summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/PBQP
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PBQP')
-rw-r--r--contrib/llvm/lib/CodeGen/PBQP/Graph.h425
-rw-r--r--contrib/llvm/lib/CodeGen/PBQP/HeuristicBase.h246
-rw-r--r--contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h616
-rw-r--r--contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h460
-rw-r--r--contrib/llvm/lib/CodeGen/PBQP/Math.h288
-rw-r--r--contrib/llvm/lib/CodeGen/PBQP/Solution.h89
6 files changed, 0 insertions, 2124 deletions
diff --git a/contrib/llvm/lib/CodeGen/PBQP/Graph.h b/contrib/llvm/lib/CodeGen/PBQP/Graph.h
deleted file mode 100644
index b2224cb..0000000
--- a/contrib/llvm/lib/CodeGen/PBQP/Graph.h
+++ /dev/null
@@ -1,425 +0,0 @@
-//===-------------------- Graph.h - PBQP Graph ------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// PBQP Graph class.
-//
-//===----------------------------------------------------------------------===//
-
-
-#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
-#define LLVM_CODEGEN_PBQP_GRAPH_H
-
-#include "Math.h"
-
-#include <list>
-#include <vector>
-#include <map>
-
-namespace PBQP {
-
- /// PBQP Graph class.
- /// Instances of this class describe PBQP problems.
- class Graph {
- private:
-
- // ----- TYPEDEFS -----
- class NodeEntry;
- class EdgeEntry;
-
- typedef std::list<NodeEntry> NodeList;
- typedef std::list<EdgeEntry> EdgeList;
-
- public:
-
- typedef NodeList::iterator NodeItr;
- typedef NodeList::const_iterator ConstNodeItr;
-
- typedef EdgeList::iterator EdgeItr;
- typedef EdgeList::const_iterator ConstEdgeItr;
-
- private:
-
- typedef std::list<EdgeItr> AdjEdgeList;
-
- public:
-
- typedef AdjEdgeList::iterator AdjEdgeItr;
-
- private:
-
- class NodeEntry {
- private:
- Vector costs;
- AdjEdgeList adjEdges;
- unsigned degree;
- void *data;
- public:
- NodeEntry(const Vector &costs) : costs(costs), degree(0) {}
- Vector& getCosts() { return costs; }
- const Vector& getCosts() const { return costs; }
- unsigned getDegree() const { return degree; }
- AdjEdgeItr edgesBegin() { return adjEdges.begin(); }
- AdjEdgeItr edgesEnd() { return adjEdges.end(); }
- AdjEdgeItr addEdge(EdgeItr e) {
- ++degree;
- return adjEdges.insert(adjEdges.end(), e);
- }
- void removeEdge(AdjEdgeItr ae) {
- --degree;
- adjEdges.erase(ae);
- }
- void setData(void *data) { this->data = data; }
- void* getData() { return data; }
- };
-
- class EdgeEntry {
- private:
- NodeItr node1, node2;
- Matrix costs;
- AdjEdgeItr node1AEItr, node2AEItr;
- void *data;
- public:
- EdgeEntry(NodeItr node1, NodeItr node2, const Matrix &costs)
- : node1(node1), node2(node2), costs(costs) {}
- NodeItr getNode1() const { return node1; }
- NodeItr getNode2() const { return node2; }
- Matrix& getCosts() { return costs; }
- const Matrix& getCosts() const { return costs; }
- void setNode1AEItr(AdjEdgeItr ae) { node1AEItr = ae; }
- AdjEdgeItr getNode1AEItr() { return node1AEItr; }
- void setNode2AEItr(AdjEdgeItr ae) { node2AEItr = ae; }
- AdjEdgeItr getNode2AEItr() { return node2AEItr; }
- void setData(void *data) { this->data = data; }
- void *getData() { return data; }
- };
-
- // ----- MEMBERS -----
-
- NodeList nodes;
- unsigned numNodes;
-
- EdgeList edges;
- unsigned numEdges;
-
- // ----- INTERNAL METHODS -----
-
- NodeEntry& getNode(NodeItr nItr) { return *nItr; }
- const NodeEntry& getNode(ConstNodeItr nItr) const { return *nItr; }
-
- EdgeEntry& getEdge(EdgeItr eItr) { return *eItr; }
- const EdgeEntry& getEdge(ConstEdgeItr eItr) const { return *eItr; }
-
- NodeItr addConstructedNode(const NodeEntry &n) {
- ++numNodes;
- return nodes.insert(nodes.end(), n);
- }
-
- EdgeItr addConstructedEdge(const EdgeEntry &e) {
- assert(findEdge(e.getNode1(), e.getNode2()) == edges.end() &&
- "Attempt to add duplicate edge.");
- ++numEdges;
- EdgeItr edgeItr = edges.insert(edges.end(), e);
- EdgeEntry &ne = getEdge(edgeItr);
- NodeEntry &n1 = getNode(ne.getNode1());
- NodeEntry &n2 = getNode(ne.getNode2());
- // Sanity check on matrix dimensions:
- assert((n1.getCosts().getLength() == ne.getCosts().getRows()) &&
- (n2.getCosts().getLength() == ne.getCosts().getCols()) &&
- "Edge cost dimensions do not match node costs dimensions.");
- ne.setNode1AEItr(n1.addEdge(edgeItr));
- ne.setNode2AEItr(n2.addEdge(edgeItr));
- return edgeItr;
- }
-
- inline void copyFrom(const Graph &other);
- public:
-
- /// \brief Construct an empty PBQP graph.
- Graph() : numNodes(0), numEdges(0) {}
-
- /// \brief Copy construct this graph from "other". Note: Does not copy node
- /// and edge data, only graph structure and costs.
- /// @param other Source graph to copy from.
- Graph(const Graph &other) : numNodes(0), numEdges(0) {
- copyFrom(other);
- }
-
- /// \brief Make this graph a copy of "other". Note: Does not copy node and
- /// edge data, only graph structure and costs.
- /// @param other The graph to copy from.
- /// @return A reference to this graph.
- ///
- /// This will clear the current graph, erasing any nodes and edges added,
- /// before copying from other.
- Graph& operator=(const Graph &other) {
- clear();
- copyFrom(other);
- return *this;
- }
-
- /// \brief Add a node with the given costs.
- /// @param costs Cost vector for the new node.
- /// @return Node iterator for the added node.
- NodeItr addNode(const Vector &costs) {
- return addConstructedNode(NodeEntry(costs));
- }
-
- /// \brief Add an edge between the given nodes with the given costs.
- /// @param n1Itr First node.
- /// @param n2Itr Second node.
- /// @return Edge iterator for the added edge.
- EdgeItr addEdge(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr,
- const Matrix &costs) {
- assert(getNodeCosts(n1Itr).getLength() == costs.getRows() &&
- getNodeCosts(n2Itr).getLength() == costs.getCols() &&
- "Matrix dimensions mismatch.");
- return addConstructedEdge(EdgeEntry(n1Itr, n2Itr, costs));
- }
-
- /// \brief Get the number of nodes in the graph.
- /// @return Number of nodes in the graph.
- unsigned getNumNodes() const { return numNodes; }
-
- /// \brief Get the number of edges in the graph.
- /// @return Number of edges in the graph.
- unsigned getNumEdges() const { return numEdges; }
-
- /// \brief Get a node's cost vector.
- /// @param nItr Node iterator.
- /// @return Node cost vector.
- Vector& getNodeCosts(NodeItr nItr) { return getNode(nItr).getCosts(); }
-
- /// \brief Get a node's cost vector (const version).
- /// @param nItr Node iterator.
- /// @return Node cost vector.
- const Vector& getNodeCosts(ConstNodeItr nItr) const {
- return getNode(nItr).getCosts();
- }
-
- /// \brief Set a node's data pointer.
- /// @param nItr Node iterator.
- /// @param data Pointer to node data.
- ///
- /// Typically used by a PBQP solver to attach data to aid in solution.
- void setNodeData(NodeItr nItr, void *data) { getNode(nItr).setData(data); }
-
- /// \brief Get the node's data pointer.
- /// @param nItr Node iterator.
- /// @return Pointer to node data.
- void* getNodeData(NodeItr nItr) { return getNode(nItr).getData(); }
-
- /// \brief Get an edge's cost matrix.
- /// @param eItr Edge iterator.
- /// @return Edge cost matrix.
- Matrix& getEdgeCosts(EdgeItr eItr) { return getEdge(eItr).getCosts(); }
-
- /// \brief Get an edge's cost matrix (const version).
- /// @param eItr Edge iterator.
- /// @return Edge cost matrix.
- const Matrix& getEdgeCosts(ConstEdgeItr eItr) const {
- return getEdge(eItr).getCosts();
- }
-
- /// \brief Set an edge's data pointer.
- /// @param eItr Edge iterator.
- /// @param data Pointer to edge data.
- ///
- /// Typically used by a PBQP solver to attach data to aid in solution.
- void setEdgeData(EdgeItr eItr, void *data) { getEdge(eItr).setData(data); }
-
- /// \brief Get an edge's data pointer.
- /// @param eItr Edge iterator.
- /// @return Pointer to edge data.
- void* getEdgeData(EdgeItr eItr) { return getEdge(eItr).getData(); }
-
- /// \brief Get a node's degree.
- /// @param nItr Node iterator.
- /// @return The degree of the node.
- unsigned getNodeDegree(NodeItr nItr) const {
- return getNode(nItr).getDegree();
- }
-
- /// \brief Begin iterator for node set.
- NodeItr nodesBegin() { return nodes.begin(); }
-
- /// \brief Begin const iterator for node set.
- ConstNodeItr nodesBegin() const { return nodes.begin(); }
-
- /// \brief End iterator for node set.
- NodeItr nodesEnd() { return nodes.end(); }
-
- /// \brief End const iterator for node set.
- ConstNodeItr nodesEnd() const { return nodes.end(); }
-
- /// \brief Begin iterator for edge set.
- EdgeItr edgesBegin() { return edges.begin(); }
-
- /// \brief End iterator for edge set.
- EdgeItr edgesEnd() { return edges.end(); }
-
- /// \brief Get begin iterator for adjacent edge set.
- /// @param nItr Node iterator.
- /// @return Begin iterator for the set of edges connected to the given node.
- AdjEdgeItr adjEdgesBegin(NodeItr nItr) {
- return getNode(nItr).edgesBegin();
- }
-
- /// \brief Get end iterator for adjacent edge set.
- /// @param nItr Node iterator.
- /// @return End iterator for the set of edges connected to the given node.
- AdjEdgeItr adjEdgesEnd(NodeItr nItr) {
- return getNode(nItr).edgesEnd();
- }
-
- /// \brief Get the first node connected to this edge.
- /// @param eItr Edge iterator.
- /// @return The first node connected to the given edge.
- NodeItr getEdgeNode1(EdgeItr eItr) {
- return getEdge(eItr).getNode1();
- }
-
- /// \brief Get the second node connected to this edge.
- /// @param eItr Edge iterator.
- /// @return The second node connected to the given edge.
- NodeItr getEdgeNode2(EdgeItr eItr) {
- return getEdge(eItr).getNode2();
- }
-
- /// \brief Get the "other" node connected to this edge.
- /// @param eItr Edge iterator.
- /// @param nItr Node iterator for the "given" node.
- /// @return The iterator for the "other" node connected to this edge.
- NodeItr getEdgeOtherNode(EdgeItr eItr, NodeItr nItr) {
- EdgeEntry &e = getEdge(eItr);
- if (e.getNode1() == nItr) {
- return e.getNode2();
- } // else
- return e.getNode1();
- }
-
- /// \brief Get the edge connecting two nodes.
- /// @param n1Itr First node iterator.
- /// @param n2Itr Second node iterator.
- /// @return An iterator for edge (n1Itr, n2Itr) if such an edge exists,
- /// otherwise returns edgesEnd().
- EdgeItr findEdge(NodeItr n1Itr, NodeItr n2Itr) {
- for (AdjEdgeItr aeItr = adjEdgesBegin(n1Itr), aeEnd = adjEdgesEnd(n1Itr);
- aeItr != aeEnd; ++aeItr) {
- if ((getEdgeNode1(*aeItr) == n2Itr) ||
- (getEdgeNode2(*aeItr) == n2Itr)) {
- return *aeItr;
- }
- }
- return edges.end();
- }
-
- /// \brief Remove a node from the graph.
- /// @param nItr Node iterator.
- void removeNode(NodeItr nItr) {
- NodeEntry &n = getNode(nItr);
- for (AdjEdgeItr itr = n.edgesBegin(), end = n.edgesEnd(); itr != end;) {
- EdgeItr eItr = *itr;
- ++itr;
- removeEdge(eItr);
- }
- nodes.erase(nItr);
- --numNodes;
- }
-
- /// \brief Remove an edge from the graph.
- /// @param eItr Edge iterator.
- void removeEdge(EdgeItr eItr) {
- EdgeEntry &e = getEdge(eItr);
- NodeEntry &n1 = getNode(e.getNode1());
- NodeEntry &n2 = getNode(e.getNode2());
- n1.removeEdge(e.getNode1AEItr());
- n2.removeEdge(e.getNode2AEItr());
- edges.erase(eItr);
- --numEdges;
- }
-
- /// \brief Remove all nodes and edges from the graph.
- void clear() {
- nodes.clear();
- edges.clear();
- numNodes = numEdges = 0;
- }
-
- /// \brief Print a representation of this graph in DOT format.
- /// @param os Output stream to print on.
- template <typename OStream>
- void printDot(OStream &os) {
-
- os << "graph {\n";
-
- for (NodeItr nodeItr = nodesBegin(), nodeEnd = nodesEnd();
- nodeItr != nodeEnd; ++nodeItr) {
-
- os << " node" << nodeItr << " [ label=\""
- << nodeItr << ": " << getNodeCosts(nodeItr) << "\" ]\n";
- }
-
- os << " edge [ len=" << getNumNodes() << " ]\n";
-
- for (EdgeItr edgeItr = edgesBegin(), edgeEnd = edgesEnd();
- edgeItr != edgeEnd; ++edgeItr) {
-
- os << " node" << getEdgeNode1(edgeItr)
- << " -- node" << getEdgeNode2(edgeItr)
- << " [ label=\"";
-
- const Matrix &edgeCosts = getEdgeCosts(edgeItr);
-
- for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
- os << edgeCosts.getRowAsVector(i) << "\\n";
- }
- os << "\" ]\n";
- }
- os << "}\n";
- }
-
- };
-
- class NodeItrComparator {
- public:
- bool operator()(Graph::NodeItr n1, Graph::NodeItr n2) const {
- return &*n1 < &*n2;
- }
-
- bool operator()(Graph::ConstNodeItr n1, Graph::ConstNodeItr n2) const {
- return &*n1 < &*n2;
- }
- };
-
- class EdgeItrCompartor {
- public:
- bool operator()(Graph::EdgeItr e1, Graph::EdgeItr e2) const {
- return &*e1 < &*e2;
- }
-
- bool operator()(Graph::ConstEdgeItr e1, Graph::ConstEdgeItr e2) const {
- return &*e1 < &*e2;
- }
- };
-
- void Graph::copyFrom(const Graph &other) {
- std::map<Graph::ConstNodeItr, Graph::NodeItr,
- NodeItrComparator> nodeMap;
-
- for (Graph::ConstNodeItr nItr = other.nodesBegin(),
- nEnd = other.nodesEnd();
- nItr != nEnd; ++nItr) {
- nodeMap[nItr] = addNode(other.getNodeCosts(nItr));
- }
-
- }
-
-}
-
-#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
diff --git a/contrib/llvm/lib/CodeGen/PBQP/HeuristicBase.h b/contrib/llvm/lib/CodeGen/PBQP/HeuristicBase.h
deleted file mode 100644
index 791c227..0000000
--- a/contrib/llvm/lib/CodeGen/PBQP/HeuristicBase.h
+++ /dev/null
@@ -1,246 +0,0 @@
-//===-- HeuristcBase.h --- Heuristic base class for PBQP --------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_PBQP_HEURISTICBASE_H
-#define LLVM_CODEGEN_PBQP_HEURISTICBASE_H
-
-#include "HeuristicSolver.h"
-
-namespace PBQP {
-
- /// \brief Abstract base class for heuristic implementations.
- ///
- /// This class provides a handy base for heuristic implementations with common
- /// solver behaviour implemented for a number of methods.
- ///
- /// To implement your own heuristic using this class as a base you'll have to
- /// implement, as a minimum, the following methods:
- /// <ul>
- /// <li> void addToHeuristicList(Graph::NodeItr) : Add a node to the
- /// heuristic reduction list.
- /// <li> void heuristicReduce() : Perform a single heuristic reduction.
- /// <li> void preUpdateEdgeCosts(Graph::EdgeItr) : Handle the (imminent)
- /// change to the cost matrix on the given edge (by R2).
- /// <li> void postUpdateEdgeCostts(Graph::EdgeItr) : Handle the new
- /// costs on the given edge.
- /// <li> void handleAddEdge(Graph::EdgeItr) : Handle the addition of a new
- /// edge into the PBQP graph (by R2).
- /// <li> void handleRemoveEdge(Graph::EdgeItr, Graph::NodeItr) : Handle the
- /// disconnection of the given edge from the given node.
- /// <li> A constructor for your derived class : to pass back a reference to
- /// the solver which is using this heuristic.
- /// </ul>
- ///
- /// These methods are implemented in this class for documentation purposes,
- /// but will assert if called.
- ///
- /// Note that this class uses the curiously recursive template idiom to
- /// forward calls to the derived class. These methods need not be made
- /// virtual, and indeed probably shouldn't for performance reasons.
- ///
- /// You'll also need to provide NodeData and EdgeData structs in your class.
- /// These can be used to attach data relevant to your heuristic to each
- /// node/edge in the PBQP graph.
-
- template <typename HImpl>
- class HeuristicBase {
- private:
-
- typedef std::list<Graph::NodeItr> OptimalList;
-
- HeuristicSolverImpl<HImpl> &s;
- Graph &g;
- OptimalList optimalList;
-
- // Return a reference to the derived heuristic.
- HImpl& impl() { return static_cast<HImpl&>(*this); }
-
- // Add the given node to the optimal reductions list. Keep an iterator to
- // its location for fast removal.
- void addToOptimalReductionList(Graph::NodeItr nItr) {
- optimalList.insert(optimalList.end(), nItr);
- }
-
- public:
-
- /// \brief Construct an instance with a reference to the given solver.
- /// @param solver The solver which is using this heuristic instance.
- HeuristicBase(HeuristicSolverImpl<HImpl> &solver)
- : s(solver), g(s.getGraph()) { }
-
- /// \brief Get the solver which is using this heuristic instance.
- /// @return The solver which is using this heuristic instance.
- ///
- /// You can use this method to get access to the solver in your derived
- /// heuristic implementation.
- HeuristicSolverImpl<HImpl>& getSolver() { return s; }
-
- /// \brief Get the graph representing the problem to be solved.
- /// @return The graph representing the problem to be solved.
- Graph& getGraph() { return g; }
-
- /// \brief Tell the solver to simplify the graph before the reduction phase.
- /// @return Whether or not the solver should run a simplification phase
- /// prior to the main setup and reduction.
- ///
- /// HeuristicBase returns true from this method as it's a sensible default,
- /// however you can over-ride it in your derived class if you want different
- /// behaviour.
- bool solverRunSimplify() const { return true; }
-
- /// \brief Decide whether a node should be optimally or heuristically
- /// reduced.
- /// @return Whether or not the given node should be listed for optimal
- /// reduction (via R0, R1 or R2).
- ///
- /// HeuristicBase returns true for any node with degree less than 3. This is
- /// sane and sensible for many situations, but not all. You can over-ride
- /// this method in your derived class if you want a different selection
- /// criteria. Note however that your criteria for selecting optimal nodes
- /// should be <i>at least</i> as strong as this. I.e. Nodes of degree 3 or
- /// higher should not be selected under any circumstances.
- bool shouldOptimallyReduce(Graph::NodeItr nItr) {
- if (g.getNodeDegree(nItr) < 3)
- return true;
- // else
- return false;
- }
-
- /// \brief Add the given node to the list of nodes to be optimally reduced.
- /// @return nItr Node iterator to be added.
- ///
- /// You probably don't want to over-ride this, except perhaps to record
- /// statistics before calling this implementation. HeuristicBase relies on
- /// its behaviour.
- void addToOptimalReduceList(Graph::NodeItr nItr) {
- optimalList.push_back(nItr);
- }
-
- /// \brief Initialise the heuristic.
- ///
- /// HeuristicBase iterates over all nodes in the problem and adds them to
- /// the appropriate list using addToOptimalReduceList or
- /// addToHeuristicReduceList based on the result of shouldOptimallyReduce.
- ///
- /// This behaviour should be fine for most situations.
- void setup() {
- for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
- nItr != nEnd; ++nItr) {
- if (impl().shouldOptimallyReduce(nItr)) {
- addToOptimalReduceList(nItr);
- } else {
- impl().addToHeuristicReduceList(nItr);
- }
- }
- }
-
- /// \brief Optimally reduce one of the nodes in the optimal reduce list.
- /// @return True if a reduction takes place, false if the optimal reduce
- /// list is empty.
- ///
- /// Selects a node from the optimal reduce list and removes it, applying
- /// R0, R1 or R2 as appropriate based on the selected node's degree.
- bool optimalReduce() {
- if (optimalList.empty())
- return false;
-
- Graph::NodeItr nItr = optimalList.front();
- optimalList.pop_front();
-
- switch (s.getSolverDegree(nItr)) {
- case 0: s.applyR0(nItr); break;
- case 1: s.applyR1(nItr); break;
- case 2: s.applyR2(nItr); break;
- default: assert(false &&
- "Optimal reductions of degree > 2 nodes is invalid.");
- }
-
- return true;
- }
-
- /// \brief Perform the PBQP reduction process.
- ///
- /// Reduces the problem to the empty graph by repeated application of the
- /// reduction rules R0, R1, R2 and RN.
- /// R0, R1 or R2 are always applied if possible before RN is used.
- void reduce() {
- bool finished = false;
-
- while (!finished) {
- if (!optimalReduce()) {
- if (impl().heuristicReduce()) {
- getSolver().recordRN();
- } else {
- finished = true;
- }
- }
- }
- }
-
- /// \brief Add a node to the heuristic reduce list.
- /// @param nItr Node iterator to add to the heuristic reduce list.
- void addToHeuristicList(Graph::NodeItr nItr) {
- assert(false && "Must be implemented in derived class.");
- }
-
- /// \brief Heuristically reduce one of the nodes in the heuristic
- /// reduce list.
- /// @return True if a reduction takes place, false if the heuristic reduce
- /// list is empty.
- void heuristicReduce() {
- assert(false && "Must be implemented in derived class.");
- }
-
- /// \brief Prepare a change in the costs on the given edge.
- /// @param eItr Edge iterator.
- void preUpdateEdgeCosts(Graph::EdgeItr eItr) {
- assert(false && "Must be implemented in derived class.");
- }
-
- /// \brief Handle the change in the costs on the given edge.
- /// @param eItr Edge iterator.
- void postUpdateEdgeCostts(Graph::EdgeItr eItr) {
- assert(false && "Must be implemented in derived class.");
- }
-
- /// \brief Handle the addition of a new edge into the PBQP graph.
- /// @param eItr Edge iterator for the added edge.
- void handleAddEdge(Graph::EdgeItr eItr) {
- assert(false && "Must be implemented in derived class.");
- }
-
- /// \brief Handle disconnection of an edge from a node.
- /// @param eItr Edge iterator for edge being disconnected.
- /// @param nItr Node iterator for the node being disconnected from.
- ///
- /// Edges are frequently removed due to the removal of a node. This
- /// method allows for the effect to be computed only for the remaining
- /// node in the graph.
- void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
- assert(false && "Must be implemented in derived class.");
- }
-
- /// \brief Clean up any structures used by HeuristicBase.
- ///
- /// At present this just performs a sanity check: that the optimal reduce
- /// list is empty now that reduction has completed.
- ///
- /// If your derived class has more complex structures which need tearing
- /// down you should over-ride this method but include a call back to this
- /// implementation.
- void cleanup() {
- assert(optimalList.empty() && "Nodes left over in optimal reduce list?");
- }
-
- };
-
-}
-
-
-#endif // LLVM_CODEGEN_PBQP_HEURISTICBASE_H
diff --git a/contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h b/contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h
deleted file mode 100644
index 35514f9..0000000
--- a/contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h
+++ /dev/null
@@ -1,616 +0,0 @@
-//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Heuristic PBQP solver. This solver is able to perform optimal reductions for
-// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
-// used to select a node for reduction.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
-#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
-
-#include "Graph.h"
-#include "Solution.h"
-#include <vector>
-#include <limits>
-
-namespace PBQP {
-
- /// \brief Heuristic PBQP solver implementation.
- ///
- /// This class should usually be created (and destroyed) indirectly via a call
- /// to HeuristicSolver<HImpl>::solve(Graph&).
- /// See the comments for HeuristicSolver.
- ///
- /// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules,
- /// backpropagation phase, and maintains the internal copy of the graph on
- /// which the reduction is carried out (the original being kept to facilitate
- /// backpropagation).
- template <typename HImpl>
- class HeuristicSolverImpl {
- private:
-
- typedef typename HImpl::NodeData HeuristicNodeData;
- typedef typename HImpl::EdgeData HeuristicEdgeData;
-
- typedef std::list<Graph::EdgeItr> SolverEdges;
-
- public:
-
- /// \brief Iterator type for edges in the solver graph.
- typedef SolverEdges::iterator SolverEdgeItr;
-
- private:
-
- class NodeData {
- public:
- NodeData() : solverDegree(0) {}
-
- HeuristicNodeData& getHeuristicData() { return hData; }
-
- SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) {
- ++solverDegree;
- return solverEdges.insert(solverEdges.end(), eItr);
- }
-
- void removeSolverEdge(SolverEdgeItr seItr) {
- --solverDegree;
- solverEdges.erase(seItr);
- }
-
- SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); }
- SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); }
- unsigned getSolverDegree() const { return solverDegree; }
- void clearSolverEdges() {
- solverDegree = 0;
- solverEdges.clear();
- }
-
- private:
- HeuristicNodeData hData;
- unsigned solverDegree;
- SolverEdges solverEdges;
- };
-
- class EdgeData {
- public:
- HeuristicEdgeData& getHeuristicData() { return hData; }
-
- void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) {
- this->n1SolverEdgeItr = n1SolverEdgeItr;
- }
-
- SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; }
-
- void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){
- this->n2SolverEdgeItr = n2SolverEdgeItr;
- }
-
- SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; }
-
- private:
-
- HeuristicEdgeData hData;
- SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr;
- };
-
- Graph &g;
- HImpl h;
- Solution s;
- std::vector<Graph::NodeItr> stack;
-
- typedef std::list<NodeData> NodeDataList;
- NodeDataList nodeDataList;
-
- typedef std::list<EdgeData> EdgeDataList;
- EdgeDataList edgeDataList;
-
- public:
-
- /// \brief Construct a heuristic solver implementation to solve the given
- /// graph.
- /// @param g The graph representing the problem instance to be solved.
- HeuristicSolverImpl(Graph &g) : g(g), h(*this) {}
-
- /// \brief Get the graph being solved by this solver.
- /// @return The graph representing the problem instance being solved by this
- /// solver.
- Graph& getGraph() { return g; }
-
- /// \brief Get the heuristic data attached to the given node.
- /// @param nItr Node iterator.
- /// @return The heuristic data attached to the given node.
- HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
- return getSolverNodeData(nItr).getHeuristicData();
- }
-
- /// \brief Get the heuristic data attached to the given edge.
- /// @param eItr Edge iterator.
- /// @return The heuristic data attached to the given node.
- HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
- return getSolverEdgeData(eItr).getHeuristicData();
- }
-
- /// \brief Begin iterator for the set of edges adjacent to the given node in
- /// the solver graph.
- /// @param nItr Node iterator.
- /// @return Begin iterator for the set of edges adjacent to the given node
- /// in the solver graph.
- SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) {
- return getSolverNodeData(nItr).solverEdgesBegin();
- }
-
- /// \brief End iterator for the set of edges adjacent to the given node in
- /// the solver graph.
- /// @param nItr Node iterator.
- /// @return End iterator for the set of edges adjacent to the given node in
- /// the solver graph.
- SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) {
- return getSolverNodeData(nItr).solverEdgesEnd();
- }
-
- /// \brief Remove a node from the solver graph.
- /// @param eItr Edge iterator for edge to be removed.
- ///
- /// Does <i>not</i> notify the heuristic of the removal. That should be
- /// done manually if necessary.
- void removeSolverEdge(Graph::EdgeItr eItr) {
- EdgeData &eData = getSolverEdgeData(eItr);
- NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
- &n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
-
- n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
- n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
- }
-
- /// \brief Compute a solution to the PBQP problem instance with which this
- /// heuristic solver was constructed.
- /// @return A solution to the PBQP problem.
- ///
- /// Performs the full PBQP heuristic solver algorithm, including setup,
- /// calls to the heuristic (which will call back to the reduction rules in
- /// this class), and cleanup.
- Solution computeSolution() {
- setup();
- h.setup();
- h.reduce();
- backpropagate();
- h.cleanup();
- cleanup();
- return s;
- }
-
- /// \brief Add to the end of the stack.
- /// @param nItr Node iterator to add to the reduction stack.
- void pushToStack(Graph::NodeItr nItr) {
- getSolverNodeData(nItr).clearSolverEdges();
- stack.push_back(nItr);
- }
-
- /// \brief Returns the solver degree of the given node.
- /// @param nItr Node iterator for which degree is requested.
- /// @return Node degree in the <i>solver</i> graph (not the original graph).
- unsigned getSolverDegree(Graph::NodeItr nItr) {
- return getSolverNodeData(nItr).getSolverDegree();
- }
-
- /// \brief Set the solution of the given node.
- /// @param nItr Node iterator to set solution for.
- /// @param selection Selection for node.
- void setSolution(const Graph::NodeItr &nItr, unsigned selection) {
- s.setSelection(nItr, selection);
-
- for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
- aeEnd = g.adjEdgesEnd(nItr);
- aeItr != aeEnd; ++aeItr) {
- Graph::EdgeItr eItr(*aeItr);
- Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr));
- getSolverNodeData(anItr).addSolverEdge(eItr);
- }
- }
-
- /// \brief Apply rule R0.
- /// @param nItr Node iterator for node to apply R0 to.
- ///
- /// Node will be automatically pushed to the solver stack.
- void applyR0(Graph::NodeItr nItr) {
- assert(getSolverNodeData(nItr).getSolverDegree() == 0 &&
- "R0 applied to node with degree != 0.");
-
- // Nothing to do. Just push the node onto the reduction stack.
- pushToStack(nItr);
-
- s.recordR0();
- }
-
- /// \brief Apply rule R1.
- /// @param xnItr Node iterator for node to apply R1 to.
- ///
- /// Node will be automatically pushed to the solver stack.
- void applyR1(Graph::NodeItr xnItr) {
- NodeData &nd = getSolverNodeData(xnItr);
- assert(nd.getSolverDegree() == 1 &&
- "R1 applied to node with degree != 1.");
-
- Graph::EdgeItr eItr = *nd.solverEdgesBegin();
-
- const Matrix &eCosts = g.getEdgeCosts(eItr);
- const Vector &xCosts = g.getNodeCosts(xnItr);
-
- // Duplicate a little to avoid transposing matrices.
- if (xnItr == g.getEdgeNode1(eItr)) {
- Graph::NodeItr ynItr = g.getEdgeNode2(eItr);
- Vector &yCosts = g.getNodeCosts(ynItr);
- for (unsigned j = 0; j < yCosts.getLength(); ++j) {
- PBQPNum min = eCosts[0][j] + xCosts[0];
- for (unsigned i = 1; i < xCosts.getLength(); ++i) {
- PBQPNum c = eCosts[i][j] + xCosts[i];
- if (c < min)
- min = c;
- }
- yCosts[j] += min;
- }
- h.handleRemoveEdge(eItr, ynItr);
- } else {
- Graph::NodeItr ynItr = g.getEdgeNode1(eItr);
- Vector &yCosts = g.getNodeCosts(ynItr);
- for (unsigned i = 0; i < yCosts.getLength(); ++i) {
- PBQPNum min = eCosts[i][0] + xCosts[0];
- for (unsigned j = 1; j < xCosts.getLength(); ++j) {
- PBQPNum c = eCosts[i][j] + xCosts[j];
- if (c < min)
- min = c;
- }
- yCosts[i] += min;
- }
- h.handleRemoveEdge(eItr, ynItr);
- }
- removeSolverEdge(eItr);
- assert(nd.getSolverDegree() == 0 &&
- "Degree 1 with edge removed should be 0.");
- pushToStack(xnItr);
- s.recordR1();
- }
-
- /// \brief Apply rule R2.
- /// @param xnItr Node iterator for node to apply R2 to.
- ///
- /// Node will be automatically pushed to the solver stack.
- void applyR2(Graph::NodeItr xnItr) {
- assert(getSolverNodeData(xnItr).getSolverDegree() == 2 &&
- "R2 applied to node with degree != 2.");
-
- NodeData &nd = getSolverNodeData(xnItr);
- const Vector &xCosts = g.getNodeCosts(xnItr);
-
- SolverEdgeItr aeItr = nd.solverEdgesBegin();
- Graph::EdgeItr yxeItr = *aeItr,
- zxeItr = *(++aeItr);
-
- Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr),
- znItr = g.getEdgeOtherNode(zxeItr, xnItr);
-
- bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr),
- flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr);
-
- const Matrix *yxeCosts = flipEdge1 ?
- new Matrix(g.getEdgeCosts(yxeItr).transpose()) :
- &g.getEdgeCosts(yxeItr);
-
- const Matrix *zxeCosts = flipEdge2 ?
- new Matrix(g.getEdgeCosts(zxeItr).transpose()) :
- &g.getEdgeCosts(zxeItr);
-
- unsigned xLen = xCosts.getLength(),
- yLen = yxeCosts->getRows(),
- zLen = zxeCosts->getRows();
-
- Matrix delta(yLen, zLen);
-
- for (unsigned i = 0; i < yLen; ++i) {
- for (unsigned j = 0; j < zLen; ++j) {
- PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0];
- for (unsigned k = 1; k < xLen; ++k) {
- PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k];
- if (c < min) {
- min = c;
- }
- }
- delta[i][j] = min;
- }
- }
-
- if (flipEdge1)
- delete yxeCosts;
-
- if (flipEdge2)
- delete zxeCosts;
-
- Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr);
- bool addedEdge = false;
-
- if (yzeItr == g.edgesEnd()) {
- yzeItr = g.addEdge(ynItr, znItr, delta);
- addedEdge = true;
- } else {
- Matrix &yzeCosts = g.getEdgeCosts(yzeItr);
- h.preUpdateEdgeCosts(yzeItr);
- if (ynItr == g.getEdgeNode1(yzeItr)) {
- yzeCosts += delta;
- } else {
- yzeCosts += delta.transpose();
- }
- }
-
- bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr);
-
- if (!addedEdge) {
- // If we modified the edge costs let the heuristic know.
- h.postUpdateEdgeCosts(yzeItr);
- }
-
- if (nullCostEdge) {
- // If this edge ended up null remove it.
- if (!addedEdge) {
- // We didn't just add it, so we need to notify the heuristic
- // and remove it from the solver.
- h.handleRemoveEdge(yzeItr, ynItr);
- h.handleRemoveEdge(yzeItr, znItr);
- removeSolverEdge(yzeItr);
- }
- g.removeEdge(yzeItr);
- } else if (addedEdge) {
- // If the edge was added, and non-null, finish setting it up, add it to
- // the solver & notify heuristic.
- edgeDataList.push_back(EdgeData());
- g.setEdgeData(yzeItr, &edgeDataList.back());
- addSolverEdge(yzeItr);
- h.handleAddEdge(yzeItr);
- }
-
- h.handleRemoveEdge(yxeItr, ynItr);
- removeSolverEdge(yxeItr);
- h.handleRemoveEdge(zxeItr, znItr);
- removeSolverEdge(zxeItr);
-
- pushToStack(xnItr);
- s.recordR2();
- }
-
- /// \brief Record an application of the RN rule.
- ///
- /// For use by the HeuristicBase.
- void recordRN() { s.recordRN(); }
-
- private:
-
- NodeData& getSolverNodeData(Graph::NodeItr nItr) {
- return *static_cast<NodeData*>(g.getNodeData(nItr));
- }
-
- EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) {
- return *static_cast<EdgeData*>(g.getEdgeData(eItr));
- }
-
- void addSolverEdge(Graph::EdgeItr eItr) {
- EdgeData &eData = getSolverEdgeData(eItr);
- NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
- &n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
-
- eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr));
- eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr));
- }
-
- void setup() {
- if (h.solverRunSimplify()) {
- simplify();
- }
-
- // Create node data objects.
- for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
- nItr != nEnd; ++nItr) {
- nodeDataList.push_back(NodeData());
- g.setNodeData(nItr, &nodeDataList.back());
- }
-
- // Create edge data objects.
- for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
- eItr != eEnd; ++eItr) {
- edgeDataList.push_back(EdgeData());
- g.setEdgeData(eItr, &edgeDataList.back());
- addSolverEdge(eItr);
- }
- }
-
- void simplify() {
- disconnectTrivialNodes();
- eliminateIndependentEdges();
- }
-
- // Eliminate trivial nodes.
- void disconnectTrivialNodes() {
- unsigned numDisconnected = 0;
-
- for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
- nItr != nEnd; ++nItr) {
-
- if (g.getNodeCosts(nItr).getLength() == 1) {
-
- std::vector<Graph::EdgeItr> edgesToRemove;
-
- for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
- aeEnd = g.adjEdgesEnd(nItr);
- aeItr != aeEnd; ++aeItr) {
-
- Graph::EdgeItr eItr = *aeItr;
-
- if (g.getEdgeNode1(eItr) == nItr) {
- Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr);
- g.getNodeCosts(otherNodeItr) +=
- g.getEdgeCosts(eItr).getRowAsVector(0);
- }
- else {
- Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr);
- g.getNodeCosts(otherNodeItr) +=
- g.getEdgeCosts(eItr).getColAsVector(0);
- }
-
- edgesToRemove.push_back(eItr);
- }
-
- if (!edgesToRemove.empty())
- ++numDisconnected;
-
- while (!edgesToRemove.empty()) {
- g.removeEdge(edgesToRemove.back());
- edgesToRemove.pop_back();
- }
- }
- }
- }
-
- void eliminateIndependentEdges() {
- std::vector<Graph::EdgeItr> edgesToProcess;
- unsigned numEliminated = 0;
-
- for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
- eItr != eEnd; ++eItr) {
- edgesToProcess.push_back(eItr);
- }
-
- while (!edgesToProcess.empty()) {
- if (tryToEliminateEdge(edgesToProcess.back()))
- ++numEliminated;
- edgesToProcess.pop_back();
- }
- }
-
- bool tryToEliminateEdge(Graph::EdgeItr eItr) {
- if (tryNormaliseEdgeMatrix(eItr)) {
- g.removeEdge(eItr);
- return true;
- }
- return false;
- }
-
- bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) {
-
- const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
-
- Matrix &edgeCosts = g.getEdgeCosts(eItr);
- Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)),
- &vCosts = g.getNodeCosts(g.getEdgeNode2(eItr));
-
- for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
- PBQPNum rowMin = infinity;
-
- for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
- if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin)
- rowMin = edgeCosts[r][c];
- }
-
- uCosts[r] += rowMin;
-
- if (rowMin != infinity) {
- edgeCosts.subFromRow(r, rowMin);
- }
- else {
- edgeCosts.setRow(r, 0);
- }
- }
-
- for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
- PBQPNum colMin = infinity;
-
- for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
- if (uCosts[r] != infinity && edgeCosts[r][c] < colMin)
- colMin = edgeCosts[r][c];
- }
-
- vCosts[c] += colMin;
-
- if (colMin != infinity) {
- edgeCosts.subFromCol(c, colMin);
- }
- else {
- edgeCosts.setCol(c, 0);
- }
- }
-
- return edgeCosts.isZero();
- }
-
- void backpropagate() {
- while (!stack.empty()) {
- computeSolution(stack.back());
- stack.pop_back();
- }
- }
-
- void computeSolution(Graph::NodeItr nItr) {
-
- NodeData &nodeData = getSolverNodeData(nItr);
-
- Vector v(g.getNodeCosts(nItr));
-
- // Solve based on existing solved edges.
- for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
- solvedEdgeEnd = nodeData.solverEdgesEnd();
- solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
-
- Graph::EdgeItr eItr(*solvedEdgeItr);
- Matrix &edgeCosts = g.getEdgeCosts(eItr);
-
- if (nItr == g.getEdgeNode1(eItr)) {
- Graph::NodeItr adjNode(g.getEdgeNode2(eItr));
- unsigned adjSolution = s.getSelection(adjNode);
- v += edgeCosts.getColAsVector(adjSolution);
- }
- else {
- Graph::NodeItr adjNode(g.getEdgeNode1(eItr));
- unsigned adjSolution = s.getSelection(adjNode);
- v += edgeCosts.getRowAsVector(adjSolution);
- }
-
- }
-
- setSolution(nItr, v.minIndex());
- }
-
- void cleanup() {
- h.cleanup();
- nodeDataList.clear();
- edgeDataList.clear();
- }
- };
-
- /// \brief PBQP heuristic solver class.
- ///
- /// Given a PBQP Graph g representing a PBQP problem, you can find a solution
- /// by calling
- /// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt>
- ///
- /// The choice of heuristic for the H parameter will affect both the solver
- /// speed and solution quality. The heuristic should be chosen based on the
- /// nature of the problem being solved.
- /// Currently the only solver included with LLVM is the Briggs heuristic for
- /// register allocation.
- template <typename HImpl>
- class HeuristicSolver {
- public:
- static Solution solve(Graph &g) {
- HeuristicSolverImpl<HImpl> hs(g);
- return hs.computeSolution();
- }
- };
-
-}
-
-#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
diff --git a/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h b/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h
deleted file mode 100644
index 18eaf7c..0000000
--- a/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h
+++ /dev/null
@@ -1,460 +0,0 @@
-//===-- Briggs.h --- Briggs Heuristic for PBQP ------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This class implements the Briggs test for "allocability" of nodes in a
-// PBQP graph representing a register allocation problem. Nodes which can be
-// proven allocable (by a safe and relatively accurate test) are removed from
-// the PBQP graph first. If no provably allocable node is present in the graph
-// then the node with the minimal spill-cost to degree ratio is removed.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
-#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
-
-#include "../HeuristicSolver.h"
-#include "../HeuristicBase.h"
-
-#include <set>
-#include <limits>
-
-namespace PBQP {
- namespace Heuristics {
-
- /// \brief PBQP Heuristic which applies an allocability test based on
- /// Briggs.
- ///
- /// This heuristic assumes that the elements of cost vectors in the PBQP
- /// problem represent storage options, with the first being the spill
- /// option and subsequent elements representing legal registers for the
- /// corresponding node. Edge cost matrices are likewise assumed to represent
- /// register constraints.
- /// If one or more nodes can be proven allocable by this heuristic (by
- /// inspection of their constraint matrices) then the allocable node of
- /// highest degree is selected for the next reduction and pushed to the
- /// solver stack. If no nodes can be proven allocable then the node with
- /// the lowest estimated spill cost is selected and push to the solver stack
- /// instead.
- ///
- /// This implementation is built on top of HeuristicBase.
- class Briggs : public HeuristicBase<Briggs> {
- private:
-
- class LinkDegreeComparator {
- public:
- LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {}
- bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const {
- if (s->getSolverDegree(n1Itr) > s->getSolverDegree(n2Itr))
- return true;
- return false;
- }
- private:
- HeuristicSolverImpl<Briggs> *s;
- };
-
- class SpillCostComparator {
- public:
- SpillCostComparator(HeuristicSolverImpl<Briggs> &s)
- : s(&s), g(&s.getGraph()) {}
- bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const {
- PBQPNum cost1 = g->getNodeCosts(n1Itr)[0] / s->getSolverDegree(n1Itr),
- cost2 = g->getNodeCosts(n2Itr)[0] / s->getSolverDegree(n2Itr);
- if (cost1 < cost2)
- return true;
- return false;
- }
-
- private:
- HeuristicSolverImpl<Briggs> *s;
- Graph *g;
- };
-
- typedef std::list<Graph::NodeItr> RNAllocableList;
- typedef RNAllocableList::iterator RNAllocableListItr;
-
- typedef std::list<Graph::NodeItr> RNUnallocableList;
- typedef RNUnallocableList::iterator RNUnallocableListItr;
-
- public:
-
- struct NodeData {
- typedef std::vector<unsigned> UnsafeDegreesArray;
- bool isHeuristic, isAllocable, isInitialized;
- unsigned numDenied, numSafe;
- UnsafeDegreesArray unsafeDegrees;
- RNAllocableListItr rnaItr;
- RNUnallocableListItr rnuItr;
-
- NodeData()
- : isHeuristic(false), isAllocable(false), isInitialized(false),
- numDenied(0), numSafe(0) { }
- };
-
- struct EdgeData {
- typedef std::vector<unsigned> UnsafeArray;
- unsigned worst, reverseWorst;
- UnsafeArray unsafe, reverseUnsafe;
- bool isUpToDate;
-
- EdgeData() : worst(0), reverseWorst(0), isUpToDate(false) {}
- };
-
- /// \brief Construct an instance of the Briggs heuristic.
- /// @param solver A reference to the solver which is using this heuristic.
- Briggs(HeuristicSolverImpl<Briggs> &solver) :
- HeuristicBase<Briggs>(solver) {}
-
- /// \brief Determine whether a node should be reduced using optimal
- /// reduction.
- /// @param nItr Node iterator to be considered.
- /// @return True if the given node should be optimally reduced, false
- /// otherwise.
- ///
- /// Selects nodes of degree 0, 1 or 2 for optimal reduction, with one
- /// exception. Nodes whose spill cost (element 0 of their cost vector) is
- /// infinite are checked for allocability first. Allocable nodes may be
- /// optimally reduced, but nodes whose allocability cannot be proven are
- /// selected for heuristic reduction instead.
- bool shouldOptimallyReduce(Graph::NodeItr nItr) {
- if (getSolver().getSolverDegree(nItr) < 3) {
- return true;
- }
- // else
- return false;
- }
-
- /// \brief Add a node to the heuristic reduce list.
- /// @param nItr Node iterator to add to the heuristic reduce list.
- void addToHeuristicReduceList(Graph::NodeItr nItr) {
- NodeData &nd = getHeuristicNodeData(nItr);
- initializeNode(nItr);
- nd.isHeuristic = true;
- if (nd.isAllocable) {
- nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr);
- } else {
- nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nItr);
- }
- }
-
- /// \brief Heuristically reduce one of the nodes in the heuristic
- /// reduce list.
- /// @return True if a reduction takes place, false if the heuristic reduce
- /// list is empty.
- ///
- /// If the list of allocable nodes is non-empty a node is selected
- /// from it and pushed to the stack. Otherwise if the non-allocable list
- /// is non-empty a node is selected from it and pushed to the stack.
- /// If both lists are empty the method simply returns false with no action
- /// taken.
- bool heuristicReduce() {
- if (!rnAllocableList.empty()) {
- RNAllocableListItr rnaItr =
- min_element(rnAllocableList.begin(), rnAllocableList.end(),
- LinkDegreeComparator(getSolver()));
- Graph::NodeItr nItr = *rnaItr;
- rnAllocableList.erase(rnaItr);
- handleRemoveNode(nItr);
- getSolver().pushToStack(nItr);
- return true;
- } else if (!rnUnallocableList.empty()) {
- RNUnallocableListItr rnuItr =
- min_element(rnUnallocableList.begin(), rnUnallocableList.end(),
- SpillCostComparator(getSolver()));
- Graph::NodeItr nItr = *rnuItr;
- rnUnallocableList.erase(rnuItr);
- handleRemoveNode(nItr);
- getSolver().pushToStack(nItr);
- return true;
- }
- // else
- return false;
- }
-
- /// \brief Prepare a change in the costs on the given edge.
- /// @param eItr Edge iterator.
- void preUpdateEdgeCosts(Graph::EdgeItr eItr) {
- Graph &g = getGraph();
- Graph::NodeItr n1Itr = g.getEdgeNode1(eItr),
- n2Itr = g.getEdgeNode2(eItr);
- NodeData &n1 = getHeuristicNodeData(n1Itr),
- &n2 = getHeuristicNodeData(n2Itr);
-
- if (n1.isHeuristic)
- subtractEdgeContributions(eItr, getGraph().getEdgeNode1(eItr));
- if (n2.isHeuristic)
- subtractEdgeContributions(eItr, getGraph().getEdgeNode2(eItr));
-
- EdgeData &ed = getHeuristicEdgeData(eItr);
- ed.isUpToDate = false;
- }
-
- /// \brief Handle the change in the costs on the given edge.
- /// @param eItr Edge iterator.
- void postUpdateEdgeCosts(Graph::EdgeItr eItr) {
- // This is effectively the same as adding a new edge now, since
- // we've factored out the costs of the old one.
- handleAddEdge(eItr);
- }
-
- /// \brief Handle the addition of a new edge into the PBQP graph.
- /// @param eItr Edge iterator for the added edge.
- ///
- /// Updates allocability of any nodes connected by this edge which are
- /// being managed by the heuristic. If allocability changes they are
- /// moved to the appropriate list.
- void handleAddEdge(Graph::EdgeItr eItr) {
- Graph &g = getGraph();
- Graph::NodeItr n1Itr = g.getEdgeNode1(eItr),
- n2Itr = g.getEdgeNode2(eItr);
- NodeData &n1 = getHeuristicNodeData(n1Itr),
- &n2 = getHeuristicNodeData(n2Itr);
-
- // If neither node is managed by the heuristic there's nothing to be
- // done.
- if (!n1.isHeuristic && !n2.isHeuristic)
- return;
-
- // Ok - we need to update at least one node.
- computeEdgeContributions(eItr);
-
- // Update node 1 if it's managed by the heuristic.
- if (n1.isHeuristic) {
- bool n1WasAllocable = n1.isAllocable;
- addEdgeContributions(eItr, n1Itr);
- updateAllocability(n1Itr);
- if (n1WasAllocable && !n1.isAllocable) {
- rnAllocableList.erase(n1.rnaItr);
- n1.rnuItr =
- rnUnallocableList.insert(rnUnallocableList.end(), n1Itr);
- }
- }
-
- // Likewise for node 2.
- if (n2.isHeuristic) {
- bool n2WasAllocable = n2.isAllocable;
- addEdgeContributions(eItr, n2Itr);
- updateAllocability(n2Itr);
- if (n2WasAllocable && !n2.isAllocable) {
- rnAllocableList.erase(n2.rnaItr);
- n2.rnuItr =
- rnUnallocableList.insert(rnUnallocableList.end(), n2Itr);
- }
- }
- }
-
- /// \brief Handle disconnection of an edge from a node.
- /// @param eItr Edge iterator for edge being disconnected.
- /// @param nItr Node iterator for the node being disconnected from.
- ///
- /// Updates allocability of the given node and, if appropriate, moves the
- /// node to a new list.
- void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
- NodeData &nd = getHeuristicNodeData(nItr);
-
- // If the node is not managed by the heuristic there's nothing to be
- // done.
- if (!nd.isHeuristic)
- return;
-
- EdgeData &ed = getHeuristicEdgeData(eItr);
- (void)ed;
- assert(ed.isUpToDate && "Edge data is not up to date.");
-
- // Update node.
- bool ndWasAllocable = nd.isAllocable;
- subtractEdgeContributions(eItr, nItr);
- updateAllocability(nItr);
-
- // If the node has gone optimal...
- if (shouldOptimallyReduce(nItr)) {
- nd.isHeuristic = false;
- addToOptimalReduceList(nItr);
- if (ndWasAllocable) {
- rnAllocableList.erase(nd.rnaItr);
- } else {
- rnUnallocableList.erase(nd.rnuItr);
- }
- } else {
- // Node didn't go optimal, but we might have to move it
- // from "unallocable" to "allocable".
- if (!ndWasAllocable && nd.isAllocable) {
- rnUnallocableList.erase(nd.rnuItr);
- nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr);
- }
- }
- }
-
- private:
-
- NodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
- return getSolver().getHeuristicNodeData(nItr);
- }
-
- EdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
- return getSolver().getHeuristicEdgeData(eItr);
- }
-
- // Work out what this edge will contribute to the allocability of the
- // nodes connected to it.
- void computeEdgeContributions(Graph::EdgeItr eItr) {
- EdgeData &ed = getHeuristicEdgeData(eItr);
-
- if (ed.isUpToDate)
- return; // Edge data is already up to date.
-
- Matrix &eCosts = getGraph().getEdgeCosts(eItr);
-
- unsigned numRegs = eCosts.getRows() - 1,
- numReverseRegs = eCosts.getCols() - 1;
-
- std::vector<unsigned> rowInfCounts(numRegs, 0),
- colInfCounts(numReverseRegs, 0);
-
- ed.worst = 0;
- ed.reverseWorst = 0;
- ed.unsafe.clear();
- ed.unsafe.resize(numRegs, 0);
- ed.reverseUnsafe.clear();
- ed.reverseUnsafe.resize(numReverseRegs, 0);
-
- for (unsigned i = 0; i < numRegs; ++i) {
- for (unsigned j = 0; j < numReverseRegs; ++j) {
- if (eCosts[i + 1][j + 1] ==
- std::numeric_limits<PBQPNum>::infinity()) {
- ed.unsafe[i] = 1;
- ed.reverseUnsafe[j] = 1;
- ++rowInfCounts[i];
- ++colInfCounts[j];
-
- if (colInfCounts[j] > ed.worst) {
- ed.worst = colInfCounts[j];
- }
-
- if (rowInfCounts[i] > ed.reverseWorst) {
- ed.reverseWorst = rowInfCounts[i];
- }
- }
- }
- }
-
- ed.isUpToDate = true;
- }
-
- // Add the contributions of the given edge to the given node's
- // numDenied and safe members. No action is taken other than to update
- // these member values. Once updated these numbers can be used by clients
- // to update the node's allocability.
- void addEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
- EdgeData &ed = getHeuristicEdgeData(eItr);
-
- assert(ed.isUpToDate && "Using out-of-date edge numbers.");
-
- NodeData &nd = getHeuristicNodeData(nItr);
- unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
-
- bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr);
- EdgeData::UnsafeArray &unsafe =
- nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
- nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
-
- for (unsigned r = 0; r < numRegs; ++r) {
- if (unsafe[r]) {
- if (nd.unsafeDegrees[r]==0) {
- --nd.numSafe;
- }
- ++nd.unsafeDegrees[r];
- }
- }
- }
-
- // Subtract the contributions of the given edge to the given node's
- // numDenied and safe members. No action is taken other than to update
- // these member values. Once updated these numbers can be used by clients
- // to update the node's allocability.
- void subtractEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
- EdgeData &ed = getHeuristicEdgeData(eItr);
-
- assert(ed.isUpToDate && "Using out-of-date edge numbers.");
-
- NodeData &nd = getHeuristicNodeData(nItr);
- unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
-
- bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr);
- EdgeData::UnsafeArray &unsafe =
- nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
- nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
-
- for (unsigned r = 0; r < numRegs; ++r) {
- if (unsafe[r]) {
- if (nd.unsafeDegrees[r] == 1) {
- ++nd.numSafe;
- }
- --nd.unsafeDegrees[r];
- }
- }
- }
-
- void updateAllocability(Graph::NodeItr nItr) {
- NodeData &nd = getHeuristicNodeData(nItr);
- unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
- nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0;
- }
-
- void initializeNode(Graph::NodeItr nItr) {
- NodeData &nd = getHeuristicNodeData(nItr);
-
- if (nd.isInitialized)
- return; // Node data is already up to date.
-
- unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
-
- nd.numDenied = 0;
- nd.numSafe = numRegs;
- nd.unsafeDegrees.resize(numRegs, 0);
-
- typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
-
- for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nItr),
- aeEnd = getSolver().solverEdgesEnd(nItr);
- aeItr != aeEnd; ++aeItr) {
-
- Graph::EdgeItr eItr = *aeItr;
- computeEdgeContributions(eItr);
- addEdgeContributions(eItr, nItr);
- }
-
- updateAllocability(nItr);
- nd.isInitialized = true;
- }
-
- void handleRemoveNode(Graph::NodeItr xnItr) {
- typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
- std::vector<Graph::EdgeItr> edgesToRemove;
- for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnItr),
- aeEnd = getSolver().solverEdgesEnd(xnItr);
- aeItr != aeEnd; ++aeItr) {
- Graph::NodeItr ynItr = getGraph().getEdgeOtherNode(*aeItr, xnItr);
- handleRemoveEdge(*aeItr, ynItr);
- edgesToRemove.push_back(*aeItr);
- }
- while (!edgesToRemove.empty()) {
- getSolver().removeSolverEdge(edgesToRemove.back());
- edgesToRemove.pop_back();
- }
- }
-
- RNAllocableList rnAllocableList;
- RNUnallocableList rnUnallocableList;
- };
-
- }
-}
-
-
-#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
diff --git a/contrib/llvm/lib/CodeGen/PBQP/Math.h b/contrib/llvm/lib/CodeGen/PBQP/Math.h
deleted file mode 100644
index e7598bf..0000000
--- a/contrib/llvm/lib/CodeGen/PBQP/Math.h
+++ /dev/null
@@ -1,288 +0,0 @@
-//===------ Math.h - PBQP Vector and Matrix classes -------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_PBQP_MATH_H
-#define LLVM_CODEGEN_PBQP_MATH_H
-
-#include <cassert>
-#include <algorithm>
-#include <functional>
-
-namespace PBQP {
-
-typedef float PBQPNum;
-
-/// \brief PBQP Vector class.
-class Vector {
- public:
-
- /// \brief Construct a PBQP vector of the given size.
- explicit Vector(unsigned length) :
- length(length), data(new PBQPNum[length]) {
- }
-
- /// \brief Construct a PBQP vector with initializer.
- Vector(unsigned length, PBQPNum initVal) :
- length(length), data(new PBQPNum[length]) {
- std::fill(data, data + length, initVal);
- }
-
- /// \brief Copy construct a PBQP vector.
- Vector(const Vector &v) :
- length(v.length), data(new PBQPNum[length]) {
- std::copy(v.data, v.data + length, data);
- }
-
- /// \brief Destroy this vector, return its memory.
- ~Vector() { delete[] data; }
-
- /// \brief Assignment operator.
- Vector& operator=(const Vector &v) {
- delete[] data;
- length = v.length;
- data = new PBQPNum[length];
- std::copy(v.data, v.data + length, data);
- return *this;
- }
-
- /// \brief Return the length of the vector
- unsigned getLength() const {
- return length;
- }
-
- /// \brief Element access.
- PBQPNum& operator[](unsigned index) {
- assert(index < length && "Vector element access out of bounds.");
- return data[index];
- }
-
- /// \brief Const element access.
- const PBQPNum& operator[](unsigned index) const {
- assert(index < length && "Vector element access out of bounds.");
- return data[index];
- }
-
- /// \brief Add another vector to this one.
- Vector& operator+=(const Vector &v) {
- assert(length == v.length && "Vector length mismatch.");
- std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
- return *this;
- }
-
- /// \brief Subtract another vector from this one.
- Vector& operator-=(const Vector &v) {
- assert(length == v.length && "Vector length mismatch.");
- std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
- return *this;
- }
-
- /// \brief Returns the index of the minimum value in this vector
- unsigned minIndex() const {
- return std::min_element(data, data + length) - data;
- }
-
- private:
- unsigned length;
- PBQPNum *data;
-};
-
-/// \brief Output a textual representation of the given vector on the given
-/// output stream.
-template <typename OStream>
-OStream& operator<<(OStream &os, const Vector &v) {
- assert((v.getLength() != 0) && "Zero-length vector badness.");
-
- os << "[ " << v[0];
- for (unsigned i = 1; i < v.getLength(); ++i) {
- os << ", " << v[i];
- }
- os << " ]";
-
- return os;
-}
-
-
-/// \brief PBQP Matrix class
-class Matrix {
- public:
-
- /// \brief Construct a PBQP Matrix with the given dimensions.
- Matrix(unsigned rows, unsigned cols) :
- rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
- }
-
- /// \brief Construct a PBQP Matrix with the given dimensions and initial
- /// value.
- Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
- rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
- std::fill(data, data + (rows * cols), initVal);
- }
-
- /// \brief Copy construct a PBQP matrix.
- Matrix(const Matrix &m) :
- rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
- std::copy(m.data, m.data + (rows * cols), data);
- }
-
- /// \brief Destroy this matrix, return its memory.
- ~Matrix() { delete[] data; }
-
- /// \brief Assignment operator.
- Matrix& operator=(const Matrix &m) {
- delete[] data;
- rows = m.rows; cols = m.cols;
- data = new PBQPNum[rows * cols];
- std::copy(m.data, m.data + (rows * cols), data);
- return *this;
- }
-
- /// \brief Return the number of rows in this matrix.
- unsigned getRows() const { return rows; }
-
- /// \brief Return the number of cols in this matrix.
- unsigned getCols() const { return cols; }
-
- /// \brief Matrix element access.
- PBQPNum* operator[](unsigned r) {
- assert(r < rows && "Row out of bounds.");
- return data + (r * cols);
- }
-
- /// \brief Matrix element access.
- const PBQPNum* operator[](unsigned r) const {
- assert(r < rows && "Row out of bounds.");
- return data + (r * cols);
- }
-
- /// \brief Returns the given row as a vector.
- Vector getRowAsVector(unsigned r) const {
- Vector v(cols);
- for (unsigned c = 0; c < cols; ++c)
- v[c] = (*this)[r][c];
- return v;
- }
-
- /// \brief Returns the given column as a vector.
- Vector getColAsVector(unsigned c) const {
- Vector v(rows);
- for (unsigned r = 0; r < rows; ++r)
- v[r] = (*this)[r][c];
- return v;
- }
-
- /// \brief Reset the matrix to the given value.
- Matrix& reset(PBQPNum val = 0) {
- std::fill(data, data + (rows * cols), val);
- return *this;
- }
-
- /// \brief Set a single row of this matrix to the given value.
- Matrix& setRow(unsigned r, PBQPNum val) {
- assert(r < rows && "Row out of bounds.");
- std::fill(data + (r * cols), data + ((r + 1) * cols), val);
- return *this;
- }
-
- /// \brief Set a single column of this matrix to the given value.
- Matrix& setCol(unsigned c, PBQPNum val) {
- assert(c < cols && "Column out of bounds.");
- for (unsigned r = 0; r < rows; ++r)
- (*this)[r][c] = val;
- return *this;
- }
-
- /// \brief Matrix transpose.
- Matrix transpose() const {
- Matrix m(cols, rows);
- for (unsigned r = 0; r < rows; ++r)
- for (unsigned c = 0; c < cols; ++c)
- m[c][r] = (*this)[r][c];
- return m;
- }
-
- /// \brief Returns the diagonal of the matrix as a vector.
- ///
- /// Matrix must be square.
- Vector diagonalize() const {
- assert(rows == cols && "Attempt to diagonalize non-square matrix.");
-
- Vector v(rows);
- for (unsigned r = 0; r < rows; ++r)
- v[r] = (*this)[r][r];
- return v;
- }
-
- /// \brief Add the given matrix to this one.
- Matrix& operator+=(const Matrix &m) {
- assert(rows == m.rows && cols == m.cols &&
- "Matrix dimensions mismatch.");
- std::transform(data, data + (rows * cols), m.data, data,
- std::plus<PBQPNum>());
- return *this;
- }
-
- /// \brief Returns the minimum of the given row
- PBQPNum getRowMin(unsigned r) const {
- assert(r < rows && "Row out of bounds");
- return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
- }
-
- /// \brief Returns the minimum of the given column
- PBQPNum getColMin(unsigned c) const {
- PBQPNum minElem = (*this)[0][c];
- for (unsigned r = 1; r < rows; ++r)
- if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
- return minElem;
- }
-
- /// \brief Subtracts the given scalar from the elements of the given row.
- Matrix& subFromRow(unsigned r, PBQPNum val) {
- assert(r < rows && "Row out of bounds");
- std::transform(data + (r * cols), data + ((r + 1) * cols),
- data + (r * cols),
- std::bind2nd(std::minus<PBQPNum>(), val));
- return *this;
- }
-
- /// \brief Subtracts the given scalar from the elements of the given column.
- Matrix& subFromCol(unsigned c, PBQPNum val) {
- for (unsigned r = 0; r < rows; ++r)
- (*this)[r][c] -= val;
- return *this;
- }
-
- /// \brief Returns true if this is a zero matrix.
- bool isZero() const {
- return find_if(data, data + (rows * cols),
- std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
- data + (rows * cols);
- }
-
- private:
- unsigned rows, cols;
- PBQPNum *data;
-};
-
-/// \brief Output a textual representation of the given matrix on the given
-/// output stream.
-template <typename OStream>
-OStream& operator<<(OStream &os, const Matrix &m) {
-
- assert((m.getRows() != 0) && "Zero-row matrix badness.");
-
- for (unsigned i = 0; i < m.getRows(); ++i) {
- os << m.getRowAsVector(i);
- }
-
- return os;
-}
-
-}
-
-#endif // LLVM_CODEGEN_PBQP_MATH_H
diff --git a/contrib/llvm/lib/CodeGen/PBQP/Solution.h b/contrib/llvm/lib/CodeGen/PBQP/Solution.h
deleted file mode 100644
index 047fd04..0000000
--- a/contrib/llvm/lib/CodeGen/PBQP/Solution.h
+++ /dev/null
@@ -1,89 +0,0 @@
-//===-- Solution.h ------- PBQP Solution ------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// PBQP Solution class.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_CODEGEN_PBQP_SOLUTION_H
-#define LLVM_CODEGEN_PBQP_SOLUTION_H
-
-#include "Math.h"
-#include "Graph.h"
-
-#include <map>
-
-namespace PBQP {
-
- /// \brief Represents a solution to a PBQP problem.
- ///
- /// To get the selection for each node in the problem use the getSelection method.
- class Solution {
- private:
-
- typedef std::map<Graph::NodeItr, unsigned, NodeItrComparator> SelectionsMap;
- SelectionsMap selections;
-
- unsigned r0Reductions, r1Reductions, r2Reductions, rNReductions;
-
- public:
-
- /// \brief Number of nodes for which selections have been made.
- /// @return Number of nodes for which selections have been made.
- unsigned numNodes() const { return selections.size(); }
-
- /// \brief Records a reduction via the R0 rule. Should be called from the
- /// solver only.
- void recordR0() { ++r0Reductions; }
-
- /// \brief Returns the number of R0 reductions applied to solve the problem.
- unsigned numR0Reductions() const { return r0Reductions; }
-
- /// \brief Records a reduction via the R1 rule. Should be called from the
- /// solver only.
- void recordR1() { ++r1Reductions; }
-
- /// \brief Returns the number of R1 reductions applied to solve the problem.
- unsigned numR1Reductions() const { return r1Reductions; }
-
- /// \brief Records a reduction via the R2 rule. Should be called from the
- /// solver only.
- void recordR2() { ++r2Reductions; }
-
- /// \brief Returns the number of R2 reductions applied to solve the problem.
- unsigned numR2Reductions() const { return r2Reductions; }
-
- /// \brief Records a reduction via the RN rule. Should be called from the
- /// solver only.
- void recordRN() { ++ rNReductions; }
-
- /// \brief Returns the number of RN reductions applied to solve the problem.
- unsigned numRNReductions() const { return rNReductions; }
-
- /// \brief Set the selection for a given node.
- /// @param nItr Node iterator.
- /// @param selection Selection for nItr.
- void setSelection(Graph::NodeItr nItr, unsigned selection) {
- selections[nItr] = selection;
- }
-
- /// \brief Get a node's selection.
- /// @param nItr Node iterator.
- /// @return The selection for nItr;
- unsigned getSelection(Graph::NodeItr nItr) const {
- SelectionsMap::const_iterator sItr = selections.find(nItr);
- assert(sItr != selections.end() && "No selection for node.");
- return sItr->second;
- }
-
- };
-
-}
-
-#endif // LLVM_CODEGEN_PBQP_SOLUTION_H
OpenPOWER on IntegriCloud