summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/PHIElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PHIElimination.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/PHIElimination.cpp644
1 files changed, 644 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/PHIElimination.cpp b/contrib/llvm/lib/CodeGen/PHIElimination.cpp
new file mode 100644
index 0000000..5584708
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/PHIElimination.cpp
@@ -0,0 +1,644 @@
+//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass eliminates machine instruction PHI nodes by inserting copy
+// instructions. This destroys SSA information, but is the desired input for
+// some register allocators.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "phielim"
+#include "llvm/CodeGen/Passes.h"
+#include "PHIEliminationUtils.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+using namespace llvm;
+
+static cl::opt<bool>
+DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
+ cl::Hidden, cl::desc("Disable critical edge splitting "
+ "during PHI elimination"));
+
+static cl::opt<bool>
+SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
+ cl::Hidden, cl::desc("Split all critical edges during "
+ "PHI elimination"));
+
+namespace {
+ class PHIElimination : public MachineFunctionPass {
+ MachineRegisterInfo *MRI; // Machine register information
+ LiveVariables *LV;
+ LiveIntervals *LIS;
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ PHIElimination() : MachineFunctionPass(ID) {
+ initializePHIEliminationPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &Fn);
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ private:
+ /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
+ /// in predecessor basic blocks.
+ ///
+ bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
+ void LowerPHINode(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator AfterPHIsIt);
+
+ /// analyzePHINodes - Gather information about the PHI nodes in
+ /// here. In particular, we want to map the number of uses of a virtual
+ /// register which is used in a PHI node. We map that to the BB the
+ /// vreg is coming from. This is used later to determine when the vreg
+ /// is killed in the BB.
+ ///
+ void analyzePHINodes(const MachineFunction& Fn);
+
+ /// Split critical edges where necessary for good coalescer performance.
+ bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineLoopInfo *MLI);
+
+ // These functions are temporary abstractions around LiveVariables and
+ // LiveIntervals, so they can go away when LiveVariables does.
+ bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
+ bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
+
+ typedef std::pair<unsigned, unsigned> BBVRegPair;
+ typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
+
+ VRegPHIUse VRegPHIUseCount;
+
+ // Defs of PHI sources which are implicit_def.
+ SmallPtrSet<MachineInstr*, 4> ImpDefs;
+
+ // Map reusable lowered PHI node -> incoming join register.
+ typedef DenseMap<MachineInstr*, unsigned,
+ MachineInstrExpressionTrait> LoweredPHIMap;
+ LoweredPHIMap LoweredPHIs;
+ };
+}
+
+STATISTIC(NumLowered, "Number of phis lowered");
+STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
+STATISTIC(NumReused, "Number of reused lowered phis");
+
+char PHIElimination::ID = 0;
+char& llvm::PHIEliminationID = PHIElimination::ID;
+
+INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
+ "Eliminate PHI nodes for register allocation",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(LiveVariables)
+INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
+ "Eliminate PHI nodes for register allocation", false, false)
+
+void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<LiveVariables>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addPreserved<LiveIntervals>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addPreserved<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
+ MRI = &MF.getRegInfo();
+ LV = getAnalysisIfAvailable<LiveVariables>();
+ LIS = getAnalysisIfAvailable<LiveIntervals>();
+
+ bool Changed = false;
+
+ // This pass takes the function out of SSA form.
+ MRI->leaveSSA();
+
+ // Split critical edges to help the coalescer. This does not yet support
+ // updating LiveIntervals, so we disable it.
+ if (!DisableEdgeSplitting && (LV || LIS)) {
+ MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ Changed |= SplitPHIEdges(MF, *I, MLI);
+ }
+
+ // Populate VRegPHIUseCount
+ analyzePHINodes(MF);
+
+ // Eliminate PHI instructions by inserting copies into predecessor blocks.
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+ Changed |= EliminatePHINodes(MF, *I);
+
+ // Remove dead IMPLICIT_DEF instructions.
+ for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
+ E = ImpDefs.end(); I != E; ++I) {
+ MachineInstr *DefMI = *I;
+ unsigned DefReg = DefMI->getOperand(0).getReg();
+ if (MRI->use_nodbg_empty(DefReg)) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(DefMI);
+ DefMI->eraseFromParent();
+ }
+ }
+
+ // Clean up the lowered PHI instructions.
+ for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
+ I != E; ++I) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(I->first);
+ MF.DeleteMachineInstr(I->first);
+ }
+
+ LoweredPHIs.clear();
+ ImpDefs.clear();
+ VRegPHIUseCount.clear();
+
+ return Changed;
+}
+
+/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
+/// predecessor basic blocks.
+///
+bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
+ MachineBasicBlock &MBB) {
+ if (MBB.empty() || !MBB.front().isPHI())
+ return false; // Quick exit for basic blocks without PHIs.
+
+ // Get an iterator to the first instruction after the last PHI node (this may
+ // also be the end of the basic block).
+ MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
+
+ while (MBB.front().isPHI())
+ LowerPHINode(MBB, AfterPHIsIt);
+
+ return true;
+}
+
+/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
+/// This includes registers with no defs.
+static bool isImplicitlyDefined(unsigned VirtReg,
+ const MachineRegisterInfo *MRI) {
+ for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
+ DE = MRI->def_end(); DI != DE; ++DI)
+ if (!DI->isImplicitDef())
+ return false;
+ return true;
+}
+
+/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
+/// are implicit_def's.
+static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
+ const MachineRegisterInfo *MRI) {
+ for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
+ if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
+ return false;
+ return true;
+}
+
+
+/// LowerPHINode - Lower the PHI node at the top of the specified block,
+///
+void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator AfterPHIsIt) {
+ ++NumLowered;
+ // Unlink the PHI node from the basic block, but don't delete the PHI yet.
+ MachineInstr *MPhi = MBB.remove(MBB.begin());
+
+ unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
+ unsigned DestReg = MPhi->getOperand(0).getReg();
+ assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
+ bool isDead = MPhi->getOperand(0).isDead();
+
+ // Create a new register for the incoming PHI arguments.
+ MachineFunction &MF = *MBB.getParent();
+ unsigned IncomingReg = 0;
+ bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
+
+ // Insert a register to register copy at the top of the current block (but
+ // after any remaining phi nodes) which copies the new incoming register
+ // into the phi node destination.
+ const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
+ if (isSourceDefinedByImplicitDef(MPhi, MRI))
+ // If all sources of a PHI node are implicit_def, just emit an
+ // implicit_def instead of a copy.
+ BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
+ TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
+ else {
+ // Can we reuse an earlier PHI node? This only happens for critical edges,
+ // typically those created by tail duplication.
+ unsigned &entry = LoweredPHIs[MPhi];
+ if (entry) {
+ // An identical PHI node was already lowered. Reuse the incoming register.
+ IncomingReg = entry;
+ reusedIncoming = true;
+ ++NumReused;
+ DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
+ } else {
+ const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
+ entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
+ }
+ BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), DestReg)
+ .addReg(IncomingReg);
+ }
+
+ // Update live variable information if there is any.
+ if (LV) {
+ MachineInstr *PHICopy = prior(AfterPHIsIt);
+
+ if (IncomingReg) {
+ LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
+
+ // Increment use count of the newly created virtual register.
+ LV->setPHIJoin(IncomingReg);
+
+ // When we are reusing the incoming register, it may already have been
+ // killed in this block. The old kill will also have been inserted at
+ // AfterPHIsIt, so it appears before the current PHICopy.
+ if (reusedIncoming)
+ if (MachineInstr *OldKill = VI.findKill(&MBB)) {
+ DEBUG(dbgs() << "Remove old kill from " << *OldKill);
+ LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
+ DEBUG(MBB.dump());
+ }
+
+ // Add information to LiveVariables to know that the incoming value is
+ // killed. Note that because the value is defined in several places (once
+ // each for each incoming block), the "def" block and instruction fields
+ // for the VarInfo is not filled in.
+ LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
+ }
+
+ // Since we are going to be deleting the PHI node, if it is the last use of
+ // any registers, or if the value itself is dead, we need to move this
+ // information over to the new copy we just inserted.
+ LV->removeVirtualRegistersKilled(MPhi);
+
+ // If the result is dead, update LV.
+ if (isDead) {
+ LV->addVirtualRegisterDead(DestReg, PHICopy);
+ LV->removeVirtualRegisterDead(DestReg, MPhi);
+ }
+ }
+
+ // Update LiveIntervals for the new copy or implicit def.
+ if (LIS) {
+ MachineInstr *NewInstr = prior(AfterPHIsIt);
+ SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
+
+ SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
+ if (IncomingReg) {
+ // Add the region from the beginning of MBB to the copy instruction to
+ // IncomingReg's live interval.
+ LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
+ VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
+ if (!IncomingVNI)
+ IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
+ LIS->getVNInfoAllocator());
+ IncomingLI.addRange(LiveRange(MBBStartIndex,
+ DestCopyIndex.getRegSlot(),
+ IncomingVNI));
+ }
+
+ LiveInterval &DestLI = LIS->getInterval(DestReg);
+ assert(DestLI.begin() != DestLI.end() &&
+ "PHIs should have nonempty LiveIntervals.");
+ if (DestLI.endIndex().isDead()) {
+ // A dead PHI's live range begins and ends at the start of the MBB, but
+ // the lowered copy, which will still be dead, needs to begin and end at
+ // the copy instruction.
+ VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
+ assert(OrigDestVNI && "PHI destination should be live at block entry.");
+ DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
+ DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
+ LIS->getVNInfoAllocator());
+ DestLI.removeValNo(OrigDestVNI);
+ } else {
+ // Otherwise, remove the region from the beginning of MBB to the copy
+ // instruction from DestReg's live interval.
+ DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
+ VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
+ assert(DestVNI && "PHI destination should be live at its definition.");
+ DestVNI->def = DestCopyIndex.getRegSlot();
+ }
+ }
+
+ // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
+ for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
+ --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
+ MPhi->getOperand(i).getReg())];
+
+ // Now loop over all of the incoming arguments, changing them to copy into the
+ // IncomingReg register in the corresponding predecessor basic block.
+ SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
+ for (int i = NumSrcs - 1; i >= 0; --i) {
+ unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
+ unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
+ bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
+ isImplicitlyDefined(SrcReg, MRI);
+ assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+ "Machine PHI Operands must all be virtual registers!");
+
+ // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
+ // path the PHI.
+ MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
+
+ // Check to make sure we haven't already emitted the copy for this block.
+ // This can happen because PHI nodes may have multiple entries for the same
+ // basic block.
+ if (!MBBsInsertedInto.insert(&opBlock))
+ continue; // If the copy has already been emitted, we're done.
+
+ // Find a safe location to insert the copy, this may be the first terminator
+ // in the block (or end()).
+ MachineBasicBlock::iterator InsertPos =
+ findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
+
+ // Insert the copy.
+ MachineInstr *NewSrcInstr = 0;
+ if (!reusedIncoming && IncomingReg) {
+ if (SrcUndef) {
+ // The source register is undefined, so there is no need for a real
+ // COPY, but we still need to ensure joint dominance by defs.
+ // Insert an IMPLICIT_DEF instruction.
+ NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
+ TII->get(TargetOpcode::IMPLICIT_DEF),
+ IncomingReg);
+
+ // Clean up the old implicit-def, if there even was one.
+ if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
+ if (DefMI->isImplicitDef())
+ ImpDefs.insert(DefMI);
+ } else {
+ NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), IncomingReg)
+ .addReg(SrcReg, 0, SrcSubReg);
+ }
+ }
+
+ // We only need to update the LiveVariables kill of SrcReg if this was the
+ // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
+ // out of the predecessor. We can also ignore undef sources.
+ if (LV && !SrcUndef &&
+ !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
+ !LV->isLiveOut(SrcReg, opBlock)) {
+ // We want to be able to insert a kill of the register if this PHI (aka,
+ // the copy we just inserted) is the last use of the source value. Live
+ // variable analysis conservatively handles this by saying that the value
+ // is live until the end of the block the PHI entry lives in. If the value
+ // really is dead at the PHI copy, there will be no successor blocks which
+ // have the value live-in.
+
+ // Okay, if we now know that the value is not live out of the block, we
+ // can add a kill marker in this block saying that it kills the incoming
+ // value!
+
+ // In our final twist, we have to decide which instruction kills the
+ // register. In most cases this is the copy, however, terminator
+ // instructions at the end of the block may also use the value. In this
+ // case, we should mark the last such terminator as being the killing
+ // block, not the copy.
+ MachineBasicBlock::iterator KillInst = opBlock.end();
+ MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
+ for (MachineBasicBlock::iterator Term = FirstTerm;
+ Term != opBlock.end(); ++Term) {
+ if (Term->readsRegister(SrcReg))
+ KillInst = Term;
+ }
+
+ if (KillInst == opBlock.end()) {
+ // No terminator uses the register.
+
+ if (reusedIncoming || !IncomingReg) {
+ // We may have to rewind a bit if we didn't insert a copy this time.
+ KillInst = FirstTerm;
+ while (KillInst != opBlock.begin()) {
+ --KillInst;
+ if (KillInst->isDebugValue())
+ continue;
+ if (KillInst->readsRegister(SrcReg))
+ break;
+ }
+ } else {
+ // We just inserted this copy.
+ KillInst = prior(InsertPos);
+ }
+ }
+ assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
+
+ // Finally, mark it killed.
+ LV->addVirtualRegisterKilled(SrcReg, KillInst);
+
+ // This vreg no longer lives all of the way through opBlock.
+ unsigned opBlockNum = opBlock.getNumber();
+ LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
+ }
+
+ if (LIS) {
+ if (NewSrcInstr) {
+ LIS->InsertMachineInstrInMaps(NewSrcInstr);
+ LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
+ }
+
+ if (!SrcUndef &&
+ !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
+ LiveInterval &SrcLI = LIS->getInterval(SrcReg);
+
+ bool isLiveOut = false;
+ for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
+ SE = opBlock.succ_end(); SI != SE; ++SI) {
+ SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
+ VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
+
+ // Definitions by other PHIs are not truly live-in for our purposes.
+ if (VNI && VNI->def != startIdx) {
+ isLiveOut = true;
+ break;
+ }
+ }
+
+ if (!isLiveOut) {
+ MachineBasicBlock::iterator KillInst = opBlock.end();
+ MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
+ for (MachineBasicBlock::iterator Term = FirstTerm;
+ Term != opBlock.end(); ++Term) {
+ if (Term->readsRegister(SrcReg))
+ KillInst = Term;
+ }
+
+ if (KillInst == opBlock.end()) {
+ // No terminator uses the register.
+
+ if (reusedIncoming || !IncomingReg) {
+ // We may have to rewind a bit if we didn't just insert a copy.
+ KillInst = FirstTerm;
+ while (KillInst != opBlock.begin()) {
+ --KillInst;
+ if (KillInst->isDebugValue())
+ continue;
+ if (KillInst->readsRegister(SrcReg))
+ break;
+ }
+ } else {
+ // We just inserted this copy.
+ KillInst = prior(InsertPos);
+ }
+ }
+ assert(KillInst->readsRegister(SrcReg) &&
+ "Cannot find kill instruction");
+
+ SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
+ SrcLI.removeRange(LastUseIndex.getRegSlot(),
+ LIS->getMBBEndIdx(&opBlock));
+ }
+ }
+ }
+ }
+
+ // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
+ if (reusedIncoming || !IncomingReg) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(MPhi);
+ MF.DeleteMachineInstr(MPhi);
+ }
+}
+
+/// analyzePHINodes - Gather information about the PHI nodes in here. In
+/// particular, we want to map the number of uses of a virtual register which is
+/// used in a PHI node. We map that to the BB the vreg is coming from. This is
+/// used later to determine when the vreg is killed in the BB.
+///
+void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
+ for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+ I != E; ++I)
+ for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
+ BBI != BBE && BBI->isPHI(); ++BBI)
+ for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
+ ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
+ BBI->getOperand(i).getReg())];
+}
+
+bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineLoopInfo *MLI) {
+ if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
+ return false; // Quick exit for basic blocks without PHIs.
+
+ const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
+ bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
+
+ bool Changed = false;
+ for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
+ BBI != BBE && BBI->isPHI(); ++BBI) {
+ for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
+ unsigned Reg = BBI->getOperand(i).getReg();
+ MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
+ // Is there a critical edge from PreMBB to MBB?
+ if (PreMBB->succ_size() == 1)
+ continue;
+
+ // Avoid splitting backedges of loops. It would introduce small
+ // out-of-line blocks into the loop which is very bad for code placement.
+ if (PreMBB == &MBB && !SplitAllCriticalEdges)
+ continue;
+ const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
+ if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
+ continue;
+
+ // LV doesn't consider a phi use live-out, so isLiveOut only returns true
+ // when the source register is live-out for some other reason than a phi
+ // use. That means the copy we will insert in PreMBB won't be a kill, and
+ // there is a risk it may not be coalesced away.
+ //
+ // If the copy would be a kill, there is no need to split the edge.
+ if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
+ continue;
+
+ DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
+ << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
+ << ": " << *BBI);
+
+ // If Reg is not live-in to MBB, it means it must be live-in to some
+ // other PreMBB successor, and we can avoid the interference by splitting
+ // the edge.
+ //
+ // If Reg *is* live-in to MBB, the interference is inevitable and a copy
+ // is likely to be left after coalescing. If we are looking at a loop
+ // exiting edge, split it so we won't insert code in the loop, otherwise
+ // don't bother.
+ bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
+
+ // Check for a loop exiting edge.
+ if (!ShouldSplit && CurLoop != PreLoop) {
+ DEBUG({
+ dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
+ if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
+ if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
+ });
+ // This edge could be entering a loop, exiting a loop, or it could be
+ // both: Jumping directly form one loop to the header of a sibling
+ // loop.
+ // Split unless this edge is entering CurLoop from an outer loop.
+ ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
+ }
+ if (!ShouldSplit)
+ continue;
+ if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
+ DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
+ continue;
+ }
+ Changed = true;
+ ++NumCriticalEdgesSplit;
+ }
+ }
+ return Changed;
+}
+
+bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
+ assert((LV || LIS) &&
+ "isLiveIn() requires either LiveVariables or LiveIntervals");
+ if (LIS)
+ return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
+ else
+ return LV->isLiveIn(Reg, *MBB);
+}
+
+bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
+ assert((LV || LIS) &&
+ "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
+ // LiveVariables considers uses in PHIs to be in the predecessor basic block,
+ // so that a register used only in a PHI is not live out of the block. In
+ // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
+ // in the predecessor basic block, so that a register used only in a PHI is live
+ // out of the block.
+ if (LIS) {
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+ SE = MBB->succ_end(); SI != SE; ++SI) {
+ if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
+ return true;
+ }
+ return false;
+ } else {
+ return LV->isLiveOut(Reg, *MBB);
+ }
+}
OpenPOWER on IntegriCloud