summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/RegAllocBasic.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/RegAllocBasic.cpp523
1 files changed, 523 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp b/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
new file mode 100644
index 0000000..045c8db
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/RegAllocBasic.cpp
@@ -0,0 +1,523 @@
+//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the RABasic function pass, which provides a minimal
+// implementation of the basic register allocator.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "LiveIntervalUnion.h"
+#include "RegAllocBase.h"
+#include "RenderMachineFunction.h"
+#include "Spiller.h"
+#include "VirtRegMap.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Function.h"
+#include "llvm/PassAnalysisSupport.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/CodeGen/RegisterCoalescer.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#ifndef NDEBUG
+#include "llvm/ADT/SparseBitVector.h"
+#endif
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Timer.h"
+
+#include <cstdlib>
+
+using namespace llvm;
+
+STATISTIC(NumAssigned , "Number of registers assigned");
+STATISTIC(NumUnassigned , "Number of registers unassigned");
+STATISTIC(NumNewQueued , "Number of new live ranges queued");
+
+static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
+ createBasicRegisterAllocator);
+
+// Temporary verification option until we can put verification inside
+// MachineVerifier.
+static cl::opt<bool, true>
+VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
+ cl::desc("Verify during register allocation"));
+
+const char *RegAllocBase::TimerGroupName = "Register Allocation";
+bool RegAllocBase::VerifyEnabled = false;
+
+namespace {
+/// RABasic provides a minimal implementation of the basic register allocation
+/// algorithm. It prioritizes live virtual registers by spill weight and spills
+/// whenever a register is unavailable. This is not practical in production but
+/// provides a useful baseline both for measuring other allocators and comparing
+/// the speed of the basic algorithm against other styles of allocators.
+class RABasic : public MachineFunctionPass, public RegAllocBase
+{
+ // context
+ MachineFunction *MF;
+ BitVector ReservedRegs;
+
+ // analyses
+ LiveStacks *LS;
+ RenderMachineFunction *RMF;
+
+ // state
+ std::auto_ptr<Spiller> SpillerInstance;
+
+public:
+ RABasic();
+
+ /// Return the pass name.
+ virtual const char* getPassName() const {
+ return "Basic Register Allocator";
+ }
+
+ /// RABasic analysis usage.
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ virtual void releaseMemory();
+
+ virtual Spiller &spiller() { return *SpillerInstance; }
+
+ virtual float getPriority(LiveInterval *LI) { return LI->weight; }
+
+ virtual unsigned selectOrSplit(LiveInterval &VirtReg,
+ SmallVectorImpl<LiveInterval*> &SplitVRegs);
+
+ /// Perform register allocation.
+ virtual bool runOnMachineFunction(MachineFunction &mf);
+
+ static char ID;
+};
+
+char RABasic::ID = 0;
+
+} // end anonymous namespace
+
+RABasic::RABasic(): MachineFunctionPass(ID) {
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+ initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
+ initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
+ initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
+ initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
+ initializeLiveStacksPass(*PassRegistry::getPassRegistry());
+ initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
+ initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
+ initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
+ initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
+}
+
+void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<SlotIndexes>();
+ if (StrongPHIElim)
+ AU.addRequiredID(StrongPHIEliminationID);
+ AU.addRequiredTransitive<RegisterCoalescer>();
+ AU.addRequired<CalculateSpillWeights>();
+ AU.addRequired<LiveStacks>();
+ AU.addPreserved<LiveStacks>();
+ AU.addRequiredID(MachineDominatorsID);
+ AU.addPreservedID(MachineDominatorsID);
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addRequired<VirtRegMap>();
+ AU.addPreserved<VirtRegMap>();
+ DEBUG(AU.addRequired<RenderMachineFunction>());
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+void RABasic::releaseMemory() {
+ SpillerInstance.reset(0);
+ RegAllocBase::releaseMemory();
+}
+
+#ifndef NDEBUG
+// Verify each LiveIntervalUnion.
+void RegAllocBase::verify() {
+ LiveVirtRegBitSet VisitedVRegs;
+ OwningArrayPtr<LiveVirtRegBitSet>
+ unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
+
+ // Verify disjoint unions.
+ for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
+ DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
+ LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
+ PhysReg2LiveUnion[PhysReg].verify(VRegs);
+ // Union + intersection test could be done efficiently in one pass, but
+ // don't add a method to SparseBitVector unless we really need it.
+ assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
+ VisitedVRegs |= VRegs;
+ }
+
+ // Verify vreg coverage.
+ for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
+ liItr != liEnd; ++liItr) {
+ unsigned reg = liItr->first;
+ if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
+ if (!VRM->hasPhys(reg)) continue; // spilled?
+ unsigned PhysReg = VRM->getPhys(reg);
+ if (!unionVRegs[PhysReg].test(reg)) {
+ dbgs() << "LiveVirtReg " << reg << " not in union " <<
+ TRI->getName(PhysReg) << "\n";
+ llvm_unreachable("unallocated live vreg");
+ }
+ }
+ // FIXME: I'm not sure how to verify spilled intervals.
+}
+#endif //!NDEBUG
+
+//===----------------------------------------------------------------------===//
+// RegAllocBase Implementation
+//===----------------------------------------------------------------------===//
+
+// Instantiate a LiveIntervalUnion for each physical register.
+void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
+ unsigned NRegs) {
+ NumRegs = NRegs;
+ Array =
+ static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
+ for (unsigned r = 0; r != NRegs; ++r)
+ new(Array + r) LiveIntervalUnion(r, allocator);
+}
+
+void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
+ NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
+ TRI = &vrm.getTargetRegInfo();
+ MRI = &vrm.getRegInfo();
+ VRM = &vrm;
+ LIS = &lis;
+ PhysReg2LiveUnion.init(UnionAllocator, TRI->getNumRegs());
+ // Cache an interferece query for each physical reg
+ Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
+}
+
+void RegAllocBase::LiveUnionArray::clear() {
+ if (!Array)
+ return;
+ for (unsigned r = 0; r != NumRegs; ++r)
+ Array[r].~LiveIntervalUnion();
+ free(Array);
+ NumRegs = 0;
+ Array = 0;
+}
+
+void RegAllocBase::releaseMemory() {
+ PhysReg2LiveUnion.clear();
+}
+
+// Visit all the live virtual registers. If they are already assigned to a
+// physical register, unify them with the corresponding LiveIntervalUnion,
+// otherwise push them on the priority queue for later assignment.
+void RegAllocBase::
+seedLiveVirtRegs(std::priority_queue<std::pair<float, unsigned> > &VirtRegQ) {
+ for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
+ unsigned RegNum = I->first;
+ LiveInterval &VirtReg = *I->second;
+ if (TargetRegisterInfo::isPhysicalRegister(RegNum))
+ PhysReg2LiveUnion[RegNum].unify(VirtReg);
+ else
+ VirtRegQ.push(std::make_pair(getPriority(&VirtReg), RegNum));
+ }
+}
+
+void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
+ DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
+ << " to " << PrintReg(PhysReg, TRI) << '\n');
+ assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
+ VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
+ PhysReg2LiveUnion[PhysReg].unify(VirtReg);
+ ++NumAssigned;
+}
+
+void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
+ DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
+ << " from " << PrintReg(PhysReg, TRI) << '\n');
+ assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
+ PhysReg2LiveUnion[PhysReg].extract(VirtReg);
+ VRM->clearVirt(VirtReg.reg);
+ ++NumUnassigned;
+}
+
+// Top-level driver to manage the queue of unassigned VirtRegs and call the
+// selectOrSplit implementation.
+void RegAllocBase::allocatePhysRegs() {
+
+ // Push each vreg onto a queue or "precolor" by adding it to a physreg union.
+ std::priority_queue<std::pair<float, unsigned> > VirtRegQ;
+ seedLiveVirtRegs(VirtRegQ);
+
+ // Continue assigning vregs one at a time to available physical registers.
+ while (!VirtRegQ.empty()) {
+ // Pop the highest priority vreg.
+ LiveInterval &VirtReg = LIS->getInterval(VirtRegQ.top().second);
+ VirtRegQ.pop();
+
+ // selectOrSplit requests the allocator to return an available physical
+ // register if possible and populate a list of new live intervals that
+ // result from splitting.
+ DEBUG(dbgs() << "\nselectOrSplit " << MRI->getRegClass(VirtReg.reg)->getName()
+ << ':' << VirtReg << '\n');
+ typedef SmallVector<LiveInterval*, 4> VirtRegVec;
+ VirtRegVec SplitVRegs;
+ unsigned AvailablePhysReg = selectOrSplit(VirtReg, SplitVRegs);
+
+ if (AvailablePhysReg)
+ assign(VirtReg, AvailablePhysReg);
+
+ for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
+ I != E; ++I) {
+ LiveInterval* SplitVirtReg = *I;
+ if (SplitVirtReg->empty()) continue;
+ DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
+ assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
+ "expect split value in virtual register");
+ VirtRegQ.push(std::make_pair(getPriority(SplitVirtReg),
+ SplitVirtReg->reg));
+ ++NumNewQueued;
+ }
+ }
+}
+
+// Check if this live virtual register interferes with a physical register. If
+// not, then check for interference on each register that aliases with the
+// physical register. Return the interfering register.
+unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
+ unsigned PhysReg) {
+ for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
+ if (query(VirtReg, *AliasI).checkInterference())
+ return *AliasI;
+ return 0;
+}
+
+// Helper for spillInteferences() that spills all interfering vregs currently
+// assigned to this physical register.
+void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
+ SmallVectorImpl<LiveInterval*> &SplitVRegs) {
+ LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
+ assert(Q.seenAllInterferences() && "need collectInterferences()");
+ const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
+
+ for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
+ E = PendingSpills.end(); I != E; ++I) {
+ LiveInterval &SpilledVReg = **I;
+ DEBUG(dbgs() << "extracting from " <<
+ TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
+
+ // Deallocate the interfering vreg by removing it from the union.
+ // A LiveInterval instance may not be in a union during modification!
+ unassign(SpilledVReg, PhysReg);
+
+ // Spill the extracted interval.
+ spiller().spill(&SpilledVReg, SplitVRegs, PendingSpills);
+ }
+ // After extracting segments, the query's results are invalid. But keep the
+ // contents valid until we're done accessing pendingSpills.
+ Q.clear();
+}
+
+// Spill or split all live virtual registers currently unified under PhysReg
+// that interfere with VirtReg. The newly spilled or split live intervals are
+// returned by appending them to SplitVRegs.
+bool
+RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
+ SmallVectorImpl<LiveInterval*> &SplitVRegs) {
+ // Record each interference and determine if all are spillable before mutating
+ // either the union or live intervals.
+ unsigned NumInterferences = 0;
+ // Collect interferences assigned to any alias of the physical register.
+ for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
+ LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
+ NumInterferences += QAlias.collectInterferingVRegs();
+ if (QAlias.seenUnspillableVReg()) {
+ return false;
+ }
+ }
+ DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
+ " interferences with " << VirtReg << "\n");
+ assert(NumInterferences > 0 && "expect interference");
+
+ // Spill each interfering vreg allocated to PhysReg or an alias.
+ for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
+ spillReg(VirtReg, *AliasI, SplitVRegs);
+ return true;
+}
+
+// Add newly allocated physical registers to the MBB live in sets.
+void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
+ NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
+ typedef SmallVector<MachineBasicBlock*, 8> MBBVec;
+ MBBVec liveInMBBs;
+ MachineBasicBlock &entryMBB = *MF->begin();
+
+ for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
+ LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
+ if (LiveUnion.empty())
+ continue;
+ for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(); SI.valid();
+ ++SI) {
+
+ // Find the set of basic blocks which this range is live into...
+ liveInMBBs.clear();
+ if (!LIS->findLiveInMBBs(SI.start(), SI.stop(), liveInMBBs)) continue;
+
+ // And add the physreg for this interval to their live-in sets.
+ for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end();
+ I != E; ++I) {
+ MachineBasicBlock *MBB = *I;
+ if (MBB == &entryMBB) continue;
+ if (MBB->isLiveIn(PhysReg)) continue;
+ MBB->addLiveIn(PhysReg);
+ }
+ }
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// RABasic Implementation
+//===----------------------------------------------------------------------===//
+
+// Driver for the register assignment and splitting heuristics.
+// Manages iteration over the LiveIntervalUnions.
+//
+// This is a minimal implementation of register assignment and splitting that
+// spills whenever we run out of registers.
+//
+// selectOrSplit can only be called once per live virtual register. We then do a
+// single interference test for each register the correct class until we find an
+// available register. So, the number of interference tests in the worst case is
+// |vregs| * |machineregs|. And since the number of interference tests is
+// minimal, there is no value in caching them outside the scope of
+// selectOrSplit().
+unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
+ SmallVectorImpl<LiveInterval*> &SplitVRegs) {
+ // Populate a list of physical register spill candidates.
+ SmallVector<unsigned, 8> PhysRegSpillCands;
+
+ // Check for an available register in this class.
+ const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg);
+
+ for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
+ E = TRC->allocation_order_end(*MF);
+ I != E; ++I) {
+
+ unsigned PhysReg = *I;
+ if (ReservedRegs.test(PhysReg)) continue;
+
+ // Check interference and as a side effect, intialize queries for this
+ // VirtReg and its aliases.
+ unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
+ if (interfReg == 0) {
+ // Found an available register.
+ return PhysReg;
+ }
+ LiveInterval *interferingVirtReg =
+ Queries[interfReg].firstInterference().liveUnionPos().value();
+
+ // The current VirtReg must either be spillable, or one of its interferences
+ // must have less spill weight.
+ if (interferingVirtReg->weight < VirtReg.weight ) {
+ PhysRegSpillCands.push_back(PhysReg);
+ }
+ }
+ // Try to spill another interfering reg with less spill weight.
+ for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
+ PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
+
+ if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
+
+ assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
+ "Interference after spill.");
+ // Tell the caller to allocate to this newly freed physical register.
+ return *PhysRegI;
+ }
+ // No other spill candidates were found, so spill the current VirtReg.
+ DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
+ SmallVector<LiveInterval*, 1> pendingSpills;
+
+ spiller().spill(&VirtReg, SplitVRegs, pendingSpills);
+
+ // The live virtual register requesting allocation was spilled, so tell
+ // the caller not to allocate anything during this round.
+ return 0;
+}
+
+bool RABasic::runOnMachineFunction(MachineFunction &mf) {
+ DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
+ << "********** Function: "
+ << ((Value*)mf.getFunction())->getName() << '\n');
+
+ MF = &mf;
+ DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
+
+ RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
+
+ ReservedRegs = TRI->getReservedRegs(*MF);
+
+ SpillerInstance.reset(createSpiller(*this, *MF, *VRM));
+
+ allocatePhysRegs();
+
+ addMBBLiveIns(MF);
+
+ // Diagnostic output before rewriting
+ DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
+
+ // optional HTML output
+ DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
+
+ // FIXME: Verification currently must run before VirtRegRewriter. We should
+ // make the rewriter a separate pass and override verifyAnalysis instead. When
+ // that happens, verification naturally falls under VerifyMachineCode.
+#ifndef NDEBUG
+ if (VerifyEnabled) {
+ // Verify accuracy of LiveIntervals. The standard machine code verifier
+ // ensures that each LiveIntervals covers all uses of the virtual reg.
+
+ // FIXME: MachineVerifier is badly broken when using the standard
+ // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
+ // inline spiller, some tests fail to verify because the coalescer does not
+ // always generate verifiable code.
+ MF->verify(this, "In RABasic::verify");
+
+ // Verify that LiveIntervals are partitioned into unions and disjoint within
+ // the unions.
+ verify();
+ }
+#endif // !NDEBUG
+
+ // Run rewriter
+ VRM->rewrite(LIS->getSlotIndexes());
+
+ // The pass output is in VirtRegMap. Release all the transient data.
+ releaseMemory();
+
+ return true;
+}
+
+FunctionPass* llvm::createBasicRegisterAllocator()
+{
+ return new RABasic();
+}
OpenPOWER on IntegriCloud