summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/PHIElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PHIElimination.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/PHIElimination.cpp447
1 files changed, 447 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/PHIElimination.cpp b/contrib/llvm/lib/CodeGen/PHIElimination.cpp
new file mode 100644
index 0000000..edbc13f
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/PHIElimination.cpp
@@ -0,0 +1,447 @@
+//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass eliminates machine instruction PHI nodes by inserting copy
+// instructions. This destroys SSA information, but is the desired input for
+// some register allocators.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "phielim"
+#include "PHIElimination.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Function.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include <algorithm>
+#include <map>
+using namespace llvm;
+
+STATISTIC(NumAtomic, "Number of atomic phis lowered");
+STATISTIC(NumSplits, "Number of critical edges split on demand");
+STATISTIC(NumReused, "Number of reused lowered phis");
+
+char PHIElimination::ID = 0;
+static RegisterPass<PHIElimination>
+X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
+
+const PassInfo *const llvm::PHIEliminationID = &X;
+
+void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<LiveVariables>();
+ AU.addPreserved<MachineDominatorTree>();
+ // rdar://7401784 This would be nice:
+ // AU.addPreservedID(MachineLoopInfoID);
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &MF) {
+ MRI = &MF.getRegInfo();
+
+ bool Changed = false;
+
+ // Split critical edges to help the coalescer
+ if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ Changed |= SplitPHIEdges(MF, *I, *LV);
+
+ // Populate VRegPHIUseCount
+ analyzePHINodes(MF);
+
+ // Eliminate PHI instructions by inserting copies into predecessor blocks.
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ Changed |= EliminatePHINodes(MF, *I);
+
+ // Remove dead IMPLICIT_DEF instructions.
+ for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
+ E = ImpDefs.end(); I != E; ++I) {
+ MachineInstr *DefMI = *I;
+ unsigned DefReg = DefMI->getOperand(0).getReg();
+ if (MRI->use_nodbg_empty(DefReg))
+ DefMI->eraseFromParent();
+ }
+
+ // Clean up the lowered PHI instructions.
+ for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
+ I != E; ++I)
+ MF.DeleteMachineInstr(I->first);
+
+ LoweredPHIs.clear();
+ ImpDefs.clear();
+ VRegPHIUseCount.clear();
+
+ return Changed;
+}
+
+/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
+/// predecessor basic blocks.
+///
+bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
+ MachineBasicBlock &MBB) {
+ if (MBB.empty() || !MBB.front().isPHI())
+ return false; // Quick exit for basic blocks without PHIs.
+
+ // Get an iterator to the first instruction after the last PHI node (this may
+ // also be the end of the basic block).
+ MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
+
+ while (MBB.front().isPHI())
+ LowerAtomicPHINode(MBB, AfterPHIsIt);
+
+ return true;
+}
+
+/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
+/// are implicit_def's.
+static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
+ const MachineRegisterInfo *MRI) {
+ for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
+ unsigned SrcReg = MPhi->getOperand(i).getReg();
+ const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
+ if (!DefMI || !DefMI->isImplicitDef())
+ return false;
+ }
+ return true;
+}
+
+// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
+// when following the CFG edge to SuccMBB. This needs to be after any def of
+// SrcReg, but before any subsequent point where control flow might jump out of
+// the basic block.
+MachineBasicBlock::iterator
+llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
+ MachineBasicBlock &SuccMBB,
+ unsigned SrcReg) {
+ // Handle the trivial case trivially.
+ if (MBB.empty())
+ return MBB.begin();
+
+ // Usually, we just want to insert the copy before the first terminator
+ // instruction. However, for the edge going to a landing pad, we must insert
+ // the copy before the call/invoke instruction.
+ if (!SuccMBB.isLandingPad())
+ return MBB.getFirstTerminator();
+
+ // Discover any defs/uses in this basic block.
+ SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
+ for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
+ RE = MRI->reg_end(); RI != RE; ++RI) {
+ MachineInstr *DefUseMI = &*RI;
+ if (DefUseMI->getParent() == &MBB)
+ DefUsesInMBB.insert(DefUseMI);
+ }
+
+ MachineBasicBlock::iterator InsertPoint;
+ if (DefUsesInMBB.empty()) {
+ // No defs. Insert the copy at the start of the basic block.
+ InsertPoint = MBB.begin();
+ } else if (DefUsesInMBB.size() == 1) {
+ // Insert the copy immediately after the def/use.
+ InsertPoint = *DefUsesInMBB.begin();
+ ++InsertPoint;
+ } else {
+ // Insert the copy immediately after the last def/use.
+ InsertPoint = MBB.end();
+ while (!DefUsesInMBB.count(&*--InsertPoint)) {}
+ ++InsertPoint;
+ }
+
+ // Make sure the copy goes after any phi nodes however.
+ return SkipPHIsAndLabels(MBB, InsertPoint);
+}
+
+/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
+/// under the assuption that it needs to be lowered in a way that supports
+/// atomic execution of PHIs. This lowering method is always correct all of the
+/// time.
+///
+void llvm::PHIElimination::LowerAtomicPHINode(
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator AfterPHIsIt) {
+ ++NumAtomic;
+ // Unlink the PHI node from the basic block, but don't delete the PHI yet.
+ MachineInstr *MPhi = MBB.remove(MBB.begin());
+
+ unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
+ unsigned DestReg = MPhi->getOperand(0).getReg();
+ bool isDead = MPhi->getOperand(0).isDead();
+
+ // Create a new register for the incoming PHI arguments.
+ MachineFunction &MF = *MBB.getParent();
+ const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
+ unsigned IncomingReg = 0;
+ bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
+
+ // Insert a register to register copy at the top of the current block (but
+ // after any remaining phi nodes) which copies the new incoming register
+ // into the phi node destination.
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ if (isSourceDefinedByImplicitDef(MPhi, MRI))
+ // If all sources of a PHI node are implicit_def, just emit an
+ // implicit_def instead of a copy.
+ BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
+ TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
+ else {
+ // Can we reuse an earlier PHI node? This only happens for critical edges,
+ // typically those created by tail duplication.
+ unsigned &entry = LoweredPHIs[MPhi];
+ if (entry) {
+ // An identical PHI node was already lowered. Reuse the incoming register.
+ IncomingReg = entry;
+ reusedIncoming = true;
+ ++NumReused;
+ DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
+ } else {
+ entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
+ }
+ TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC,
+ MPhi->getDebugLoc());
+ }
+
+ // Update live variable information if there is any.
+ LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
+ if (LV) {
+ MachineInstr *PHICopy = prior(AfterPHIsIt);
+
+ if (IncomingReg) {
+ LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
+
+ // Increment use count of the newly created virtual register.
+ VI.NumUses++;
+ LV->setPHIJoin(IncomingReg);
+
+ // When we are reusing the incoming register, it may already have been
+ // killed in this block. The old kill will also have been inserted at
+ // AfterPHIsIt, so it appears before the current PHICopy.
+ if (reusedIncoming)
+ if (MachineInstr *OldKill = VI.findKill(&MBB)) {
+ DEBUG(dbgs() << "Remove old kill from " << *OldKill);
+ LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
+ DEBUG(MBB.dump());
+ }
+
+ // Add information to LiveVariables to know that the incoming value is
+ // killed. Note that because the value is defined in several places (once
+ // each for each incoming block), the "def" block and instruction fields
+ // for the VarInfo is not filled in.
+ LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
+ }
+
+ // Since we are going to be deleting the PHI node, if it is the last use of
+ // any registers, or if the value itself is dead, we need to move this
+ // information over to the new copy we just inserted.
+ LV->removeVirtualRegistersKilled(MPhi);
+
+ // If the result is dead, update LV.
+ if (isDead) {
+ LV->addVirtualRegisterDead(DestReg, PHICopy);
+ LV->removeVirtualRegisterDead(DestReg, MPhi);
+ }
+ }
+
+ // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
+ for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
+ --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
+ MPhi->getOperand(i).getReg())];
+
+ // Now loop over all of the incoming arguments, changing them to copy into the
+ // IncomingReg register in the corresponding predecessor basic block.
+ SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
+ for (int i = NumSrcs - 1; i >= 0; --i) {
+ unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
+ assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+ "Machine PHI Operands must all be virtual registers!");
+
+ // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
+ // path the PHI.
+ MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
+
+ // If source is defined by an implicit def, there is no need to insert a
+ // copy.
+ MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
+ if (DefMI->isImplicitDef()) {
+ ImpDefs.insert(DefMI);
+ continue;
+ }
+
+ // Check to make sure we haven't already emitted the copy for this block.
+ // This can happen because PHI nodes may have multiple entries for the same
+ // basic block.
+ if (!MBBsInsertedInto.insert(&opBlock))
+ continue; // If the copy has already been emitted, we're done.
+
+ // Find a safe location to insert the copy, this may be the first terminator
+ // in the block (or end()).
+ MachineBasicBlock::iterator InsertPos =
+ FindCopyInsertPoint(opBlock, MBB, SrcReg);
+
+ // Insert the copy.
+ if (!reusedIncoming && IncomingReg)
+ TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC,
+ MPhi->getDebugLoc());
+
+ // Now update live variable information if we have it. Otherwise we're done
+ if (!LV) continue;
+
+ // We want to be able to insert a kill of the register if this PHI (aka, the
+ // copy we just inserted) is the last use of the source value. Live
+ // variable analysis conservatively handles this by saying that the value is
+ // live until the end of the block the PHI entry lives in. If the value
+ // really is dead at the PHI copy, there will be no successor blocks which
+ // have the value live-in.
+
+ // Also check to see if this register is in use by another PHI node which
+ // has not yet been eliminated. If so, it will be killed at an appropriate
+ // point later.
+
+ // Is it used by any PHI instructions in this block?
+ bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
+
+ // Okay, if we now know that the value is not live out of the block, we can
+ // add a kill marker in this block saying that it kills the incoming value!
+ if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
+ // In our final twist, we have to decide which instruction kills the
+ // register. In most cases this is the copy, however, the first
+ // terminator instruction at the end of the block may also use the value.
+ // In this case, we should mark *it* as being the killing block, not the
+ // copy.
+ MachineBasicBlock::iterator KillInst;
+ MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
+ if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
+ KillInst = Term;
+
+ // Check that no other terminators use values.
+#ifndef NDEBUG
+ for (MachineBasicBlock::iterator TI = llvm::next(Term);
+ TI != opBlock.end(); ++TI) {
+ assert(!TI->readsRegister(SrcReg) &&
+ "Terminator instructions cannot use virtual registers unless"
+ "they are the first terminator in a block!");
+ }
+#endif
+ } else if (reusedIncoming || !IncomingReg) {
+ // We may have to rewind a bit if we didn't insert a copy this time.
+ KillInst = Term;
+ while (KillInst != opBlock.begin())
+ if ((--KillInst)->readsRegister(SrcReg))
+ break;
+ } else {
+ // We just inserted this copy.
+ KillInst = prior(InsertPos);
+ }
+ assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
+
+ // Finally, mark it killed.
+ LV->addVirtualRegisterKilled(SrcReg, KillInst);
+
+ // This vreg no longer lives all of the way through opBlock.
+ unsigned opBlockNum = opBlock.getNumber();
+ LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
+ }
+ }
+
+ // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
+ if (reusedIncoming || !IncomingReg)
+ MF.DeleteMachineInstr(MPhi);
+}
+
+/// analyzePHINodes - Gather information about the PHI nodes in here. In
+/// particular, we want to map the number of uses of a virtual register which is
+/// used in a PHI node. We map that to the BB the vreg is coming from. This is
+/// used later to determine when the vreg is killed in the BB.
+///
+void llvm::PHIElimination::analyzePHINodes(const MachineFunction& MF) {
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I)
+ for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
+ BBI != BBE && BBI->isPHI(); ++BBI)
+ for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
+ ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
+ BBI->getOperand(i).getReg())];
+}
+
+bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ LiveVariables &LV) {
+ if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
+ return false; // Quick exit for basic blocks without PHIs.
+
+ for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
+ BBI != BBE && BBI->isPHI(); ++BBI) {
+ for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
+ unsigned Reg = BBI->getOperand(i).getReg();
+ MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
+ // We break edges when registers are live out from the predecessor block
+ // (not considering PHI nodes). If the register is live in to this block
+ // anyway, we would gain nothing from splitting.
+ if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB))
+ SplitCriticalEdge(PreMBB, &MBB);
+ }
+ }
+ return true;
+}
+
+MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
+ MachineBasicBlock *B) {
+ assert(A && B && "Missing MBB end point");
+
+ MachineFunction *MF = A->getParent();
+
+ // We may need to update A's terminator, but we can't do that if AnalyzeBranch
+ // fails. If A uses a jump table, we won't touch it.
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 4> Cond;
+ if (TII->AnalyzeBranch(*A, TBB, FBB, Cond))
+ return NULL;
+
+ ++NumSplits;
+
+ MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
+ MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB);
+ DEBUG(dbgs() << "PHIElimination splitting critical edge:"
+ " BB#" << A->getNumber()
+ << " -- BB#" << NMBB->getNumber()
+ << " -- BB#" << B->getNumber() << '\n');
+
+ A->ReplaceUsesOfBlockWith(B, NMBB);
+ A->updateTerminator();
+
+ // Insert unconditional "jump B" instruction in NMBB if necessary.
+ NMBB->addSuccessor(B);
+ if (!NMBB->isLayoutSuccessor(B)) {
+ Cond.clear();
+ MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
+ }
+
+ // Fix PHI nodes in B so they refer to NMBB instead of A
+ for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
+ i != e && i->isPHI(); ++i)
+ for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
+ if (i->getOperand(ni+1).getMBB() == A)
+ i->getOperand(ni+1).setMBB(NMBB);
+
+ if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
+ LV->addNewBlock(NMBB, A, B);
+
+ if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
+ MDT->addNewBlock(NMBB, A);
+
+ return NMBB;
+}
OpenPOWER on IntegriCloud