diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h')
-rw-r--r-- | contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h | 465 |
1 files changed, 465 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h b/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h new file mode 100644 index 0000000..30d34d9 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h @@ -0,0 +1,465 @@ +//===-- Briggs.h --- Briggs Heuristic for PBQP ------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This class implements the Briggs test for "allocability" of nodes in a +// PBQP graph representing a register allocation problem. Nodes which can be +// proven allocable (by a safe and relatively accurate test) are removed from +// the PBQP graph first. If no provably allocable node is present in the graph +// then the node with the minimal spill-cost to degree ratio is removed. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H +#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H + +#include "llvm/Support/Compiler.h" +#include "../HeuristicSolver.h" +#include "../HeuristicBase.h" + +#include <set> +#include <limits> + +namespace PBQP { + namespace Heuristics { + + /// \brief PBQP Heuristic which applies an allocability test based on + /// Briggs. + /// + /// This heuristic assumes that the elements of cost vectors in the PBQP + /// problem represent storage options, with the first being the spill + /// option and subsequent elements representing legal registers for the + /// corresponding node. Edge cost matrices are likewise assumed to represent + /// register constraints. + /// If one or more nodes can be proven allocable by this heuristic (by + /// inspection of their constraint matrices) then the allocable node of + /// highest degree is selected for the next reduction and pushed to the + /// solver stack. If no nodes can be proven allocable then the node with + /// the lowest estimated spill cost is selected and push to the solver stack + /// instead. + /// + /// This implementation is built on top of HeuristicBase. + class Briggs : public HeuristicBase<Briggs> { + private: + + class LinkDegreeComparator { + public: + LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {} + bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const { + if (s->getSolverDegree(n1Itr) > s->getSolverDegree(n2Itr)) + return true; + if (s->getSolverDegree(n1Itr) < s->getSolverDegree(n2Itr)) + return false; + return (&*n1Itr < &*n2Itr); + } + private: + HeuristicSolverImpl<Briggs> *s; + }; + + class SpillCostComparator { + public: + SpillCostComparator(HeuristicSolverImpl<Briggs> &s) + : s(&s), g(&s.getGraph()) {} + bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const { + PBQPNum cost1 = g->getNodeCosts(n1Itr)[0] / s->getSolverDegree(n1Itr), + cost2 = g->getNodeCosts(n2Itr)[0] / s->getSolverDegree(n2Itr); + if (cost1 < cost2) + return true; + if (cost1 > cost2) + return false; + return (&*n1Itr < &*n2Itr); + } + + private: + HeuristicSolverImpl<Briggs> *s; + Graph *g; + }; + + typedef std::list<Graph::NodeItr> RNAllocableList; + typedef RNAllocableList::iterator RNAllocableListItr; + + typedef std::list<Graph::NodeItr> RNUnallocableList; + typedef RNUnallocableList::iterator RNUnallocableListItr; + + public: + + struct NodeData { + typedef std::vector<unsigned> UnsafeDegreesArray; + bool isHeuristic, isAllocable, isInitialized; + unsigned numDenied, numSafe; + UnsafeDegreesArray unsafeDegrees; + RNAllocableListItr rnaItr; + RNUnallocableListItr rnuItr; + + NodeData() + : isHeuristic(false), isAllocable(false), isInitialized(false), + numDenied(0), numSafe(0) { } + }; + + struct EdgeData { + typedef std::vector<unsigned> UnsafeArray; + unsigned worst, reverseWorst; + UnsafeArray unsafe, reverseUnsafe; + bool isUpToDate; + + EdgeData() : worst(0), reverseWorst(0), isUpToDate(false) {} + }; + + /// \brief Construct an instance of the Briggs heuristic. + /// @param solver A reference to the solver which is using this heuristic. + Briggs(HeuristicSolverImpl<Briggs> &solver) : + HeuristicBase<Briggs>(solver) {} + + /// \brief Determine whether a node should be reduced using optimal + /// reduction. + /// @param nItr Node iterator to be considered. + /// @return True if the given node should be optimally reduced, false + /// otherwise. + /// + /// Selects nodes of degree 0, 1 or 2 for optimal reduction, with one + /// exception. Nodes whose spill cost (element 0 of their cost vector) is + /// infinite are checked for allocability first. Allocable nodes may be + /// optimally reduced, but nodes whose allocability cannot be proven are + /// selected for heuristic reduction instead. + bool shouldOptimallyReduce(Graph::NodeItr nItr) { + if (getSolver().getSolverDegree(nItr) < 3) { + return true; + } + // else + return false; + } + + /// \brief Add a node to the heuristic reduce list. + /// @param nItr Node iterator to add to the heuristic reduce list. + void addToHeuristicReduceList(Graph::NodeItr nItr) { + NodeData &nd = getHeuristicNodeData(nItr); + initializeNode(nItr); + nd.isHeuristic = true; + if (nd.isAllocable) { + nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr); + } else { + nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nItr); + } + } + + /// \brief Heuristically reduce one of the nodes in the heuristic + /// reduce list. + /// @return True if a reduction takes place, false if the heuristic reduce + /// list is empty. + /// + /// If the list of allocable nodes is non-empty a node is selected + /// from it and pushed to the stack. Otherwise if the non-allocable list + /// is non-empty a node is selected from it and pushed to the stack. + /// If both lists are empty the method simply returns false with no action + /// taken. + bool heuristicReduce() { + if (!rnAllocableList.empty()) { + RNAllocableListItr rnaItr = + min_element(rnAllocableList.begin(), rnAllocableList.end(), + LinkDegreeComparator(getSolver())); + Graph::NodeItr nItr = *rnaItr; + rnAllocableList.erase(rnaItr); + handleRemoveNode(nItr); + getSolver().pushToStack(nItr); + return true; + } else if (!rnUnallocableList.empty()) { + RNUnallocableListItr rnuItr = + min_element(rnUnallocableList.begin(), rnUnallocableList.end(), + SpillCostComparator(getSolver())); + Graph::NodeItr nItr = *rnuItr; + rnUnallocableList.erase(rnuItr); + handleRemoveNode(nItr); + getSolver().pushToStack(nItr); + return true; + } + // else + return false; + } + + /// \brief Prepare a change in the costs on the given edge. + /// @param eItr Edge iterator. + void preUpdateEdgeCosts(Graph::EdgeItr eItr) { + Graph &g = getGraph(); + Graph::NodeItr n1Itr = g.getEdgeNode1(eItr), + n2Itr = g.getEdgeNode2(eItr); + NodeData &n1 = getHeuristicNodeData(n1Itr), + &n2 = getHeuristicNodeData(n2Itr); + + if (n1.isHeuristic) + subtractEdgeContributions(eItr, getGraph().getEdgeNode1(eItr)); + if (n2.isHeuristic) + subtractEdgeContributions(eItr, getGraph().getEdgeNode2(eItr)); + + EdgeData &ed = getHeuristicEdgeData(eItr); + ed.isUpToDate = false; + } + + /// \brief Handle the change in the costs on the given edge. + /// @param eItr Edge iterator. + void postUpdateEdgeCosts(Graph::EdgeItr eItr) { + // This is effectively the same as adding a new edge now, since + // we've factored out the costs of the old one. + handleAddEdge(eItr); + } + + /// \brief Handle the addition of a new edge into the PBQP graph. + /// @param eItr Edge iterator for the added edge. + /// + /// Updates allocability of any nodes connected by this edge which are + /// being managed by the heuristic. If allocability changes they are + /// moved to the appropriate list. + void handleAddEdge(Graph::EdgeItr eItr) { + Graph &g = getGraph(); + Graph::NodeItr n1Itr = g.getEdgeNode1(eItr), + n2Itr = g.getEdgeNode2(eItr); + NodeData &n1 = getHeuristicNodeData(n1Itr), + &n2 = getHeuristicNodeData(n2Itr); + + // If neither node is managed by the heuristic there's nothing to be + // done. + if (!n1.isHeuristic && !n2.isHeuristic) + return; + + // Ok - we need to update at least one node. + computeEdgeContributions(eItr); + + // Update node 1 if it's managed by the heuristic. + if (n1.isHeuristic) { + bool n1WasAllocable = n1.isAllocable; + addEdgeContributions(eItr, n1Itr); + updateAllocability(n1Itr); + if (n1WasAllocable && !n1.isAllocable) { + rnAllocableList.erase(n1.rnaItr); + n1.rnuItr = + rnUnallocableList.insert(rnUnallocableList.end(), n1Itr); + } + } + + // Likewise for node 2. + if (n2.isHeuristic) { + bool n2WasAllocable = n2.isAllocable; + addEdgeContributions(eItr, n2Itr); + updateAllocability(n2Itr); + if (n2WasAllocable && !n2.isAllocable) { + rnAllocableList.erase(n2.rnaItr); + n2.rnuItr = + rnUnallocableList.insert(rnUnallocableList.end(), n2Itr); + } + } + } + + /// \brief Handle disconnection of an edge from a node. + /// @param eItr Edge iterator for edge being disconnected. + /// @param nItr Node iterator for the node being disconnected from. + /// + /// Updates allocability of the given node and, if appropriate, moves the + /// node to a new list. + void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) { + NodeData &nd = getHeuristicNodeData(nItr); + + // If the node is not managed by the heuristic there's nothing to be + // done. + if (!nd.isHeuristic) + return; + + EdgeData &ed ATTRIBUTE_UNUSED = getHeuristicEdgeData(eItr); + + assert(ed.isUpToDate && "Edge data is not up to date."); + + // Update node. + bool ndWasAllocable = nd.isAllocable; + subtractEdgeContributions(eItr, nItr); + updateAllocability(nItr); + + // If the node has gone optimal... + if (shouldOptimallyReduce(nItr)) { + nd.isHeuristic = false; + addToOptimalReduceList(nItr); + if (ndWasAllocable) { + rnAllocableList.erase(nd.rnaItr); + } else { + rnUnallocableList.erase(nd.rnuItr); + } + } else { + // Node didn't go optimal, but we might have to move it + // from "unallocable" to "allocable". + if (!ndWasAllocable && nd.isAllocable) { + rnUnallocableList.erase(nd.rnuItr); + nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr); + } + } + } + + private: + + NodeData& getHeuristicNodeData(Graph::NodeItr nItr) { + return getSolver().getHeuristicNodeData(nItr); + } + + EdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) { + return getSolver().getHeuristicEdgeData(eItr); + } + + // Work out what this edge will contribute to the allocability of the + // nodes connected to it. + void computeEdgeContributions(Graph::EdgeItr eItr) { + EdgeData &ed = getHeuristicEdgeData(eItr); + + if (ed.isUpToDate) + return; // Edge data is already up to date. + + Matrix &eCosts = getGraph().getEdgeCosts(eItr); + + unsigned numRegs = eCosts.getRows() - 1, + numReverseRegs = eCosts.getCols() - 1; + + std::vector<unsigned> rowInfCounts(numRegs, 0), + colInfCounts(numReverseRegs, 0); + + ed.worst = 0; + ed.reverseWorst = 0; + ed.unsafe.clear(); + ed.unsafe.resize(numRegs, 0); + ed.reverseUnsafe.clear(); + ed.reverseUnsafe.resize(numReverseRegs, 0); + + for (unsigned i = 0; i < numRegs; ++i) { + for (unsigned j = 0; j < numReverseRegs; ++j) { + if (eCosts[i + 1][j + 1] == + std::numeric_limits<PBQPNum>::infinity()) { + ed.unsafe[i] = 1; + ed.reverseUnsafe[j] = 1; + ++rowInfCounts[i]; + ++colInfCounts[j]; + + if (colInfCounts[j] > ed.worst) { + ed.worst = colInfCounts[j]; + } + + if (rowInfCounts[i] > ed.reverseWorst) { + ed.reverseWorst = rowInfCounts[i]; + } + } + } + } + + ed.isUpToDate = true; + } + + // Add the contributions of the given edge to the given node's + // numDenied and safe members. No action is taken other than to update + // these member values. Once updated these numbers can be used by clients + // to update the node's allocability. + void addEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) { + EdgeData &ed = getHeuristicEdgeData(eItr); + + assert(ed.isUpToDate && "Using out-of-date edge numbers."); + + NodeData &nd = getHeuristicNodeData(nItr); + unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1; + + bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr); + EdgeData::UnsafeArray &unsafe = + nIsNode1 ? ed.unsafe : ed.reverseUnsafe; + nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst; + + for (unsigned r = 0; r < numRegs; ++r) { + if (unsafe[r]) { + if (nd.unsafeDegrees[r]==0) { + --nd.numSafe; + } + ++nd.unsafeDegrees[r]; + } + } + } + + // Subtract the contributions of the given edge to the given node's + // numDenied and safe members. No action is taken other than to update + // these member values. Once updated these numbers can be used by clients + // to update the node's allocability. + void subtractEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) { + EdgeData &ed = getHeuristicEdgeData(eItr); + + assert(ed.isUpToDate && "Using out-of-date edge numbers."); + + NodeData &nd = getHeuristicNodeData(nItr); + unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1; + + bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr); + EdgeData::UnsafeArray &unsafe = + nIsNode1 ? ed.unsafe : ed.reverseUnsafe; + nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst; + + for (unsigned r = 0; r < numRegs; ++r) { + if (unsafe[r]) { + if (nd.unsafeDegrees[r] == 1) { + ++nd.numSafe; + } + --nd.unsafeDegrees[r]; + } + } + } + + void updateAllocability(Graph::NodeItr nItr) { + NodeData &nd = getHeuristicNodeData(nItr); + unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1; + nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0; + } + + void initializeNode(Graph::NodeItr nItr) { + NodeData &nd = getHeuristicNodeData(nItr); + + if (nd.isInitialized) + return; // Node data is already up to date. + + unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1; + + nd.numDenied = 0; + nd.numSafe = numRegs; + nd.unsafeDegrees.resize(numRegs, 0); + + typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr; + + for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nItr), + aeEnd = getSolver().solverEdgesEnd(nItr); + aeItr != aeEnd; ++aeItr) { + + Graph::EdgeItr eItr = *aeItr; + computeEdgeContributions(eItr); + addEdgeContributions(eItr, nItr); + } + + updateAllocability(nItr); + nd.isInitialized = true; + } + + void handleRemoveNode(Graph::NodeItr xnItr) { + typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr; + std::vector<Graph::EdgeItr> edgesToRemove; + for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnItr), + aeEnd = getSolver().solverEdgesEnd(xnItr); + aeItr != aeEnd; ++aeItr) { + Graph::NodeItr ynItr = getGraph().getEdgeOtherNode(*aeItr, xnItr); + handleRemoveEdge(*aeItr, ynItr); + edgesToRemove.push_back(*aeItr); + } + while (!edgesToRemove.empty()) { + getSolver().removeSolverEdge(edgesToRemove.back()); + edgesToRemove.pop_back(); + } + } + + RNAllocableList rnAllocableList; + RNUnallocableList rnUnallocableList; + }; + + } +} + + +#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H |