summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h')
-rw-r--r--contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h607
1 files changed, 607 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h b/contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h
new file mode 100644
index 0000000..bd18b52
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/PBQP/HeuristicSolver.h
@@ -0,0 +1,607 @@
+//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Heuristic PBQP solver. This solver is able to perform optimal reductions for
+// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
+// used to select a node for reduction.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
+#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
+
+#include "Graph.h"
+#include "Solution.h"
+#include <vector>
+#include <limits>
+
+namespace PBQP {
+
+ /// \brief Heuristic PBQP solver implementation.
+ ///
+ /// This class should usually be created (and destroyed) indirectly via a call
+ /// to HeuristicSolver<HImpl>::solve(Graph&).
+ /// See the comments for HeuristicSolver.
+ ///
+ /// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules,
+ /// backpropagation phase, and maintains the internal copy of the graph on
+ /// which the reduction is carried out (the original being kept to facilitate
+ /// backpropagation).
+ template <typename HImpl>
+ class HeuristicSolverImpl {
+ private:
+
+ typedef typename HImpl::NodeData HeuristicNodeData;
+ typedef typename HImpl::EdgeData HeuristicEdgeData;
+
+ typedef std::list<Graph::EdgeItr> SolverEdges;
+
+ public:
+
+ /// \brief Iterator type for edges in the solver graph.
+ typedef SolverEdges::iterator SolverEdgeItr;
+
+ private:
+
+ class NodeData {
+ public:
+ NodeData() : solverDegree(0) {}
+
+ HeuristicNodeData& getHeuristicData() { return hData; }
+
+ SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) {
+ ++solverDegree;
+ return solverEdges.insert(solverEdges.end(), eItr);
+ }
+
+ void removeSolverEdge(SolverEdgeItr seItr) {
+ --solverDegree;
+ solverEdges.erase(seItr);
+ }
+
+ SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); }
+ SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); }
+ unsigned getSolverDegree() const { return solverDegree; }
+ void clearSolverEdges() {
+ solverDegree = 0;
+ solverEdges.clear();
+ }
+
+ private:
+ HeuristicNodeData hData;
+ unsigned solverDegree;
+ SolverEdges solverEdges;
+ };
+
+ class EdgeData {
+ public:
+ HeuristicEdgeData& getHeuristicData() { return hData; }
+
+ void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) {
+ this->n1SolverEdgeItr = n1SolverEdgeItr;
+ }
+
+ SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; }
+
+ void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){
+ this->n2SolverEdgeItr = n2SolverEdgeItr;
+ }
+
+ SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; }
+
+ private:
+
+ HeuristicEdgeData hData;
+ SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr;
+ };
+
+ Graph &g;
+ HImpl h;
+ Solution s;
+ std::vector<Graph::NodeItr> stack;
+
+ typedef std::list<NodeData> NodeDataList;
+ NodeDataList nodeDataList;
+
+ typedef std::list<EdgeData> EdgeDataList;
+ EdgeDataList edgeDataList;
+
+ public:
+
+ /// \brief Construct a heuristic solver implementation to solve the given
+ /// graph.
+ /// @param g The graph representing the problem instance to be solved.
+ HeuristicSolverImpl(Graph &g) : g(g), h(*this) {}
+
+ /// \brief Get the graph being solved by this solver.
+ /// @return The graph representing the problem instance being solved by this
+ /// solver.
+ Graph& getGraph() { return g; }
+
+ /// \brief Get the heuristic data attached to the given node.
+ /// @param nItr Node iterator.
+ /// @return The heuristic data attached to the given node.
+ HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
+ return getSolverNodeData(nItr).getHeuristicData();
+ }
+
+ /// \brief Get the heuristic data attached to the given edge.
+ /// @param eItr Edge iterator.
+ /// @return The heuristic data attached to the given node.
+ HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
+ return getSolverEdgeData(eItr).getHeuristicData();
+ }
+
+ /// \brief Begin iterator for the set of edges adjacent to the given node in
+ /// the solver graph.
+ /// @param nItr Node iterator.
+ /// @return Begin iterator for the set of edges adjacent to the given node
+ /// in the solver graph.
+ SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) {
+ return getSolverNodeData(nItr).solverEdgesBegin();
+ }
+
+ /// \brief End iterator for the set of edges adjacent to the given node in
+ /// the solver graph.
+ /// @param nItr Node iterator.
+ /// @return End iterator for the set of edges adjacent to the given node in
+ /// the solver graph.
+ SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) {
+ return getSolverNodeData(nItr).solverEdgesEnd();
+ }
+
+ /// \brief Remove a node from the solver graph.
+ /// @param eItr Edge iterator for edge to be removed.
+ ///
+ /// Does <i>not</i> notify the heuristic of the removal. That should be
+ /// done manually if necessary.
+ void removeSolverEdge(Graph::EdgeItr eItr) {
+ EdgeData &eData = getSolverEdgeData(eItr);
+ NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
+ &n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
+
+ n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
+ n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
+ }
+
+ /// \brief Compute a solution to the PBQP problem instance with which this
+ /// heuristic solver was constructed.
+ /// @return A solution to the PBQP problem.
+ ///
+ /// Performs the full PBQP heuristic solver algorithm, including setup,
+ /// calls to the heuristic (which will call back to the reduction rules in
+ /// this class), and cleanup.
+ Solution computeSolution() {
+ setup();
+ h.setup();
+ h.reduce();
+ backpropagate();
+ h.cleanup();
+ cleanup();
+ return s;
+ }
+
+ /// \brief Add to the end of the stack.
+ /// @param nItr Node iterator to add to the reduction stack.
+ void pushToStack(Graph::NodeItr nItr) {
+ getSolverNodeData(nItr).clearSolverEdges();
+ stack.push_back(nItr);
+ }
+
+ /// \brief Returns the solver degree of the given node.
+ /// @param nItr Node iterator for which degree is requested.
+ /// @return Node degree in the <i>solver</i> graph (not the original graph).
+ unsigned getSolverDegree(Graph::NodeItr nItr) {
+ return getSolverNodeData(nItr).getSolverDegree();
+ }
+
+ /// \brief Set the solution of the given node.
+ /// @param nItr Node iterator to set solution for.
+ /// @param selection Selection for node.
+ void setSolution(const Graph::NodeItr &nItr, unsigned selection) {
+ s.setSelection(nItr, selection);
+
+ for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
+ aeEnd = g.adjEdgesEnd(nItr);
+ aeItr != aeEnd; ++aeItr) {
+ Graph::EdgeItr eItr(*aeItr);
+ Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr));
+ getSolverNodeData(anItr).addSolverEdge(eItr);
+ }
+ }
+
+ /// \brief Apply rule R0.
+ /// @param nItr Node iterator for node to apply R0 to.
+ ///
+ /// Node will be automatically pushed to the solver stack.
+ void applyR0(Graph::NodeItr nItr) {
+ assert(getSolverNodeData(nItr).getSolverDegree() == 0 &&
+ "R0 applied to node with degree != 0.");
+
+ // Nothing to do. Just push the node onto the reduction stack.
+ pushToStack(nItr);
+ }
+
+ /// \brief Apply rule R1.
+ /// @param xnItr Node iterator for node to apply R1 to.
+ ///
+ /// Node will be automatically pushed to the solver stack.
+ void applyR1(Graph::NodeItr xnItr) {
+ NodeData &nd = getSolverNodeData(xnItr);
+ assert(nd.getSolverDegree() == 1 &&
+ "R1 applied to node with degree != 1.");
+
+ Graph::EdgeItr eItr = *nd.solverEdgesBegin();
+
+ const Matrix &eCosts = g.getEdgeCosts(eItr);
+ const Vector &xCosts = g.getNodeCosts(xnItr);
+
+ // Duplicate a little to avoid transposing matrices.
+ if (xnItr == g.getEdgeNode1(eItr)) {
+ Graph::NodeItr ynItr = g.getEdgeNode2(eItr);
+ Vector &yCosts = g.getNodeCosts(ynItr);
+ for (unsigned j = 0; j < yCosts.getLength(); ++j) {
+ PBQPNum min = eCosts[0][j] + xCosts[0];
+ for (unsigned i = 1; i < xCosts.getLength(); ++i) {
+ PBQPNum c = eCosts[i][j] + xCosts[i];
+ if (c < min)
+ min = c;
+ }
+ yCosts[j] += min;
+ }
+ h.handleRemoveEdge(eItr, ynItr);
+ } else {
+ Graph::NodeItr ynItr = g.getEdgeNode1(eItr);
+ Vector &yCosts = g.getNodeCosts(ynItr);
+ for (unsigned i = 0; i < yCosts.getLength(); ++i) {
+ PBQPNum min = eCosts[i][0] + xCosts[0];
+ for (unsigned j = 1; j < xCosts.getLength(); ++j) {
+ PBQPNum c = eCosts[i][j] + xCosts[j];
+ if (c < min)
+ min = c;
+ }
+ yCosts[i] += min;
+ }
+ h.handleRemoveEdge(eItr, ynItr);
+ }
+ removeSolverEdge(eItr);
+ assert(nd.getSolverDegree() == 0 &&
+ "Degree 1 with edge removed should be 0.");
+ pushToStack(xnItr);
+ }
+
+ /// \brief Apply rule R2.
+ /// @param xnItr Node iterator for node to apply R2 to.
+ ///
+ /// Node will be automatically pushed to the solver stack.
+ void applyR2(Graph::NodeItr xnItr) {
+ assert(getSolverNodeData(xnItr).getSolverDegree() == 2 &&
+ "R2 applied to node with degree != 2.");
+
+ NodeData &nd = getSolverNodeData(xnItr);
+ const Vector &xCosts = g.getNodeCosts(xnItr);
+
+ SolverEdgeItr aeItr = nd.solverEdgesBegin();
+ Graph::EdgeItr yxeItr = *aeItr,
+ zxeItr = *(++aeItr);
+
+ Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr),
+ znItr = g.getEdgeOtherNode(zxeItr, xnItr);
+
+ bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr),
+ flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr);
+
+ const Matrix *yxeCosts = flipEdge1 ?
+ new Matrix(g.getEdgeCosts(yxeItr).transpose()) :
+ &g.getEdgeCosts(yxeItr);
+
+ const Matrix *zxeCosts = flipEdge2 ?
+ new Matrix(g.getEdgeCosts(zxeItr).transpose()) :
+ &g.getEdgeCosts(zxeItr);
+
+ unsigned xLen = xCosts.getLength(),
+ yLen = yxeCosts->getRows(),
+ zLen = zxeCosts->getRows();
+
+ Matrix delta(yLen, zLen);
+
+ for (unsigned i = 0; i < yLen; ++i) {
+ for (unsigned j = 0; j < zLen; ++j) {
+ PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0];
+ for (unsigned k = 1; k < xLen; ++k) {
+ PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k];
+ if (c < min) {
+ min = c;
+ }
+ }
+ delta[i][j] = min;
+ }
+ }
+
+ if (flipEdge1)
+ delete yxeCosts;
+
+ if (flipEdge2)
+ delete zxeCosts;
+
+ Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr);
+ bool addedEdge = false;
+
+ if (yzeItr == g.edgesEnd()) {
+ yzeItr = g.addEdge(ynItr, znItr, delta);
+ addedEdge = true;
+ } else {
+ Matrix &yzeCosts = g.getEdgeCosts(yzeItr);
+ h.preUpdateEdgeCosts(yzeItr);
+ if (ynItr == g.getEdgeNode1(yzeItr)) {
+ yzeCosts += delta;
+ } else {
+ yzeCosts += delta.transpose();
+ }
+ }
+
+ bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr);
+
+ if (!addedEdge) {
+ // If we modified the edge costs let the heuristic know.
+ h.postUpdateEdgeCosts(yzeItr);
+ }
+
+ if (nullCostEdge) {
+ // If this edge ended up null remove it.
+ if (!addedEdge) {
+ // We didn't just add it, so we need to notify the heuristic
+ // and remove it from the solver.
+ h.handleRemoveEdge(yzeItr, ynItr);
+ h.handleRemoveEdge(yzeItr, znItr);
+ removeSolverEdge(yzeItr);
+ }
+ g.removeEdge(yzeItr);
+ } else if (addedEdge) {
+ // If the edge was added, and non-null, finish setting it up, add it to
+ // the solver & notify heuristic.
+ edgeDataList.push_back(EdgeData());
+ g.setEdgeData(yzeItr, &edgeDataList.back());
+ addSolverEdge(yzeItr);
+ h.handleAddEdge(yzeItr);
+ }
+
+ h.handleRemoveEdge(yxeItr, ynItr);
+ removeSolverEdge(yxeItr);
+ h.handleRemoveEdge(zxeItr, znItr);
+ removeSolverEdge(zxeItr);
+
+ pushToStack(xnItr);
+ }
+
+ private:
+
+ NodeData& getSolverNodeData(Graph::NodeItr nItr) {
+ return *static_cast<NodeData*>(g.getNodeData(nItr));
+ }
+
+ EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) {
+ return *static_cast<EdgeData*>(g.getEdgeData(eItr));
+ }
+
+ void addSolverEdge(Graph::EdgeItr eItr) {
+ EdgeData &eData = getSolverEdgeData(eItr);
+ NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
+ &n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
+
+ eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr));
+ eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr));
+ }
+
+ void setup() {
+ if (h.solverRunSimplify()) {
+ simplify();
+ }
+
+ // Create node data objects.
+ for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
+ nItr != nEnd; ++nItr) {
+ nodeDataList.push_back(NodeData());
+ g.setNodeData(nItr, &nodeDataList.back());
+ }
+
+ // Create edge data objects.
+ for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
+ eItr != eEnd; ++eItr) {
+ edgeDataList.push_back(EdgeData());
+ g.setEdgeData(eItr, &edgeDataList.back());
+ addSolverEdge(eItr);
+ }
+ }
+
+ void simplify() {
+ disconnectTrivialNodes();
+ eliminateIndependentEdges();
+ }
+
+ // Eliminate trivial nodes.
+ void disconnectTrivialNodes() {
+ unsigned numDisconnected = 0;
+
+ for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
+ nItr != nEnd; ++nItr) {
+
+ if (g.getNodeCosts(nItr).getLength() == 1) {
+
+ std::vector<Graph::EdgeItr> edgesToRemove;
+
+ for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
+ aeEnd = g.adjEdgesEnd(nItr);
+ aeItr != aeEnd; ++aeItr) {
+
+ Graph::EdgeItr eItr = *aeItr;
+
+ if (g.getEdgeNode1(eItr) == nItr) {
+ Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr);
+ g.getNodeCosts(otherNodeItr) +=
+ g.getEdgeCosts(eItr).getRowAsVector(0);
+ }
+ else {
+ Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr);
+ g.getNodeCosts(otherNodeItr) +=
+ g.getEdgeCosts(eItr).getColAsVector(0);
+ }
+
+ edgesToRemove.push_back(eItr);
+ }
+
+ if (!edgesToRemove.empty())
+ ++numDisconnected;
+
+ while (!edgesToRemove.empty()) {
+ g.removeEdge(edgesToRemove.back());
+ edgesToRemove.pop_back();
+ }
+ }
+ }
+ }
+
+ void eliminateIndependentEdges() {
+ std::vector<Graph::EdgeItr> edgesToProcess;
+ unsigned numEliminated = 0;
+
+ for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
+ eItr != eEnd; ++eItr) {
+ edgesToProcess.push_back(eItr);
+ }
+
+ while (!edgesToProcess.empty()) {
+ if (tryToEliminateEdge(edgesToProcess.back()))
+ ++numEliminated;
+ edgesToProcess.pop_back();
+ }
+ }
+
+ bool tryToEliminateEdge(Graph::EdgeItr eItr) {
+ if (tryNormaliseEdgeMatrix(eItr)) {
+ g.removeEdge(eItr);
+ return true;
+ }
+ return false;
+ }
+
+ bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) {
+
+ const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
+
+ Matrix &edgeCosts = g.getEdgeCosts(eItr);
+ Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)),
+ &vCosts = g.getNodeCosts(g.getEdgeNode2(eItr));
+
+ for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
+ PBQPNum rowMin = infinity;
+
+ for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
+ if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin)
+ rowMin = edgeCosts[r][c];
+ }
+
+ uCosts[r] += rowMin;
+
+ if (rowMin != infinity) {
+ edgeCosts.subFromRow(r, rowMin);
+ }
+ else {
+ edgeCosts.setRow(r, 0);
+ }
+ }
+
+ for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
+ PBQPNum colMin = infinity;
+
+ for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
+ if (uCosts[r] != infinity && edgeCosts[r][c] < colMin)
+ colMin = edgeCosts[r][c];
+ }
+
+ vCosts[c] += colMin;
+
+ if (colMin != infinity) {
+ edgeCosts.subFromCol(c, colMin);
+ }
+ else {
+ edgeCosts.setCol(c, 0);
+ }
+ }
+
+ return edgeCosts.isZero();
+ }
+
+ void backpropagate() {
+ while (!stack.empty()) {
+ computeSolution(stack.back());
+ stack.pop_back();
+ }
+ }
+
+ void computeSolution(Graph::NodeItr nItr) {
+
+ NodeData &nodeData = getSolverNodeData(nItr);
+
+ Vector v(g.getNodeCosts(nItr));
+
+ // Solve based on existing solved edges.
+ for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
+ solvedEdgeEnd = nodeData.solverEdgesEnd();
+ solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
+
+ Graph::EdgeItr eItr(*solvedEdgeItr);
+ Matrix &edgeCosts = g.getEdgeCosts(eItr);
+
+ if (nItr == g.getEdgeNode1(eItr)) {
+ Graph::NodeItr adjNode(g.getEdgeNode2(eItr));
+ unsigned adjSolution = s.getSelection(adjNode);
+ v += edgeCosts.getColAsVector(adjSolution);
+ }
+ else {
+ Graph::NodeItr adjNode(g.getEdgeNode1(eItr));
+ unsigned adjSolution = s.getSelection(adjNode);
+ v += edgeCosts.getRowAsVector(adjSolution);
+ }
+
+ }
+
+ setSolution(nItr, v.minIndex());
+ }
+
+ void cleanup() {
+ h.cleanup();
+ nodeDataList.clear();
+ edgeDataList.clear();
+ }
+ };
+
+ /// \brief PBQP heuristic solver class.
+ ///
+ /// Given a PBQP Graph g representing a PBQP problem, you can find a solution
+ /// by calling
+ /// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt>
+ ///
+ /// The choice of heuristic for the H parameter will affect both the solver
+ /// speed and solution quality. The heuristic should be chosen based on the
+ /// nature of the problem being solved.
+ /// Currently the only solver included with LLVM is the Briggs heuristic for
+ /// register allocation.
+ template <typename HImpl>
+ class HeuristicSolver {
+ public:
+ static Solution solve(Graph &g) {
+ HeuristicSolverImpl<HImpl> hs(g);
+ return hs.computeSolution();
+ }
+ };
+
+}
+
+#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
OpenPOWER on IntegriCloud