summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h')
-rw-r--r--contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h465
1 files changed, 465 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h b/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h
new file mode 100644
index 0000000..30d34d9
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/PBQP/Heuristics/Briggs.h
@@ -0,0 +1,465 @@
+//===-- Briggs.h --- Briggs Heuristic for PBQP ------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This class implements the Briggs test for "allocability" of nodes in a
+// PBQP graph representing a register allocation problem. Nodes which can be
+// proven allocable (by a safe and relatively accurate test) are removed from
+// the PBQP graph first. If no provably allocable node is present in the graph
+// then the node with the minimal spill-cost to degree ratio is removed.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
+#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
+
+#include "llvm/Support/Compiler.h"
+#include "../HeuristicSolver.h"
+#include "../HeuristicBase.h"
+
+#include <set>
+#include <limits>
+
+namespace PBQP {
+ namespace Heuristics {
+
+ /// \brief PBQP Heuristic which applies an allocability test based on
+ /// Briggs.
+ ///
+ /// This heuristic assumes that the elements of cost vectors in the PBQP
+ /// problem represent storage options, with the first being the spill
+ /// option and subsequent elements representing legal registers for the
+ /// corresponding node. Edge cost matrices are likewise assumed to represent
+ /// register constraints.
+ /// If one or more nodes can be proven allocable by this heuristic (by
+ /// inspection of their constraint matrices) then the allocable node of
+ /// highest degree is selected for the next reduction and pushed to the
+ /// solver stack. If no nodes can be proven allocable then the node with
+ /// the lowest estimated spill cost is selected and push to the solver stack
+ /// instead.
+ ///
+ /// This implementation is built on top of HeuristicBase.
+ class Briggs : public HeuristicBase<Briggs> {
+ private:
+
+ class LinkDegreeComparator {
+ public:
+ LinkDegreeComparator(HeuristicSolverImpl<Briggs> &s) : s(&s) {}
+ bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const {
+ if (s->getSolverDegree(n1Itr) > s->getSolverDegree(n2Itr))
+ return true;
+ if (s->getSolverDegree(n1Itr) < s->getSolverDegree(n2Itr))
+ return false;
+ return (&*n1Itr < &*n2Itr);
+ }
+ private:
+ HeuristicSolverImpl<Briggs> *s;
+ };
+
+ class SpillCostComparator {
+ public:
+ SpillCostComparator(HeuristicSolverImpl<Briggs> &s)
+ : s(&s), g(&s.getGraph()) {}
+ bool operator()(Graph::NodeItr n1Itr, Graph::NodeItr n2Itr) const {
+ PBQPNum cost1 = g->getNodeCosts(n1Itr)[0] / s->getSolverDegree(n1Itr),
+ cost2 = g->getNodeCosts(n2Itr)[0] / s->getSolverDegree(n2Itr);
+ if (cost1 < cost2)
+ return true;
+ if (cost1 > cost2)
+ return false;
+ return (&*n1Itr < &*n2Itr);
+ }
+
+ private:
+ HeuristicSolverImpl<Briggs> *s;
+ Graph *g;
+ };
+
+ typedef std::list<Graph::NodeItr> RNAllocableList;
+ typedef RNAllocableList::iterator RNAllocableListItr;
+
+ typedef std::list<Graph::NodeItr> RNUnallocableList;
+ typedef RNUnallocableList::iterator RNUnallocableListItr;
+
+ public:
+
+ struct NodeData {
+ typedef std::vector<unsigned> UnsafeDegreesArray;
+ bool isHeuristic, isAllocable, isInitialized;
+ unsigned numDenied, numSafe;
+ UnsafeDegreesArray unsafeDegrees;
+ RNAllocableListItr rnaItr;
+ RNUnallocableListItr rnuItr;
+
+ NodeData()
+ : isHeuristic(false), isAllocable(false), isInitialized(false),
+ numDenied(0), numSafe(0) { }
+ };
+
+ struct EdgeData {
+ typedef std::vector<unsigned> UnsafeArray;
+ unsigned worst, reverseWorst;
+ UnsafeArray unsafe, reverseUnsafe;
+ bool isUpToDate;
+
+ EdgeData() : worst(0), reverseWorst(0), isUpToDate(false) {}
+ };
+
+ /// \brief Construct an instance of the Briggs heuristic.
+ /// @param solver A reference to the solver which is using this heuristic.
+ Briggs(HeuristicSolverImpl<Briggs> &solver) :
+ HeuristicBase<Briggs>(solver) {}
+
+ /// \brief Determine whether a node should be reduced using optimal
+ /// reduction.
+ /// @param nItr Node iterator to be considered.
+ /// @return True if the given node should be optimally reduced, false
+ /// otherwise.
+ ///
+ /// Selects nodes of degree 0, 1 or 2 for optimal reduction, with one
+ /// exception. Nodes whose spill cost (element 0 of their cost vector) is
+ /// infinite are checked for allocability first. Allocable nodes may be
+ /// optimally reduced, but nodes whose allocability cannot be proven are
+ /// selected for heuristic reduction instead.
+ bool shouldOptimallyReduce(Graph::NodeItr nItr) {
+ if (getSolver().getSolverDegree(nItr) < 3) {
+ return true;
+ }
+ // else
+ return false;
+ }
+
+ /// \brief Add a node to the heuristic reduce list.
+ /// @param nItr Node iterator to add to the heuristic reduce list.
+ void addToHeuristicReduceList(Graph::NodeItr nItr) {
+ NodeData &nd = getHeuristicNodeData(nItr);
+ initializeNode(nItr);
+ nd.isHeuristic = true;
+ if (nd.isAllocable) {
+ nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr);
+ } else {
+ nd.rnuItr = rnUnallocableList.insert(rnUnallocableList.end(), nItr);
+ }
+ }
+
+ /// \brief Heuristically reduce one of the nodes in the heuristic
+ /// reduce list.
+ /// @return True if a reduction takes place, false if the heuristic reduce
+ /// list is empty.
+ ///
+ /// If the list of allocable nodes is non-empty a node is selected
+ /// from it and pushed to the stack. Otherwise if the non-allocable list
+ /// is non-empty a node is selected from it and pushed to the stack.
+ /// If both lists are empty the method simply returns false with no action
+ /// taken.
+ bool heuristicReduce() {
+ if (!rnAllocableList.empty()) {
+ RNAllocableListItr rnaItr =
+ min_element(rnAllocableList.begin(), rnAllocableList.end(),
+ LinkDegreeComparator(getSolver()));
+ Graph::NodeItr nItr = *rnaItr;
+ rnAllocableList.erase(rnaItr);
+ handleRemoveNode(nItr);
+ getSolver().pushToStack(nItr);
+ return true;
+ } else if (!rnUnallocableList.empty()) {
+ RNUnallocableListItr rnuItr =
+ min_element(rnUnallocableList.begin(), rnUnallocableList.end(),
+ SpillCostComparator(getSolver()));
+ Graph::NodeItr nItr = *rnuItr;
+ rnUnallocableList.erase(rnuItr);
+ handleRemoveNode(nItr);
+ getSolver().pushToStack(nItr);
+ return true;
+ }
+ // else
+ return false;
+ }
+
+ /// \brief Prepare a change in the costs on the given edge.
+ /// @param eItr Edge iterator.
+ void preUpdateEdgeCosts(Graph::EdgeItr eItr) {
+ Graph &g = getGraph();
+ Graph::NodeItr n1Itr = g.getEdgeNode1(eItr),
+ n2Itr = g.getEdgeNode2(eItr);
+ NodeData &n1 = getHeuristicNodeData(n1Itr),
+ &n2 = getHeuristicNodeData(n2Itr);
+
+ if (n1.isHeuristic)
+ subtractEdgeContributions(eItr, getGraph().getEdgeNode1(eItr));
+ if (n2.isHeuristic)
+ subtractEdgeContributions(eItr, getGraph().getEdgeNode2(eItr));
+
+ EdgeData &ed = getHeuristicEdgeData(eItr);
+ ed.isUpToDate = false;
+ }
+
+ /// \brief Handle the change in the costs on the given edge.
+ /// @param eItr Edge iterator.
+ void postUpdateEdgeCosts(Graph::EdgeItr eItr) {
+ // This is effectively the same as adding a new edge now, since
+ // we've factored out the costs of the old one.
+ handleAddEdge(eItr);
+ }
+
+ /// \brief Handle the addition of a new edge into the PBQP graph.
+ /// @param eItr Edge iterator for the added edge.
+ ///
+ /// Updates allocability of any nodes connected by this edge which are
+ /// being managed by the heuristic. If allocability changes they are
+ /// moved to the appropriate list.
+ void handleAddEdge(Graph::EdgeItr eItr) {
+ Graph &g = getGraph();
+ Graph::NodeItr n1Itr = g.getEdgeNode1(eItr),
+ n2Itr = g.getEdgeNode2(eItr);
+ NodeData &n1 = getHeuristicNodeData(n1Itr),
+ &n2 = getHeuristicNodeData(n2Itr);
+
+ // If neither node is managed by the heuristic there's nothing to be
+ // done.
+ if (!n1.isHeuristic && !n2.isHeuristic)
+ return;
+
+ // Ok - we need to update at least one node.
+ computeEdgeContributions(eItr);
+
+ // Update node 1 if it's managed by the heuristic.
+ if (n1.isHeuristic) {
+ bool n1WasAllocable = n1.isAllocable;
+ addEdgeContributions(eItr, n1Itr);
+ updateAllocability(n1Itr);
+ if (n1WasAllocable && !n1.isAllocable) {
+ rnAllocableList.erase(n1.rnaItr);
+ n1.rnuItr =
+ rnUnallocableList.insert(rnUnallocableList.end(), n1Itr);
+ }
+ }
+
+ // Likewise for node 2.
+ if (n2.isHeuristic) {
+ bool n2WasAllocable = n2.isAllocable;
+ addEdgeContributions(eItr, n2Itr);
+ updateAllocability(n2Itr);
+ if (n2WasAllocable && !n2.isAllocable) {
+ rnAllocableList.erase(n2.rnaItr);
+ n2.rnuItr =
+ rnUnallocableList.insert(rnUnallocableList.end(), n2Itr);
+ }
+ }
+ }
+
+ /// \brief Handle disconnection of an edge from a node.
+ /// @param eItr Edge iterator for edge being disconnected.
+ /// @param nItr Node iterator for the node being disconnected from.
+ ///
+ /// Updates allocability of the given node and, if appropriate, moves the
+ /// node to a new list.
+ void handleRemoveEdge(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
+ NodeData &nd = getHeuristicNodeData(nItr);
+
+ // If the node is not managed by the heuristic there's nothing to be
+ // done.
+ if (!nd.isHeuristic)
+ return;
+
+ EdgeData &ed ATTRIBUTE_UNUSED = getHeuristicEdgeData(eItr);
+
+ assert(ed.isUpToDate && "Edge data is not up to date.");
+
+ // Update node.
+ bool ndWasAllocable = nd.isAllocable;
+ subtractEdgeContributions(eItr, nItr);
+ updateAllocability(nItr);
+
+ // If the node has gone optimal...
+ if (shouldOptimallyReduce(nItr)) {
+ nd.isHeuristic = false;
+ addToOptimalReduceList(nItr);
+ if (ndWasAllocable) {
+ rnAllocableList.erase(nd.rnaItr);
+ } else {
+ rnUnallocableList.erase(nd.rnuItr);
+ }
+ } else {
+ // Node didn't go optimal, but we might have to move it
+ // from "unallocable" to "allocable".
+ if (!ndWasAllocable && nd.isAllocable) {
+ rnUnallocableList.erase(nd.rnuItr);
+ nd.rnaItr = rnAllocableList.insert(rnAllocableList.end(), nItr);
+ }
+ }
+ }
+
+ private:
+
+ NodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
+ return getSolver().getHeuristicNodeData(nItr);
+ }
+
+ EdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
+ return getSolver().getHeuristicEdgeData(eItr);
+ }
+
+ // Work out what this edge will contribute to the allocability of the
+ // nodes connected to it.
+ void computeEdgeContributions(Graph::EdgeItr eItr) {
+ EdgeData &ed = getHeuristicEdgeData(eItr);
+
+ if (ed.isUpToDate)
+ return; // Edge data is already up to date.
+
+ Matrix &eCosts = getGraph().getEdgeCosts(eItr);
+
+ unsigned numRegs = eCosts.getRows() - 1,
+ numReverseRegs = eCosts.getCols() - 1;
+
+ std::vector<unsigned> rowInfCounts(numRegs, 0),
+ colInfCounts(numReverseRegs, 0);
+
+ ed.worst = 0;
+ ed.reverseWorst = 0;
+ ed.unsafe.clear();
+ ed.unsafe.resize(numRegs, 0);
+ ed.reverseUnsafe.clear();
+ ed.reverseUnsafe.resize(numReverseRegs, 0);
+
+ for (unsigned i = 0; i < numRegs; ++i) {
+ for (unsigned j = 0; j < numReverseRegs; ++j) {
+ if (eCosts[i + 1][j + 1] ==
+ std::numeric_limits<PBQPNum>::infinity()) {
+ ed.unsafe[i] = 1;
+ ed.reverseUnsafe[j] = 1;
+ ++rowInfCounts[i];
+ ++colInfCounts[j];
+
+ if (colInfCounts[j] > ed.worst) {
+ ed.worst = colInfCounts[j];
+ }
+
+ if (rowInfCounts[i] > ed.reverseWorst) {
+ ed.reverseWorst = rowInfCounts[i];
+ }
+ }
+ }
+ }
+
+ ed.isUpToDate = true;
+ }
+
+ // Add the contributions of the given edge to the given node's
+ // numDenied and safe members. No action is taken other than to update
+ // these member values. Once updated these numbers can be used by clients
+ // to update the node's allocability.
+ void addEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
+ EdgeData &ed = getHeuristicEdgeData(eItr);
+
+ assert(ed.isUpToDate && "Using out-of-date edge numbers.");
+
+ NodeData &nd = getHeuristicNodeData(nItr);
+ unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
+
+ bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr);
+ EdgeData::UnsafeArray &unsafe =
+ nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
+ nd.numDenied += nIsNode1 ? ed.worst : ed.reverseWorst;
+
+ for (unsigned r = 0; r < numRegs; ++r) {
+ if (unsafe[r]) {
+ if (nd.unsafeDegrees[r]==0) {
+ --nd.numSafe;
+ }
+ ++nd.unsafeDegrees[r];
+ }
+ }
+ }
+
+ // Subtract the contributions of the given edge to the given node's
+ // numDenied and safe members. No action is taken other than to update
+ // these member values. Once updated these numbers can be used by clients
+ // to update the node's allocability.
+ void subtractEdgeContributions(Graph::EdgeItr eItr, Graph::NodeItr nItr) {
+ EdgeData &ed = getHeuristicEdgeData(eItr);
+
+ assert(ed.isUpToDate && "Using out-of-date edge numbers.");
+
+ NodeData &nd = getHeuristicNodeData(nItr);
+ unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
+
+ bool nIsNode1 = nItr == getGraph().getEdgeNode1(eItr);
+ EdgeData::UnsafeArray &unsafe =
+ nIsNode1 ? ed.unsafe : ed.reverseUnsafe;
+ nd.numDenied -= nIsNode1 ? ed.worst : ed.reverseWorst;
+
+ for (unsigned r = 0; r < numRegs; ++r) {
+ if (unsafe[r]) {
+ if (nd.unsafeDegrees[r] == 1) {
+ ++nd.numSafe;
+ }
+ --nd.unsafeDegrees[r];
+ }
+ }
+ }
+
+ void updateAllocability(Graph::NodeItr nItr) {
+ NodeData &nd = getHeuristicNodeData(nItr);
+ unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
+ nd.isAllocable = nd.numDenied < numRegs || nd.numSafe > 0;
+ }
+
+ void initializeNode(Graph::NodeItr nItr) {
+ NodeData &nd = getHeuristicNodeData(nItr);
+
+ if (nd.isInitialized)
+ return; // Node data is already up to date.
+
+ unsigned numRegs = getGraph().getNodeCosts(nItr).getLength() - 1;
+
+ nd.numDenied = 0;
+ nd.numSafe = numRegs;
+ nd.unsafeDegrees.resize(numRegs, 0);
+
+ typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
+
+ for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(nItr),
+ aeEnd = getSolver().solverEdgesEnd(nItr);
+ aeItr != aeEnd; ++aeItr) {
+
+ Graph::EdgeItr eItr = *aeItr;
+ computeEdgeContributions(eItr);
+ addEdgeContributions(eItr, nItr);
+ }
+
+ updateAllocability(nItr);
+ nd.isInitialized = true;
+ }
+
+ void handleRemoveNode(Graph::NodeItr xnItr) {
+ typedef HeuristicSolverImpl<Briggs>::SolverEdgeItr SolverEdgeItr;
+ std::vector<Graph::EdgeItr> edgesToRemove;
+ for (SolverEdgeItr aeItr = getSolver().solverEdgesBegin(xnItr),
+ aeEnd = getSolver().solverEdgesEnd(xnItr);
+ aeItr != aeEnd; ++aeItr) {
+ Graph::NodeItr ynItr = getGraph().getEdgeOtherNode(*aeItr, xnItr);
+ handleRemoveEdge(*aeItr, ynItr);
+ edgesToRemove.push_back(*aeItr);
+ }
+ while (!edgesToRemove.empty()) {
+ getSolver().removeSolverEdge(edgesToRemove.back());
+ edgesToRemove.pop_back();
+ }
+ }
+
+ RNAllocableList rnAllocableList;
+ RNUnallocableList rnUnallocableList;
+ };
+
+ }
+}
+
+
+#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
OpenPOWER on IntegriCloud