diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp | 1285 |
1 files changed, 1285 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp new file mode 100644 index 0000000..c1372cd --- /dev/null +++ b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp @@ -0,0 +1,1285 @@ +//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the RAGreedy function pass for register allocation in +// optimized builds. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "AllocationOrder.h" +#include "LiveIntervalUnion.h" +#include "LiveRangeEdit.h" +#include "RegAllocBase.h" +#include "Spiller.h" +#include "SpillPlacement.h" +#include "SplitKit.h" +#include "VirtRegMap.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Function.h" +#include "llvm/PassAnalysisSupport.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/EdgeBundles.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/LiveStackAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineLoopRanges.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/CodeGen/RegisterCoalescer.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Timer.h" + +using namespace llvm; + +STATISTIC(NumGlobalSplits, "Number of split global live ranges"); +STATISTIC(NumLocalSplits, "Number of split local live ranges"); +STATISTIC(NumReassigned, "Number of interferences reassigned"); +STATISTIC(NumEvicted, "Number of interferences evicted"); + +static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", + createGreedyRegisterAllocator); + +namespace { +class RAGreedy : public MachineFunctionPass, public RegAllocBase { + // context + MachineFunction *MF; + BitVector ReservedRegs; + + // analyses + SlotIndexes *Indexes; + LiveStacks *LS; + MachineDominatorTree *DomTree; + MachineLoopInfo *Loops; + MachineLoopRanges *LoopRanges; + EdgeBundles *Bundles; + SpillPlacement *SpillPlacer; + + // state + std::auto_ptr<Spiller> SpillerInstance; + std::auto_ptr<SplitAnalysis> SA; + + // splitting state. + + /// All basic blocks where the current register is live. + SmallVector<SpillPlacement::BlockConstraint, 8> SpillConstraints; + + /// For every instruction in SA->UseSlots, store the previous non-copy + /// instruction. + SmallVector<SlotIndex, 8> PrevSlot; + +public: + RAGreedy(); + + /// Return the pass name. + virtual const char* getPassName() const { + return "Greedy Register Allocator"; + } + + /// RAGreedy analysis usage. + virtual void getAnalysisUsage(AnalysisUsage &AU) const; + + virtual void releaseMemory(); + + virtual Spiller &spiller() { return *SpillerInstance; } + + virtual float getPriority(LiveInterval *LI); + + virtual unsigned selectOrSplit(LiveInterval&, + SmallVectorImpl<LiveInterval*>&); + + /// Perform register allocation. + virtual bool runOnMachineFunction(MachineFunction &mf); + + static char ID; + +private: + bool checkUncachedInterference(LiveInterval&, unsigned); + LiveInterval *getSingleInterference(LiveInterval&, unsigned); + bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg); + float calcInterferenceWeight(LiveInterval&, unsigned); + float calcInterferenceInfo(LiveInterval&, unsigned); + float calcGlobalSplitCost(const BitVector&); + void splitAroundRegion(LiveInterval&, unsigned, const BitVector&, + SmallVectorImpl<LiveInterval*>&); + void calcGapWeights(unsigned, SmallVectorImpl<float>&); + SlotIndex getPrevMappedIndex(const MachineInstr*); + void calcPrevSlots(); + unsigned nextSplitPoint(unsigned); + + unsigned tryReassignOrEvict(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); + unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); + unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); + unsigned trySplit(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); + unsigned trySpillInterferences(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); +}; +} // end anonymous namespace + +char RAGreedy::ID = 0; + +FunctionPass* llvm::createGreedyRegisterAllocator() { + return new RAGreedy(); +} + +RAGreedy::RAGreedy(): MachineFunctionPass(ID) { + initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); + initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); + initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); + initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); + initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); + initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); + initializeLiveStacksPass(*PassRegistry::getPassRegistry()); + initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); + initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); + initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry()); + initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); + initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); + initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); +} + +void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<AliasAnalysis>(); + AU.addPreserved<AliasAnalysis>(); + AU.addRequired<LiveIntervals>(); + AU.addRequired<SlotIndexes>(); + AU.addPreserved<SlotIndexes>(); + if (StrongPHIElim) + AU.addRequiredID(StrongPHIEliminationID); + AU.addRequiredTransitive<RegisterCoalescer>(); + AU.addRequired<CalculateSpillWeights>(); + AU.addRequired<LiveStacks>(); + AU.addPreserved<LiveStacks>(); + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineLoopInfo>(); + AU.addRequired<MachineLoopRanges>(); + AU.addPreserved<MachineLoopRanges>(); + AU.addRequired<VirtRegMap>(); + AU.addPreserved<VirtRegMap>(); + AU.addRequired<EdgeBundles>(); + AU.addRequired<SpillPlacement>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +void RAGreedy::releaseMemory() { + SpillerInstance.reset(0); + RegAllocBase::releaseMemory(); +} + +float RAGreedy::getPriority(LiveInterval *LI) { + float Priority = LI->weight; + + // Prioritize hinted registers so they are allocated first. + std::pair<unsigned, unsigned> Hint; + if (Hint.first || Hint.second) { + // The hint can be target specific, a virtual register, or a physreg. + Priority *= 2; + + // Prefer physreg hints above anything else. + if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second)) + Priority *= 2; + } + return Priority; +} + + +//===----------------------------------------------------------------------===// +// Register Reassignment +//===----------------------------------------------------------------------===// + +// Check interference without using the cache. +bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg, + unsigned PhysReg) { + for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { + LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]); + if (subQ.checkInterference()) + return true; + } + return false; +} + +/// getSingleInterference - Return the single interfering virtual register +/// assigned to PhysReg. Return 0 if more than one virtual register is +/// interfering. +LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg, + unsigned PhysReg) { + // Check physreg and aliases. + LiveInterval *Interference = 0; + for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { + LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); + if (Q.checkInterference()) { + if (Interference) + return 0; + Q.collectInterferingVRegs(1); + if (!Q.seenAllInterferences()) + return 0; + Interference = Q.interferingVRegs().front(); + } + } + return Interference; +} + +// Attempt to reassign this virtual register to a different physical register. +// +// FIXME: we are not yet caching these "second-level" interferences discovered +// in the sub-queries. These interferences can change with each call to +// selectOrSplit. However, we could implement a "may-interfere" cache that +// could be conservatively dirtied when we reassign or split. +// +// FIXME: This may result in a lot of alias queries. We could summarize alias +// live intervals in their parent register's live union, but it's messy. +bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg, + unsigned WantedPhysReg) { + assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) && + "Can only reassign virtual registers"); + assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) && + "inconsistent phys reg assigment"); + + AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs); + while (unsigned PhysReg = Order.next()) { + // Don't reassign to a WantedPhysReg alias. + if (TRI->regsOverlap(PhysReg, WantedPhysReg)) + continue; + + if (checkUncachedInterference(InterferingVReg, PhysReg)) + continue; + + // Reassign the interfering virtual reg to this physical reg. + unsigned OldAssign = VRM->getPhys(InterferingVReg.reg); + DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " << + TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n'); + unassign(InterferingVReg, OldAssign); + assign(InterferingVReg, PhysReg); + ++NumReassigned; + return true; + } + return false; +} + +/// tryReassignOrEvict - Try to reassign a single interferences to a different +/// physreg, or evict a single interference with a lower spill weight. +/// @param VirtReg Currently unassigned virtual register. +/// @param Order Physregs to try. +/// @return Physreg to assign VirtReg, or 0. +unsigned RAGreedy::tryReassignOrEvict(LiveInterval &VirtReg, + AllocationOrder &Order, + SmallVectorImpl<LiveInterval*> &NewVRegs){ + NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled); + + // Keep track of the lightest single interference seen so far. + float BestWeight = VirtReg.weight; + LiveInterval *BestVirt = 0; + unsigned BestPhys = 0; + + Order.rewind(); + while (unsigned PhysReg = Order.next()) { + LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg); + if (!InterferingVReg) + continue; + if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg)) + continue; + if (reassignVReg(*InterferingVReg, PhysReg)) + return PhysReg; + + // Cannot reassign, is this an eviction candidate? + if (InterferingVReg->weight < BestWeight) { + BestVirt = InterferingVReg; + BestPhys = PhysReg; + BestWeight = InterferingVReg->weight; + } + } + + // Nothing reassigned, can we evict a lighter single interference? + if (BestVirt) { + DEBUG(dbgs() << "evicting lighter " << *BestVirt << '\n'); + unassign(*BestVirt, VRM->getPhys(BestVirt->reg)); + ++NumEvicted; + NewVRegs.push_back(BestVirt); + return BestPhys; + } + + return 0; +} + + +//===----------------------------------------------------------------------===// +// Region Splitting +//===----------------------------------------------------------------------===// + +/// calcInterferenceInfo - Compute per-block outgoing and ingoing constraints +/// when considering interference from PhysReg. Also compute an optimistic local +/// cost of this interference pattern. +/// +/// The final cost of a split is the local cost + global cost of preferences +/// broken by SpillPlacement. +/// +float RAGreedy::calcInterferenceInfo(LiveInterval &VirtReg, unsigned PhysReg) { + // Reset interference dependent info. + SpillConstraints.resize(SA->LiveBlocks.size()); + for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { + SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; + SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; + BC.Number = BI.MBB->getNumber(); + BC.Entry = (BI.Uses && BI.LiveIn) ? + SpillPlacement::PrefReg : SpillPlacement::DontCare; + BC.Exit = (BI.Uses && BI.LiveOut) ? + SpillPlacement::PrefReg : SpillPlacement::DontCare; + BI.OverlapEntry = BI.OverlapExit = false; + } + + // Add interference info from each PhysReg alias. + for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { + if (!query(VirtReg, *AI).checkInterference()) + continue; + LiveIntervalUnion::SegmentIter IntI = + PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex()); + if (!IntI.valid()) + continue; + + // Determine which blocks have interference live in or after the last split + // point. + for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { + SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; + SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; + SlotIndex Start, Stop; + tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); + + // Skip interference-free blocks. + if (IntI.start() >= Stop) + continue; + + // Is the interference live-in? + if (BI.LiveIn) { + IntI.advanceTo(Start); + if (!IntI.valid()) + break; + if (IntI.start() <= Start) + BC.Entry = SpillPlacement::MustSpill; + } + + // Is the interference overlapping the last split point? + if (BI.LiveOut) { + if (IntI.stop() < BI.LastSplitPoint) + IntI.advanceTo(BI.LastSplitPoint.getPrevSlot()); + if (!IntI.valid()) + break; + if (IntI.start() < Stop) + BC.Exit = SpillPlacement::MustSpill; + } + } + + // Rewind iterator and check other interferences. + IntI.find(VirtReg.beginIndex()); + for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { + SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; + SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; + SlotIndex Start, Stop; + tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); + + // Skip interference-free blocks. + if (IntI.start() >= Stop) + continue; + + // Handle transparent blocks with interference separately. + // Transparent blocks never incur any fixed cost. + if (BI.LiveThrough && !BI.Uses) { + IntI.advanceTo(Start); + if (!IntI.valid()) + break; + if (IntI.start() >= Stop) + continue; + + if (BC.Entry != SpillPlacement::MustSpill) + BC.Entry = SpillPlacement::PrefSpill; + if (BC.Exit != SpillPlacement::MustSpill) + BC.Exit = SpillPlacement::PrefSpill; + continue; + } + + // Now we only have blocks with uses left. + // Check if the interference overlaps the uses. + assert(BI.Uses && "Non-transparent block without any uses"); + + // Check interference on entry. + if (BI.LiveIn && BC.Entry != SpillPlacement::MustSpill) { + IntI.advanceTo(Start); + if (!IntI.valid()) + break; + // Not live in, but before the first use. + if (IntI.start() < BI.FirstUse) + BC.Entry = SpillPlacement::PrefSpill; + } + + // Does interference overlap the uses in the entry segment + // [FirstUse;Kill)? + if (BI.LiveIn && !BI.OverlapEntry) { + IntI.advanceTo(BI.FirstUse); + if (!IntI.valid()) + break; + // A live-through interval has no kill. + // Check [FirstUse;LastUse) instead. + if (IntI.start() < (BI.LiveThrough ? BI.LastUse : BI.Kill)) + BI.OverlapEntry = true; + } + + // Does interference overlap the uses in the exit segment [Def;LastUse)? + if (BI.LiveOut && !BI.LiveThrough && !BI.OverlapExit) { + IntI.advanceTo(BI.Def); + if (!IntI.valid()) + break; + if (IntI.start() < BI.LastUse) + BI.OverlapExit = true; + } + + // Check interference on exit. + if (BI.LiveOut && BC.Exit != SpillPlacement::MustSpill) { + // Check interference between LastUse and Stop. + if (BC.Exit != SpillPlacement::PrefSpill) { + IntI.advanceTo(BI.LastUse); + if (!IntI.valid()) + break; + if (IntI.start() < Stop) + BC.Exit = SpillPlacement::PrefSpill; + } + } + } + } + + // Accumulate a local cost of this interference pattern. + float LocalCost = 0; + for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { + SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; + if (!BI.Uses) + continue; + SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; + unsigned Inserts = 0; + + // Do we need spill code for the entry segment? + if (BI.LiveIn) + Inserts += BI.OverlapEntry || BC.Entry != SpillPlacement::PrefReg; + + // For the exit segment? + if (BI.LiveOut) + Inserts += BI.OverlapExit || BC.Exit != SpillPlacement::PrefReg; + + // The local cost of spill code in this block is the block frequency times + // the number of spill instructions inserted. + if (Inserts) + LocalCost += Inserts * SpillPlacer->getBlockFrequency(BI.MBB); + } + DEBUG(dbgs() << "Local cost of " << PrintReg(PhysReg, TRI) << " = " + << LocalCost << '\n'); + return LocalCost; +} + +/// calcGlobalSplitCost - Return the global split cost of following the split +/// pattern in LiveBundles. This cost should be added to the local cost of the +/// interference pattern in SpillConstraints. +/// +float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) { + float GlobalCost = 0; + for (unsigned i = 0, e = SpillConstraints.size(); i != e; ++i) { + SpillPlacement::BlockConstraint &BC = SpillConstraints[i]; + unsigned Inserts = 0; + // Broken entry preference? + Inserts += LiveBundles[Bundles->getBundle(BC.Number, 0)] != + (BC.Entry == SpillPlacement::PrefReg); + // Broken exit preference? + Inserts += LiveBundles[Bundles->getBundle(BC.Number, 1)] != + (BC.Exit == SpillPlacement::PrefReg); + if (Inserts) + GlobalCost += + Inserts * SpillPlacer->getBlockFrequency(SA->LiveBlocks[i].MBB); + } + DEBUG(dbgs() << "Global cost = " << GlobalCost << '\n'); + return GlobalCost; +} + +/// splitAroundRegion - Split VirtReg around the region determined by +/// LiveBundles. Make an effort to avoid interference from PhysReg. +/// +/// The 'register' interval is going to contain as many uses as possible while +/// avoiding interference. The 'stack' interval is the complement constructed by +/// SplitEditor. It will contain the rest. +/// +void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg, + const BitVector &LiveBundles, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + DEBUG({ + dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI) + << " with bundles"; + for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i)) + dbgs() << " EB#" << i; + dbgs() << ".\n"; + }); + + // First compute interference ranges in the live blocks. + typedef std::pair<SlotIndex, SlotIndex> IndexPair; + SmallVector<IndexPair, 8> InterferenceRanges; + InterferenceRanges.resize(SA->LiveBlocks.size()); + for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { + if (!query(VirtReg, *AI).checkInterference()) + continue; + LiveIntervalUnion::SegmentIter IntI = + PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex()); + if (!IntI.valid()) + continue; + for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { + const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; + IndexPair &IP = InterferenceRanges[i]; + SlotIndex Start, Stop; + tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); + // Skip interference-free blocks. + if (IntI.start() >= Stop) + continue; + + // First interference in block. + if (BI.LiveIn) { + IntI.advanceTo(Start); + if (!IntI.valid()) + break; + if (IntI.start() >= Stop) + continue; + if (!IP.first.isValid() || IntI.start() < IP.first) + IP.first = IntI.start(); + } + + // Last interference in block. + if (BI.LiveOut) { + IntI.advanceTo(Stop); + if (!IntI.valid() || IntI.start() >= Stop) + --IntI; + if (IntI.stop() <= Start) + continue; + if (!IP.second.isValid() || IntI.stop() > IP.second) + IP.second = IntI.stop(); + } + } + } + + SmallVector<LiveInterval*, 4> SpillRegs; + LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs); + SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit); + + // Create the main cross-block interval. + SE.openIntv(); + + // First add all defs that are live out of a block. + for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { + SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; + bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)]; + bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)]; + + // Should the register be live out? + if (!BI.LiveOut || !RegOut) + continue; + + IndexPair &IP = InterferenceRanges[i]; + SlotIndex Start, Stop; + tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); + + DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#" + << Bundles->getBundle(BI.MBB->getNumber(), 1) + << " intf [" << IP.first << ';' << IP.second << ')'); + + // The interference interval should either be invalid or overlap MBB. + assert((!IP.first.isValid() || IP.first < Stop) && "Bad interference"); + assert((!IP.second.isValid() || IP.second > Start) && "Bad interference"); + + // Check interference leaving the block. + if (!IP.second.isValid()) { + // Block is interference-free. + DEBUG(dbgs() << ", no interference"); + if (!BI.Uses) { + assert(BI.LiveThrough && "No uses, but not live through block?"); + // Block is live-through without interference. + DEBUG(dbgs() << ", no uses" + << (RegIn ? ", live-through.\n" : ", stack in.\n")); + if (!RegIn) + SE.enterIntvAtEnd(*BI.MBB); + continue; + } + if (!BI.LiveThrough) { + DEBUG(dbgs() << ", not live-through.\n"); + SE.useIntv(SE.enterIntvBefore(BI.Def), Stop); + continue; + } + if (!RegIn) { + // Block is live-through, but entry bundle is on the stack. + // Reload just before the first use. + DEBUG(dbgs() << ", not live-in, enter before first use.\n"); + SE.useIntv(SE.enterIntvBefore(BI.FirstUse), Stop); + continue; + } + DEBUG(dbgs() << ", live-through.\n"); + continue; + } + + // Block has interference. + DEBUG(dbgs() << ", interference to " << IP.second); + + if (!BI.LiveThrough && IP.second <= BI.Def) { + // The interference doesn't reach the outgoing segment. + DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n'); + SE.useIntv(BI.Def, Stop); + continue; + } + + + if (!BI.Uses) { + // No uses in block, avoid interference by reloading as late as possible. + DEBUG(dbgs() << ", no uses.\n"); + SlotIndex SegStart = SE.enterIntvAtEnd(*BI.MBB); + assert(SegStart >= IP.second && "Couldn't avoid interference"); + continue; + } + + if (IP.second.getBoundaryIndex() < BI.LastUse) { + // There are interference-free uses at the end of the block. + // Find the first use that can get the live-out register. + SmallVectorImpl<SlotIndex>::const_iterator UI = + std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), + IP.second.getBoundaryIndex()); + assert(UI != SA->UseSlots.end() && "Couldn't find last use"); + SlotIndex Use = *UI; + assert(Use <= BI.LastUse && "Couldn't find last use"); + // Only attempt a split befroe the last split point. + if (Use.getBaseIndex() <= BI.LastSplitPoint) { + DEBUG(dbgs() << ", free use at " << Use << ".\n"); + SlotIndex SegStart = SE.enterIntvBefore(Use); + assert(SegStart >= IP.second && "Couldn't avoid interference"); + assert(SegStart < BI.LastSplitPoint && "Impossible split point"); + SE.useIntv(SegStart, Stop); + continue; + } + } + + // Interference is after the last use. + DEBUG(dbgs() << " after last use.\n"); + SlotIndex SegStart = SE.enterIntvAtEnd(*BI.MBB); + assert(SegStart >= IP.second && "Couldn't avoid interference"); + } + + // Now all defs leading to live bundles are handled, do everything else. + for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { + SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; + bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)]; + bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)]; + + // Is the register live-in? + if (!BI.LiveIn || !RegIn) + continue; + + // We have an incoming register. Check for interference. + IndexPair &IP = InterferenceRanges[i]; + SlotIndex Start, Stop; + tie(Start, Stop) = Indexes->getMBBRange(BI.MBB); + + DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0) + << " -> BB#" << BI.MBB->getNumber()); + + // Check interference entering the block. + if (!IP.first.isValid()) { + // Block is interference-free. + DEBUG(dbgs() << ", no interference"); + if (!BI.Uses) { + assert(BI.LiveThrough && "No uses, but not live through block?"); + // Block is live-through without interference. + if (RegOut) { + DEBUG(dbgs() << ", no uses, live-through.\n"); + SE.useIntv(Start, Stop); + } else { + DEBUG(dbgs() << ", no uses, stack-out.\n"); + SE.leaveIntvAtTop(*BI.MBB); + } + continue; + } + if (!BI.LiveThrough) { + DEBUG(dbgs() << ", killed in block.\n"); + SE.useIntv(Start, SE.leaveIntvAfter(BI.Kill)); + continue; + } + if (!RegOut) { + // Block is live-through, but exit bundle is on the stack. + // Spill immediately after the last use. + if (BI.LastUse < BI.LastSplitPoint) { + DEBUG(dbgs() << ", uses, stack-out.\n"); + SE.useIntv(Start, SE.leaveIntvAfter(BI.LastUse)); + continue; + } + // The last use is after the last split point, it is probably an + // indirect jump. + DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point " + << BI.LastSplitPoint << ", stack-out.\n"); + SlotIndex SegEnd = SE.leaveIntvBefore(BI.LastSplitPoint); + SE.useIntv(Start, SegEnd); + // Run a double interval from the split to the last use. + // This makes it possible to spill the complement without affecting the + // indirect branch. + SE.overlapIntv(SegEnd, BI.LastUse); + continue; + } + // Register is live-through. + DEBUG(dbgs() << ", uses, live-through.\n"); + SE.useIntv(Start, Stop); + continue; + } + + // Block has interference. + DEBUG(dbgs() << ", interference from " << IP.first); + + if (!BI.LiveThrough && IP.first >= BI.Kill) { + // The interference doesn't reach the outgoing segment. + DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n'); + SE.useIntv(Start, BI.Kill); + continue; + } + + if (!BI.Uses) { + // No uses in block, avoid interference by spilling as soon as possible. + DEBUG(dbgs() << ", no uses.\n"); + SlotIndex SegEnd = SE.leaveIntvAtTop(*BI.MBB); + assert(SegEnd <= IP.first && "Couldn't avoid interference"); + continue; + } + if (IP.first.getBaseIndex() > BI.FirstUse) { + // There are interference-free uses at the beginning of the block. + // Find the last use that can get the register. + SmallVectorImpl<SlotIndex>::const_iterator UI = + std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), + IP.first.getBaseIndex()); + assert(UI != SA->UseSlots.begin() && "Couldn't find first use"); + SlotIndex Use = (--UI)->getBoundaryIndex(); + DEBUG(dbgs() << ", free use at " << *UI << ".\n"); + SlotIndex SegEnd = SE.leaveIntvAfter(Use); + assert(SegEnd <= IP.first && "Couldn't avoid interference"); + SE.useIntv(Start, SegEnd); + continue; + } + + // Interference is before the first use. + DEBUG(dbgs() << " before first use.\n"); + SlotIndex SegEnd = SE.leaveIntvAtTop(*BI.MBB); + assert(SegEnd <= IP.first && "Couldn't avoid interference"); + } + + SE.closeIntv(); + + // FIXME: Should we be more aggressive about splitting the stack region into + // per-block segments? The current approach allows the stack region to + // separate into connected components. Some components may be allocatable. + SE.finish(); + ++NumGlobalSplits; + + if (VerifyEnabled) { + MF->verify(this, "After splitting live range around region"); + +#ifndef NDEBUG + // Make sure that at least one of the new intervals can allocate to PhysReg. + // That was the whole point of splitting the live range. + bool found = false; + for (LiveRangeEdit::iterator I = LREdit.begin(), E = LREdit.end(); I != E; + ++I) + if (!checkUncachedInterference(**I, PhysReg)) { + found = true; + break; + } + assert(found && "No allocatable intervals after pointless splitting"); +#endif + } +} + +unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + BitVector LiveBundles, BestBundles; + float BestCost = 0; + unsigned BestReg = 0; + Order.rewind(); + while (unsigned PhysReg = Order.next()) { + float Cost = calcInterferenceInfo(VirtReg, PhysReg); + if (BestReg && Cost >= BestCost) + continue; + + SpillPlacer->placeSpills(SpillConstraints, LiveBundles); + // No live bundles, defer to splitSingleBlocks(). + if (!LiveBundles.any()) + continue; + + Cost += calcGlobalSplitCost(LiveBundles); + if (!BestReg || Cost < BestCost) { + BestReg = PhysReg; + BestCost = Cost; + BestBundles.swap(LiveBundles); + } + } + + if (!BestReg) + return 0; + + splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs); + return 0; +} + + +//===----------------------------------------------------------------------===// +// Local Splitting +//===----------------------------------------------------------------------===// + + +/// calcGapWeights - Compute the maximum spill weight that needs to be evicted +/// in order to use PhysReg between two entries in SA->UseSlots. +/// +/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. +/// +void RAGreedy::calcGapWeights(unsigned PhysReg, + SmallVectorImpl<float> &GapWeight) { + assert(SA->LiveBlocks.size() == 1 && "Not a local interval"); + const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front(); + const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; + const unsigned NumGaps = Uses.size()-1; + + // Start and end points for the interference check. + SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse; + SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse; + + GapWeight.assign(NumGaps, 0.0f); + + // Add interference from each overlapping register. + for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { + if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI) + .checkInterference()) + continue; + + // We know that VirtReg is a continuous interval from FirstUse to LastUse, + // so we don't need InterferenceQuery. + // + // Interference that overlaps an instruction is counted in both gaps + // surrounding the instruction. The exception is interference before + // StartIdx and after StopIdx. + // + LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx); + for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { + // Skip the gaps before IntI. + while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) + if (++Gap == NumGaps) + break; + if (Gap == NumGaps) + break; + + // Update the gaps covered by IntI. + const float weight = IntI.value()->weight; + for (; Gap != NumGaps; ++Gap) { + GapWeight[Gap] = std::max(GapWeight[Gap], weight); + if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) + break; + } + if (Gap == NumGaps) + break; + } + } +} + +/// getPrevMappedIndex - Return the slot index of the last non-copy instruction +/// before MI that has a slot index. If MI is the first mapped instruction in +/// its block, return the block start index instead. +/// +SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) { + assert(MI && "Missing MachineInstr"); + const MachineBasicBlock *MBB = MI->getParent(); + MachineBasicBlock::const_iterator B = MBB->begin(), I = MI; + while (I != B) + if (!(--I)->isDebugValue() && !I->isCopy()) + return Indexes->getInstructionIndex(I); + return Indexes->getMBBStartIdx(MBB); +} + +/// calcPrevSlots - Fill in the PrevSlot array with the index of the previous +/// real non-copy instruction for each instruction in SA->UseSlots. +/// +void RAGreedy::calcPrevSlots() { + const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; + PrevSlot.clear(); + PrevSlot.reserve(Uses.size()); + for (unsigned i = 0, e = Uses.size(); i != e; ++i) { + const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]); + PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex()); + } +} + +/// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may +/// be beneficial to split before UseSlots[i]. +/// +/// 0 is always a valid split point +unsigned RAGreedy::nextSplitPoint(unsigned i) { + const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; + const unsigned Size = Uses.size(); + assert(i != Size && "No split points after the end"); + // Allow split before i when Uses[i] is not adjacent to the previous use. + while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex()) + ; + return i; +} + +/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only +/// basic block. +/// +unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + assert(SA->LiveBlocks.size() == 1 && "Not a local interval"); + const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front(); + + // Note that it is possible to have an interval that is live-in or live-out + // while only covering a single block - A phi-def can use undef values from + // predecessors, and the block could be a single-block loop. + // We don't bother doing anything clever about such a case, we simply assume + // that the interval is continuous from FirstUse to LastUse. We should make + // sure that we don't do anything illegal to such an interval, though. + + const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; + if (Uses.size() <= 2) + return 0; + const unsigned NumGaps = Uses.size()-1; + + DEBUG({ + dbgs() << "tryLocalSplit: "; + for (unsigned i = 0, e = Uses.size(); i != e; ++i) + dbgs() << ' ' << SA->UseSlots[i]; + dbgs() << '\n'; + }); + + // For every use, find the previous mapped non-copy instruction. + // We use this to detect valid split points, and to estimate new interval + // sizes. + calcPrevSlots(); + + unsigned BestBefore = NumGaps; + unsigned BestAfter = 0; + float BestDiff = 0; + + const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB); + SmallVector<float, 8> GapWeight; + + Order.rewind(); + while (unsigned PhysReg = Order.next()) { + // Keep track of the largest spill weight that would need to be evicted in + // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. + calcGapWeights(PhysReg, GapWeight); + + // Try to find the best sequence of gaps to close. + // The new spill weight must be larger than any gap interference. + + // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. + unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1; + + // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). + // It is the spill weight that needs to be evicted. + float MaxGap = GapWeight[0]; + for (unsigned i = 1; i != SplitAfter; ++i) + MaxGap = std::max(MaxGap, GapWeight[i]); + + for (;;) { + // Live before/after split? + const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; + const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; + + DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' + << Uses[SplitBefore] << '-' << Uses[SplitAfter] + << " i=" << MaxGap); + + // Stop before the interval gets so big we wouldn't be making progress. + if (!LiveBefore && !LiveAfter) { + DEBUG(dbgs() << " all\n"); + break; + } + // Should the interval be extended or shrunk? + bool Shrink = true; + if (MaxGap < HUGE_VALF) { + // Estimate the new spill weight. + // + // Each instruction reads and writes the register, except the first + // instr doesn't read when !FirstLive, and the last instr doesn't write + // when !LastLive. + // + // We will be inserting copies before and after, so the total number of + // reads and writes is 2 * EstUses. + // + const unsigned EstUses = 2*(SplitAfter - SplitBefore) + + 2*(LiveBefore + LiveAfter); + + // Try to guess the size of the new interval. This should be trivial, + // but the slot index of an inserted copy can be a lot smaller than the + // instruction it is inserted before if there are many dead indexes + // between them. + // + // We measure the distance from the instruction before SplitBefore to + // get a conservative estimate. + // + // The final distance can still be different if inserting copies + // triggers a slot index renumbering. + // + const float EstWeight = normalizeSpillWeight(blockFreq * EstUses, + PrevSlot[SplitBefore].distance(Uses[SplitAfter])); + // Would this split be possible to allocate? + // Never allocate all gaps, we wouldn't be making progress. + float Diff = EstWeight - MaxGap; + DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff); + if (Diff > 0) { + Shrink = false; + if (Diff > BestDiff) { + DEBUG(dbgs() << " (best)"); + BestDiff = Diff; + BestBefore = SplitBefore; + BestAfter = SplitAfter; + } + } + } + + // Try to shrink. + if (Shrink) { + SplitBefore = nextSplitPoint(SplitBefore); + if (SplitBefore < SplitAfter) { + DEBUG(dbgs() << " shrink\n"); + // Recompute the max when necessary. + if (GapWeight[SplitBefore - 1] >= MaxGap) { + MaxGap = GapWeight[SplitBefore]; + for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) + MaxGap = std::max(MaxGap, GapWeight[i]); + } + continue; + } + MaxGap = 0; + } + + // Try to extend the interval. + if (SplitAfter >= NumGaps) { + DEBUG(dbgs() << " end\n"); + break; + } + + DEBUG(dbgs() << " extend\n"); + for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1; + SplitAfter != e; ++SplitAfter) + MaxGap = std::max(MaxGap, GapWeight[SplitAfter]); + continue; + } + } + + // Didn't find any candidates? + if (BestBefore == NumGaps) + return 0; + + DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] + << '-' << Uses[BestAfter] << ", " << BestDiff + << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); + + SmallVector<LiveInterval*, 4> SpillRegs; + LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs); + SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit); + + SE.openIntv(); + SlotIndex SegStart = SE.enterIntvBefore(Uses[BestBefore]); + SlotIndex SegStop = SE.leaveIntvAfter(Uses[BestAfter]); + SE.useIntv(SegStart, SegStop); + SE.closeIntv(); + SE.finish(); + ++NumLocalSplits; + + return 0; +} + +//===----------------------------------------------------------------------===// +// Live Range Splitting +//===----------------------------------------------------------------------===// + +/// trySplit - Try to split VirtReg or one of its interferences, making it +/// assignable. +/// @return Physreg when VirtReg may be assigned and/or new NewVRegs. +unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, + SmallVectorImpl<LiveInterval*>&NewVRegs) { + SA->analyze(&VirtReg); + + // Local intervals are handled separately. + if (LIS->intervalIsInOneMBB(VirtReg)) { + NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); + return tryLocalSplit(VirtReg, Order, NewVRegs); + } + + NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); + + // First try to split around a region spanning multiple blocks. + unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); + if (PhysReg || !NewVRegs.empty()) + return PhysReg; + + // Then isolate blocks with multiple uses. + SplitAnalysis::BlockPtrSet Blocks; + if (SA->getMultiUseBlocks(Blocks)) { + SmallVector<LiveInterval*, 4> SpillRegs; + LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs); + SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit).splitSingleBlocks(Blocks); + if (VerifyEnabled) + MF->verify(this, "After splitting live range around basic blocks"); + } + + // Don't assign any physregs. + return 0; +} + + +//===----------------------------------------------------------------------===// +// Spilling +//===----------------------------------------------------------------------===// + +/// calcInterferenceWeight - Calculate the combined spill weight of +/// interferences when assigning VirtReg to PhysReg. +float RAGreedy::calcInterferenceWeight(LiveInterval &VirtReg, unsigned PhysReg){ + float Sum = 0; + for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { + LiveIntervalUnion::Query &Q = query(VirtReg, *AI); + Q.collectInterferingVRegs(); + if (Q.seenUnspillableVReg()) + return HUGE_VALF; + for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) + Sum += Q.interferingVRegs()[i]->weight; + } + return Sum; +} + +/// trySpillInterferences - Try to spill interfering registers instead of the +/// current one. Only do it if the accumulated spill weight is smaller than the +/// current spill weight. +unsigned RAGreedy::trySpillInterferences(LiveInterval &VirtReg, + AllocationOrder &Order, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + NamedRegionTimer T("Spill Interference", TimerGroupName, TimePassesIsEnabled); + unsigned BestPhys = 0; + float BestWeight = 0; + + Order.rewind(); + while (unsigned PhysReg = Order.next()) { + float Weight = calcInterferenceWeight(VirtReg, PhysReg); + if (Weight == HUGE_VALF || Weight >= VirtReg.weight) + continue; + if (!BestPhys || Weight < BestWeight) + BestPhys = PhysReg, BestWeight = Weight; + } + + // No candidates found. + if (!BestPhys) + return 0; + + // Collect all interfering registers. + SmallVector<LiveInterval*, 8> Spills; + for (const unsigned *AI = TRI->getOverlaps(BestPhys); *AI; ++AI) { + LiveIntervalUnion::Query &Q = query(VirtReg, *AI); + Spills.append(Q.interferingVRegs().begin(), Q.interferingVRegs().end()); + for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { + LiveInterval *VReg = Q.interferingVRegs()[i]; + unassign(*VReg, *AI); + } + } + + // Spill them all. + DEBUG(dbgs() << "spilling " << Spills.size() << " interferences with weight " + << BestWeight << '\n'); + for (unsigned i = 0, e = Spills.size(); i != e; ++i) + spiller().spill(Spills[i], NewVRegs, Spills); + return BestPhys; +} + + +//===----------------------------------------------------------------------===// +// Main Entry Point +//===----------------------------------------------------------------------===// + +unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + // First try assigning a free register. + AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs); + while (unsigned PhysReg = Order.next()) { + if (!checkPhysRegInterference(VirtReg, PhysReg)) + return PhysReg; + } + + // Try to reassign interferences. + if (unsigned PhysReg = tryReassignOrEvict(VirtReg, Order, NewVRegs)) + return PhysReg; + + assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); + + // Try splitting VirtReg or interferences. + unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); + if (PhysReg || !NewVRegs.empty()) + return PhysReg; + + // Try to spill another interfering reg with less spill weight. + PhysReg = trySpillInterferences(VirtReg, Order, NewVRegs); + if (PhysReg) + return PhysReg; + + // Finally spill VirtReg itself. + NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); + SmallVector<LiveInterval*, 1> pendingSpills; + spiller().spill(&VirtReg, NewVRegs, pendingSpills); + + // The live virtual register requesting allocation was spilled, so tell + // the caller not to allocate anything during this round. + return 0; +} + +bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { + DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" + << "********** Function: " + << ((Value*)mf.getFunction())->getName() << '\n'); + + MF = &mf; + if (VerifyEnabled) + MF->verify(this, "Before greedy register allocator"); + + RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); + Indexes = &getAnalysis<SlotIndexes>(); + DomTree = &getAnalysis<MachineDominatorTree>(); + ReservedRegs = TRI->getReservedRegs(*MF); + SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); + Loops = &getAnalysis<MachineLoopInfo>(); + LoopRanges = &getAnalysis<MachineLoopRanges>(); + Bundles = &getAnalysis<EdgeBundles>(); + SpillPlacer = &getAnalysis<SpillPlacement>(); + + SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); + + allocatePhysRegs(); + addMBBLiveIns(MF); + LIS->addKillFlags(); + + // Run rewriter + { + NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); + VRM->rewrite(Indexes); + } + + // The pass output is in VirtRegMap. Release all the transient data. + releaseMemory(); + + return true; +} |