diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp | 1429 |
1 files changed, 1429 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp new file mode 100644 index 0000000..e235e87 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/RegAllocGreedy.cpp @@ -0,0 +1,1429 @@ +//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the RAGreedy function pass for register allocation in +// optimized builds. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "AllocationOrder.h" +#include "InterferenceCache.h" +#include "LiveDebugVariables.h" +#include "LiveRangeEdit.h" +#include "RegAllocBase.h" +#include "Spiller.h" +#include "SpillPlacement.h" +#include "SplitKit.h" +#include "VirtRegMap.h" +#include "RegisterCoalescer.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Function.h" +#include "llvm/PassAnalysisSupport.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/EdgeBundles.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/LiveStackAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/Timer.h" + +#include <queue> + +using namespace llvm; + +STATISTIC(NumGlobalSplits, "Number of split global live ranges"); +STATISTIC(NumLocalSplits, "Number of split local live ranges"); +STATISTIC(NumEvicted, "Number of interferences evicted"); + +static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", + createGreedyRegisterAllocator); + +namespace { +class RAGreedy : public MachineFunctionPass, + public RegAllocBase, + private LiveRangeEdit::Delegate { + + // context + MachineFunction *MF; + + // analyses + SlotIndexes *Indexes; + LiveStacks *LS; + MachineDominatorTree *DomTree; + MachineLoopInfo *Loops; + EdgeBundles *Bundles; + SpillPlacement *SpillPlacer; + LiveDebugVariables *DebugVars; + + // state + std::auto_ptr<Spiller> SpillerInstance; + std::priority_queue<std::pair<unsigned, unsigned> > Queue; + unsigned NextCascade; + + // Live ranges pass through a number of stages as we try to allocate them. + // Some of the stages may also create new live ranges: + // + // - Region splitting. + // - Per-block splitting. + // - Local splitting. + // - Spilling. + // + // Ranges produced by one of the stages skip the previous stages when they are + // dequeued. This improves performance because we can skip interference checks + // that are unlikely to give any results. It also guarantees that the live + // range splitting algorithm terminates, something that is otherwise hard to + // ensure. + enum LiveRangeStage { + RS_New, ///< Never seen before. + RS_First, ///< First time in the queue. + RS_Second, ///< Second time in the queue. + RS_Global, ///< Produced by global splitting. + RS_Local, ///< Produced by local splitting. + RS_Spill ///< Produced by spilling. + }; + + static const char *const StageName[]; + + // RegInfo - Keep additional information about each live range. + struct RegInfo { + LiveRangeStage Stage; + + // Cascade - Eviction loop prevention. See canEvictInterference(). + unsigned Cascade; + + RegInfo() : Stage(RS_New), Cascade(0) {} + }; + + IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; + + LiveRangeStage getStage(const LiveInterval &VirtReg) const { + return ExtraRegInfo[VirtReg.reg].Stage; + } + + void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { + ExtraRegInfo.resize(MRI->getNumVirtRegs()); + ExtraRegInfo[VirtReg.reg].Stage = Stage; + } + + template<typename Iterator> + void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { + ExtraRegInfo.resize(MRI->getNumVirtRegs()); + for (;Begin != End; ++Begin) { + unsigned Reg = (*Begin)->reg; + if (ExtraRegInfo[Reg].Stage == RS_New) + ExtraRegInfo[Reg].Stage = NewStage; + } + } + + /// Cost of evicting interference. + struct EvictionCost { + unsigned BrokenHints; ///< Total number of broken hints. + float MaxWeight; ///< Maximum spill weight evicted. + + EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {} + + bool operator<(const EvictionCost &O) const { + if (BrokenHints != O.BrokenHints) + return BrokenHints < O.BrokenHints; + return MaxWeight < O.MaxWeight; + } + }; + + // splitting state. + std::auto_ptr<SplitAnalysis> SA; + std::auto_ptr<SplitEditor> SE; + + /// Cached per-block interference maps + InterferenceCache IntfCache; + + /// All basic blocks where the current register has uses. + SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; + + /// Global live range splitting candidate info. + struct GlobalSplitCandidate { + unsigned PhysReg; + InterferenceCache::Cursor Intf; + BitVector LiveBundles; + SmallVector<unsigned, 8> ActiveBlocks; + + void reset(InterferenceCache &Cache, unsigned Reg) { + PhysReg = Reg; + Intf.setPhysReg(Cache, Reg); + LiveBundles.clear(); + ActiveBlocks.clear(); + } + }; + + /// Candidate info for for each PhysReg in AllocationOrder. + /// This vector never shrinks, but grows to the size of the largest register + /// class. + SmallVector<GlobalSplitCandidate, 32> GlobalCand; + +public: + RAGreedy(); + + /// Return the pass name. + virtual const char* getPassName() const { + return "Greedy Register Allocator"; + } + + /// RAGreedy analysis usage. + virtual void getAnalysisUsage(AnalysisUsage &AU) const; + virtual void releaseMemory(); + virtual Spiller &spiller() { return *SpillerInstance; } + virtual void enqueue(LiveInterval *LI); + virtual LiveInterval *dequeue(); + virtual unsigned selectOrSplit(LiveInterval&, + SmallVectorImpl<LiveInterval*>&); + + /// Perform register allocation. + virtual bool runOnMachineFunction(MachineFunction &mf); + + static char ID; + +private: + void LRE_WillEraseInstruction(MachineInstr*); + bool LRE_CanEraseVirtReg(unsigned); + void LRE_WillShrinkVirtReg(unsigned); + void LRE_DidCloneVirtReg(unsigned, unsigned); + + float calcSpillCost(); + bool addSplitConstraints(InterferenceCache::Cursor, float&); + void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); + void growRegion(GlobalSplitCandidate &Cand); + float calcGlobalSplitCost(GlobalSplitCandidate&); + void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&, + SmallVectorImpl<LiveInterval*>&); + void calcGapWeights(unsigned, SmallVectorImpl<float>&); + bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); + bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); + void evictInterference(LiveInterval&, unsigned, + SmallVectorImpl<LiveInterval*>&); + + unsigned tryAssign(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); + unsigned tryEvict(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&, unsigned = ~0u); + unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); + unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); + unsigned trySplit(LiveInterval&, AllocationOrder&, + SmallVectorImpl<LiveInterval*>&); +}; +} // end anonymous namespace + +char RAGreedy::ID = 0; + +#ifndef NDEBUG +const char *const RAGreedy::StageName[] = { + "RS_New", + "RS_First", + "RS_Second", + "RS_Global", + "RS_Local", + "RS_Spill" +}; +#endif + +// Hysteresis to use when comparing floats. +// This helps stabilize decisions based on float comparisons. +const float Hysteresis = 0.98f; + + +FunctionPass* llvm::createGreedyRegisterAllocator() { + return new RAGreedy(); +} + +RAGreedy::RAGreedy(): MachineFunctionPass(ID) { + initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); + initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); + initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); + initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); + initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); + initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); + initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); + initializeLiveStacksPass(*PassRegistry::getPassRegistry()); + initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); + initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); + initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); + initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); + initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); +} + +void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<AliasAnalysis>(); + AU.addPreserved<AliasAnalysis>(); + AU.addRequired<LiveIntervals>(); + AU.addRequired<SlotIndexes>(); + AU.addPreserved<SlotIndexes>(); + AU.addRequired<LiveDebugVariables>(); + AU.addPreserved<LiveDebugVariables>(); + if (StrongPHIElim) + AU.addRequiredID(StrongPHIEliminationID); + AU.addRequiredTransitive<RegisterCoalescer>(); + AU.addRequired<CalculateSpillWeights>(); + AU.addRequired<LiveStacks>(); + AU.addPreserved<LiveStacks>(); + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineLoopInfo>(); + AU.addRequired<VirtRegMap>(); + AU.addPreserved<VirtRegMap>(); + AU.addRequired<EdgeBundles>(); + AU.addRequired<SpillPlacement>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + + +//===----------------------------------------------------------------------===// +// LiveRangeEdit delegate methods +//===----------------------------------------------------------------------===// + +void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) { + // LRE itself will remove from SlotIndexes and parent basic block. + VRM->RemoveMachineInstrFromMaps(MI); +} + +bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { + if (unsigned PhysReg = VRM->getPhys(VirtReg)) { + unassign(LIS->getInterval(VirtReg), PhysReg); + return true; + } + // Unassigned virtreg is probably in the priority queue. + // RegAllocBase will erase it after dequeueing. + return false; +} + +void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { + unsigned PhysReg = VRM->getPhys(VirtReg); + if (!PhysReg) + return; + + // Register is assigned, put it back on the queue for reassignment. + LiveInterval &LI = LIS->getInterval(VirtReg); + unassign(LI, PhysReg); + enqueue(&LI); +} + +void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { + // LRE may clone a virtual register because dead code elimination causes it to + // be split into connected components. Ensure that the new register gets the + // same stage as the parent. + ExtraRegInfo.grow(New); + ExtraRegInfo[New] = ExtraRegInfo[Old]; +} + +void RAGreedy::releaseMemory() { + SpillerInstance.reset(0); + ExtraRegInfo.clear(); + GlobalCand.clear(); + RegAllocBase::releaseMemory(); +} + +void RAGreedy::enqueue(LiveInterval *LI) { + // Prioritize live ranges by size, assigning larger ranges first. + // The queue holds (size, reg) pairs. + const unsigned Size = LI->getSize(); + const unsigned Reg = LI->reg; + assert(TargetRegisterInfo::isVirtualRegister(Reg) && + "Can only enqueue virtual registers"); + unsigned Prio; + + ExtraRegInfo.grow(Reg); + if (ExtraRegInfo[Reg].Stage == RS_New) + ExtraRegInfo[Reg].Stage = RS_First; + + if (ExtraRegInfo[Reg].Stage == RS_Second) + // Unsplit ranges that couldn't be allocated immediately are deferred until + // everything else has been allocated. Long ranges are allocated last so + // they are split against realistic interference. + Prio = (1u << 31) - Size; + else { + // Everything else is allocated in long->short order. Long ranges that don't + // fit should be spilled ASAP so they don't create interference. + Prio = (1u << 31) + Size; + + // Boost ranges that have a physical register hint. + if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg))) + Prio |= (1u << 30); + } + + Queue.push(std::make_pair(Prio, Reg)); +} + +LiveInterval *RAGreedy::dequeue() { + if (Queue.empty()) + return 0; + LiveInterval *LI = &LIS->getInterval(Queue.top().second); + Queue.pop(); + return LI; +} + + +//===----------------------------------------------------------------------===// +// Direct Assignment +//===----------------------------------------------------------------------===// + +/// tryAssign - Try to assign VirtReg to an available register. +unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, + AllocationOrder &Order, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + Order.rewind(); + unsigned PhysReg; + while ((PhysReg = Order.next())) + if (!checkPhysRegInterference(VirtReg, PhysReg)) + break; + if (!PhysReg || Order.isHint(PhysReg)) + return PhysReg; + + // PhysReg is available, but there may be a better choice. + + // If we missed a simple hint, try to cheaply evict interference from the + // preferred register. + if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) + if (Order.isHint(Hint)) { + DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); + EvictionCost MaxCost(1); + if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { + evictInterference(VirtReg, Hint, NewVRegs); + return Hint; + } + } + + // Try to evict interference from a cheaper alternative. + unsigned Cost = TRI->getCostPerUse(PhysReg); + + // Most registers have 0 additional cost. + if (!Cost) + return PhysReg; + + DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost + << '\n'); + unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); + return CheapReg ? CheapReg : PhysReg; +} + + +//===----------------------------------------------------------------------===// +// Interference eviction +//===----------------------------------------------------------------------===// + +/// shouldEvict - determine if A should evict the assigned live range B. The +/// eviction policy defined by this function together with the allocation order +/// defined by enqueue() decides which registers ultimately end up being split +/// and spilled. +/// +/// Cascade numbers are used to prevent infinite loops if this function is a +/// cyclic relation. +/// +/// @param A The live range to be assigned. +/// @param IsHint True when A is about to be assigned to its preferred +/// register. +/// @param B The live range to be evicted. +/// @param BreaksHint True when B is already assigned to its preferred register. +bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, + LiveInterval &B, bool BreaksHint) { + bool CanSplit = getStage(B) <= RS_Second; + + // Be fairly aggressive about following hints as long as the evictee can be + // split. + if (CanSplit && IsHint && !BreaksHint) + return true; + + return A.weight > B.weight; +} + +/// canEvictInterference - Return true if all interferences between VirtReg and +/// PhysReg can be evicted. When OnlyCheap is set, don't do anything +/// +/// @param VirtReg Live range that is about to be assigned. +/// @param PhysReg Desired register for assignment. +/// @prarm IsHint True when PhysReg is VirtReg's preferred register. +/// @param MaxCost Only look for cheaper candidates and update with new cost +/// when returning true. +/// @returns True when interference can be evicted cheaper than MaxCost. +bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, + bool IsHint, EvictionCost &MaxCost) { + // Find VirtReg's cascade number. This will be unassigned if VirtReg was never + // involved in an eviction before. If a cascade number was assigned, deny + // evicting anything with the same or a newer cascade number. This prevents + // infinite eviction loops. + // + // This works out so a register without a cascade number is allowed to evict + // anything, and it can be evicted by anything. + unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; + if (!Cascade) + Cascade = NextCascade; + + EvictionCost Cost; + for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { + LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); + // If there is 10 or more interferences, chances are one is heavier. + if (Q.collectInterferingVRegs(10) >= 10) + return false; + + // Check if any interfering live range is heavier than MaxWeight. + for (unsigned i = Q.interferingVRegs().size(); i; --i) { + LiveInterval *Intf = Q.interferingVRegs()[i - 1]; + if (TargetRegisterInfo::isPhysicalRegister(Intf->reg)) + return false; + // Never evict spill products. They cannot split or spill. + if (getStage(*Intf) == RS_Spill) + return false; + // Once a live range becomes small enough, it is urgent that we find a + // register for it. This is indicated by an infinite spill weight. These + // urgent live ranges get to evict almost anything. + bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable(); + // Only evict older cascades or live ranges without a cascade. + unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; + if (Cascade <= IntfCascade) { + if (!Urgent) + return false; + // We permit breaking cascades for urgent evictions. It should be the + // last resort, though, so make it really expensive. + Cost.BrokenHints += 10; + } + // Would this break a satisfied hint? + bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); + // Update eviction cost. + Cost.BrokenHints += BreaksHint; + Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); + // Abort if this would be too expensive. + if (!(Cost < MaxCost)) + return false; + // Finally, apply the eviction policy for non-urgent evictions. + if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) + return false; + } + } + MaxCost = Cost; + return true; +} + +/// evictInterference - Evict any interferring registers that prevent VirtReg +/// from being assigned to Physreg. This assumes that canEvictInterference +/// returned true. +void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + // Make sure that VirtReg has a cascade number, and assign that cascade + // number to every evicted register. These live ranges than then only be + // evicted by a newer cascade, preventing infinite loops. + unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; + if (!Cascade) + Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; + + DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) + << " interference: Cascade " << Cascade << '\n'); + for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { + LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); + assert(Q.seenAllInterferences() && "Didn't check all interfererences."); + for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { + LiveInterval *Intf = Q.interferingVRegs()[i]; + unassign(*Intf, VRM->getPhys(Intf->reg)); + assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || + VirtReg.isSpillable() < Intf->isSpillable()) && + "Cannot decrease cascade number, illegal eviction"); + ExtraRegInfo[Intf->reg].Cascade = Cascade; + ++NumEvicted; + NewVRegs.push_back(Intf); + } + } +} + +/// tryEvict - Try to evict all interferences for a physreg. +/// @param VirtReg Currently unassigned virtual register. +/// @param Order Physregs to try. +/// @return Physreg to assign VirtReg, or 0. +unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, + AllocationOrder &Order, + SmallVectorImpl<LiveInterval*> &NewVRegs, + unsigned CostPerUseLimit) { + NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); + + // Keep track of the cheapest interference seen so far. + EvictionCost BestCost(~0u); + unsigned BestPhys = 0; + + // When we are just looking for a reduced cost per use, don't break any + // hints, and only evict smaller spill weights. + if (CostPerUseLimit < ~0u) { + BestCost.BrokenHints = 0; + BestCost.MaxWeight = VirtReg.weight; + } + + Order.rewind(); + while (unsigned PhysReg = Order.next()) { + if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) + continue; + // The first use of a callee-saved register in a function has cost 1. + // Don't start using a CSR when the CostPerUseLimit is low. + if (CostPerUseLimit == 1) + if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg)) + if (!MRI->isPhysRegUsed(CSR)) { + DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " + << PrintReg(CSR, TRI) << '\n'); + continue; + } + + if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) + continue; + + // Best so far. + BestPhys = PhysReg; + + // Stop if the hint can be used. + if (Order.isHint(PhysReg)) + break; + } + + if (!BestPhys) + return 0; + + evictInterference(VirtReg, BestPhys, NewVRegs); + return BestPhys; +} + + +//===----------------------------------------------------------------------===// +// Region Splitting +//===----------------------------------------------------------------------===// + +/// addSplitConstraints - Fill out the SplitConstraints vector based on the +/// interference pattern in Physreg and its aliases. Add the constraints to +/// SpillPlacement and return the static cost of this split in Cost, assuming +/// that all preferences in SplitConstraints are met. +/// Return false if there are no bundles with positive bias. +bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, + float &Cost) { + ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); + + // Reset interference dependent info. + SplitConstraints.resize(UseBlocks.size()); + float StaticCost = 0; + for (unsigned i = 0; i != UseBlocks.size(); ++i) { + const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; + SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; + + BC.Number = BI.MBB->getNumber(); + Intf.moveToBlock(BC.Number); + BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; + BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; + + if (!Intf.hasInterference()) + continue; + + // Number of spill code instructions to insert. + unsigned Ins = 0; + + // Interference for the live-in value. + if (BI.LiveIn) { + if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) + BC.Entry = SpillPlacement::MustSpill, ++Ins; + else if (Intf.first() < BI.FirstUse) + BC.Entry = SpillPlacement::PrefSpill, ++Ins; + else if (Intf.first() < BI.LastUse) + ++Ins; + } + + // Interference for the live-out value. + if (BI.LiveOut) { + if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) + BC.Exit = SpillPlacement::MustSpill, ++Ins; + else if (Intf.last() > BI.LastUse) + BC.Exit = SpillPlacement::PrefSpill, ++Ins; + else if (Intf.last() > BI.FirstUse) + ++Ins; + } + + // Accumulate the total frequency of inserted spill code. + if (Ins) + StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); + } + Cost = StaticCost; + + // Add constraints for use-blocks. Note that these are the only constraints + // that may add a positive bias, it is downhill from here. + SpillPlacer->addConstraints(SplitConstraints); + return SpillPlacer->scanActiveBundles(); +} + + +/// addThroughConstraints - Add constraints and links to SpillPlacer from the +/// live-through blocks in Blocks. +void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, + ArrayRef<unsigned> Blocks) { + const unsigned GroupSize = 8; + SpillPlacement::BlockConstraint BCS[GroupSize]; + unsigned TBS[GroupSize]; + unsigned B = 0, T = 0; + + for (unsigned i = 0; i != Blocks.size(); ++i) { + unsigned Number = Blocks[i]; + Intf.moveToBlock(Number); + + if (!Intf.hasInterference()) { + assert(T < GroupSize && "Array overflow"); + TBS[T] = Number; + if (++T == GroupSize) { + SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T)); + T = 0; + } + continue; + } + + assert(B < GroupSize && "Array overflow"); + BCS[B].Number = Number; + + // Interference for the live-in value. + if (Intf.first() <= Indexes->getMBBStartIdx(Number)) + BCS[B].Entry = SpillPlacement::MustSpill; + else + BCS[B].Entry = SpillPlacement::PrefSpill; + + // Interference for the live-out value. + if (Intf.last() >= SA->getLastSplitPoint(Number)) + BCS[B].Exit = SpillPlacement::MustSpill; + else + BCS[B].Exit = SpillPlacement::PrefSpill; + + if (++B == GroupSize) { + ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); + SpillPlacer->addConstraints(Array); + B = 0; + } + } + + ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); + SpillPlacer->addConstraints(Array); + SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T)); +} + +void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { + // Keep track of through blocks that have not been added to SpillPlacer. + BitVector Todo = SA->getThroughBlocks(); + SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; + unsigned AddedTo = 0; +#ifndef NDEBUG + unsigned Visited = 0; +#endif + + for (;;) { + ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); + // Find new through blocks in the periphery of PrefRegBundles. + for (int i = 0, e = NewBundles.size(); i != e; ++i) { + unsigned Bundle = NewBundles[i]; + // Look at all blocks connected to Bundle in the full graph. + ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); + for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); + I != E; ++I) { + unsigned Block = *I; + if (!Todo.test(Block)) + continue; + Todo.reset(Block); + // This is a new through block. Add it to SpillPlacer later. + ActiveBlocks.push_back(Block); +#ifndef NDEBUG + ++Visited; +#endif + } + } + // Any new blocks to add? + if (ActiveBlocks.size() == AddedTo) + break; + addThroughConstraints(Cand.Intf, + ArrayRef<unsigned>(ActiveBlocks).slice(AddedTo)); + AddedTo = ActiveBlocks.size(); + + // Perhaps iterating can enable more bundles? + SpillPlacer->iterate(); + } + DEBUG(dbgs() << ", v=" << Visited); +} + +/// calcSpillCost - Compute how expensive it would be to split the live range in +/// SA around all use blocks instead of forming bundle regions. +float RAGreedy::calcSpillCost() { + float Cost = 0; + const LiveInterval &LI = SA->getParent(); + ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); + for (unsigned i = 0; i != UseBlocks.size(); ++i) { + const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; + unsigned Number = BI.MBB->getNumber(); + // We normally only need one spill instruction - a load or a store. + Cost += SpillPlacer->getBlockFrequency(Number); + + // Unless the value is redefined in the block. + if (BI.LiveIn && BI.LiveOut) { + SlotIndex Start, Stop; + tie(Start, Stop) = Indexes->getMBBRange(Number); + LiveInterval::const_iterator I = LI.find(Start); + assert(I != LI.end() && "Expected live-in value"); + // Is there a different live-out value? If so, we need an extra spill + // instruction. + if (I->end < Stop) + Cost += SpillPlacer->getBlockFrequency(Number); + } + } + return Cost; +} + +/// calcGlobalSplitCost - Return the global split cost of following the split +/// pattern in LiveBundles. This cost should be added to the local cost of the +/// interference pattern in SplitConstraints. +/// +float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { + float GlobalCost = 0; + const BitVector &LiveBundles = Cand.LiveBundles; + ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); + for (unsigned i = 0; i != UseBlocks.size(); ++i) { + const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; + SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; + bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; + bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; + unsigned Ins = 0; + + if (BI.LiveIn) + Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); + if (BI.LiveOut) + Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); + if (Ins) + GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); + } + + for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { + unsigned Number = Cand.ActiveBlocks[i]; + bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; + bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; + if (!RegIn && !RegOut) + continue; + if (RegIn && RegOut) { + // We need double spill code if this block has interference. + Cand.Intf.moveToBlock(Number); + if (Cand.Intf.hasInterference()) + GlobalCost += 2*SpillPlacer->getBlockFrequency(Number); + continue; + } + // live-in / stack-out or stack-in live-out. + GlobalCost += SpillPlacer->getBlockFrequency(Number); + } + return GlobalCost; +} + +/// splitAroundRegion - Split VirtReg around the region determined by +/// LiveBundles. Make an effort to avoid interference from PhysReg. +/// +/// The 'register' interval is going to contain as many uses as possible while +/// avoiding interference. The 'stack' interval is the complement constructed by +/// SplitEditor. It will contain the rest. +/// +void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, + GlobalSplitCandidate &Cand, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + const BitVector &LiveBundles = Cand.LiveBundles; + + DEBUG({ + dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI) + << " with bundles"; + for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i)) + dbgs() << " EB#" << i; + dbgs() << ".\n"; + }); + + InterferenceCache::Cursor &Intf = Cand.Intf; + LiveRangeEdit LREdit(VirtReg, NewVRegs, this); + SE->reset(LREdit); + + // Create the main cross-block interval. + const unsigned MainIntv = SE->openIntv(); + + // First handle all the blocks with uses. + ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); + for (unsigned i = 0; i != UseBlocks.size(); ++i) { + const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; + bool RegIn = BI.LiveIn && + LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)]; + bool RegOut = BI.LiveOut && + LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)]; + + // Create separate intervals for isolated blocks with multiple uses. + if (!RegIn && !RegOut) { + DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); + if (!BI.isOneInstr()) { + SE->splitSingleBlock(BI); + SE->selectIntv(MainIntv); + } + continue; + } + + Intf.moveToBlock(BI.MBB->getNumber()); + + if (RegIn && RegOut) + SE->splitLiveThroughBlock(BI.MBB->getNumber(), + MainIntv, Intf.first(), + MainIntv, Intf.last()); + else if (RegIn) + SE->splitRegInBlock(BI, MainIntv, Intf.first()); + else + SE->splitRegOutBlock(BI, MainIntv, Intf.last()); + } + + // Handle live-through blocks. + for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { + unsigned Number = Cand.ActiveBlocks[i]; + bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; + bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; + if (!RegIn && !RegOut) + continue; + Intf.moveToBlock(Number); + SE->splitLiveThroughBlock(Number, RegIn ? MainIntv : 0, Intf.first(), + RegOut ? MainIntv : 0, Intf.last()); + } + + ++NumGlobalSplits; + + SmallVector<unsigned, 8> IntvMap; + SE->finish(&IntvMap); + DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); + + ExtraRegInfo.resize(MRI->getNumVirtRegs()); + unsigned OrigBlocks = SA->getNumLiveBlocks(); + + // Sort out the new intervals created by splitting. We get four kinds: + // - Remainder intervals should not be split again. + // - Candidate intervals can be assigned to Cand.PhysReg. + // - Block-local splits are candidates for local splitting. + // - DCE leftovers should go back on the queue. + for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { + LiveInterval &Reg = *LREdit.get(i); + + // Ignore old intervals from DCE. + if (getStage(Reg) != RS_New) + continue; + + // Remainder interval. Don't try splitting again, spill if it doesn't + // allocate. + if (IntvMap[i] == 0) { + setStage(Reg, RS_Global); + continue; + } + + // Main interval. Allow repeated splitting as long as the number of live + // blocks is strictly decreasing. + if (IntvMap[i] == MainIntv) { + if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { + DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks + << " blocks as original.\n"); + // Don't allow repeated splitting as a safe guard against looping. + setStage(Reg, RS_Global); + } + continue; + } + + // Other intervals are treated as new. This includes local intervals created + // for blocks with multiple uses, and anything created by DCE. + } + + if (VerifyEnabled) + MF->verify(this, "After splitting live range around region"); +} + +unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + float BestCost = Hysteresis * calcSpillCost(); + DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n'); + const unsigned NoCand = ~0u; + unsigned BestCand = NoCand; + unsigned NumCands = 0; + + Order.rewind(); + while (unsigned PhysReg = Order.next()) { + // Discard bad candidates before we run out of interference cache cursors. + // This will only affect register classes with a lot of registers (>32). + if (NumCands == IntfCache.getMaxCursors()) { + unsigned WorstCount = ~0u; + unsigned Worst = 0; + for (unsigned i = 0; i != NumCands; ++i) { + if (i == BestCand) + continue; + unsigned Count = GlobalCand[i].LiveBundles.count(); + if (Count < WorstCount) + Worst = i, WorstCount = Count; + } + --NumCands; + GlobalCand[Worst] = GlobalCand[NumCands]; + } + + if (GlobalCand.size() <= NumCands) + GlobalCand.resize(NumCands+1); + GlobalSplitCandidate &Cand = GlobalCand[NumCands]; + Cand.reset(IntfCache, PhysReg); + + SpillPlacer->prepare(Cand.LiveBundles); + float Cost; + if (!addSplitConstraints(Cand.Intf, Cost)) { + DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); + continue; + } + DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); + if (Cost >= BestCost) { + DEBUG({ + if (BestCand == NoCand) + dbgs() << " worse than no bundles\n"; + else + dbgs() << " worse than " + << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; + }); + continue; + } + growRegion(Cand); + + SpillPlacer->finish(); + + // No live bundles, defer to splitSingleBlocks(). + if (!Cand.LiveBundles.any()) { + DEBUG(dbgs() << " no bundles.\n"); + continue; + } + + Cost += calcGlobalSplitCost(Cand); + DEBUG({ + dbgs() << ", total = " << Cost << " with bundles"; + for (int i = Cand.LiveBundles.find_first(); i>=0; + i = Cand.LiveBundles.find_next(i)) + dbgs() << " EB#" << i; + dbgs() << ".\n"; + }); + if (Cost < BestCost) { + BestCand = NumCands; + BestCost = Hysteresis * Cost; // Prevent rounding effects. + } + ++NumCands; + } + + if (BestCand == NoCand) + return 0; + + splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs); + return 0; +} + + +//===----------------------------------------------------------------------===// +// Local Splitting +//===----------------------------------------------------------------------===// + + +/// calcGapWeights - Compute the maximum spill weight that needs to be evicted +/// in order to use PhysReg between two entries in SA->UseSlots. +/// +/// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. +/// +void RAGreedy::calcGapWeights(unsigned PhysReg, + SmallVectorImpl<float> &GapWeight) { + assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); + const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); + const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; + const unsigned NumGaps = Uses.size()-1; + + // Start and end points for the interference check. + SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse; + SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse; + + GapWeight.assign(NumGaps, 0.0f); + + // Add interference from each overlapping register. + for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { + if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI) + .checkInterference()) + continue; + + // We know that VirtReg is a continuous interval from FirstUse to LastUse, + // so we don't need InterferenceQuery. + // + // Interference that overlaps an instruction is counted in both gaps + // surrounding the instruction. The exception is interference before + // StartIdx and after StopIdx. + // + LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx); + for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { + // Skip the gaps before IntI. + while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) + if (++Gap == NumGaps) + break; + if (Gap == NumGaps) + break; + + // Update the gaps covered by IntI. + const float weight = IntI.value()->weight; + for (; Gap != NumGaps; ++Gap) { + GapWeight[Gap] = std::max(GapWeight[Gap], weight); + if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) + break; + } + if (Gap == NumGaps) + break; + } + } +} + +/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only +/// basic block. +/// +unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); + const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); + + // Note that it is possible to have an interval that is live-in or live-out + // while only covering a single block - A phi-def can use undef values from + // predecessors, and the block could be a single-block loop. + // We don't bother doing anything clever about such a case, we simply assume + // that the interval is continuous from FirstUse to LastUse. We should make + // sure that we don't do anything illegal to such an interval, though. + + const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; + if (Uses.size() <= 2) + return 0; + const unsigned NumGaps = Uses.size()-1; + + DEBUG({ + dbgs() << "tryLocalSplit: "; + for (unsigned i = 0, e = Uses.size(); i != e; ++i) + dbgs() << ' ' << SA->UseSlots[i]; + dbgs() << '\n'; + }); + + // Since we allow local split results to be split again, there is a risk of + // creating infinite loops. It is tempting to require that the new live + // ranges have less instructions than the original. That would guarantee + // convergence, but it is too strict. A live range with 3 instructions can be + // split 2+3 (including the COPY), and we want to allow that. + // + // Instead we use these rules: + // + // 1. Allow any split for ranges with getStage() < RS_Local. (Except for the + // noop split, of course). + // 2. Require progress be made for ranges with getStage() >= RS_Local. All + // the new ranges must have fewer instructions than before the split. + // 3. New ranges with the same number of instructions are marked RS_Local, + // smaller ranges are marked RS_New. + // + // These rules allow a 3 -> 2+3 split once, which we need. They also prevent + // excessive splitting and infinite loops. + // + bool ProgressRequired = getStage(VirtReg) >= RS_Local; + + // Best split candidate. + unsigned BestBefore = NumGaps; + unsigned BestAfter = 0; + float BestDiff = 0; + + const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber()); + SmallVector<float, 8> GapWeight; + + Order.rewind(); + while (unsigned PhysReg = Order.next()) { + // Keep track of the largest spill weight that would need to be evicted in + // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. + calcGapWeights(PhysReg, GapWeight); + + // Try to find the best sequence of gaps to close. + // The new spill weight must be larger than any gap interference. + + // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. + unsigned SplitBefore = 0, SplitAfter = 1; + + // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). + // It is the spill weight that needs to be evicted. + float MaxGap = GapWeight[0]; + + for (;;) { + // Live before/after split? + const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; + const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; + + DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' + << Uses[SplitBefore] << '-' << Uses[SplitAfter] + << " i=" << MaxGap); + + // Stop before the interval gets so big we wouldn't be making progress. + if (!LiveBefore && !LiveAfter) { + DEBUG(dbgs() << " all\n"); + break; + } + // Should the interval be extended or shrunk? + bool Shrink = true; + + // How many gaps would the new range have? + unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; + + // Legally, without causing looping? + bool Legal = !ProgressRequired || NewGaps < NumGaps; + + if (Legal && MaxGap < HUGE_VALF) { + // Estimate the new spill weight. Each instruction reads or writes the + // register. Conservatively assume there are no read-modify-write + // instructions. + // + // Try to guess the size of the new interval. + const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), + Uses[SplitBefore].distance(Uses[SplitAfter]) + + (LiveBefore + LiveAfter)*SlotIndex::InstrDist); + // Would this split be possible to allocate? + // Never allocate all gaps, we wouldn't be making progress. + DEBUG(dbgs() << " w=" << EstWeight); + if (EstWeight * Hysteresis >= MaxGap) { + Shrink = false; + float Diff = EstWeight - MaxGap; + if (Diff > BestDiff) { + DEBUG(dbgs() << " (best)"); + BestDiff = Hysteresis * Diff; + BestBefore = SplitBefore; + BestAfter = SplitAfter; + } + } + } + + // Try to shrink. + if (Shrink) { + if (++SplitBefore < SplitAfter) { + DEBUG(dbgs() << " shrink\n"); + // Recompute the max when necessary. + if (GapWeight[SplitBefore - 1] >= MaxGap) { + MaxGap = GapWeight[SplitBefore]; + for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) + MaxGap = std::max(MaxGap, GapWeight[i]); + } + continue; + } + MaxGap = 0; + } + + // Try to extend the interval. + if (SplitAfter >= NumGaps) { + DEBUG(dbgs() << " end\n"); + break; + } + + DEBUG(dbgs() << " extend\n"); + MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); + } + } + + // Didn't find any candidates? + if (BestBefore == NumGaps) + return 0; + + DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] + << '-' << Uses[BestAfter] << ", " << BestDiff + << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); + + LiveRangeEdit LREdit(VirtReg, NewVRegs, this); + SE->reset(LREdit); + + SE->openIntv(); + SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); + SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); + SE->useIntv(SegStart, SegStop); + SmallVector<unsigned, 8> IntvMap; + SE->finish(&IntvMap); + DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); + + // If the new range has the same number of instructions as before, mark it as + // RS_Local so the next split will be forced to make progress. Otherwise, + // leave the new intervals as RS_New so they can compete. + bool LiveBefore = BestBefore != 0 || BI.LiveIn; + bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; + unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; + if (NewGaps >= NumGaps) { + DEBUG(dbgs() << "Tagging non-progress ranges: "); + assert(!ProgressRequired && "Didn't make progress when it was required."); + for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) + if (IntvMap[i] == 1) { + setStage(*LREdit.get(i), RS_Local); + DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); + } + DEBUG(dbgs() << '\n'); + } + ++NumLocalSplits; + + return 0; +} + +//===----------------------------------------------------------------------===// +// Live Range Splitting +//===----------------------------------------------------------------------===// + +/// trySplit - Try to split VirtReg or one of its interferences, making it +/// assignable. +/// @return Physreg when VirtReg may be assigned and/or new NewVRegs. +unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, + SmallVectorImpl<LiveInterval*>&NewVRegs) { + // Local intervals are handled separately. + if (LIS->intervalIsInOneMBB(VirtReg)) { + NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); + SA->analyze(&VirtReg); + return tryLocalSplit(VirtReg, Order, NewVRegs); + } + + NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); + + // Don't iterate global splitting. + // Move straight to spilling if this range was produced by a global split. + if (getStage(VirtReg) >= RS_Global) + return 0; + + SA->analyze(&VirtReg); + + // FIXME: SplitAnalysis may repair broken live ranges coming from the + // coalescer. That may cause the range to become allocatable which means that + // tryRegionSplit won't be making progress. This check should be replaced with + // an assertion when the coalescer is fixed. + if (SA->didRepairRange()) { + // VirtReg has changed, so all cached queries are invalid. + invalidateVirtRegs(); + if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) + return PhysReg; + } + + // First try to split around a region spanning multiple blocks. + unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); + if (PhysReg || !NewVRegs.empty()) + return PhysReg; + + // Then isolate blocks with multiple uses. + SplitAnalysis::BlockPtrSet Blocks; + if (SA->getMultiUseBlocks(Blocks)) { + LiveRangeEdit LREdit(VirtReg, NewVRegs, this); + SE->reset(LREdit); + SE->splitSingleBlocks(Blocks); + setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global); + if (VerifyEnabled) + MF->verify(this, "After splitting live range around basic blocks"); + } + + // Don't assign any physregs. + return 0; +} + + +//===----------------------------------------------------------------------===// +// Main Entry Point +//===----------------------------------------------------------------------===// + +unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, + SmallVectorImpl<LiveInterval*> &NewVRegs) { + // First try assigning a free register. + AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); + if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) + return PhysReg; + + LiveRangeStage Stage = getStage(VirtReg); + DEBUG(dbgs() << StageName[Stage] + << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); + + // Try to evict a less worthy live range, but only for ranges from the primary + // queue. The RS_Second ranges already failed to do this, and they should not + // get a second chance until they have been split. + if (Stage != RS_Second) + if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) + return PhysReg; + + assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); + + // The first time we see a live range, don't try to split or spill. + // Wait until the second time, when all smaller ranges have been allocated. + // This gives a better picture of the interference to split around. + if (Stage == RS_First) { + setStage(VirtReg, RS_Second); + DEBUG(dbgs() << "wait for second round\n"); + NewVRegs.push_back(&VirtReg); + return 0; + } + + // If we couldn't allocate a register from spilling, there is probably some + // invalid inline assembly. The base class wil report it. + if (Stage >= RS_Spill || !VirtReg.isSpillable()) + return ~0u; + + // Try splitting VirtReg or interferences. + unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); + if (PhysReg || !NewVRegs.empty()) + return PhysReg; + + // Finally spill VirtReg itself. + NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); + LiveRangeEdit LRE(VirtReg, NewVRegs, this); + spiller().spill(LRE); + setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill); + + if (VerifyEnabled) + MF->verify(this, "After spilling"); + + // The live virtual register requesting allocation was spilled, so tell + // the caller not to allocate anything during this round. + return 0; +} + +bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { + DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" + << "********** Function: " + << ((Value*)mf.getFunction())->getName() << '\n'); + + MF = &mf; + if (VerifyEnabled) + MF->verify(this, "Before greedy register allocator"); + + RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); + Indexes = &getAnalysis<SlotIndexes>(); + DomTree = &getAnalysis<MachineDominatorTree>(); + SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); + Loops = &getAnalysis<MachineLoopInfo>(); + Bundles = &getAnalysis<EdgeBundles>(); + SpillPlacer = &getAnalysis<SpillPlacement>(); + DebugVars = &getAnalysis<LiveDebugVariables>(); + + SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); + SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree)); + ExtraRegInfo.clear(); + ExtraRegInfo.resize(MRI->getNumVirtRegs()); + NextCascade = 1; + IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI); + + allocatePhysRegs(); + addMBBLiveIns(MF); + LIS->addKillFlags(); + + // Run rewriter + { + NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); + VRM->rewrite(Indexes); + } + + // Write out new DBG_VALUE instructions. + DebugVars->emitDebugValues(VRM); + + // The pass output is in VirtRegMap. Release all the transient data. + releaseMemory(); + + return true; +} |