diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp | 1426 |
1 files changed, 1426 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp b/contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp new file mode 100644 index 0000000..fb2f909 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/PreAllocSplitting.cpp @@ -0,0 +1,1426 @@ +//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the machine instruction level pre-register allocation +// live interval splitting pass. It finds live interval barriers, i.e. +// instructions which will kill all physical registers in certain register +// classes, and split all live intervals which cross the barrier. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "pre-alloc-split" +#include "VirtRegMap.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/LiveStackAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegisterCoalescer.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/Statistic.h" +using namespace llvm; + +static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden); +static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), + cl::Hidden); +static cl::opt<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), + cl::Hidden); + +STATISTIC(NumSplits, "Number of intervals split"); +STATISTIC(NumRemats, "Number of intervals split by rematerialization"); +STATISTIC(NumFolds, "Number of intervals split with spill folding"); +STATISTIC(NumRestoreFolds, "Number of intervals split with restore folding"); +STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers"); +STATISTIC(NumDeadSpills, "Number of dead spills removed"); + +namespace { + class PreAllocSplitting : public MachineFunctionPass { + MachineFunction *CurrMF; + const TargetMachine *TM; + const TargetInstrInfo *TII; + const TargetRegisterInfo* TRI; + MachineFrameInfo *MFI; + MachineRegisterInfo *MRI; + SlotIndexes *SIs; + LiveIntervals *LIs; + LiveStacks *LSs; + VirtRegMap *VRM; + + // Barrier - Current barrier being processed. + MachineInstr *Barrier; + + // BarrierMBB - Basic block where the barrier resides in. + MachineBasicBlock *BarrierMBB; + + // Barrier - Current barrier index. + SlotIndex BarrierIdx; + + // CurrLI - Current live interval being split. + LiveInterval *CurrLI; + + // CurrSLI - Current stack slot live interval. + LiveInterval *CurrSLI; + + // CurrSValNo - Current val# for the stack slot live interval. + VNInfo *CurrSValNo; + + // IntervalSSMap - A map from live interval to spill slots. + DenseMap<unsigned, int> IntervalSSMap; + + // Def2SpillMap - A map from a def instruction index to spill index. + DenseMap<SlotIndex, SlotIndex> Def2SpillMap; + + public: + static char ID; + PreAllocSplitting() + : MachineFunctionPass(&ID) {} + + virtual bool runOnMachineFunction(MachineFunction &MF); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<SlotIndexes>(); + AU.addPreserved<SlotIndexes>(); + AU.addRequired<LiveIntervals>(); + AU.addPreserved<LiveIntervals>(); + AU.addRequired<LiveStacks>(); + AU.addPreserved<LiveStacks>(); + AU.addPreserved<RegisterCoalescer>(); + AU.addPreserved<CalculateSpillWeights>(); + if (StrongPHIElim) + AU.addPreservedID(StrongPHIEliminationID); + else + AU.addPreservedID(PHIEliminationID); + AU.addRequired<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + AU.addRequired<VirtRegMap>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addPreserved<MachineLoopInfo>(); + AU.addPreserved<VirtRegMap>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + virtual void releaseMemory() { + IntervalSSMap.clear(); + Def2SpillMap.clear(); + } + + virtual const char *getPassName() const { + return "Pre-Register Allocaton Live Interval Splitting"; + } + + /// print - Implement the dump method. + virtual void print(raw_ostream &O, const Module* M = 0) const { + LIs->print(O, M); + } + + + private: + + MachineBasicBlock::iterator + findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*, + SmallPtrSet<MachineInstr*, 4>&); + + MachineBasicBlock::iterator + findRestorePoint(MachineBasicBlock*, MachineInstr*, SlotIndex, + SmallPtrSet<MachineInstr*, 4>&); + + int CreateSpillStackSlot(unsigned, const TargetRegisterClass *); + + bool IsAvailableInStack(MachineBasicBlock*, unsigned, + SlotIndex, SlotIndex, + SlotIndex&, int&) const; + + void UpdateSpillSlotInterval(VNInfo*, SlotIndex, SlotIndex); + + bool SplitRegLiveInterval(LiveInterval*); + + bool SplitRegLiveIntervals(const TargetRegisterClass **, + SmallPtrSet<LiveInterval*, 8>&); + + bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB, + MachineBasicBlock* BarrierMBB); + bool Rematerialize(unsigned vreg, VNInfo* ValNo, + MachineInstr* DefMI, + MachineBasicBlock::iterator RestorePt, + SmallPtrSet<MachineInstr*, 4>& RefsInMBB); + MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC, + MachineInstr* DefMI, + MachineInstr* Barrier, + MachineBasicBlock* MBB, + int& SS, + SmallPtrSet<MachineInstr*, 4>& RefsInMBB); + MachineInstr* FoldRestore(unsigned vreg, + const TargetRegisterClass* RC, + MachineInstr* Barrier, + MachineBasicBlock* MBB, + int SS, + SmallPtrSet<MachineInstr*, 4>& RefsInMBB); + void RenumberValno(VNInfo* VN); + void ReconstructLiveInterval(LiveInterval* LI); + bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split); + unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs, + unsigned Reg, int FrameIndex, bool& TwoAddr); + VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator Use, + MachineBasicBlock* MBB, LiveInterval* LI, + SmallPtrSet<MachineInstr*, 4>& Visited, + DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, + DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, + DenseMap<MachineInstr*, VNInfo*>& NewVNs, + DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, + DenseMap<MachineBasicBlock*, VNInfo*>& Phis, + bool IsTopLevel, bool IsIntraBlock); + VNInfo* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use, + MachineBasicBlock* MBB, LiveInterval* LI, + SmallPtrSet<MachineInstr*, 4>& Visited, + DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, + DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, + DenseMap<MachineInstr*, VNInfo*>& NewVNs, + DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, + DenseMap<MachineBasicBlock*, VNInfo*>& Phis, + bool IsTopLevel, bool IsIntraBlock); +}; +} // end anonymous namespace + +char PreAllocSplitting::ID = 0; + +static RegisterPass<PreAllocSplitting> +X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting"); + +const PassInfo *const llvm::PreAllocSplittingID = &X; + +/// findSpillPoint - Find a gap as far away from the given MI that's suitable +/// for spilling the current live interval. The index must be before any +/// defs and uses of the live interval register in the mbb. Return begin() if +/// none is found. +MachineBasicBlock::iterator +PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI, + MachineInstr *DefMI, + SmallPtrSet<MachineInstr*, 4> &RefsInMBB) { + MachineBasicBlock::iterator Pt = MBB->begin(); + + MachineBasicBlock::iterator MII = MI; + MachineBasicBlock::iterator EndPt = DefMI + ? MachineBasicBlock::iterator(DefMI) : MBB->begin(); + + while (MII != EndPt && !RefsInMBB.count(MII) && + MII->getOpcode() != TRI->getCallFrameSetupOpcode()) + --MII; + if (MII == EndPt || RefsInMBB.count(MII)) return Pt; + + while (MII != EndPt && !RefsInMBB.count(MII)) { + // We can't insert the spill between the barrier (a call), and its + // corresponding call frame setup. + if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode()) { + while (MII->getOpcode() != TRI->getCallFrameSetupOpcode()) { + --MII; + if (MII == EndPt) { + return Pt; + } + } + continue; + } else { + Pt = MII; + } + + if (RefsInMBB.count(MII)) + return Pt; + + + --MII; + } + + return Pt; +} + +/// findRestorePoint - Find a gap in the instruction index map that's suitable +/// for restoring the current live interval value. The index must be before any +/// uses of the live interval register in the mbb. Return end() if none is +/// found. +MachineBasicBlock::iterator +PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI, + SlotIndex LastIdx, + SmallPtrSet<MachineInstr*, 4> &RefsInMBB) { + // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb + // begin index accordingly. + MachineBasicBlock::iterator Pt = MBB->end(); + MachineBasicBlock::iterator EndPt = MBB->getFirstTerminator(); + + // We start at the call, so walk forward until we find the call frame teardown + // since we can't insert restores before that. Bail if we encounter a use + // during this time. + MachineBasicBlock::iterator MII = MI; + if (MII == EndPt) return Pt; + + while (MII != EndPt && !RefsInMBB.count(MII) && + MII->getOpcode() != TRI->getCallFrameDestroyOpcode()) + ++MII; + if (MII == EndPt || RefsInMBB.count(MII)) return Pt; + ++MII; + + // FIXME: Limit the number of instructions to examine to reduce + // compile time? + while (MII != EndPt) { + SlotIndex Index = LIs->getInstructionIndex(MII); + if (Index > LastIdx) + break; + + // We can't insert a restore between the barrier (a call) and its + // corresponding call frame teardown. + if (MII->getOpcode() == TRI->getCallFrameSetupOpcode()) { + do { + if (MII == EndPt || RefsInMBB.count(MII)) return Pt; + ++MII; + } while (MII->getOpcode() != TRI->getCallFrameDestroyOpcode()); + } else { + Pt = MII; + } + + if (RefsInMBB.count(MII)) + return Pt; + + ++MII; + } + + return Pt; +} + +/// CreateSpillStackSlot - Create a stack slot for the live interval being +/// split. If the live interval was previously split, just reuse the same +/// slot. +int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg, + const TargetRegisterClass *RC) { + int SS; + DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg); + if (I != IntervalSSMap.end()) { + SS = I->second; + } else { + SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); + IntervalSSMap[Reg] = SS; + } + + // Create live interval for stack slot. + CurrSLI = &LSs->getOrCreateInterval(SS, RC); + if (CurrSLI->hasAtLeastOneValue()) + CurrSValNo = CurrSLI->getValNumInfo(0); + else + CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false, + LSs->getVNInfoAllocator()); + return SS; +} + +/// IsAvailableInStack - Return true if register is available in a split stack +/// slot at the specified index. +bool +PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB, + unsigned Reg, SlotIndex DefIndex, + SlotIndex RestoreIndex, + SlotIndex &SpillIndex, + int& SS) const { + if (!DefMBB) + return false; + + DenseMap<unsigned, int>::const_iterator I = IntervalSSMap.find(Reg); + if (I == IntervalSSMap.end()) + return false; + DenseMap<SlotIndex, SlotIndex>::const_iterator + II = Def2SpillMap.find(DefIndex); + if (II == Def2SpillMap.end()) + return false; + + // If last spill of def is in the same mbb as barrier mbb (where restore will + // be), make sure it's not below the intended restore index. + // FIXME: Undo the previous spill? + assert(LIs->getMBBFromIndex(II->second) == DefMBB); + if (DefMBB == BarrierMBB && II->second >= RestoreIndex) + return false; + + SS = I->second; + SpillIndex = II->second; + return true; +} + +/// UpdateSpillSlotInterval - Given the specified val# of the register live +/// interval being split, and the spill and restore indicies, update the live +/// interval of the spill stack slot. +void +PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, SlotIndex SpillIndex, + SlotIndex RestoreIndex) { + assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB && + "Expect restore in the barrier mbb"); + + MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex); + if (MBB == BarrierMBB) { + // Intra-block spill + restore. We are done. + LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo); + CurrSLI->addRange(SLR); + return; + } + + SmallPtrSet<MachineBasicBlock*, 4> Processed; + SlotIndex EndIdx = LIs->getMBBEndIdx(MBB); + LiveRange SLR(SpillIndex, EndIdx, CurrSValNo); + CurrSLI->addRange(SLR); + Processed.insert(MBB); + + // Start from the spill mbb, figure out the extend of the spill slot's + // live interval. + SmallVector<MachineBasicBlock*, 4> WorkList; + const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex); + if (LR->end > EndIdx) + // If live range extend beyond end of mbb, add successors to work list. + for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), + SE = MBB->succ_end(); SI != SE; ++SI) + WorkList.push_back(*SI); + + while (!WorkList.empty()) { + MachineBasicBlock *MBB = WorkList.back(); + WorkList.pop_back(); + if (Processed.count(MBB)) + continue; + SlotIndex Idx = LIs->getMBBStartIdx(MBB); + LR = CurrLI->getLiveRangeContaining(Idx); + if (LR && LR->valno == ValNo) { + EndIdx = LIs->getMBBEndIdx(MBB); + if (Idx <= RestoreIndex && RestoreIndex < EndIdx) { + // Spill slot live interval stops at the restore. + LiveRange SLR(Idx, RestoreIndex, CurrSValNo); + CurrSLI->addRange(SLR); + } else if (LR->end > EndIdx) { + // Live range extends beyond end of mbb, process successors. + LiveRange SLR(Idx, EndIdx.getNextIndex(), CurrSValNo); + CurrSLI->addRange(SLR); + for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), + SE = MBB->succ_end(); SI != SE; ++SI) + WorkList.push_back(*SI); + } else { + LiveRange SLR(Idx, LR->end, CurrSValNo); + CurrSLI->addRange(SLR); + } + Processed.insert(MBB); + } + } +} + +/// PerformPHIConstruction - From properly set up use and def lists, use a PHI +/// construction algorithm to compute the ranges and valnos for an interval. +VNInfo* +PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI, + MachineBasicBlock* MBB, LiveInterval* LI, + SmallPtrSet<MachineInstr*, 4>& Visited, + DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, + DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, + DenseMap<MachineInstr*, VNInfo*>& NewVNs, + DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, + DenseMap<MachineBasicBlock*, VNInfo*>& Phis, + bool IsTopLevel, bool IsIntraBlock) { + // Return memoized result if it's available. + if (IsTopLevel && Visited.count(UseI) && NewVNs.count(UseI)) + return NewVNs[UseI]; + else if (!IsTopLevel && IsIntraBlock && NewVNs.count(UseI)) + return NewVNs[UseI]; + else if (!IsIntraBlock && LiveOut.count(MBB)) + return LiveOut[MBB]; + + // Check if our block contains any uses or defs. + bool ContainsDefs = Defs.count(MBB); + bool ContainsUses = Uses.count(MBB); + + VNInfo* RetVNI = 0; + + // Enumerate the cases of use/def contaning blocks. + if (!ContainsDefs && !ContainsUses) { + return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, Uses, + NewVNs, LiveOut, Phis, + IsTopLevel, IsIntraBlock); + } else if (ContainsDefs && !ContainsUses) { + SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; + + // Search for the def in this block. If we don't find it before the + // instruction we care about, go to the fallback case. Note that that + // should never happen: this cannot be intrablock, so use should + // always be an end() iterator. + assert(UseI == MBB->end() && "No use marked in intrablock"); + + MachineBasicBlock::iterator Walker = UseI; + --Walker; + while (Walker != MBB->begin()) { + if (BlockDefs.count(Walker)) + break; + --Walker; + } + + // Once we've found it, extend its VNInfo to our instruction. + SlotIndex DefIndex = LIs->getInstructionIndex(Walker); + DefIndex = DefIndex.getDefIndex(); + SlotIndex EndIndex = LIs->getMBBEndIdx(MBB); + + RetVNI = NewVNs[Walker]; + LI->addRange(LiveRange(DefIndex, EndIndex, RetVNI)); + } else if (!ContainsDefs && ContainsUses) { + SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; + + // Search for the use in this block that precedes the instruction we care + // about, going to the fallback case if we don't find it. + MachineBasicBlock::iterator Walker = UseI; + bool found = false; + while (Walker != MBB->begin()) { + --Walker; + if (BlockUses.count(Walker)) { + found = true; + break; + } + } + + if (!found) + return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, + Uses, NewVNs, LiveOut, Phis, + IsTopLevel, IsIntraBlock); + + SlotIndex UseIndex = LIs->getInstructionIndex(Walker); + UseIndex = UseIndex.getUseIndex(); + SlotIndex EndIndex; + if (IsIntraBlock) { + EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); + } else + EndIndex = LIs->getMBBEndIdx(MBB); + + // Now, recursively phi construct the VNInfo for the use we found, + // and then extend it to include the instruction we care about + RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, + NewVNs, LiveOut, Phis, false, true); + + LI->addRange(LiveRange(UseIndex, EndIndex, RetVNI)); + + // FIXME: Need to set kills properly for inter-block stuff. + } else if (ContainsDefs && ContainsUses) { + SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB]; + SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB]; + + // This case is basically a merging of the two preceding case, with the + // special note that checking for defs must take precedence over checking + // for uses, because of two-address instructions. + MachineBasicBlock::iterator Walker = UseI; + bool foundDef = false; + bool foundUse = false; + while (Walker != MBB->begin()) { + --Walker; + if (BlockDefs.count(Walker)) { + foundDef = true; + break; + } else if (BlockUses.count(Walker)) { + foundUse = true; + break; + } + } + + if (!foundDef && !foundUse) + return PerformPHIConstructionFallBack(UseI, MBB, LI, Visited, Defs, + Uses, NewVNs, LiveOut, Phis, + IsTopLevel, IsIntraBlock); + + SlotIndex StartIndex = LIs->getInstructionIndex(Walker); + StartIndex = foundDef ? StartIndex.getDefIndex() : StartIndex.getUseIndex(); + SlotIndex EndIndex; + if (IsIntraBlock) { + EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); + } else + EndIndex = LIs->getMBBEndIdx(MBB); + + if (foundDef) + RetVNI = NewVNs[Walker]; + else + RetVNI = PerformPHIConstruction(Walker, MBB, LI, Visited, Defs, Uses, + NewVNs, LiveOut, Phis, false, true); + + LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI)); + } + + // Memoize results so we don't have to recompute them. + if (!IsIntraBlock) LiveOut[MBB] = RetVNI; + else { + if (!NewVNs.count(UseI)) + NewVNs[UseI] = RetVNI; + Visited.insert(UseI); + } + + return RetVNI; +} + +/// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path. +/// +VNInfo* +PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI, + MachineBasicBlock* MBB, LiveInterval* LI, + SmallPtrSet<MachineInstr*, 4>& Visited, + DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs, + DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses, + DenseMap<MachineInstr*, VNInfo*>& NewVNs, + DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut, + DenseMap<MachineBasicBlock*, VNInfo*>& Phis, + bool IsTopLevel, bool IsIntraBlock) { + // NOTE: Because this is the fallback case from other cases, we do NOT + // assume that we are not intrablock here. + if (Phis.count(MBB)) return Phis[MBB]; + + SlotIndex StartIndex = LIs->getMBBStartIdx(MBB); + VNInfo *RetVNI = Phis[MBB] = + LI->getNextValue(SlotIndex(), /*FIXME*/ 0, false, + LIs->getVNInfoAllocator()); + + if (!IsIntraBlock) LiveOut[MBB] = RetVNI; + + // If there are no uses or defs between our starting point and the + // beginning of the block, then recursive perform phi construction + // on our predecessors. + DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs; + for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, + Visited, Defs, Uses, NewVNs, + LiveOut, Phis, false, false); + if (Incoming != 0) + IncomingVNs[*PI] = Incoming; + } + + if (MBB->pred_size() == 1 && !RetVNI->hasPHIKill()) { + VNInfo* OldVN = RetVNI; + VNInfo* NewVN = IncomingVNs.begin()->second; + VNInfo* MergedVN = LI->MergeValueNumberInto(OldVN, NewVN); + if (MergedVN == OldVN) std::swap(OldVN, NewVN); + + for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator LOI = LiveOut.begin(), + LOE = LiveOut.end(); LOI != LOE; ++LOI) + if (LOI->second == OldVN) + LOI->second = MergedVN; + for (DenseMap<MachineInstr*, VNInfo*>::iterator NVI = NewVNs.begin(), + NVE = NewVNs.end(); NVI != NVE; ++NVI) + if (NVI->second == OldVN) + NVI->second = MergedVN; + for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator PI = Phis.begin(), + PE = Phis.end(); PI != PE; ++PI) + if (PI->second == OldVN) + PI->second = MergedVN; + RetVNI = MergedVN; + } else { + // Otherwise, merge the incoming VNInfos with a phi join. Create a new + // VNInfo to represent the joined value. + for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I = + IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) { + I->second->setHasPHIKill(true); + } + } + + SlotIndex EndIndex; + if (IsIntraBlock) { + EndIndex = LIs->getInstructionIndex(UseI).getDefIndex(); + } else + EndIndex = LIs->getMBBEndIdx(MBB); + LI->addRange(LiveRange(StartIndex, EndIndex, RetVNI)); + + // Memoize results so we don't have to recompute them. + if (!IsIntraBlock) + LiveOut[MBB] = RetVNI; + else { + if (!NewVNs.count(UseI)) + NewVNs[UseI] = RetVNI; + Visited.insert(UseI); + } + + return RetVNI; +} + +/// ReconstructLiveInterval - Recompute a live interval from scratch. +void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) { + VNInfo::Allocator& Alloc = LIs->getVNInfoAllocator(); + + // Clear the old ranges and valnos; + LI->clear(); + + // Cache the uses and defs of the register + typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap; + RegMap Defs, Uses; + + // Keep track of the new VNs we're creating. + DenseMap<MachineInstr*, VNInfo*> NewVNs; + SmallPtrSet<VNInfo*, 2> PhiVNs; + + // Cache defs, and create a new VNInfo for each def. + for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), + DE = MRI->def_end(); DI != DE; ++DI) { + Defs[(*DI).getParent()].insert(&*DI); + + SlotIndex DefIdx = LIs->getInstructionIndex(&*DI); + DefIdx = DefIdx.getDefIndex(); + + assert(!DI->isPHI() && "PHI instr in code during pre-alloc splitting."); + VNInfo* NewVN = LI->getNextValue(DefIdx, 0, true, Alloc); + + // If the def is a move, set the copy field. + unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx; + if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) { + if (DstReg == LI->reg) + NewVN->setCopy(&*DI); + } else if (DI->isCopyLike() && DI->getOperand(0).getReg() == LI->reg) + NewVN->setCopy(&*DI); + + NewVNs[&*DI] = NewVN; + } + + // Cache uses as a separate pass from actually processing them. + for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), + UE = MRI->use_end(); UI != UE; ++UI) + Uses[(*UI).getParent()].insert(&*UI); + + // Now, actually process every use and use a phi construction algorithm + // to walk from it to its reaching definitions, building VNInfos along + // the way. + DenseMap<MachineBasicBlock*, VNInfo*> LiveOut; + DenseMap<MachineBasicBlock*, VNInfo*> Phis; + SmallPtrSet<MachineInstr*, 4> Visited; + for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg), + UE = MRI->use_end(); UI != UE; ++UI) { + PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs, + Uses, NewVNs, LiveOut, Phis, true, true); + } + + // Add ranges for dead defs + for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg), + DE = MRI->def_end(); DI != DE; ++DI) { + SlotIndex DefIdx = LIs->getInstructionIndex(&*DI); + DefIdx = DefIdx.getDefIndex(); + + if (LI->liveAt(DefIdx)) continue; + + VNInfo* DeadVN = NewVNs[&*DI]; + LI->addRange(LiveRange(DefIdx, DefIdx.getNextSlot(), DeadVN)); + } +} + +/// RenumberValno - Split the given valno out into a new vreg, allowing it to +/// be allocated to a different register. This function creates a new vreg, +/// copies the valno and its live ranges over to the new vreg's interval, +/// removes them from the old interval, and rewrites all uses and defs of +/// the original reg to the new vreg within those ranges. +void PreAllocSplitting::RenumberValno(VNInfo* VN) { + SmallVector<VNInfo*, 4> Stack; + SmallVector<VNInfo*, 4> VNsToCopy; + Stack.push_back(VN); + + // Walk through and copy the valno we care about, and any other valnos + // that are two-address redefinitions of the one we care about. These + // will need to be rewritten as well. We also check for safety of the + // renumbering here, by making sure that none of the valno involved has + // phi kills. + while (!Stack.empty()) { + VNInfo* OldVN = Stack.back(); + Stack.pop_back(); + + // Bail out if we ever encounter a valno that has a PHI kill. We can't + // renumber these. + if (OldVN->hasPHIKill()) return; + + VNsToCopy.push_back(OldVN); + + // Locate two-address redefinitions + for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(CurrLI->reg), + DE = MRI->def_end(); DI != DE; ++DI) { + if (!DI->isRegTiedToUseOperand(DI.getOperandNo())) continue; + SlotIndex DefIdx = LIs->getInstructionIndex(&*DI).getDefIndex(); + VNInfo* NextVN = CurrLI->findDefinedVNInfoForRegInt(DefIdx); + if (std::find(VNsToCopy.begin(), VNsToCopy.end(), NextVN) != + VNsToCopy.end()) + Stack.push_back(NextVN); + } + } + + // Create the new vreg + unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg)); + + // Create the new live interval + LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg); + + for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = + VNsToCopy.end(); OI != OE; ++OI) { + VNInfo* OldVN = *OI; + + // Copy the valno over + VNInfo* NewVN = NewLI.createValueCopy(OldVN, LIs->getVNInfoAllocator()); + NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN); + + // Remove the valno from the old interval + CurrLI->removeValNo(OldVN); + } + + // Rewrite defs and uses. This is done in two stages to avoid invalidating + // the reg_iterator. + SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange; + + for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), + E = MRI->reg_end(); I != E; ++I) { + MachineOperand& MO = I.getOperand(); + SlotIndex InstrIdx = LIs->getInstructionIndex(&*I); + + if ((MO.isUse() && NewLI.liveAt(InstrIdx.getUseIndex())) || + (MO.isDef() && NewLI.liveAt(InstrIdx.getDefIndex()))) + OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo())); + } + + for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I = + OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) { + MachineInstr* Inst = I->first; + unsigned OpIdx = I->second; + MachineOperand& MO = Inst->getOperand(OpIdx); + MO.setReg(NewVReg); + } + + // Grow the VirtRegMap, since we've created a new vreg. + VRM->grow(); + + // The renumbered vreg shares a stack slot with the old register. + if (IntervalSSMap.count(CurrLI->reg)) + IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg]; + + ++NumRenumbers; +} + +bool PreAllocSplitting::Rematerialize(unsigned VReg, VNInfo* ValNo, + MachineInstr* DefMI, + MachineBasicBlock::iterator RestorePt, + SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { + MachineBasicBlock& MBB = *RestorePt->getParent(); + + MachineBasicBlock::iterator KillPt = BarrierMBB->end(); + if (!ValNo->isDefAccurate() || DefMI->getParent() == BarrierMBB) + KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB); + else + KillPt = llvm::next(MachineBasicBlock::iterator(DefMI)); + + if (KillPt == DefMI->getParent()->end()) + return false; + + TII->reMaterialize(MBB, RestorePt, VReg, 0, DefMI, *TRI); + SlotIndex RematIdx = LIs->InsertMachineInstrInMaps(prior(RestorePt)); + + ReconstructLiveInterval(CurrLI); + RematIdx = RematIdx.getDefIndex(); + RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RematIdx)); + + ++NumSplits; + ++NumRemats; + return true; +} + +MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, + const TargetRegisterClass* RC, + MachineInstr* DefMI, + MachineInstr* Barrier, + MachineBasicBlock* MBB, + int& SS, + SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { + // Go top down if RefsInMBB is empty. + if (RefsInMBB.empty()) + return 0; + + MachineBasicBlock::iterator FoldPt = Barrier; + while (&*FoldPt != DefMI && FoldPt != MBB->begin() && + !RefsInMBB.count(FoldPt)) + --FoldPt; + + int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg); + if (OpIdx == -1) + return 0; + + SmallVector<unsigned, 1> Ops; + Ops.push_back(OpIdx); + + if (!TII->canFoldMemoryOperand(FoldPt, Ops)) + return 0; + + DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg); + if (I != IntervalSSMap.end()) { + SS = I->second; + } else { + SS = MFI->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); + } + + MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS); + + if (FMI) { + LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); + FoldPt->eraseFromParent(); + ++NumFolds; + + IntervalSSMap[vreg] = SS; + CurrSLI = &LSs->getOrCreateInterval(SS, RC); + if (CurrSLI->hasAtLeastOneValue()) + CurrSValNo = CurrSLI->getValNumInfo(0); + else + CurrSValNo = CurrSLI->getNextValue(SlotIndex(), 0, false, + LSs->getVNInfoAllocator()); + } + + return FMI; +} + +MachineInstr* PreAllocSplitting::FoldRestore(unsigned vreg, + const TargetRegisterClass* RC, + MachineInstr* Barrier, + MachineBasicBlock* MBB, + int SS, + SmallPtrSet<MachineInstr*, 4>& RefsInMBB) { + if ((int)RestoreFoldLimit != -1 && RestoreFoldLimit == (int)NumRestoreFolds) + return 0; + + // Go top down if RefsInMBB is empty. + if (RefsInMBB.empty()) + return 0; + + // Can't fold a restore between a call stack setup and teardown. + MachineBasicBlock::iterator FoldPt = Barrier; + + // Advance from barrier to call frame teardown. + while (FoldPt != MBB->getFirstTerminator() && + FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { + if (RefsInMBB.count(FoldPt)) + return 0; + + ++FoldPt; + } + + if (FoldPt == MBB->getFirstTerminator()) + return 0; + else + ++FoldPt; + + // Now find the restore point. + while (FoldPt != MBB->getFirstTerminator() && !RefsInMBB.count(FoldPt)) { + if (FoldPt->getOpcode() == TRI->getCallFrameSetupOpcode()) { + while (FoldPt != MBB->getFirstTerminator() && + FoldPt->getOpcode() != TRI->getCallFrameDestroyOpcode()) { + if (RefsInMBB.count(FoldPt)) + return 0; + + ++FoldPt; + } + + if (FoldPt == MBB->getFirstTerminator()) + return 0; + } + + ++FoldPt; + } + + if (FoldPt == MBB->getFirstTerminator()) + return 0; + + int OpIdx = FoldPt->findRegisterUseOperandIdx(vreg, true); + if (OpIdx == -1) + return 0; + + SmallVector<unsigned, 1> Ops; + Ops.push_back(OpIdx); + + if (!TII->canFoldMemoryOperand(FoldPt, Ops)) + return 0; + + MachineInstr* FMI = TII->foldMemoryOperand(FoldPt, Ops, SS); + + if (FMI) { + LIs->ReplaceMachineInstrInMaps(FoldPt, FMI); + FoldPt->eraseFromParent(); + ++NumRestoreFolds; + } + + return FMI; +} + +/// SplitRegLiveInterval - Split (spill and restore) the given live interval +/// so it would not cross the barrier that's being processed. Shrink wrap +/// (minimize) the live interval to the last uses. +bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) { + DEBUG(dbgs() << "Pre-alloc splitting " << LI->reg << " for " << *Barrier + << " result: "); + + CurrLI = LI; + + // Find live range where current interval cross the barrier. + LiveInterval::iterator LR = + CurrLI->FindLiveRangeContaining(BarrierIdx.getUseIndex()); + VNInfo *ValNo = LR->valno; + + assert(!ValNo->isUnused() && "Val# is defined by a dead def?"); + + MachineInstr *DefMI = ValNo->isDefAccurate() + ? LIs->getInstructionFromIndex(ValNo->def) : NULL; + + // If this would create a new join point, do not split. + if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent())) { + DEBUG(dbgs() << "FAILED (would create a new join point).\n"); + return false; + } + + // Find all references in the barrier mbb. + SmallPtrSet<MachineInstr*, 4> RefsInMBB; + for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg), + E = MRI->reg_end(); I != E; ++I) { + MachineInstr *RefMI = &*I; + if (RefMI->getParent() == BarrierMBB) + RefsInMBB.insert(RefMI); + } + + // Find a point to restore the value after the barrier. + MachineBasicBlock::iterator RestorePt = + findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB); + if (RestorePt == BarrierMBB->end()) { + DEBUG(dbgs() << "FAILED (could not find a suitable restore point).\n"); + return false; + } + + if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI)) + if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt, RefsInMBB)) { + DEBUG(dbgs() << "success (remat).\n"); + return true; + } + + // Add a spill either before the barrier or after the definition. + MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL; + const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg); + SlotIndex SpillIndex; + MachineInstr *SpillMI = NULL; + int SS = -1; + if (!ValNo->isDefAccurate()) { + // If we don't know where the def is we must split just before the barrier. + if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier, + BarrierMBB, SS, RefsInMBB))) { + SpillIndex = LIs->getInstructionIndex(SpillMI); + } else { + MachineBasicBlock::iterator SpillPt = + findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB); + if (SpillPt == BarrierMBB->begin()) { + DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); + return false; // No gap to insert spill. + } + // Add spill. + + SS = CreateSpillStackSlot(CurrLI->reg, RC); + TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC, + TRI); + SpillMI = prior(SpillPt); + SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI); + } + } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def, + LIs->getZeroIndex(), SpillIndex, SS)) { + // If it's already split, just restore the value. There is no need to spill + // the def again. + if (!DefMI) { + DEBUG(dbgs() << "FAILED (def is dead).\n"); + return false; // Def is dead. Do nothing. + } + + if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier, + BarrierMBB, SS, RefsInMBB))) { + SpillIndex = LIs->getInstructionIndex(SpillMI); + } else { + // Check if it's possible to insert a spill after the def MI. + MachineBasicBlock::iterator SpillPt; + if (DefMBB == BarrierMBB) { + // Add spill after the def and the last use before the barrier. + SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI, + RefsInMBB); + if (SpillPt == DefMBB->begin()) { + DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); + return false; // No gap to insert spill. + } + } else { + SpillPt = llvm::next(MachineBasicBlock::iterator(DefMI)); + if (SpillPt == DefMBB->end()) { + DEBUG(dbgs() << "FAILED (could not find a suitable spill point).\n"); + return false; // No gap to insert spill. + } + } + // Add spill. + SS = CreateSpillStackSlot(CurrLI->reg, RC); + TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC, + TRI); + SpillMI = prior(SpillPt); + SpillIndex = LIs->InsertMachineInstrInMaps(SpillMI); + } + } + + // Remember def instruction index to spill index mapping. + if (DefMI && SpillMI) + Def2SpillMap[ValNo->def] = SpillIndex; + + // Add restore. + bool FoldedRestore = false; + SlotIndex RestoreIndex; + if (MachineInstr* LMI = FoldRestore(CurrLI->reg, RC, Barrier, + BarrierMBB, SS, RefsInMBB)) { + RestorePt = LMI; + RestoreIndex = LIs->getInstructionIndex(RestorePt); + FoldedRestore = true; + } else { + TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC, TRI); + MachineInstr *LoadMI = prior(RestorePt); + RestoreIndex = LIs->InsertMachineInstrInMaps(LoadMI); + } + + // Update spill stack slot live interval. + UpdateSpillSlotInterval(ValNo, SpillIndex.getUseIndex().getNextSlot(), + RestoreIndex.getDefIndex()); + + ReconstructLiveInterval(CurrLI); + + if (!FoldedRestore) { + SlotIndex RestoreIdx = LIs->getInstructionIndex(prior(RestorePt)); + RestoreIdx = RestoreIdx.getDefIndex(); + RenumberValno(CurrLI->findDefinedVNInfoForRegInt(RestoreIdx)); + } + + ++NumSplits; + DEBUG(dbgs() << "success.\n"); + return true; +} + +/// SplitRegLiveIntervals - Split all register live intervals that cross the +/// barrier that's being processed. +bool +PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs, + SmallPtrSet<LiveInterval*, 8>& Split) { + // First find all the virtual registers whose live intervals are intercepted + // by the current barrier. + SmallVector<LiveInterval*, 8> Intervals; + for (const TargetRegisterClass **RC = RCs; *RC; ++RC) { + // FIXME: If it's not safe to move any instruction that defines the barrier + // register class, then it means there are some special dependencies which + // codegen is not modelling. Ignore these barriers for now. + if (!TII->isSafeToMoveRegClassDefs(*RC)) + continue; + const std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC); + for (unsigned i = 0, e = VRs.size(); i != e; ++i) { + unsigned Reg = VRs[i]; + if (!LIs->hasInterval(Reg)) + continue; + LiveInterval *LI = &LIs->getInterval(Reg); + if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg)) + // Virtual register live interval is intercepted by the barrier. We + // should split and shrink wrap its interval if possible. + Intervals.push_back(LI); + } + } + + // Process the affected live intervals. + bool Change = false; + while (!Intervals.empty()) { + if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit) + break; + LiveInterval *LI = Intervals.back(); + Intervals.pop_back(); + bool result = SplitRegLiveInterval(LI); + if (result) Split.insert(LI); + Change |= result; + } + + return Change; +} + +unsigned PreAllocSplitting::getNumberOfNonSpills( + SmallPtrSet<MachineInstr*, 4>& MIs, + unsigned Reg, int FrameIndex, + bool& FeedsTwoAddr) { + unsigned NonSpills = 0; + for (SmallPtrSet<MachineInstr*, 4>::iterator UI = MIs.begin(), UE = MIs.end(); + UI != UE; ++UI) { + int StoreFrameIndex; + unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); + if (StoreVReg != Reg || StoreFrameIndex != FrameIndex) + ++NonSpills; + + int DefIdx = (*UI)->findRegisterDefOperandIdx(Reg); + if (DefIdx != -1 && (*UI)->isRegTiedToUseOperand(DefIdx)) + FeedsTwoAddr = true; + } + + return NonSpills; +} + +/// removeDeadSpills - After doing splitting, filter through all intervals we've +/// split, and see if any of the spills are unnecessary. If so, remove them. +bool PreAllocSplitting::removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split) { + bool changed = false; + + // Walk over all of the live intervals that were touched by the splitter, + // and see if we can do any DCE and/or folding. + for (SmallPtrSet<LiveInterval*, 8>::iterator LI = split.begin(), + LE = split.end(); LI != LE; ++LI) { + DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> > VNUseCount; + + // First, collect all the uses of the vreg, and sort them by their + // reaching definition (VNInfo). + for (MachineRegisterInfo::use_iterator UI = MRI->use_begin((*LI)->reg), + UE = MRI->use_end(); UI != UE; ++UI) { + SlotIndex index = LIs->getInstructionIndex(&*UI); + index = index.getUseIndex(); + + const LiveRange* LR = (*LI)->getLiveRangeContaining(index); + VNUseCount[LR->valno].insert(&*UI); + } + + // Now, take the definitions (VNInfo's) one at a time and try to DCE + // and/or fold them away. + for (LiveInterval::vni_iterator VI = (*LI)->vni_begin(), + VE = (*LI)->vni_end(); VI != VE; ++VI) { + + if (DeadSplitLimit != -1 && (int)NumDeadSpills == DeadSplitLimit) + return changed; + + VNInfo* CurrVN = *VI; + + // We don't currently try to handle definitions with PHI kills, because + // it would involve processing more than one VNInfo at once. + if (CurrVN->hasPHIKill()) continue; + + // We also don't try to handle the results of PHI joins, since there's + // no defining instruction to analyze. + if (!CurrVN->isDefAccurate() || CurrVN->isUnused()) continue; + + // We're only interested in eliminating cruft introduced by the splitter, + // is of the form load-use or load-use-store. First, check that the + // definition is a load, and remember what stack slot we loaded it from. + MachineInstr* DefMI = LIs->getInstructionFromIndex(CurrVN->def); + int FrameIndex; + if (!TII->isLoadFromStackSlot(DefMI, FrameIndex)) continue; + + // If the definition has no uses at all, just DCE it. + if (VNUseCount[CurrVN].size() == 0) { + LIs->RemoveMachineInstrFromMaps(DefMI); + (*LI)->removeValNo(CurrVN); + DefMI->eraseFromParent(); + VNUseCount.erase(CurrVN); + ++NumDeadSpills; + changed = true; + continue; + } + + // Second, get the number of non-store uses of the definition, as well as + // a flag indicating whether it feeds into a later two-address definition. + bool FeedsTwoAddr = false; + unsigned NonSpillCount = getNumberOfNonSpills(VNUseCount[CurrVN], + (*LI)->reg, FrameIndex, + FeedsTwoAddr); + + // If there's one non-store use and it doesn't feed a two-addr, then + // this is a load-use-store case that we can try to fold. + if (NonSpillCount == 1 && !FeedsTwoAddr) { + // Start by finding the non-store use MachineInstr. + SmallPtrSet<MachineInstr*, 4>::iterator UI = VNUseCount[CurrVN].begin(); + int StoreFrameIndex; + unsigned StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); + while (UI != VNUseCount[CurrVN].end() && + (StoreVReg == (*LI)->reg && StoreFrameIndex == FrameIndex)) { + ++UI; + if (UI != VNUseCount[CurrVN].end()) + StoreVReg = TII->isStoreToStackSlot(*UI, StoreFrameIndex); + } + if (UI == VNUseCount[CurrVN].end()) continue; + + MachineInstr* use = *UI; + + // Attempt to fold it away! + int OpIdx = use->findRegisterUseOperandIdx((*LI)->reg, false); + if (OpIdx == -1) continue; + SmallVector<unsigned, 1> Ops; + Ops.push_back(OpIdx); + if (!TII->canFoldMemoryOperand(use, Ops)) continue; + + MachineInstr* NewMI = TII->foldMemoryOperand(use, Ops, FrameIndex); + + if (!NewMI) continue; + + // Update relevant analyses. + LIs->RemoveMachineInstrFromMaps(DefMI); + LIs->ReplaceMachineInstrInMaps(use, NewMI); + (*LI)->removeValNo(CurrVN); + + DefMI->eraseFromParent(); + use->eraseFromParent(); + VNUseCount[CurrVN].erase(use); + + // Remove deleted instructions. Note that we need to remove them from + // the VNInfo->use map as well, just to be safe. + for (SmallPtrSet<MachineInstr*, 4>::iterator II = + VNUseCount[CurrVN].begin(), IE = VNUseCount[CurrVN].end(); + II != IE; ++II) { + for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator + VNI = VNUseCount.begin(), VNE = VNUseCount.end(); VNI != VNE; + ++VNI) + if (VNI->first != CurrVN) + VNI->second.erase(*II); + LIs->RemoveMachineInstrFromMaps(*II); + (*II)->eraseFromParent(); + } + + VNUseCount.erase(CurrVN); + + for (DenseMap<VNInfo*, SmallPtrSet<MachineInstr*, 4> >::iterator + VI = VNUseCount.begin(), VE = VNUseCount.end(); VI != VE; ++VI) + if (VI->second.erase(use)) + VI->second.insert(NewMI); + + ++NumDeadSpills; + changed = true; + continue; + } + + // If there's more than one non-store instruction, we can't profitably + // fold it, so bail. + if (NonSpillCount) continue; + + // Otherwise, this is a load-store case, so DCE them. + for (SmallPtrSet<MachineInstr*, 4>::iterator UI = + VNUseCount[CurrVN].begin(), UE = VNUseCount[CurrVN].end(); + UI != UE; ++UI) { + LIs->RemoveMachineInstrFromMaps(*UI); + (*UI)->eraseFromParent(); + } + + VNUseCount.erase(CurrVN); + + LIs->RemoveMachineInstrFromMaps(DefMI); + (*LI)->removeValNo(CurrVN); + DefMI->eraseFromParent(); + ++NumDeadSpills; + changed = true; + } + } + + return changed; +} + +bool PreAllocSplitting::createsNewJoin(LiveRange* LR, + MachineBasicBlock* DefMBB, + MachineBasicBlock* BarrierMBB) { + if (DefMBB == BarrierMBB) + return false; + + if (LR->valno->hasPHIKill()) + return false; + + SlotIndex MBBEnd = LIs->getMBBEndIdx(BarrierMBB); + if (LR->end < MBBEnd) + return false; + + MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>(); + if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB)) + return true; + + MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); + SmallPtrSet<MachineBasicBlock*, 4> Visited; + typedef std::pair<MachineBasicBlock*, + MachineBasicBlock::succ_iterator> ItPair; + SmallVector<ItPair, 4> Stack; + Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin())); + + while (!Stack.empty()) { + ItPair P = Stack.back(); + Stack.pop_back(); + + MachineBasicBlock* PredMBB = P.first; + MachineBasicBlock::succ_iterator S = P.second; + + if (S == PredMBB->succ_end()) + continue; + else if (Visited.count(*S)) { + Stack.push_back(std::make_pair(PredMBB, ++S)); + continue; + } else + Stack.push_back(std::make_pair(PredMBB, S+1)); + + MachineBasicBlock* MBB = *S; + Visited.insert(MBB); + + if (MBB == BarrierMBB) + return true; + + MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB); + MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB); + MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom(); + while (MDTN) { + if (MDTN == DefMDTN) + return true; + else if (MDTN == BarrierMDTN) + break; + MDTN = MDTN->getIDom(); + } + + MBBEnd = LIs->getMBBEndIdx(MBB); + if (LR->end > MBBEnd) + Stack.push_back(std::make_pair(MBB, MBB->succ_begin())); + } + + return false; +} + + +bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) { + CurrMF = &MF; + TM = &MF.getTarget(); + TRI = TM->getRegisterInfo(); + TII = TM->getInstrInfo(); + MFI = MF.getFrameInfo(); + MRI = &MF.getRegInfo(); + SIs = &getAnalysis<SlotIndexes>(); + LIs = &getAnalysis<LiveIntervals>(); + LSs = &getAnalysis<LiveStacks>(); + VRM = &getAnalysis<VirtRegMap>(); + + bool MadeChange = false; + + // Make sure blocks are numbered in order. + MF.RenumberBlocks(); + + MachineBasicBlock *Entry = MF.begin(); + SmallPtrSet<MachineBasicBlock*,16> Visited; + + SmallPtrSet<LiveInterval*, 8> Split; + + for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > + DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); + DFI != E; ++DFI) { + BarrierMBB = *DFI; + for (MachineBasicBlock::iterator I = BarrierMBB->begin(), + E = BarrierMBB->end(); I != E; ++I) { + Barrier = &*I; + const TargetRegisterClass **BarrierRCs = + Barrier->getDesc().getRegClassBarriers(); + if (!BarrierRCs) + continue; + BarrierIdx = LIs->getInstructionIndex(Barrier); + MadeChange |= SplitRegLiveIntervals(BarrierRCs, Split); + } + } + + MadeChange |= removeDeadSpills(Split); + + return MadeChange; +} |