attemptTrivialCoalescing - If a simple interval is defined by a copy, try +/// allocate the definition the same register as the source register if the +/// register is not defined during live time of the interval. If the interval is +/// killed by a copy, try to use the destination register. This eliminates a +/// copy. This is used to coalesce copies which were not coalesced away before +/// allocation either due to dest and src being in different register classes or +/// because the coalescer was overly conservative. +unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) { + unsigned Preference = vrm_->getRegAllocPref(cur.reg); + if ((Preference && Preference == Reg) || !cur.containsOneValue()) + return Reg; + + // We cannot handle complicated live ranges. Simple linear stuff only. + if (cur.ranges.size() != 1) + return Reg; + + const LiveRange &range = cur.ranges.front(); + + VNInfo *vni = range.valno; + if (vni->isUnused() || !vni->def.isValid()) + return Reg; + + unsigned CandReg; + { + MachineInstr *CopyMI; + if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy()) + // Defined by a copy, try to extend SrcReg forward + CandReg = CopyMI->getOperand(1).getReg(); + else if (TrivCoalesceEnds && + (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) && + CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg()) + // Only used by a copy, try to extend DstReg backwards + CandReg = CopyMI->getOperand(0).getReg(); + else + return Reg; + + // If the target of the copy is a sub-register then don't coalesce. + if(CopyMI->getOperand(0).getSubReg()) + return Reg; + } + + if (TargetRegisterInfo::isVirtualRegister(CandReg)) { + if (!vrm_->isAssignedReg(CandReg)) + return Reg; + CandReg = vrm_->getPhys(CandReg); + } + if (Reg == CandReg) + return Reg; + + const TargetRegisterClass *RC = mri_->getRegClass(cur.reg); + if (!RC->contains(CandReg)) + return Reg; + + if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg)) + return Reg; + + // Try to coalesce. + DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg) + << '\n'); + vrm_->clearVirt(cur.reg); + vrm_->assignVirt2Phys(cur.reg, CandReg); + + ++NumCoalesce; + return CandReg; +} + +bool RALinScan::runOnMachineFunction(MachineFunction &fn) { + mf_ = &fn; + mri_ = &fn.getRegInfo(); + tm_ = &fn.getTarget(); + tri_ = tm_->getRegisterInfo(); + tii_ = tm_->getInstrInfo(); + allocatableRegs_ = tri_->getAllocatableSet(fn); + reservedRegs_ = tri_->getReservedRegs(fn); + li_ = &getAnalysis<LiveIntervals>(); + loopInfo = &getAnalysis<MachineLoopInfo>(); + RegClassInfo.runOnMachineFunction(fn); + + // We don't run the coalescer here because we have no reason to + // interact with it. If the coalescer requires interaction, it + // won't do anything. If it doesn't require interaction, we assume + // it was run as a separate pass. + + // If this is the first function compiled, compute the related reg classes. + if (RelatedRegClasses.empty()) + ComputeRelatedRegClasses(); + + // Also resize register usage trackers. + initRegUses(); + + vrm_ = &getAnalysis<VirtRegMap>(); + if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter()); + + spiller_.reset(createSpiller(*this, *mf_, *vrm_)); + + initIntervalSets(); + + linearScan(); + + // Rewrite spill code and update the PhysRegsUsed set. + rewriter_->runOnMachineFunction(*mf_, *vrm_, li_); + + // Write out new DBG_VALUE instructions. + getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_); + + assert(unhandled_.empty() && "Unhandled live intervals remain!"); + + finalizeRegUses(); + + fixed_.clear(); + active_.clear(); + inactive_.clear(); + handled_.clear(); + NextReloadMap.clear(); + DowngradedRegs.clear(); + DowngradeMap.clear(); + spiller_.reset(0); + + return true; +} + +/// initIntervalSets - initialize the interval sets. +/// +void RALinScan::initIntervalSets() +{ + assert(unhandled_.empty() && fixed_.empty() && + active_.empty() && inactive_.empty() && + "interval sets should be empty on initialization"); + + handled_.reserve(li_->getNumIntervals()); + + for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { + if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) { + if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) { + mri_->setPhysRegUsed(i->second->reg); + fixed_.push_back(std::make_pair(i->second, i->second->begin())); + } + } else { + if (i->second->empty()) { + assignRegOrStackSlotAtInterval(i->second); + } + else + unhandled_.push(i->second); + } + } +} + +void RALinScan::linearScan() { + // linear scan algorithm + DEBUG({ + dbgs() << "********** LINEAR SCAN **********\n" + << "********** Function: " + << mf_->getFunction()->getName() << '\n'; + printIntervals("fixed", fixed_.begin(), fixed_.end()); + }); + + while (!unhandled_.empty()) { + // pick the interval with the earliest start point + LiveInterval* cur = unhandled_.top(); + unhandled_.pop(); + ++NumIters; + DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n'); + + assert(!cur->empty() && "Empty interval in unhandled set."); + + processActiveIntervals(cur->beginIndex()); + processInactiveIntervals(cur->beginIndex()); + + assert(TargetRegisterInfo::isVirtualRegister(cur->reg) && + "Can only allocate virtual registers!"); + + // Allocating a virtual register. try to find a free + // physical register or spill an interval (possibly this one) in order to + // assign it one. + assignRegOrStackSlotAtInterval(cur); + + DEBUG({ + printIntervals("active", active_.begin(), active_.end()); + printIntervals("inactive", inactive_.begin(), inactive_.end()); + }); + } + + // Expire any remaining active intervals + while (!active_.empty()) { + IntervalPtr &IP = active_.back(); + unsigned reg = IP.first->reg; + DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n"); + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + delRegUse(reg); + active_.pop_back(); + } + + // Expire any remaining inactive intervals + DEBUG({ + for (IntervalPtrs::reverse_iterator + i = inactive_.rbegin(); i != inactive_.rend(); ++i) + dbgs() << "\tinterval " << *i->first << " expired\n"; + }); + inactive_.clear(); + + // Add live-ins to every BB except for entry. Also perform trivial coalescing. + MachineFunction::iterator EntryMBB = mf_->begin(); + SmallVector<MachineBasicBlock*, 8> LiveInMBBs; + for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { + LiveInterval &cur = *i->second; + unsigned Reg = 0; + bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg); + if (isPhys) + Reg = cur.reg; + else if (vrm_->isAssignedReg(cur.reg)) + Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg)); + if (!Reg) + continue; + // Ignore splited live intervals. + if (!isPhys && vrm_->getPreSplitReg(cur.reg)) + continue; + + for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end(); + I != E; ++I) { + const LiveRange &LR = *I; + if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) { + for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i) + if (LiveInMBBs[i] != EntryMBB) { + assert(TargetRegisterInfo::isPhysicalRegister(Reg) && + "Adding a virtual register to livein set?"); + LiveInMBBs[i]->addLiveIn(Reg); + } + LiveInMBBs.clear(); + } + } + } + + DEBUG(dbgs() << *vrm_); + + // Look for physical registers that end up not being allocated even though + // register allocator had to spill other registers in its register class. + if (!vrm_->FindUnusedRegisters(li_)) + return; +} + +/// processActiveIntervals - expire old intervals and move non-overlapping ones +/// to the inactive list. +void RALinScan::processActiveIntervals(SlotIndex CurPoint) +{ + DEBUG(dbgs() << "\tprocessing active intervals:\n"); + + for (unsigned i = 0, e = active_.size(); i != e; ++i) { + LiveInterval *Interval = active_[i].first; + LiveInterval::iterator IntervalPos = active_[i].second; + unsigned reg = Interval->reg; + + IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); + + if (IntervalPos == Interval->end()) { // Remove expired intervals. + DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n"); + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + delRegUse(reg); + + // Pop off the end of the list. + active_[i] = active_.back(); + active_.pop_back(); + --i; --e; + + } else if (IntervalPos->start > CurPoint) { + // Move inactive intervals to inactive list. + DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n"); + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + delRegUse(reg); + // add to inactive. + inactive_.push_back(std::make_pair(Interval, IntervalPos)); + + // Pop off the end of the list. + active_[i] = active_.back(); + active_.pop_back(); + --i; --e; + } else { + // Otherwise, just update the iterator position. + active_[i].second = IntervalPos; + } + } +} + +/// processInactiveIntervals - expire old intervals and move overlapping +/// ones to the active list. +void RALinScan::processInactiveIntervals(SlotIndex CurPoint) +{ + DEBUG(dbgs() << "\tprocessing inactive intervals:\n"); + + for (unsigned i = 0, e = inactive_.size(); i != e; ++i) { + LiveInterval *Interval = inactive_[i].first; + LiveInterval::iterator IntervalPos = inactive_[i].second; + unsigned reg = Interval->reg; + + IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); + + if (IntervalPos == Interval->end()) { // remove expired intervals. + DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n"); + + // Pop off the end of the list. + inactive_[i] = inactive_.back(); + inactive_.pop_back(); + --i; --e; + } else if (IntervalPos->start <= CurPoint) { + // move re-activated intervals in active list + DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n"); + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + addRegUse(reg); + // add to active + active_.push_back(std::make_pair(Interval, IntervalPos)); + + // Pop off the end of the list. + inactive_[i] = inactive_.back(); + inactive_.pop_back(); + --i; --e; + } else { + // Otherwise, just update the iterator position. + inactive_[i].second = IntervalPos; + } + } +} + +/// updateSpillWeights - updates the spill weights of the specifed physical +/// register and its weight. +void RALinScan::updateSpillWeights(std::vector<float> &Weights, + unsigned reg, float weight, + const TargetRegisterClass *RC) { + SmallSet<unsigned, 4> Processed; + SmallSet<unsigned, 4> SuperAdded; + SmallVector<unsigned, 4> Supers; + Weights[reg] += weight; + Processed.insert(reg); + for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) { + Weights[*as] += weight; + Processed.insert(*as); + if (tri_->isSubRegister(*as, reg) && + SuperAdded.insert(*as) && + RC->contains(*as)) { + Supers.push_back(*as); + } + } + + // If the alias is a super-register, and the super-register is in the + // register class we are trying to allocate. Then add the weight to all + // sub-registers of the super-register even if they are not aliases. + // e.g. allocating for GR32, bh is not used, updating bl spill weight. + // bl should get the same spill weight otherwise it will be chosen + // as a spill candidate since spilling bh doesn't make ebx available. + for (unsigned i = 0, e = Supers.size(); i != e; ++i) { + for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr) + if (!Processed.count(*sr)) + Weights[*sr] += weight; + } +} + +static +RALinScan::IntervalPtrs::iterator +FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) { + for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); + I != E; ++I) + if (I->first == LI) return I; + return IP.end(); +} + +static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, + SlotIndex Point){ + for (unsigned i = 0, e = V.size(); i != e; ++i) { + RALinScan::IntervalPtr &IP = V[i]; + LiveInterval::iterator I = std::upper_bound(IP.first->begin(), + IP.second, Point); + if (I != IP.first->begin()) --I; + IP.second = I; + } +} + +/// getConflictWeight - Return the number of conflicts between cur +/// live interval and defs and uses of Reg weighted by loop depthes. +static +float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_, + MachineRegisterInfo *mri_, + MachineLoopInfo *loopInfo) { + float Conflicts = 0; + for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg), + E = mri_->reg_end(); I != E; ++I) { + MachineInstr *MI = &*I; + if (cur->liveAt(li_->getInstructionIndex(MI))) { + unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent()); + Conflicts += std::pow(10.0f, (float)loopDepth); + } + } + return Conflicts; +} + +/// findIntervalsToSpill - Determine the intervals to spill for the +/// specified interval. It's passed the physical registers whose spill +/// weight is the lowest among all the registers whose live intervals +/// conflict with the interval. +void RALinScan::findIntervalsToSpill(LiveInterval *cur, + std::vector<std::pair<unsigned,float> > &Candidates, + unsigned NumCands, + SmallVector<LiveInterval*, 8> &SpillIntervals) { + // We have figured out the *best* register to spill. But there are other + // registers that are pretty good as well (spill weight within 3%). Spill + // the one that has fewest defs and uses that conflict with cur. + float Conflicts[3] = { 0.0f, 0.0f, 0.0f }; + SmallVector<LiveInterval*, 8> SLIs[3]; + + DEBUG({ + dbgs() << "\tConsidering " << NumCands << " candidates: "; + for (unsigned i = 0; i != NumCands; ++i) + dbgs() << tri_->getName(Candidates[i].first) << " "; + dbgs() << "\n"; + }); + + // Calculate the number of conflicts of each candidate. + for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { + unsigned Reg = i->first->reg; + unsigned PhysReg = vrm_->getPhys(Reg); + if (!cur->overlapsFrom(*i->first, i->second)) + continue; + for (unsigned j = 0; j < NumCands; ++j) { + unsigned Candidate = Candidates[j].first; + if (tri_->regsOverlap(PhysReg, Candidate)) { + if (NumCands > 1) + Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); + SLIs[j].push_back(i->first); + } + } + } + + for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){ + unsigned Reg = i->first->reg; + unsigned PhysReg = vrm_->getPhys(Reg); + if (!cur->overlapsFrom(*i->first, i->second-1)) + continue; + for (unsigned j = 0; j < NumCands; ++j) { + unsigned Candidate = Candidates[j].first; + if (tri_->regsOverlap(PhysReg, Candidate)) { + if (NumCands > 1) + Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); + SLIs[j].push_back(i->first); + } + } + } + + // Which is the best candidate? + unsigned BestCandidate = 0; + float MinConflicts = Conflicts[0]; + for (unsigned i = 1; i != NumCands; ++i) { + if (Conflicts[i] < MinConflicts) { + BestCandidate = i; + MinConflicts = Conflicts[i]; + } + } + + std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(), + std::back_inserter(SpillIntervals)); +} + +namespace { + struct WeightCompare { + private: + const RALinScan &Allocator; + + public: + WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {} + + typedef std::pair<unsigned, float> RegWeightPair; + bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const { + return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first); + } + }; +} + +static bool weightsAreClose(float w1, float w2) { + if (!NewHeuristic) + return false; + + float diff = w1 - w2; + if (diff <= 0.02f) // Within 0.02f + return true; + return (diff / w2) <= 0.05f; // Within 5%. +} + +LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) { + DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg); + if (I == NextReloadMap.end()) + return 0; + return &li_->getInterval(I->second); +} + +void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) { + for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) { + bool isNew = DowngradedRegs.insert(*AS); + (void)isNew; // Silence compiler warning. + assert(isNew && "Multiple reloads holding the same register?"); + DowngradeMap.insert(std::make_pair(li->reg, *AS)); + } + ++NumDowngrade; +} + +void RALinScan::UpgradeRegister(unsigned Reg) { + if (Reg) { + DowngradedRegs.erase(Reg); + for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) + DowngradedRegs.erase(*AS); + } +} + +namespace { + struct LISorter { + bool operator()(LiveInterval* A, LiveInterval* B) { + return A->beginIndex() < B->beginIndex(); + } + }; +} + +/// assignRegOrStackSlotAtInterval - assign a register if one is available, or +/// spill. +void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) { + const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); + DEBUG(dbgs() << "\tallocating current interval from " + << RC->getName() << ": "); + + // This is an implicitly defined live interval, just assign any register. + if (cur->empty()) { + unsigned physReg = vrm_->getRegAllocPref(cur->reg); + if (!physReg) + physReg = getFirstNonReservedPhysReg(RC); + DEBUG(dbgs() << tri_->getName(physReg) << '\n'); + // Note the register is not really in use. + vrm_->assignVirt2Phys(cur->reg, physReg); + return; + } + + backUpRegUses(); + + std::vector<std::pair<unsigned, float> > SpillWeightsToAdd; + SlotIndex StartPosition = cur->beginIndex(); + const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); + + // If start of this live interval is defined by a move instruction and its + // source is assigned a physical register that is compatible with the target + // register class, then we should try to assign it the same register. + // This can happen when the move is from a larger register class to a smaller + // one, e.g. X86::mov32to32_. These move instructions are not coalescable. + if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) { + VNInfo *vni = cur->begin()->valno; + if (!vni->isUnused() && vni->def.isValid()) { + MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); + if (CopyMI && CopyMI->isCopy()) { + unsigned DstSubReg = CopyMI->getOperand(0).getSubReg(); + unsigned SrcReg = CopyMI->getOperand(1).getReg(); + unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg(); + unsigned Reg = 0; + if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) + Reg = SrcReg; + else if (vrm_->isAssignedReg(SrcReg)) + Reg = vrm_->getPhys(SrcReg); + if (Reg) { + if (SrcSubReg) + Reg = tri_->getSubReg(Reg, SrcSubReg); + if (DstSubReg) + Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC); + if (Reg && allocatableRegs_[Reg] && RC->contains(Reg)) + mri_->setRegAllocationHint(cur->reg, 0, Reg); + } + } + } + } + + // For every interval in inactive we overlap with, mark the + // register as not free and update spill weights. + for (IntervalPtrs::const_iterator i = inactive_.begin(), + e = inactive_.end(); i != e; ++i) { + unsigned Reg = i->first->reg; + assert(TargetRegisterInfo::isVirtualRegister(Reg) && + "Can only allocate virtual registers!"); + const TargetRegisterClass *RegRC = mri_->getRegClass(Reg); + // If this is not in a related reg class to the register we're allocating, + // don't check it. + if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && + cur->overlapsFrom(*i->first, i->second-1)) { + Reg = vrm_->getPhys(Reg); + addRegUse(Reg); + SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight)); + } + } + + // Speculatively check to see if we can get a register right now. If not, + // we know we won't be able to by adding more constraints. If so, we can + // check to see if it is valid. Doing an exhaustive search of the fixed_ list + // is very bad (it contains all callee clobbered registers for any functions + // with a call), so we want to avoid doing that if possible. + unsigned physReg = getFreePhysReg(cur); + unsigned BestPhysReg = physReg; + if (physReg) { + // We got a register. However, if it's in the fixed_ list, we might + // conflict with it. Check to see if we conflict with it or any of its + // aliases. + SmallSet<unsigned, 8> RegAliases; + for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS) + RegAliases.insert(*AS); + + bool ConflictsWithFixed = false; + for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { + IntervalPtr &IP = fixed_[i]; + if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) { + // Okay, this reg is on the fixed list. Check to see if we actually + // conflict. + LiveInterval *I = IP.first; + if (I->endIndex() > StartPosition) { + LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); + IP.second = II; + if (II != I->begin() && II->start > StartPosition) + --II; + if (cur->overlapsFrom(*I, II)) { + ConflictsWithFixed = true; + break; + } + } + } + } + + // Okay, the register picked by our speculative getFreePhysReg call turned + // out to be in use. Actually add all of the conflicting fixed registers to + // regUse_ so we can do an accurate query. + if (ConflictsWithFixed) { + // For every interval in fixed we overlap with, mark the register as not + // free and update spill weights. + for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { + IntervalPtr &IP = fixed_[i]; + LiveInterval *I = IP.first; + + const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg]; + if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && + I->endIndex() > StartPosition) { + LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); + IP.second = II; + if (II != I->begin() && II->start > StartPosition) + --II; + if (cur->overlapsFrom(*I, II)) { + unsigned reg = I->reg; + addRegUse(reg); + SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight)); + } + } + } + + // Using the newly updated regUse_ object, which includes conflicts in the + // future, see if there are any registers available. + physReg = getFreePhysReg(cur); + } + } + + // Restore the physical register tracker, removing information about the + // future. + restoreRegUses(); + + // If we find a free register, we are done: assign this virtual to + // the free physical register and add this interval to the active + // list. + if (physReg) { + DEBUG(dbgs() << tri_->getName(physReg) << '\n'); + assert(RC->contains(physReg) && "Invalid candidate"); + vrm_->assignVirt2Phys(cur->reg, physReg); + addRegUse(physReg); + active_.push_back(std::make_pair(cur, cur->begin())); + handled_.push_back(cur); + + // Remember physReg for avoiding a write-after-write hazard in the next + // instruction. + if (AvoidWAWHazard && + tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg))) + avoidWAW_ = physReg; + + // "Upgrade" the physical register since it has been allocated. + UpgradeRegister(physReg); + if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) { + // "Downgrade" physReg to try to keep physReg from being allocated until + // the next reload from the same SS is allocated. + mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg); + DowngradeRegister(cur, physReg); + } + return; + } + DEBUG(dbgs() << "no free registers\n"); + + // Compile the spill weights into an array that is better for scanning. + std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f); + for (std::vector<std::pair<unsigned, float> >::iterator + I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I) + updateSpillWeights(SpillWeights, I->first, I->second, RC); + + // for each interval in active, update spill weights. + for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); + i != e; ++i) { + unsigned reg = i->first->reg; + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + reg = vrm_->getPhys(reg); + updateSpillWeights(SpillWeights, reg, i->first->weight, RC); + } + + DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n"); + + // Find a register to spill. + float minWeight = HUGE_VALF; + unsigned minReg = 0; + + bool Found = false; + std::vector<std::pair<unsigned,float> > RegsWeights; + ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC); + if (!minReg || SpillWeights[minReg] == HUGE_VALF) + for (unsigned i = 0; i != Order.size(); ++i) { + unsigned reg = Order[i]; + float regWeight = SpillWeights[reg]; + // Skip recently allocated registers and reserved registers. + if (minWeight > regWeight && !isRecentlyUsed(reg)) + Found = true; + RegsWeights.push_back(std::make_pair(reg, regWeight)); + } + + // If we didn't find a register that is spillable, try aliases? + if (!Found) { + for (unsigned i = 0; i != Order.size(); ++i) { + unsigned reg = Order[i]; + // No need to worry about if the alias register size < regsize of RC. + // We are going to spill all registers that alias it anyway. + for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) + RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as])); + } + } + + // Sort all potential spill candidates by weight. + std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this)); + minReg = RegsWeights[0].first; + minWeight = RegsWeights[0].second; + if (minWeight == HUGE_VALF) { + // All registers must have inf weight. Just grab one! + minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC); + if (cur->weight == HUGE_VALF || + li_->getApproximateInstructionCount(*cur) == 0) { + // Spill a physical register around defs and uses. + if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) { + // spillPhysRegAroundRegDefsUses may have invalidated iterator stored + // in fixed_. Reset them. + for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { + IntervalPtr &IP = fixed_[i]; + LiveInterval *I = IP.first; + if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg)) + IP.second = I->advanceTo(I->begin(), StartPosition); + } + + DowngradedRegs.clear(); + assignRegOrStackSlotAtInterval(cur); + } else { + assert(false && "Ran out of registers during register allocation!"); + report_fatal_error("Ran out of registers during register allocation!"); + } + return; + } + } + + // Find up to 3 registers to consider as spill candidates. + unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1; + while (LastCandidate > 1) { + if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight)) + break; + --LastCandidate; + } + + DEBUG({ + dbgs() << "\t\tregister(s) with min weight(s): "; + + for (unsigned i = 0; i != LastCandidate; ++i) + dbgs() << tri_->getName(RegsWeights[i].first) + << " (" << RegsWeights[i].second << ")\n"; + }); + + // If the current has the minimum weight, we need to spill it and + // add any added intervals back to unhandled, and restart + // linearscan. + if (cur->weight != HUGE_VALF && cur->weight <= minWeight) { + DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n'); + SmallVector<LiveInterval*, 8> added; + LiveRangeEdit LRE(*cur, added); + spiller_->spill(LRE); + + std::sort(added.begin(), added.end(), LISorter()); + if (added.empty()) + return; // Early exit if all spills were folded. + + // Merge added with unhandled. Note that we have already sorted + // intervals returned by addIntervalsForSpills by their starting + // point. + // This also update the NextReloadMap. That is, it adds mapping from a + // register defined by a reload from SS to the next reload from SS in the + // same basic block. + MachineBasicBlock *LastReloadMBB = 0; + LiveInterval *LastReload = 0; + int LastReloadSS = VirtRegMap::NO_STACK_SLOT; + for (unsigned i = 0, e = added.size(); i != e; ++i) { + LiveInterval *ReloadLi = added[i]; + if (ReloadLi->weight == HUGE_VALF && + li_->getApproximateInstructionCount(*ReloadLi) == 0) { + SlotIndex ReloadIdx = ReloadLi->beginIndex(); + MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); + int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); + if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { + // Last reload of same SS is in the same MBB. We want to try to + // allocate both reloads the same register and make sure the reg + // isn't clobbered in between if at all possible. + assert(LastReload->beginIndex() < ReloadIdx); + NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); + } + LastReloadMBB = ReloadMBB; + LastReload = ReloadLi; + LastReloadSS = ReloadSS; + } + unhandled_.push(ReloadLi); + } + return; + } + + ++NumBacktracks; + + // Push the current interval back to unhandled since we are going + // to re-run at least this iteration. Since we didn't modify it it + // should go back right in the front of the list + unhandled_.push(cur); + + assert(TargetRegisterInfo::isPhysicalRegister(minReg) && + "did not choose a register to spill?"); + + // We spill all intervals aliasing the register with + // minimum weight, rollback to the interval with the earliest + // start point and let the linear scan algorithm run again + SmallVector<LiveInterval*, 8> spillIs; + + // Determine which intervals have to be spilled. + findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs); + + // Set of spilled vregs (used later to rollback properly) + SmallSet<unsigned, 8> spilled; + + // The earliest start of a Spilled interval indicates up to where + // in handled we need to roll back + assert(!spillIs.empty() && "No spill intervals?"); + SlotIndex earliestStart = spillIs[0]->beginIndex(); + + // Spill live intervals of virtual regs mapped to the physical register we + // want to clear (and its aliases). We only spill those that overlap with the + // current interval as the rest do not affect its allocation. we also keep + // track of the earliest start of all spilled live intervals since this will + // mark our rollback point. + SmallVector<LiveInterval*, 8> added; + while (!spillIs.empty()) { + LiveInterval *sli = spillIs.back(); + spillIs.pop_back(); + DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n'); + if (sli->beginIndex() < earliestStart) + earliestStart = sli->beginIndex(); + LiveRangeEdit LRE(*sli, added, 0, &spillIs); + spiller_->spill(LRE); + spilled.insert(sli->reg); + } + + // Include any added intervals in earliestStart. + for (unsigned i = 0, e = added.size(); i != e; ++i) { + SlotIndex SI = added[i]->beginIndex(); + if (SI < earliestStart) + earliestStart = SI; + } + + DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n'); + + // Scan handled in reverse order up to the earliest start of a + // spilled live interval and undo each one, restoring the state of + // unhandled. + while (!handled_.empty()) { + LiveInterval* i = handled_.back(); + // If this interval starts before t we are done. + if (!i->empty() && i->beginIndex() < earliestStart) + break; + DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n'); + handled_.pop_back(); + + // When undoing a live interval allocation we must know if it is active or + // inactive to properly update regUse_ and the VirtRegMap. + IntervalPtrs::iterator it; + if ((it = FindIntervalInVector(active_, i)) != active_.end()) { + active_.erase(it); + assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); + if (!spilled.count(i->reg)) + unhandled_.push(i); + delRegUse(vrm_->getPhys(i->reg)); + vrm_->clearVirt(i->reg); + } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) { + inactive_.erase(it); + assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); + if (!spilled.count(i->reg)) + unhandled_.push(i); + vrm_->clearVirt(i->reg); + } else { + assert(TargetRegisterInfo::isVirtualRegister(i->reg) && + "Can only allocate virtual registers!"); + vrm_->clearVirt(i->reg); + unhandled_.push(i); + } + + DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg); + if (ii == DowngradeMap.end()) + // It interval has a preference, it must be defined by a copy. Clear the + // preference now since the source interval allocation may have been + // undone as well. + mri_->setRegAllocationHint(i->reg, 0, 0); + else { + UpgradeRegister(ii->second); + } + } + + // Rewind the iterators in the active, inactive, and fixed lists back to the + // point we reverted to. + RevertVectorIteratorsTo(active_, earliestStart); + RevertVectorIteratorsTo(inactive_, earliestStart); + RevertVectorIteratorsTo(fixed_, earliestStart); + + // Scan the rest and undo each interval that expired after t and + // insert it in active (the next iteration of the algorithm will + // put it in inactive if required) + for (unsigned i = 0, e = handled_.size(); i != e; ++i) { + LiveInterval *HI = handled_[i]; + if (!HI->expiredAt(earliestStart) && + HI->expiredAt(cur->beginIndex())) { + DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n'); + active_.push_back(std::make_pair(HI, HI->begin())); + assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg)); + addRegUse(vrm_->getPhys(HI->reg)); + } + } + + // Merge added with unhandled. + // This also update the NextReloadMap. That is, it adds mapping from a + // register defined by a reload from SS to the next reload from SS in the + // same basic block. + MachineBasicBlock *LastReloadMBB = 0; + LiveInterval *LastReload = 0; + int LastReloadSS = VirtRegMap::NO_STACK_SLOT; + std::sort(added.begin(), added.end(), LISorter()); + for (unsigned i = 0, e = added.size(); i != e; ++i) { + LiveInterval *ReloadLi = added[i]; + if (ReloadLi->weight == HUGE_VALF && + li_->getApproximateInstructionCount(*ReloadLi) == 0) { + SlotIndex ReloadIdx = ReloadLi->beginIndex(); + MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); + int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); + if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { + // Last reload of same SS is in the same MBB. We want to try to + // allocate both reloads the same register and make sure the reg + // isn't clobbered in between if at all possible. + assert(LastReload->beginIndex() < ReloadIdx); + NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); + } + LastReloadMBB = ReloadMBB; + LastReload = ReloadLi; + LastReloadSS = ReloadSS; + } + unhandled_.push(ReloadLi); + } +} + +unsigned RALinScan::getFreePhysReg(LiveInterval* cur, + const TargetRegisterClass *RC, + unsigned MaxInactiveCount, + SmallVector<unsigned, 256> &inactiveCounts, + bool SkipDGRegs) { + unsigned FreeReg = 0; + unsigned FreeRegInactiveCount = 0; + + std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg); + // Resolve second part of the hint (if possible) given the current allocation. + unsigned physReg = Hint.second; + if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg)) + physReg = vrm_->getPhys(physReg); + + ArrayRef<unsigned> Order; + if (Hint.first) + Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_); + else + Order = RegClassInfo.getOrder(RC); + + assert(!Order.empty() && "No allocatable register in this register class!"); + + // Scan for the first available register. + for (unsigned i = 0; i != Order.size(); ++i) { + unsigned Reg = Order[i]; + // Ignore "downgraded" registers. + if (SkipDGRegs && DowngradedRegs.count(Reg)) + continue; + // Skip reserved registers. + if (reservedRegs_.test(Reg)) + continue; + // Skip recently allocated registers. + if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) { + FreeReg = Reg; + if (FreeReg < inactiveCounts.size()) + FreeRegInactiveCount = inactiveCounts[FreeReg]; + else + FreeRegInactiveCount = 0; + break; + } + } + + // If there are no free regs, or if this reg has the max inactive count, + // return this register. + if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) { + // Remember what register we picked so we can skip it next time. + if (FreeReg != 0) recordRecentlyUsed(FreeReg); + return FreeReg; + } + + // Continue scanning the registers, looking for the one with the highest + // inactive count. Alkis found that this reduced register pressure very + // slightly on X86 (in rev 1.94 of this file), though this should probably be + // reevaluated now. + for (unsigned i = 0; i != Order.size(); ++i) { + unsigned Reg = Order[i]; + // Ignore "downgraded" registers. + if (SkipDGRegs && DowngradedRegs.count(Reg)) + continue; + // Skip reserved registers. + if (reservedRegs_.test(Reg)) + continue; + if (isRegAvail(Reg) && Reg < inactiveCounts.size() && + FreeRegInactiveCount < inactiveCounts[Reg] && + (!SkipDGRegs || !isRecentlyUsed(Reg))) { + FreeReg = Reg; + FreeRegInactiveCount = inactiveCounts[Reg]; + if (FreeRegInactiveCount == MaxInactiveCount) + break; // We found the one with the max inactive count. + } + } + + // Remember what register we picked so we can skip it next time. + recordRecentlyUsed(FreeReg); + + return FreeReg; +} + +/// getFreePhysReg - return a free physical register for this virtual register +/// interval if we have one, otherwise return 0. +unsigned RALinScan::getFreePhysReg(LiveInterval *cur) { + SmallVector<unsigned, 256> inactiveCounts; + unsigned MaxInactiveCount = 0; + + const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); + const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); + + for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end(); + i != e; ++i) { + unsigned reg = i->first->reg; + assert(TargetRegisterInfo::isVirtualRegister(reg) && + "Can only allocate virtual registers!"); + + // If this is not in a related reg class to the register we're allocating, + // don't check it. + const TargetRegisterClass *RegRC = mri_->getRegClass(reg); + if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) { + reg = vrm_->getPhys(reg); + if (inactiveCounts.size() <= reg) + inactiveCounts.resize(reg+1); + ++inactiveCounts[reg]; + MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]); + } + } + + // If copy coalescer has assigned a "preferred" register, check if it's + // available first. + unsigned Preference = vrm_->getRegAllocPref(cur->reg); + if (Preference) { + DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") "); + if (isRegAvail(Preference) && + RC->contains(Preference)) + return Preference; + } + + unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, + true); + if (FreeReg) + return FreeReg; + return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false); +} + +FunctionPass* llvm::createLinearScanRegisterAllocator() { + return new RALinScan(); +} |