diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PHIElimination.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/PHIElimination.cpp | 447 |
1 files changed, 447 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/PHIElimination.cpp b/contrib/llvm/lib/CodeGen/PHIElimination.cpp new file mode 100644 index 0000000..edbc13f --- /dev/null +++ b/contrib/llvm/lib/CodeGen/PHIElimination.cpp @@ -0,0 +1,447 @@ +//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass eliminates machine instruction PHI nodes by inserting copy +// instructions. This destroys SSA information, but is the desired input for +// some register allocators. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "phielim" +#include "PHIElimination.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Function.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include <algorithm> +#include <map> +using namespace llvm; + +STATISTIC(NumAtomic, "Number of atomic phis lowered"); +STATISTIC(NumSplits, "Number of critical edges split on demand"); +STATISTIC(NumReused, "Number of reused lowered phis"); + +char PHIElimination::ID = 0; +static RegisterPass<PHIElimination> +X("phi-node-elimination", "Eliminate PHI nodes for register allocation"); + +const PassInfo *const llvm::PHIEliminationID = &X; + +void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addPreserved<LiveVariables>(); + AU.addPreserved<MachineDominatorTree>(); + // rdar://7401784 This would be nice: + // AU.addPreservedID(MachineLoopInfoID); + MachineFunctionPass::getAnalysisUsage(AU); +} + +bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &MF) { + MRI = &MF.getRegInfo(); + + bool Changed = false; + + // Split critical edges to help the coalescer + if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) + for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) + Changed |= SplitPHIEdges(MF, *I, *LV); + + // Populate VRegPHIUseCount + analyzePHINodes(MF); + + // Eliminate PHI instructions by inserting copies into predecessor blocks. + for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) + Changed |= EliminatePHINodes(MF, *I); + + // Remove dead IMPLICIT_DEF instructions. + for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), + E = ImpDefs.end(); I != E; ++I) { + MachineInstr *DefMI = *I; + unsigned DefReg = DefMI->getOperand(0).getReg(); + if (MRI->use_nodbg_empty(DefReg)) + DefMI->eraseFromParent(); + } + + // Clean up the lowered PHI instructions. + for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); + I != E; ++I) + MF.DeleteMachineInstr(I->first); + + LoweredPHIs.clear(); + ImpDefs.clear(); + VRegPHIUseCount.clear(); + + return Changed; +} + +/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in +/// predecessor basic blocks. +/// +bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF, + MachineBasicBlock &MBB) { + if (MBB.empty() || !MBB.front().isPHI()) + return false; // Quick exit for basic blocks without PHIs. + + // Get an iterator to the first instruction after the last PHI node (this may + // also be the end of the basic block). + MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin()); + + while (MBB.front().isPHI()) + LowerAtomicPHINode(MBB, AfterPHIsIt); + + return true; +} + +/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node +/// are implicit_def's. +static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, + const MachineRegisterInfo *MRI) { + for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { + unsigned SrcReg = MPhi->getOperand(i).getReg(); + const MachineInstr *DefMI = MRI->getVRegDef(SrcReg); + if (!DefMI || !DefMI->isImplicitDef()) + return false; + } + return true; +} + +// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg +// when following the CFG edge to SuccMBB. This needs to be after any def of +// SrcReg, but before any subsequent point where control flow might jump out of +// the basic block. +MachineBasicBlock::iterator +llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB, + MachineBasicBlock &SuccMBB, + unsigned SrcReg) { + // Handle the trivial case trivially. + if (MBB.empty()) + return MBB.begin(); + + // Usually, we just want to insert the copy before the first terminator + // instruction. However, for the edge going to a landing pad, we must insert + // the copy before the call/invoke instruction. + if (!SuccMBB.isLandingPad()) + return MBB.getFirstTerminator(); + + // Discover any defs/uses in this basic block. + SmallPtrSet<MachineInstr*, 8> DefUsesInMBB; + for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg), + RE = MRI->reg_end(); RI != RE; ++RI) { + MachineInstr *DefUseMI = &*RI; + if (DefUseMI->getParent() == &MBB) + DefUsesInMBB.insert(DefUseMI); + } + + MachineBasicBlock::iterator InsertPoint; + if (DefUsesInMBB.empty()) { + // No defs. Insert the copy at the start of the basic block. + InsertPoint = MBB.begin(); + } else if (DefUsesInMBB.size() == 1) { + // Insert the copy immediately after the def/use. + InsertPoint = *DefUsesInMBB.begin(); + ++InsertPoint; + } else { + // Insert the copy immediately after the last def/use. + InsertPoint = MBB.end(); + while (!DefUsesInMBB.count(&*--InsertPoint)) {} + ++InsertPoint; + } + + // Make sure the copy goes after any phi nodes however. + return SkipPHIsAndLabels(MBB, InsertPoint); +} + +/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, +/// under the assuption that it needs to be lowered in a way that supports +/// atomic execution of PHIs. This lowering method is always correct all of the +/// time. +/// +void llvm::PHIElimination::LowerAtomicPHINode( + MachineBasicBlock &MBB, + MachineBasicBlock::iterator AfterPHIsIt) { + ++NumAtomic; + // Unlink the PHI node from the basic block, but don't delete the PHI yet. + MachineInstr *MPhi = MBB.remove(MBB.begin()); + + unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; + unsigned DestReg = MPhi->getOperand(0).getReg(); + bool isDead = MPhi->getOperand(0).isDead(); + + // Create a new register for the incoming PHI arguments. + MachineFunction &MF = *MBB.getParent(); + const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); + unsigned IncomingReg = 0; + bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? + + // Insert a register to register copy at the top of the current block (but + // after any remaining phi nodes) which copies the new incoming register + // into the phi node destination. + const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); + if (isSourceDefinedByImplicitDef(MPhi, MRI)) + // If all sources of a PHI node are implicit_def, just emit an + // implicit_def instead of a copy. + BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), + TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); + else { + // Can we reuse an earlier PHI node? This only happens for critical edges, + // typically those created by tail duplication. + unsigned &entry = LoweredPHIs[MPhi]; + if (entry) { + // An identical PHI node was already lowered. Reuse the incoming register. + IncomingReg = entry; + reusedIncoming = true; + ++NumReused; + DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi); + } else { + entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); + } + TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC, + MPhi->getDebugLoc()); + } + + // Update live variable information if there is any. + LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>(); + if (LV) { + MachineInstr *PHICopy = prior(AfterPHIsIt); + + if (IncomingReg) { + LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); + + // Increment use count of the newly created virtual register. + VI.NumUses++; + LV->setPHIJoin(IncomingReg); + + // When we are reusing the incoming register, it may already have been + // killed in this block. The old kill will also have been inserted at + // AfterPHIsIt, so it appears before the current PHICopy. + if (reusedIncoming) + if (MachineInstr *OldKill = VI.findKill(&MBB)) { + DEBUG(dbgs() << "Remove old kill from " << *OldKill); + LV->removeVirtualRegisterKilled(IncomingReg, OldKill); + DEBUG(MBB.dump()); + } + + // Add information to LiveVariables to know that the incoming value is + // killed. Note that because the value is defined in several places (once + // each for each incoming block), the "def" block and instruction fields + // for the VarInfo is not filled in. + LV->addVirtualRegisterKilled(IncomingReg, PHICopy); + } + + // Since we are going to be deleting the PHI node, if it is the last use of + // any registers, or if the value itself is dead, we need to move this + // information over to the new copy we just inserted. + LV->removeVirtualRegistersKilled(MPhi); + + // If the result is dead, update LV. + if (isDead) { + LV->addVirtualRegisterDead(DestReg, PHICopy); + LV->removeVirtualRegisterDead(DestReg, MPhi); + } + } + + // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. + for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) + --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), + MPhi->getOperand(i).getReg())]; + + // Now loop over all of the incoming arguments, changing them to copy into the + // IncomingReg register in the corresponding predecessor basic block. + SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; + for (int i = NumSrcs - 1; i >= 0; --i) { + unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); + assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && + "Machine PHI Operands must all be virtual registers!"); + + // Get the MachineBasicBlock equivalent of the BasicBlock that is the source + // path the PHI. + MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); + + // If source is defined by an implicit def, there is no need to insert a + // copy. + MachineInstr *DefMI = MRI->getVRegDef(SrcReg); + if (DefMI->isImplicitDef()) { + ImpDefs.insert(DefMI); + continue; + } + + // Check to make sure we haven't already emitted the copy for this block. + // This can happen because PHI nodes may have multiple entries for the same + // basic block. + if (!MBBsInsertedInto.insert(&opBlock)) + continue; // If the copy has already been emitted, we're done. + + // Find a safe location to insert the copy, this may be the first terminator + // in the block (or end()). + MachineBasicBlock::iterator InsertPos = + FindCopyInsertPoint(opBlock, MBB, SrcReg); + + // Insert the copy. + if (!reusedIncoming && IncomingReg) + TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC, + MPhi->getDebugLoc()); + + // Now update live variable information if we have it. Otherwise we're done + if (!LV) continue; + + // We want to be able to insert a kill of the register if this PHI (aka, the + // copy we just inserted) is the last use of the source value. Live + // variable analysis conservatively handles this by saying that the value is + // live until the end of the block the PHI entry lives in. If the value + // really is dead at the PHI copy, there will be no successor blocks which + // have the value live-in. + + // Also check to see if this register is in use by another PHI node which + // has not yet been eliminated. If so, it will be killed at an appropriate + // point later. + + // Is it used by any PHI instructions in this block? + bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]; + + // Okay, if we now know that the value is not live out of the block, we can + // add a kill marker in this block saying that it kills the incoming value! + if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) { + // In our final twist, we have to decide which instruction kills the + // register. In most cases this is the copy, however, the first + // terminator instruction at the end of the block may also use the value. + // In this case, we should mark *it* as being the killing block, not the + // copy. + MachineBasicBlock::iterator KillInst; + MachineBasicBlock::iterator Term = opBlock.getFirstTerminator(); + if (Term != opBlock.end() && Term->readsRegister(SrcReg)) { + KillInst = Term; + + // Check that no other terminators use values. +#ifndef NDEBUG + for (MachineBasicBlock::iterator TI = llvm::next(Term); + TI != opBlock.end(); ++TI) { + assert(!TI->readsRegister(SrcReg) && + "Terminator instructions cannot use virtual registers unless" + "they are the first terminator in a block!"); + } +#endif + } else if (reusedIncoming || !IncomingReg) { + // We may have to rewind a bit if we didn't insert a copy this time. + KillInst = Term; + while (KillInst != opBlock.begin()) + if ((--KillInst)->readsRegister(SrcReg)) + break; + } else { + // We just inserted this copy. + KillInst = prior(InsertPos); + } + assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); + + // Finally, mark it killed. + LV->addVirtualRegisterKilled(SrcReg, KillInst); + + // This vreg no longer lives all of the way through opBlock. + unsigned opBlockNum = opBlock.getNumber(); + LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); + } + } + + // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. + if (reusedIncoming || !IncomingReg) + MF.DeleteMachineInstr(MPhi); +} + +/// analyzePHINodes - Gather information about the PHI nodes in here. In +/// particular, we want to map the number of uses of a virtual register which is +/// used in a PHI node. We map that to the BB the vreg is coming from. This is +/// used later to determine when the vreg is killed in the BB. +/// +void llvm::PHIElimination::analyzePHINodes(const MachineFunction& MF) { + for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); + I != E; ++I) + for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); + BBI != BBE && BBI->isPHI(); ++BBI) + for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) + ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), + BBI->getOperand(i).getReg())]; +} + +bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF, + MachineBasicBlock &MBB, + LiveVariables &LV) { + if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) + return false; // Quick exit for basic blocks without PHIs. + + for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end(); + BBI != BBE && BBI->isPHI(); ++BBI) { + for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { + unsigned Reg = BBI->getOperand(i).getReg(); + MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); + // We break edges when registers are live out from the predecessor block + // (not considering PHI nodes). If the register is live in to this block + // anyway, we would gain nothing from splitting. + if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) + SplitCriticalEdge(PreMBB, &MBB); + } + } + return true; +} + +MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A, + MachineBasicBlock *B) { + assert(A && B && "Missing MBB end point"); + + MachineFunction *MF = A->getParent(); + + // We may need to update A's terminator, but we can't do that if AnalyzeBranch + // fails. If A uses a jump table, we won't touch it. + const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); + MachineBasicBlock *TBB = 0, *FBB = 0; + SmallVector<MachineOperand, 4> Cond; + if (TII->AnalyzeBranch(*A, TBB, FBB, Cond)) + return NULL; + + ++NumSplits; + + MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); + MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB); + DEBUG(dbgs() << "PHIElimination splitting critical edge:" + " BB#" << A->getNumber() + << " -- BB#" << NMBB->getNumber() + << " -- BB#" << B->getNumber() << '\n'); + + A->ReplaceUsesOfBlockWith(B, NMBB); + A->updateTerminator(); + + // Insert unconditional "jump B" instruction in NMBB if necessary. + NMBB->addSuccessor(B); + if (!NMBB->isLayoutSuccessor(B)) { + Cond.clear(); + MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond); + } + + // Fix PHI nodes in B so they refer to NMBB instead of A + for (MachineBasicBlock::iterator i = B->begin(), e = B->end(); + i != e && i->isPHI(); ++i) + for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) + if (i->getOperand(ni+1).getMBB() == A) + i->getOperand(ni+1).setMBB(NMBB); + + if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>()) + LV->addNewBlock(NMBB, A, B); + + if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>()) + MDT->addNewBlock(NMBB, A); + + return NMBB; +} |