summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp1426
1 files changed, 1426 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp b/contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp
new file mode 100644
index 0000000..fb2f909
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp
@@ -0,0 +1,1426 @@
+//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the machine instruction level pre-register allocation
+// live interval splitting pass. It finds live interval barriers, i.e.
+// instructions which will kill all physical registers in certain register
+// classes, and split all live intervals which cross the barrier.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "pre-alloc-split"
+#include "VirtRegMap.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterCoalescer.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+using namespace llvm;
+
+static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
+static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1),
+ cl::Hidden);
+static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1),
+ cl::Hidden);
+
+STATISTIC(NumSplits, "Number of intervals split");
+STATISTIC(NumRemats, "Number of intervals split by rematerialization");
+STATISTIC(NumFolds, "Number of intervals split with spill folding");
+STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding");
+STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
+STATISTIC(NumDeadSpills, "Number of dead spills removed");
+
+namespace {
+ class PreAllocSplitting : public MachineFunctionPass {
+ MachineFunction *CurrMF;
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo* TRI;
+ MachineFrameInfo *MFI;
+ MachineRegisterInfo *MRI;
+ SlotIndexes *SIs;
+ LiveIntervals *LIs;
+ LiveStacks *LSs;
+ VirtRegMap *VRM;
+
+ // Barrier - Current barrier being processed.
+ MachineInstr *Barrier;
+
+ // BarrierMBB - Basic block where the barrier resides in.
+ MachineBasicBlock *BarrierMBB;
+
+ // Barrier - Current barrier index.
+ SlotIndex BarrierIdx;
+
+ // CurrLI - Current live interval being split.
+ LiveInterval *CurrLI;
+
+ // CurrSLI - Current stack slot live interval.
+ LiveInterval *CurrSLI;
+
+ // CurrSValNo - Current val# for the stack slot live interval.
+ VNInfo *CurrSValNo;
+
+ // IntervalSSMap - A map from live interval to spill slots.
+ DenseMap<unsigned, int> IntervalSSMap;
+
+ // Def2SpillMap - A map from a def instruction index to spill index.
+ DenseMap<SlotIndex, SlotIndex> Def2SpillMap;
+
+ public:
+ static char ID;
+ PreAllocSplitting()
+ : MachineFunctionPass(&ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<SlotIndexes>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addRequired<LiveStacks>();
+ AU.addPreserved<LiveStacks>();
+ AU.addPreserved<RegisterCoalescer>();
+ AU.addPreserved<CalculateSpillWeights>();
+ if (StrongPHIElim)
+ AU.addPreservedID(StrongPHIEliminationID);
+ else
+ AU.addPreservedID(PHIEliminationID);
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<VirtRegMap>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreserved<VirtRegMap>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ virtual void releaseMemory() {
+ IntervalSSMap.clear();
+ Def2SpillMap.clear();
+ }
+
+ virtual const char *getPassName() const {
+ return "Pre-Register Allocaton Live Interval Splitting";
+ }
+
+ /// print - Implement the dump method.
+ virtual void print(raw_ostream &O, const Module* M = 0) const {
+ LIs->print(O, M);
+ }
+
+
+ private:
+
+ MachineBasicBlock::iterator
+ findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
+ SmallPtrSet<MachineInstr*, 4>&);
+
+ MachineBasicBlock::iterator
+ findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex,
+ SmallPtrSet<MachineInstr*, 4>&);
+
+ int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
+
+ bool IsAvailableInStack(MachineBasicBlock*, unsigned,
+ SlotIndex, SlotIndex,
+ SlotIndex&, int&) const;
+
+ void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex);
+
+ bool SplitRegLiveInterval(LiveInterval*);
+
+ bool SplitRegLiveIntervals(const TargetRegisterClass **,
+ SmallPtrSet<LiveInterval*, 8>&);
+
+ bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
+ MachineBasicBlock* BarrierMBB);
+ bool Rematerialize(unsigned vreg, VNInfo* ValNo,
+ MachineInstr* DefMI,
+ MachineBasicBlock::iterator RestorePt,
+ SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
+ MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
+ MachineInstr* DefMI,
+ MachineInstr* Barrier,
+ MachineBasicBlock* MBB,
+ int& SS,
+ SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
+ MachineInstr* FoldRestore(unsigned vreg,
+ const TargetRegisterClass* RC,
+ MachineInstr* Barrier,
+ MachineBasicBlock* MBB,
+ int SS,
+ SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
+ void RenumberValno(VNInfo* VN);
+ void ReconstructLiveInterval(LiveInterval* LI);
+ bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
+ unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
+ unsigned Reg, int FrameIndex, bool& TwoAddr);
+ VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use,
+ MachineBasicBlock* MBB, LiveInterval* LI,
+ SmallPtrSet<MachineInstr*, 4>& Visited,
+ DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+ DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+ DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+ DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+ DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+ bool IsTopLevel, bool IsIntraBlock);
+ VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use,
+ MachineBasicBlock* MBB, LiveInterval* LI,
+ SmallPtrSet<MachineInstr*, 4>& Visited,
+ DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+ DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+ DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+ DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+ DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+ bool IsTopLevel, bool IsIntraBlock);
+};
+} // end anonymous namespace
+
+char PreAllocSplitting::ID = 0;
+
+static RegisterPass<PreAllocSplitting>
+X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
+
+const PassInfo *const llvm::PreAllocSplittingID = &X;
+
+/// findSpillPoint - Find a gap as far away from the given MI that's suitable
+/// for spilling the current live interval. The index must be before any
+/// defs and uses of the live interval register in the mbb. Return begin() if
+/// none is found.
+MachineBasicBlock::iterator
+PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
+ MachineInstr *DefMI,
+ SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
+ MachineBasicBlock::iterator Pt = MBB->begin();
+
+ MachineBasicBlock::iterator MII = MI;
+ MachineBasicBlock::iterator EndPt = DefMI
+ ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
+
+ while (MII != EndPt && !RefsInMBB.count(MII) &&
+ MII->getOpcode() != TRI->getCallFrameSetupOpcode())
+ --MII;
+ if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
+
+ while (MII != EndPt && !RefsInMBB.count(MII)) {
+ // We can't insert the spill between the barrier (a call), and its
+ // corresponding call frame setup.
+ if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) {
+ while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) {
+ --MII;
+ if (MII == EndPt) {
+ return Pt;
+ }
+ }
+ continue;
+ } else {
+ Pt = MII;
+ }
+
+ if (RefsInMBB.count(MII))
+ return Pt;
+
+
+ --MII;
+ }
+
+ return Pt;
+}
+
+/// findRestorePoint - Find a gap in the instruction index map that's suitable
+/// for restoring the current live interval value. The index must be before any
+/// uses of the live interval register in the mbb. Return end() if none is
+/// found.
+MachineBasicBlock::iterator
+PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
+ SlotIndex LastIdx,
+ SmallPtrSet<MachineInstr*, 4> &RefsInMBB) {
+ // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
+ // begin index accordingly.
+ MachineBasicBlock::iterator Pt = MBB->end();
+ MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator();
+
+ // We start at the call, so walk forward until we find the call frame teardown
+ // since we can't insert restores before that. Bail if we encounter a use
+ // during this time.
+ MachineBasicBlock::iterator MII = MI;
+ if (MII == EndPt) return Pt;
+
+ while (MII != EndPt && !RefsInMBB.count(MII) &&
+ MII->getOpcode() != TRI->getCallFrameDestroyOpcode())
+ ++MII;
+ if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
+ ++MII;
+
+ // FIXME: Limit the number of instructions to examine to reduce
+ // compile time?
+ while (MII != EndPt) {
+ SlotIndex Index = LIs->getInstructionIndex(MII);
+ if (Index > LastIdx)
+ break;
+
+ // We can't insert a restore between the barrier (a call) and its
+ // corresponding call frame teardown.
+ if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) {
+ do {
+ if (MII == EndPt || RefsInMBB.count(MII)) return Pt;
+ ++MII;
+ } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode());
+ } else {
+ Pt = MII;
+ }
+
+ if (RefsInMBB.count(MII))
+ return Pt;
+
+ ++MII;
+ }
+
+ return Pt;
+}
+
+/// CreateSpillStackSlot - Create a stack slot for the live interval being
+/// split. If the live interval was previously split, just reuse the same
+/// slot.
+int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
+ const TargetRegisterClass *RC) {
+ int SS;
+ DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
+ if (I != IntervalSSMap.end()) {
+ SS = I->second;
+ } else {
+ SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
+ IntervalSSMap[Reg] = SS;
+ }
+
+ // Create live interval for stack slot.
+ CurrSLI = &LSs->getOrCreateInterval(SS, RC);
+ if (CurrSLI->hasAtLeastOneValue())
+ CurrSValNo = CurrSLI->getValNumInfo(0);
+ else
+ CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false,
+ LSs->getVNInfoAllocator());
+ return SS;
+}
+
+/// IsAvailableInStack - Return true if register is available in a split stack
+/// slot at the specified index.
+bool
+PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
+ unsigned Reg, SlotIndex DefIndex,
+ SlotIndex RestoreIndex,
+ SlotIndex &SpillIndex,
+ int& SS) const {
+ if (!DefMBB)
+ return false;
+
+ DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg);
+ if (I == IntervalSSMap.end())
+ return false;
+ DenseMap<SlotIndex, SlotIndex>::const_iterator
+ II = Def2SpillMap.find(DefIndex);
+ if (II == Def2SpillMap.end())
+ return false;
+
+ // If last spill of def is in the same mbb as barrier mbb (where restore will
+ // be), make sure it's not below the intended restore index.
+ // FIXME: Undo the previous spill?
+ assert(LIs->getMBBFromIndex(II->second) == DefMBB);
+ if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
+ return false;
+
+ SS = I->second;
+ SpillIndex = II->second;
+ return true;
+}
+
+/// UpdateSpillSlotInterval - Given the specified val# of the register live
+/// interval being split, and the spill and restore indicies, update the live
+/// interval of the spill stack slot.
+void
+PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex,
+ SlotIndex RestoreIndex) {
+ assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
+ "Expect restore in the barrier mbb");
+
+ MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
+ if (MBB == BarrierMBB) {
+ // Intra-block spill + restore. We are done.
+ LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
+ CurrSLI->addRange(SLR);
+ return;
+ }
+
+ SmallPtrSet<MachineBasicBlock*, 4> Processed;
+ SlotIndex EndIdx = LIs->getMBBEndIdx(MBB);
+ LiveRange SLR(SpillIndex, EndIdx, CurrSValNo);
+ CurrSLI->addRange(SLR);
+ Processed.insert(MBB);
+
+ // Start from the spill mbb, figure out the extend of the spill slot's
+ // live interval.
+ SmallVector<MachineBasicBlock*, 4> WorkList;
+ const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
+ if (LR->end > EndIdx)
+ // If live range extend beyond end of mbb, add successors to work list.
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI)
+ WorkList.push_back(*SI);
+
+ while (!WorkList.empty()) {
+ MachineBasicBlock *MBB = WorkList.back();
+ WorkList.pop_back();
+ if (Processed.count(MBB))
+ continue;
+ SlotIndex Idx = LIs->getMBBStartIdx(MBB);
+ LR = CurrLI->getLiveRangeContaining(Idx);
+ if (LR && LR->valno == ValNo) {
+ EndIdx = LIs->getMBBEndIdx(MBB);
+ if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
+ // Spill slot live interval stops at the restore.
+ LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
+ CurrSLI->addRange(SLR);
+ } else if (LR->end > EndIdx) {
+ // Live range extends beyond end of mbb, process successors.
+ LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo);
+ CurrSLI->addRange(SLR);
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI)
+ WorkList.push_back(*SI);
+ } else {
+ LiveRange SLR(Idx, LR->end, CurrSValNo);
+ CurrSLI->addRange(SLR);
+ }
+ Processed.insert(MBB);
+ }
+ }
+}
+
+/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
+/// construction algorithm to compute the ranges and valnos for an interval.
+VNInfo*
+PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI,
+ MachineBasicBlock* MBB, LiveInterval* LI,
+ SmallPtrSet<MachineInstr*, 4>& Visited,
+ DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+ DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+ DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+ DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+ DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+ bool IsTopLevel, bool IsIntraBlock) {
+ // Return memoized result if it's available.
+ if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI))
+ return NewVNs[UseI];
+ else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI))
+ return NewVNs[UseI];
+ else if (!IsIntraBlock && LiveOut.count(MBB))
+ return LiveOut[MBB];
+
+ // Check if our block contains any uses or defs.
+ bool ContainsDefs = Defs.count(MBB);
+ bool ContainsUses = Uses.count(MBB);
+
+ VNInfo* RetVNI = 0;
+
+ // Enumerate the cases of use/def contaning blocks.
+ if (!ContainsDefs && !ContainsUses) {
+ return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses,
+ NewVNs, LiveOut, Phis,
+ IsTopLevel, IsIntraBlock);
+ } else if (ContainsDefs && !ContainsUses) {
+ SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
+
+ // Search for the def in this block. If we don't find it before the
+ // instruction we care about, go to the fallback case. Note that that
+ // should never happen: this cannot be intrablock, so use should
+ // always be an end() iterator.
+ assert(UseI == MBB->end() && "No use marked in intrablock");
+
+ MachineBasicBlock::iterator Walker = UseI;
+ --Walker;
+ while (Walker != MBB->begin()) {
+ if (BlockDefs.count(Walker))
+ break;
+ --Walker;
+ }
+
+ // Once we've found it, extend its VNInfo to our instruction.
+ SlotIndex DefIndex = LIs->getInstructionIndex(Walker);
+ DefIndex = DefIndex.getDefIndex();
+ SlotIndex EndIndex = LIs->getMBBEndIdx(MBB);
+
+ RetVNI = NewVNs[Walker];
+ LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI));
+ } else if (!ContainsDefs && ContainsUses) {
+ SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
+
+ // Search for the use in this block that precedes the instruction we care
+ // about, going to the fallback case if we don't find it.
+ MachineBasicBlock::iterator Walker = UseI;
+ bool found = false;
+ while (Walker != MBB->begin()) {
+ --Walker;
+ if (BlockUses.count(Walker)) {
+ found = true;
+ break;
+ }
+ }
+
+ if (!found)
+ return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
+ Uses, NewVNs, LiveOut, Phis,
+ IsTopLevel, IsIntraBlock);
+
+ SlotIndex UseIndex = LIs->getInstructionIndex(Walker);
+ UseIndex = UseIndex.getUseIndex();
+ SlotIndex EndIndex;
+ if (IsIntraBlock) {
+ EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
+ } else
+ EndIndex = LIs->getMBBEndIdx(MBB);
+
+ // Now, recursively phi construct the VNInfo for the use we found,
+ // and then extend it to include the instruction we care about
+ RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
+ NewVNs, LiveOut, Phis, false, true);
+
+ LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI));
+
+ // FIXME: Need to set kills properly for inter-block stuff.
+ } else if (ContainsDefs && ContainsUses) {
+ SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
+ SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
+
+ // This case is basically a merging of the two preceding case, with the
+ // special note that checking for defs must take precedence over checking
+ // for uses, because of two-address instructions.
+ MachineBasicBlock::iterator Walker = UseI;
+ bool foundDef = false;
+ bool foundUse = false;
+ while (Walker != MBB->begin()) {
+ --Walker;
+ if (BlockDefs.count(Walker)) {
+ foundDef = true;
+ break;
+ } else if (BlockUses.count(Walker)) {
+ foundUse = true;
+ break;
+ }
+ }
+
+ if (!foundDef && !foundUse)
+ return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs,
+ Uses, NewVNs, LiveOut, Phis,
+ IsTopLevel, IsIntraBlock);
+
+ SlotIndex StartIndex = LIs->getInstructionIndex(Walker);
+ StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex();
+ SlotIndex EndIndex;
+ if (IsIntraBlock) {
+ EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
+ } else
+ EndIndex = LIs->getMBBEndIdx(MBB);
+
+ if (foundDef)
+ RetVNI = NewVNs[Walker];
+ else
+ RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses,
+ NewVNs, LiveOut, Phis, false, true);
+
+ LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
+ }
+
+ // Memoize results so we don't have to recompute them.
+ if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
+ else {
+ if (!NewVNs.count(UseI))
+ NewVNs[UseI] = RetVNI;
+ Visited.insert(UseI);
+ }
+
+ return RetVNI;
+}
+
+/// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
+///
+VNInfo*
+PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI,
+ MachineBasicBlock* MBB, LiveInterval* LI,
+ SmallPtrSet<MachineInstr*, 4>& Visited,
+ DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+ DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+ DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+ DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+ DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+ bool IsTopLevel, bool IsIntraBlock) {
+ // NOTE: Because this is the fallback case from other cases, we do NOT
+ // assume that we are not intrablock here.
+ if (Phis.count(MBB)) return Phis[MBB];
+
+ SlotIndex StartIndex = LIs->getMBBStartIdx(MBB);
+ VNInfo *RetVNI = Phis[MBB] =
+ LI->getNextValue(SlotIndex(), /*FIXME*/ 0, false,
+ LIs->getVNInfoAllocator());
+
+ if (!IsIntraBlock) LiveOut[MBB] = RetVNI;
+
+ // If there are no uses or defs between our starting point and the
+ // beginning of the block, then recursive perform phi construction
+ // on our predecessors.
+ DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
+ Visited, Defs, Uses, NewVNs,
+ LiveOut, Phis, false, false);
+ if (Incoming != 0)
+ IncomingVNs[*PI] = Incoming;
+ }
+
+ if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) {
+ VNInfo* OldVN = RetVNI;
+ VNInfo* NewVN = IncomingVNs.begin()->second;
+ VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN);
+ if (MergedVN == OldVN) std::swap(OldVN, NewVN);
+
+ for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(),
+ LOE = LiveOut.end(); LOI != LOE; ++LOI)
+ if (LOI->second == OldVN)
+ LOI->second = MergedVN;
+ for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(),
+ NVE = NewVNs.end(); NVI != NVE; ++NVI)
+ if (NVI->second == OldVN)
+ NVI->second = MergedVN;
+ for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(),
+ PE = Phis.end(); PI != PE; ++PI)
+ if (PI->second == OldVN)
+ PI->second = MergedVN;
+ RetVNI = MergedVN;
+ } else {
+ // Otherwise, merge the incoming VNInfos with a phi join. Create a new
+ // VNInfo to represent the joined value.
+ for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
+ IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
+ I->second->setHasPHIKill(true);
+ }
+ }
+
+ SlotIndex EndIndex;
+ if (IsIntraBlock) {
+ EndIndex = LIs->getInstructionIndex(UseI).getDefIndex();
+ } else
+ EndIndex = LIs->getMBBEndIdx(MBB);
+ LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI));
+
+ // Memoize results so we don't have to recompute them.
+ if (!IsIntraBlock)
+ LiveOut[MBB] = RetVNI;
+ else {
+ if (!NewVNs.count(UseI))
+ NewVNs[UseI] = RetVNI;
+ Visited.insert(UseI);
+ }
+
+ return RetVNI;
+}
+
+/// ReconstructLiveInterval - Recompute a live interval from scratch.
+void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
+ VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator();
+
+ // Clear the old ranges and valnos;
+ LI->clear();
+
+ // Cache the uses and defs of the register
+ typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
+ RegMap Defs, Uses;
+
+ // Keep track of the new VNs we're creating.
+ DenseMap<MachineInstr*, VNInfo*> NewVNs;
+ SmallPtrSet<VNInfo*, 2> PhiVNs;
+
+ // Cache defs, and create a new VNInfo for each def.
+ for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
+ DE = MRI->def_end(); DI != DE; ++DI) {
+ Defs[(*DI).getParent()].insert(&*DI);
+
+ SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
+ DefIdx = DefIdx.getDefIndex();
+
+ assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting.");
+ VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc);
+
+ // If the def is a move, set the copy field.
+ unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+ if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
+ if (DstReg == LI->reg)
+ NewVN->setCopy(&*DI);
+ } else if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg)
+ NewVN->setCopy(&*DI);
+
+ NewVNs[&*DI] = NewVN;
+ }
+
+ // Cache uses as a separate pass from actually processing them.
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
+ UE = MRI->use_end(); UI != UE; ++UI)
+ Uses[(*UI).getParent()].insert(&*UI);
+
+ // Now, actually process every use and use a phi construction algorithm
+ // to walk from it to its reaching definitions, building VNInfos along
+ // the way.
+ DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
+ DenseMap<MachineBasicBlock*, VNInfo*> Phis;
+ SmallPtrSet<MachineInstr*, 4> Visited;
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
+ UE = MRI->use_end(); UI != UE; ++UI) {
+ PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
+ Uses, NewVNs, LiveOut, Phis, true, true);
+ }
+
+ // Add ranges for dead defs
+ for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
+ DE = MRI->def_end(); DI != DE; ++DI) {
+ SlotIndex DefIdx = LIs->getInstructionIndex(&*DI);
+ DefIdx = DefIdx.getDefIndex();
+
+ if (LI->liveAt(DefIdx)) continue;
+
+ VNInfo* DeadVN = NewVNs[&*DI];
+ LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN));
+ }
+}
+
+/// RenumberValno - Split the given valno out into a new vreg, allowing it to
+/// be allocated to a different register. This function creates a new vreg,
+/// copies the valno and its live ranges over to the new vreg's interval,
+/// removes them from the old interval, and rewrites all uses and defs of
+/// the original reg to the new vreg within those ranges.
+void PreAllocSplitting::RenumberValno(VNInfo* VN) {
+ SmallVector<VNInfo*, 4> Stack;
+ SmallVector<VNInfo*, 4> VNsToCopy;
+ Stack.push_back(VN);
+
+ // Walk through and copy the valno we care about, and any other valnos
+ // that are two-address redefinitions of the one we care about. These
+ // will need to be rewritten as well. We also check for safety of the
+ // renumbering here, by making sure that none of the valno involved has
+ // phi kills.
+ while (!Stack.empty()) {
+ VNInfo* OldVN = Stack.back();
+ Stack.pop_back();
+
+ // Bail out if we ever encounter a valno that has a PHI kill. We can't
+ // renumber these.
+ if (OldVN->hasPHIKill()) return;
+
+ VNsToCopy.push_back(OldVN);
+
+ // Locate two-address redefinitions
+ for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg),
+ DE = MRI->def_end(); DI != DE; ++DI) {
+ if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue;
+ SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex();
+ VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx);
+ if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) !=
+ VNsToCopy.end())
+ Stack.push_back(NextVN);
+ }
+ }
+
+ // Create the new vreg
+ unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
+
+ // Create the new live interval
+ LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
+
+ for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
+ VNsToCopy.end(); OI != OE; ++OI) {
+ VNInfo* OldVN = *OI;
+
+ // Copy the valno over
+ VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator());
+ NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
+
+ // Remove the valno from the old interval
+ CurrLI->removeValNo(OldVN);
+ }
+
+ // Rewrite defs and uses. This is done in two stages to avoid invalidating
+ // the reg_iterator.
+ SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
+
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
+ E = MRI->reg_end(); I != E; ++I) {
+ MachineOperand& MO = I.getOperand();
+ SlotIndex InstrIdx = LIs->getInstructionIndex(&*I);
+
+ if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) ||
+ (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex())))
+ OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
+ }
+
+ for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
+ OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
+ MachineInstr* Inst = I->first;
+ unsigned OpIdx = I->second;
+ MachineOperand& MO = Inst->getOperand(OpIdx);
+ MO.setReg(NewVReg);
+ }
+
+ // Grow the VirtRegMap, since we've created a new vreg.
+ VRM->grow();
+
+ // The renumbered vreg shares a stack slot with the old register.
+ if (IntervalSSMap.count(CurrLI->reg))
+ IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
+
+ ++NumRenumbers;
+}
+
+bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo,
+ MachineInstr* DefMI,
+ MachineBasicBlock::iterator RestorePt,
+ SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
+ MachineBasicBlock& MBB = *RestorePt->getParent();
+
+ MachineBasicBlock::iterator KillPt = BarrierMBB->end();
+ if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB)
+ KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
+ else
+ KillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
+
+ if (KillPt == DefMI->getParent()->end())
+ return false;
+
+ TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI);
+ SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt));
+
+ ReconstructLiveInterval(CurrLI);
+ RematIdx = RematIdx.getDefIndex();
+ RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx));
+
+ ++NumSplits;
+ ++NumRemats;
+ return true;
+}
+
+MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
+ const TargetRegisterClass* RC,
+ MachineInstr* DefMI,
+ MachineInstr* Barrier,
+ MachineBasicBlock* MBB,
+ int& SS,
+ SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
+ // Go top down if RefsInMBB is empty.
+ if (RefsInMBB.empty())
+ return 0;
+
+ MachineBasicBlock::iterator FoldPt = Barrier;
+ while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
+ !RefsInMBB.count(FoldPt))
+ --FoldPt;
+
+ int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg);
+ if (OpIdx == -1)
+ return 0;
+
+ SmallVector<unsigned, 1> Ops;
+ Ops.push_back(OpIdx);
+
+ if (!TII->canFoldMemoryOperand(FoldPt, Ops))
+ return 0;
+
+ DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
+ if (I != IntervalSSMap.end()) {
+ SS = I->second;
+ } else {
+ SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment());
+ }
+
+ MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
+
+ if (FMI) {
+ LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
+ FoldPt->eraseFromParent();
+ ++NumFolds;
+
+ IntervalSSMap[vreg] = SS;
+ CurrSLI = &LSs->getOrCreateInterval(SS, RC);
+ if (CurrSLI->hasAtLeastOneValue())
+ CurrSValNo = CurrSLI->getValNumInfo(0);
+ else
+ CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false,
+ LSs->getVNInfoAllocator());
+ }
+
+ return FMI;
+}
+
+MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg,
+ const TargetRegisterClass* RC,
+ MachineInstr* Barrier,
+ MachineBasicBlock* MBB,
+ int SS,
+ SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
+ if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds)
+ return 0;
+
+ // Go top down if RefsInMBB is empty.
+ if (RefsInMBB.empty())
+ return 0;
+
+ // Can't fold a restore between a call stack setup and teardown.
+ MachineBasicBlock::iterator FoldPt = Barrier;
+
+ // Advance from barrier to call frame teardown.
+ while (FoldPt != MBB->getFirstTerminator() &&
+ FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
+ if (RefsInMBB.count(FoldPt))
+ return 0;
+
+ ++FoldPt;
+ }
+
+ if (FoldPt == MBB->getFirstTerminator())
+ return 0;
+ else
+ ++FoldPt;
+
+ // Now find the restore point.
+ while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) {
+ if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) {
+ while (FoldPt != MBB->getFirstTerminator() &&
+ FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) {
+ if (RefsInMBB.count(FoldPt))
+ return 0;
+
+ ++FoldPt;
+ }
+
+ if (FoldPt == MBB->getFirstTerminator())
+ return 0;
+ }
+
+ ++FoldPt;
+ }
+
+ if (FoldPt == MBB->getFirstTerminator())
+ return 0;
+
+ int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true);
+ if (OpIdx == -1)
+ return 0;
+
+ SmallVector<unsigned, 1> Ops;
+ Ops.push_back(OpIdx);
+
+ if (!TII->canFoldMemoryOperand(FoldPt, Ops))
+ return 0;
+
+ MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS);
+
+ if (FMI) {
+ LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
+ FoldPt->eraseFromParent();
+ ++NumRestoreFolds;
+ }
+
+ return FMI;
+}
+
+/// SplitRegLiveInterval - Split (spill and restore) the given live interval
+/// so it would not cross the barrier that's being processed. Shrink wrap
+/// (minimize) the live interval to the last uses.
+bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
+ DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier
+ << " result: ");
+
+ CurrLI = LI;
+
+ // Find live range where current interval cross the barrier.
+ LiveInterval::iterator LR =
+ CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex());
+ VNInfo *ValNo = LR->valno;
+
+ assert(!ValNo->isUnused() && "Val# is defined by a dead def?");
+
+ MachineInstr *DefMI = ValNo->isDefAccurate()
+ ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
+
+ // If this would create a new join point, do not split.
+ if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) {
+ DEBUG(dbgs() << "FAILED (would create a new join point).\n");
+ return false;
+ }
+
+ // Find all references in the barrier mbb.
+ SmallPtrSet<MachineInstr*, 4> RefsInMBB;
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
+ E = MRI->reg_end(); I != E; ++I) {
+ MachineInstr *RefMI = &*I;
+ if (RefMI->getParent() == BarrierMBB)
+ RefsInMBB.insert(RefMI);
+ }
+
+ // Find a point to restore the value after the barrier.
+ MachineBasicBlock::iterator RestorePt =
+ findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB);
+ if (RestorePt == BarrierMBB->end()) {
+ DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n");
+ return false;
+ }
+
+ if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
+ if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) {
+ DEBUG(dbgs() << "success (remat).\n");
+ return true;
+ }
+
+ // Add a spill either before the barrier or after the definition.
+ MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
+ const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
+ SlotIndex SpillIndex;
+ MachineInstr *SpillMI = NULL;
+ int SS = -1;
+ if (!ValNo->isDefAccurate()) {
+ // If we don't know where the def is we must split just before the barrier.
+ if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
+ BarrierMBB, SS, RefsInMBB))) {
+ SpillIndex = LIs->getInstructionIndex(SpillMI);
+ } else {
+ MachineBasicBlock::iterator SpillPt =
+ findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB);
+ if (SpillPt == BarrierMBB->begin()) {
+ DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
+ return false; // No gap to insert spill.
+ }
+ // Add spill.
+
+ SS = CreateSpillStackSlot(CurrLI->reg, RC);
+ TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC,
+ TRI);
+ SpillMI = prior(SpillPt);
+ SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
+ }
+ } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
+ LIs->getZeroIndex(), SpillIndex, SS)) {
+ // If it's already split, just restore the value. There is no need to spill
+ // the def again.
+ if (!DefMI) {
+ DEBUG(dbgs() << "FAILED (def is dead).\n");
+ return false; // Def is dead. Do nothing.
+ }
+
+ if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
+ BarrierMBB, SS, RefsInMBB))) {
+ SpillIndex = LIs->getInstructionIndex(SpillMI);
+ } else {
+ // Check if it's possible to insert a spill after the def MI.
+ MachineBasicBlock::iterator SpillPt;
+ if (DefMBB == BarrierMBB) {
+ // Add spill after the def and the last use before the barrier.
+ SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
+ RefsInMBB);
+ if (SpillPt == DefMBB->begin()) {
+ DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
+ return false; // No gap to insert spill.
+ }
+ } else {
+ SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI));
+ if (SpillPt == DefMBB->end()) {
+ DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n");
+ return false; // No gap to insert spill.
+ }
+ }
+ // Add spill.
+ SS = CreateSpillStackSlot(CurrLI->reg, RC);
+ TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC,
+ TRI);
+ SpillMI = prior(SpillPt);
+ SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI);
+ }
+ }
+
+ // Remember def instruction index to spill index mapping.
+ if (DefMI && SpillMI)
+ Def2SpillMap[ValNo->def] = SpillIndex;
+
+ // Add restore.
+ bool FoldedRestore = false;
+ SlotIndex RestoreIndex;
+ if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier,
+ BarrierMBB, SS, RefsInMBB)) {
+ RestorePt = LMI;
+ RestoreIndex = LIs->getInstructionIndex(RestorePt);
+ FoldedRestore = true;
+ } else {
+ TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI);
+ MachineInstr *LoadMI = prior(RestorePt);
+ RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI);
+ }
+
+ // Update spill stack slot live interval.
+ UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(),
+ RestoreIndex.getDefIndex());
+
+ ReconstructLiveInterval(CurrLI);
+
+ if (!FoldedRestore) {
+ SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt));
+ RestoreIdx = RestoreIdx.getDefIndex();
+ RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx));
+ }
+
+ ++NumSplits;
+ DEBUG(dbgs() << "success.\n");
+ return true;
+}
+
+/// SplitRegLiveIntervals - Split all register live intervals that cross the
+/// barrier that's being processed.
+bool
+PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs,
+ SmallPtrSet<LiveInterval*, 8>& Split) {
+ // First find all the virtual registers whose live intervals are intercepted
+ // by the current barrier.
+ SmallVector<LiveInterval*, 8> Intervals;
+ for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
+ // FIXME: If it's not safe to move any instruction that defines the barrier
+ // register class, then it means there are some special dependencies which
+ // codegen is not modelling. Ignore these barriers for now.
+ if (!TII->isSafeToMoveRegClassDefs(*RC))
+ continue;
+ const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
+ for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
+ unsigned Reg = VRs[i];
+ if (!LIs->hasInterval(Reg))
+ continue;
+ LiveInterval *LI = &LIs->getInterval(Reg);
+ if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
+ // Virtual register live interval is intercepted by the barrier. We
+ // should split and shrink wrap its interval if possible.
+ Intervals.push_back(LI);
+ }
+ }
+
+ // Process the affected live intervals.
+ bool Change = false;
+ while (!Intervals.empty()) {
+ if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
+ break;
+ LiveInterval *LI = Intervals.back();
+ Intervals.pop_back();
+ bool result = SplitRegLiveInterval(LI);
+ if (result) Split.insert(LI);
+ Change |= result;
+ }
+
+ return Change;
+}
+
+unsigned PreAllocSplitting::getNumberOfNonSpills(
+ SmallPtrSet<MachineInstr*, 4>& MIs,
+ unsigned Reg, int FrameIndex,
+ bool& FeedsTwoAddr) {
+ unsigned NonSpills = 0;
+ for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end();
+ UI != UE; ++UI) {
+ int StoreFrameIndex;
+ unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
+ if (StoreVReg != Reg || StoreFrameIndex != FrameIndex)
+ ++NonSpills;
+
+ int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg);
+ if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx))
+ FeedsTwoAddr = true;
+ }
+
+ return NonSpills;
+}
+
+/// removeDeadSpills - After doing splitting, filter through all intervals we've
+/// split, and see if any of the spills are unnecessary. If so, remove them.
+bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) {
+ bool changed = false;
+
+ // Walk over all of the live intervals that were touched by the splitter,
+ // and see if we can do any DCE and/or folding.
+ for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(),
+ LE = split.end(); LI != LE; ++LI) {
+ DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount;
+
+ // First, collect all the uses of the vreg, and sort them by their
+ // reaching definition (VNInfo).
+ for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg),
+ UE = MRI->use_end(); UI != UE; ++UI) {
+ SlotIndex index = LIs->getInstructionIndex(&*UI);
+ index = index.getUseIndex();
+
+ const LiveRange* LR = (*LI)->getLiveRangeContaining(index);
+ VNUseCount[LR->valno].insert(&*UI);
+ }
+
+ // Now, take the definitions (VNInfo's) one at a time and try to DCE
+ // and/or fold them away.
+ for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(),
+ VE = (*LI)->vni_end(); VI != VE; ++VI) {
+
+ if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit)
+ return changed;
+
+ VNInfo* CurrVN = *VI;
+
+ // We don't currently try to handle definitions with PHI kills, because
+ // it would involve processing more than one VNInfo at once.
+ if (CurrVN->hasPHIKill()) continue;
+
+ // We also don't try to handle the results of PHI joins, since there's
+ // no defining instruction to analyze.
+ if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue;
+
+ // We're only interested in eliminating cruft introduced by the splitter,
+ // is of the form load-use or load-use-store. First, check that the
+ // definition is a load, and remember what stack slot we loaded it from.
+ MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def);
+ int FrameIndex;
+ if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue;
+
+ // If the definition has no uses at all, just DCE it.
+ if (VNUseCount[CurrVN].size() == 0) {
+ LIs->RemoveMachineInstrFromMaps(DefMI);
+ (*LI)->removeValNo(CurrVN);
+ DefMI->eraseFromParent();
+ VNUseCount.erase(CurrVN);
+ ++NumDeadSpills;
+ changed = true;
+ continue;
+ }
+
+ // Second, get the number of non-store uses of the definition, as well as
+ // a flag indicating whether it feeds into a later two-address definition.
+ bool FeedsTwoAddr = false;
+ unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN],
+ (*LI)->reg, FrameIndex,
+ FeedsTwoAddr);
+
+ // If there's one non-store use and it doesn't feed a two-addr, then
+ // this is a load-use-store case that we can try to fold.
+ if (NonSpillCount == 1 && !FeedsTwoAddr) {
+ // Start by finding the non-store use MachineInstr.
+ SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin();
+ int StoreFrameIndex;
+ unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
+ while (UI != VNUseCount[CurrVN].end() &&
+ (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) {
+ ++UI;
+ if (UI != VNUseCount[CurrVN].end())
+ StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex);
+ }
+ if (UI == VNUseCount[CurrVN].end()) continue;
+
+ MachineInstr* use = *UI;
+
+ // Attempt to fold it away!
+ int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false);
+ if (OpIdx == -1) continue;
+ SmallVector<unsigned, 1> Ops;
+ Ops.push_back(OpIdx);
+ if (!TII->canFoldMemoryOperand(use, Ops)) continue;
+
+ MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex);
+
+ if (!NewMI) continue;
+
+ // Update relevant analyses.
+ LIs->RemoveMachineInstrFromMaps(DefMI);
+ LIs->ReplaceMachineInstrInMaps(use, NewMI);
+ (*LI)->removeValNo(CurrVN);
+
+ DefMI->eraseFromParent();
+ use->eraseFromParent();
+ VNUseCount[CurrVN].erase(use);
+
+ // Remove deleted instructions. Note that we need to remove them from
+ // the VNInfo->use map as well, just to be safe.
+ for (SmallPtrSet<MachineInstr*, 4>::iterator II =
+ VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end();
+ II != IE; ++II) {
+ for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
+ VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE;
+ ++VNI)
+ if (VNI->first != CurrVN)
+ VNI->second.erase(*II);
+ LIs->RemoveMachineInstrFromMaps(*II);
+ (*II)->eraseFromParent();
+ }
+
+ VNUseCount.erase(CurrVN);
+
+ for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator
+ VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI)
+ if (VI->second.erase(use))
+ VI->second.insert(NewMI);
+
+ ++NumDeadSpills;
+ changed = true;
+ continue;
+ }
+
+ // If there's more than one non-store instruction, we can't profitably
+ // fold it, so bail.
+ if (NonSpillCount) continue;
+
+ // Otherwise, this is a load-store case, so DCE them.
+ for (SmallPtrSet<MachineInstr*, 4>::iterator UI =
+ VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end();
+ UI != UE; ++UI) {
+ LIs->RemoveMachineInstrFromMaps(*UI);
+ (*UI)->eraseFromParent();
+ }
+
+ VNUseCount.erase(CurrVN);
+
+ LIs->RemoveMachineInstrFromMaps(DefMI);
+ (*LI)->removeValNo(CurrVN);
+ DefMI->eraseFromParent();
+ ++NumDeadSpills;
+ changed = true;
+ }
+ }
+
+ return changed;
+}
+
+bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
+ MachineBasicBlock* DefMBB,
+ MachineBasicBlock* BarrierMBB) {
+ if (DefMBB == BarrierMBB)
+ return false;
+
+ if (LR->valno->hasPHIKill())
+ return false;
+
+ SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
+ if (LR->end < MBBEnd)
+ return false;
+
+ MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
+ if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
+ return true;
+
+ MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
+ SmallPtrSet<MachineBasicBlock*, 4> Visited;
+ typedef std::pair<MachineBasicBlock*,
+ MachineBasicBlock::succ_iterator> ItPair;
+ SmallVector<ItPair, 4> Stack;
+ Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
+
+ while (!Stack.empty()) {
+ ItPair P = Stack.back();
+ Stack.pop_back();
+
+ MachineBasicBlock* PredMBB = P.first;
+ MachineBasicBlock::succ_iterator S = P.second;
+
+ if (S == PredMBB->succ_end())
+ continue;
+ else if (Visited.count(*S)) {
+ Stack.push_back(std::make_pair(PredMBB, ++S));
+ continue;
+ } else
+ Stack.push_back(std::make_pair(PredMBB, S+1));
+
+ MachineBasicBlock* MBB = *S;
+ Visited.insert(MBB);
+
+ if (MBB == BarrierMBB)
+ return true;
+
+ MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
+ MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
+ MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
+ while (MDTN) {
+ if (MDTN == DefMDTN)
+ return true;
+ else if (MDTN == BarrierMDTN)
+ break;
+ MDTN = MDTN->getIDom();
+ }
+
+ MBBEnd = LIs->getMBBEndIdx(MBB);
+ if (LR->end > MBBEnd)
+ Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
+ }
+
+ return false;
+}
+
+
+bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
+ CurrMF = &MF;
+ TM = &MF.getTarget();
+ TRI = TM->getRegisterInfo();
+ TII = TM->getInstrInfo();
+ MFI = MF.getFrameInfo();
+ MRI = &MF.getRegInfo();
+ SIs = &getAnalysis<SlotIndexes>();
+ LIs = &getAnalysis<LiveIntervals>();
+ LSs = &getAnalysis<LiveStacks>();
+ VRM = &getAnalysis<VirtRegMap>();
+
+ bool MadeChange = false;
+
+ // Make sure blocks are numbered in order.
+ MF.RenumberBlocks();
+
+ MachineBasicBlock *Entry = MF.begin();
+ SmallPtrSet<MachineBasicBlock*,16> Visited;
+
+ SmallPtrSet<LiveInterval*, 8> Split;
+
+ for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
+ DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+ DFI != E; ++DFI) {
+ BarrierMBB = *DFI;
+ for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
+ E = BarrierMBB->end(); I != E; ++I) {
+ Barrier = &*I;
+ const TargetRegisterClass **BarrierRCs =
+ Barrier->getDesc().getRegClassBarriers();
+ if (!BarrierRCs)
+ continue;
+ BarrierIdx = LIs->getInstructionIndex(Barrier);
+ MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split);
+ }
+ }
+
+ MadeChange |= removeDeadSpills(Split);
+
+ return MadeChange;
+}
OpenPOWER on IntegriCloud