summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineVerifier.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineVerifier.cpp1820
1 files changed, 1820 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineVerifier.cpp b/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
new file mode 100644
index 0000000..72a6769
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineVerifier.cpp
@@ -0,0 +1,1820 @@
+//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Pass to verify generated machine code. The following is checked:
+//
+// Operand counts: All explicit operands must be present.
+//
+// Register classes: All physical and virtual register operands must be
+// compatible with the register class required by the instruction descriptor.
+//
+// Register live intervals: Registers must be defined only once, and must be
+// defined before use.
+//
+// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
+// command-line option -verify-machineinstrs, or by defining the environment
+// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
+// the verifier errors.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+using namespace llvm;
+
+namespace {
+ struct MachineVerifier {
+
+ MachineVerifier(Pass *pass, const char *b) :
+ PASS(pass),
+ Banner(b)
+ {}
+
+ bool runOnMachineFunction(MachineFunction &MF);
+
+ Pass *const PASS;
+ const char *Banner;
+ const MachineFunction *MF;
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const MachineRegisterInfo *MRI;
+
+ unsigned foundErrors;
+
+ typedef SmallVector<unsigned, 16> RegVector;
+ typedef SmallVector<const uint32_t*, 4> RegMaskVector;
+ typedef DenseSet<unsigned> RegSet;
+ typedef DenseMap<unsigned, const MachineInstr*> RegMap;
+ typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
+
+ const MachineInstr *FirstTerminator;
+ BlockSet FunctionBlocks;
+
+ BitVector regsReserved;
+ RegSet regsLive;
+ RegVector regsDefined, regsDead, regsKilled;
+ RegMaskVector regMasks;
+ RegSet regsLiveInButUnused;
+
+ SlotIndex lastIndex;
+
+ // Add Reg and any sub-registers to RV
+ void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
+ RV.push_back(Reg);
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
+ RV.push_back(*SubRegs);
+ }
+
+ struct BBInfo {
+ // Is this MBB reachable from the MF entry point?
+ bool reachable;
+
+ // Vregs that must be live in because they are used without being
+ // defined. Map value is the user.
+ RegMap vregsLiveIn;
+
+ // Regs killed in MBB. They may be defined again, and will then be in both
+ // regsKilled and regsLiveOut.
+ RegSet regsKilled;
+
+ // Regs defined in MBB and live out. Note that vregs passing through may
+ // be live out without being mentioned here.
+ RegSet regsLiveOut;
+
+ // Vregs that pass through MBB untouched. This set is disjoint from
+ // regsKilled and regsLiveOut.
+ RegSet vregsPassed;
+
+ // Vregs that must pass through MBB because they are needed by a successor
+ // block. This set is disjoint from regsLiveOut.
+ RegSet vregsRequired;
+
+ // Set versions of block's predecessor and successor lists.
+ BlockSet Preds, Succs;
+
+ BBInfo() : reachable(false) {}
+
+ // Add register to vregsPassed if it belongs there. Return true if
+ // anything changed.
+ bool addPassed(unsigned Reg) {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return false;
+ if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
+ return false;
+ return vregsPassed.insert(Reg).second;
+ }
+
+ // Same for a full set.
+ bool addPassed(const RegSet &RS) {
+ bool changed = false;
+ for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
+ if (addPassed(*I))
+ changed = true;
+ return changed;
+ }
+
+ // Add register to vregsRequired if it belongs there. Return true if
+ // anything changed.
+ bool addRequired(unsigned Reg) {
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return false;
+ if (regsLiveOut.count(Reg))
+ return false;
+ return vregsRequired.insert(Reg).second;
+ }
+
+ // Same for a full set.
+ bool addRequired(const RegSet &RS) {
+ bool changed = false;
+ for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
+ if (addRequired(*I))
+ changed = true;
+ return changed;
+ }
+
+ // Same for a full map.
+ bool addRequired(const RegMap &RM) {
+ bool changed = false;
+ for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
+ if (addRequired(I->first))
+ changed = true;
+ return changed;
+ }
+
+ // Live-out registers are either in regsLiveOut or vregsPassed.
+ bool isLiveOut(unsigned Reg) const {
+ return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
+ }
+ };
+
+ // Extra register info per MBB.
+ DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
+
+ bool isReserved(unsigned Reg) {
+ return Reg < regsReserved.size() && regsReserved.test(Reg);
+ }
+
+ bool isAllocatable(unsigned Reg) {
+ return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
+ }
+
+ // Analysis information if available
+ LiveVariables *LiveVars;
+ LiveIntervals *LiveInts;
+ LiveStacks *LiveStks;
+ SlotIndexes *Indexes;
+
+ void visitMachineFunctionBefore();
+ void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
+ void visitMachineBundleBefore(const MachineInstr *MI);
+ void visitMachineInstrBefore(const MachineInstr *MI);
+ void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
+ void visitMachineInstrAfter(const MachineInstr *MI);
+ void visitMachineBundleAfter(const MachineInstr *MI);
+ void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
+ void visitMachineFunctionAfter();
+
+ void report(const char *msg, const MachineFunction *MF);
+ void report(const char *msg, const MachineBasicBlock *MBB);
+ void report(const char *msg, const MachineInstr *MI);
+ void report(const char *msg, const MachineOperand *MO, unsigned MONum);
+ void report(const char *msg, const MachineFunction *MF,
+ const LiveInterval &LI);
+ void report(const char *msg, const MachineBasicBlock *MBB,
+ const LiveInterval &LI);
+ void report(const char *msg, const MachineFunction *MF,
+ const LiveRange &LR, unsigned Reg, unsigned LaneMask);
+ void report(const char *msg, const MachineBasicBlock *MBB,
+ const LiveRange &LR, unsigned Reg, unsigned LaneMask);
+
+ void verifyInlineAsm(const MachineInstr *MI);
+
+ void checkLiveness(const MachineOperand *MO, unsigned MONum);
+ void markReachable(const MachineBasicBlock *MBB);
+ void calcRegsPassed();
+ void checkPHIOps(const MachineBasicBlock *MBB);
+
+ void calcRegsRequired();
+ void verifyLiveVariables();
+ void verifyLiveIntervals();
+ void verifyLiveInterval(const LiveInterval&);
+ void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
+ unsigned);
+ void verifyLiveRangeSegment(const LiveRange&,
+ const LiveRange::const_iterator I, unsigned,
+ unsigned);
+ void verifyLiveRange(const LiveRange&, unsigned, unsigned LaneMask = 0);
+
+ void verifyStackFrame();
+ };
+
+ struct MachineVerifierPass : public MachineFunctionPass {
+ static char ID; // Pass ID, replacement for typeid
+ const std::string Banner;
+
+ MachineVerifierPass(const std::string &banner = nullptr)
+ : MachineFunctionPass(ID), Banner(banner) {
+ initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ MF.verify(this, Banner.c_str());
+ return false;
+ }
+ };
+
+} // namespace
+
+char MachineVerifierPass::ID = 0;
+INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
+ "Verify generated machine code", false, false)
+
+FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
+ return new MachineVerifierPass(Banner);
+}
+
+void MachineFunction::verify(Pass *p, const char *Banner) const {
+ MachineVerifier(p, Banner)
+ .runOnMachineFunction(const_cast<MachineFunction&>(*this));
+}
+
+bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
+ foundErrors = 0;
+
+ this->MF = &MF;
+ TM = &MF.getTarget();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+
+ LiveVars = nullptr;
+ LiveInts = nullptr;
+ LiveStks = nullptr;
+ Indexes = nullptr;
+ if (PASS) {
+ LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
+ // We don't want to verify LiveVariables if LiveIntervals is available.
+ if (!LiveInts)
+ LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
+ LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
+ Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
+ }
+
+ visitMachineFunctionBefore();
+ for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
+ MFI!=MFE; ++MFI) {
+ visitMachineBasicBlockBefore(MFI);
+ // Keep track of the current bundle header.
+ const MachineInstr *CurBundle = nullptr;
+ // Do we expect the next instruction to be part of the same bundle?
+ bool InBundle = false;
+
+ for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
+ MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
+ if (MBBI->getParent() != MFI) {
+ report("Bad instruction parent pointer", MFI);
+ errs() << "Instruction: " << *MBBI;
+ continue;
+ }
+
+ // Check for consistent bundle flags.
+ if (InBundle && !MBBI->isBundledWithPred())
+ report("Missing BundledPred flag, "
+ "BundledSucc was set on predecessor", MBBI);
+ if (!InBundle && MBBI->isBundledWithPred())
+ report("BundledPred flag is set, "
+ "but BundledSucc not set on predecessor", MBBI);
+
+ // Is this a bundle header?
+ if (!MBBI->isInsideBundle()) {
+ if (CurBundle)
+ visitMachineBundleAfter(CurBundle);
+ CurBundle = MBBI;
+ visitMachineBundleBefore(CurBundle);
+ } else if (!CurBundle)
+ report("No bundle header", MBBI);
+ visitMachineInstrBefore(MBBI);
+ for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
+ const MachineInstr &MI = *MBBI;
+ const MachineOperand &Op = MI.getOperand(I);
+ if (Op.getParent() != &MI) {
+ // Make sure to use correct addOperand / RemoveOperand / ChangeTo
+ // functions when replacing operands of a MachineInstr.
+ report("Instruction has operand with wrong parent set", &MI);
+ }
+
+ visitMachineOperand(&Op, I);
+ }
+
+ visitMachineInstrAfter(MBBI);
+
+ // Was this the last bundled instruction?
+ InBundle = MBBI->isBundledWithSucc();
+ }
+ if (CurBundle)
+ visitMachineBundleAfter(CurBundle);
+ if (InBundle)
+ report("BundledSucc flag set on last instruction in block", &MFI->back());
+ visitMachineBasicBlockAfter(MFI);
+ }
+ visitMachineFunctionAfter();
+
+ if (foundErrors)
+ report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
+
+ // Clean up.
+ regsLive.clear();
+ regsDefined.clear();
+ regsDead.clear();
+ regsKilled.clear();
+ regMasks.clear();
+ regsLiveInButUnused.clear();
+ MBBInfoMap.clear();
+
+ return false; // no changes
+}
+
+void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
+ assert(MF);
+ errs() << '\n';
+ if (!foundErrors++) {
+ if (Banner)
+ errs() << "# " << Banner << '\n';
+ MF->print(errs(), Indexes);
+ }
+ errs() << "*** Bad machine code: " << msg << " ***\n"
+ << "- function: " << MF->getName() << "\n";
+}
+
+void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
+ assert(MBB);
+ report(msg, MBB->getParent());
+ errs() << "- basic block: BB#" << MBB->getNumber()
+ << ' ' << MBB->getName()
+ << " (" << (const void*)MBB << ')';
+ if (Indexes)
+ errs() << " [" << Indexes->getMBBStartIdx(MBB)
+ << ';' << Indexes->getMBBEndIdx(MBB) << ')';
+ errs() << '\n';
+}
+
+void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
+ assert(MI);
+ report(msg, MI->getParent());
+ errs() << "- instruction: ";
+ if (Indexes && Indexes->hasIndex(MI))
+ errs() << Indexes->getInstructionIndex(MI) << '\t';
+ MI->print(errs(), TM);
+}
+
+void MachineVerifier::report(const char *msg,
+ const MachineOperand *MO, unsigned MONum) {
+ assert(MO);
+ report(msg, MO->getParent());
+ errs() << "- operand " << MONum << ": ";
+ MO->print(errs(), TRI);
+ errs() << "\n";
+}
+
+void MachineVerifier::report(const char *msg, const MachineFunction *MF,
+ const LiveInterval &LI) {
+ report(msg, MF);
+ errs() << "- interval: " << LI << '\n';
+}
+
+void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
+ const LiveInterval &LI) {
+ report(msg, MBB);
+ errs() << "- interval: " << LI << '\n';
+}
+
+void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
+ const LiveRange &LR, unsigned Reg,
+ unsigned LaneMask) {
+ report(msg, MBB);
+ errs() << "- liverange: " << LR << '\n';
+ errs() << "- register: " << PrintReg(Reg, TRI) << '\n';
+ if (LaneMask != 0)
+ errs() << "- lanemask: " << format("%04X\n", LaneMask);
+}
+
+void MachineVerifier::report(const char *msg, const MachineFunction *MF,
+ const LiveRange &LR, unsigned Reg,
+ unsigned LaneMask) {
+ report(msg, MF);
+ errs() << "- liverange: " << LR << '\n';
+ errs() << "- register: " << PrintReg(Reg, TRI) << '\n';
+ if (LaneMask != 0)
+ errs() << "- lanemask: " << format("%04X\n", LaneMask);
+}
+
+void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
+ BBInfo &MInfo = MBBInfoMap[MBB];
+ if (!MInfo.reachable) {
+ MInfo.reachable = true;
+ for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
+ SuE = MBB->succ_end(); SuI != SuE; ++SuI)
+ markReachable(*SuI);
+ }
+}
+
+void MachineVerifier::visitMachineFunctionBefore() {
+ lastIndex = SlotIndex();
+ regsReserved = MRI->getReservedRegs();
+
+ // A sub-register of a reserved register is also reserved
+ for (int Reg = regsReserved.find_first(); Reg>=0;
+ Reg = regsReserved.find_next(Reg)) {
+ for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
+ // FIXME: This should probably be:
+ // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
+ regsReserved.set(*SubRegs);
+ }
+ }
+
+ markReachable(&MF->front());
+
+ // Build a set of the basic blocks in the function.
+ FunctionBlocks.clear();
+ for (const auto &MBB : *MF) {
+ FunctionBlocks.insert(&MBB);
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+
+ MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
+ if (MInfo.Preds.size() != MBB.pred_size())
+ report("MBB has duplicate entries in its predecessor list.", &MBB);
+
+ MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
+ if (MInfo.Succs.size() != MBB.succ_size())
+ report("MBB has duplicate entries in its successor list.", &MBB);
+ }
+
+ // Check that the register use lists are sane.
+ MRI->verifyUseLists();
+
+ verifyStackFrame();
+}
+
+// Does iterator point to a and b as the first two elements?
+static bool matchPair(MachineBasicBlock::const_succ_iterator i,
+ const MachineBasicBlock *a, const MachineBasicBlock *b) {
+ if (*i == a)
+ return *++i == b;
+ if (*i == b)
+ return *++i == a;
+ return false;
+}
+
+void
+MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
+ FirstTerminator = nullptr;
+
+ if (MRI->isSSA()) {
+ // If this block has allocatable physical registers live-in, check that
+ // it is an entry block or landing pad.
+ for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
+ LE = MBB->livein_end();
+ LI != LE; ++LI) {
+ unsigned reg = *LI;
+ if (isAllocatable(reg) && !MBB->isLandingPad() &&
+ MBB != MBB->getParent()->begin()) {
+ report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
+ }
+ }
+ }
+
+ // Count the number of landing pad successors.
+ SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
+ for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end(); I != E; ++I) {
+ if ((*I)->isLandingPad())
+ LandingPadSuccs.insert(*I);
+ if (!FunctionBlocks.count(*I))
+ report("MBB has successor that isn't part of the function.", MBB);
+ if (!MBBInfoMap[*I].Preds.count(MBB)) {
+ report("Inconsistent CFG", MBB);
+ errs() << "MBB is not in the predecessor list of the successor BB#"
+ << (*I)->getNumber() << ".\n";
+ }
+ }
+
+ // Check the predecessor list.
+ for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
+ E = MBB->pred_end(); I != E; ++I) {
+ if (!FunctionBlocks.count(*I))
+ report("MBB has predecessor that isn't part of the function.", MBB);
+ if (!MBBInfoMap[*I].Succs.count(MBB)) {
+ report("Inconsistent CFG", MBB);
+ errs() << "MBB is not in the successor list of the predecessor BB#"
+ << (*I)->getNumber() << ".\n";
+ }
+ }
+
+ const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
+ const BasicBlock *BB = MBB->getBasicBlock();
+ if (LandingPadSuccs.size() > 1 &&
+ !(AsmInfo &&
+ AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
+ BB && isa<SwitchInst>(BB->getTerminator())))
+ report("MBB has more than one landing pad successor", MBB);
+
+ // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
+ TBB, FBB, Cond)) {
+ // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
+ // check whether its answers match up with reality.
+ if (!TBB && !FBB) {
+ // Block falls through to its successor.
+ MachineFunction::const_iterator MBBI = MBB;
+ ++MBBI;
+ if (MBBI == MF->end()) {
+ // It's possible that the block legitimately ends with a noreturn
+ // call or an unreachable, in which case it won't actually fall
+ // out the bottom of the function.
+ } else if (MBB->succ_size() == LandingPadSuccs.size()) {
+ // It's possible that the block legitimately ends with a noreturn
+ // call or an unreachable, in which case it won't actuall fall
+ // out of the block.
+ } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
+ report("MBB exits via unconditional fall-through but doesn't have "
+ "exactly one CFG successor!", MBB);
+ } else if (!MBB->isSuccessor(MBBI)) {
+ report("MBB exits via unconditional fall-through but its successor "
+ "differs from its CFG successor!", MBB);
+ }
+ if (!MBB->empty() && MBB->back().isBarrier() &&
+ !TII->isPredicated(&MBB->back())) {
+ report("MBB exits via unconditional fall-through but ends with a "
+ "barrier instruction!", MBB);
+ }
+ if (!Cond.empty()) {
+ report("MBB exits via unconditional fall-through but has a condition!",
+ MBB);
+ }
+ } else if (TBB && !FBB && Cond.empty()) {
+ // Block unconditionally branches somewhere.
+ // If the block has exactly one successor, that happens to be a
+ // landingpad, accept it as valid control flow.
+ if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
+ (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
+ *MBB->succ_begin() != *LandingPadSuccs.begin())) {
+ report("MBB exits via unconditional branch but doesn't have "
+ "exactly one CFG successor!", MBB);
+ } else if (!MBB->isSuccessor(TBB)) {
+ report("MBB exits via unconditional branch but the CFG "
+ "successor doesn't match the actual successor!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via unconditional branch but doesn't contain "
+ "any instructions!", MBB);
+ } else if (!MBB->back().isBarrier()) {
+ report("MBB exits via unconditional branch but doesn't end with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via unconditional branch but the branch isn't a "
+ "terminator instruction!", MBB);
+ }
+ } else if (TBB && !FBB && !Cond.empty()) {
+ // Block conditionally branches somewhere, otherwise falls through.
+ MachineFunction::const_iterator MBBI = MBB;
+ ++MBBI;
+ if (MBBI == MF->end()) {
+ report("MBB conditionally falls through out of function!", MBB);
+ } else if (MBB->succ_size() == 1) {
+ // A conditional branch with only one successor is weird, but allowed.
+ if (&*MBBI != TBB)
+ report("MBB exits via conditional branch/fall-through but only has "
+ "one CFG successor!", MBB);
+ else if (TBB != *MBB->succ_begin())
+ report("MBB exits via conditional branch/fall-through but the CFG "
+ "successor don't match the actual successor!", MBB);
+ } else if (MBB->succ_size() != 2) {
+ report("MBB exits via conditional branch/fall-through but doesn't have "
+ "exactly two CFG successors!", MBB);
+ } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
+ report("MBB exits via conditional branch/fall-through but the CFG "
+ "successors don't match the actual successors!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via conditional branch/fall-through but doesn't "
+ "contain any instructions!", MBB);
+ } else if (MBB->back().isBarrier()) {
+ report("MBB exits via conditional branch/fall-through but ends with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via conditional branch/fall-through but the branch "
+ "isn't a terminator instruction!", MBB);
+ }
+ } else if (TBB && FBB) {
+ // Block conditionally branches somewhere, otherwise branches
+ // somewhere else.
+ if (MBB->succ_size() == 1) {
+ // A conditional branch with only one successor is weird, but allowed.
+ if (FBB != TBB)
+ report("MBB exits via conditional branch/branch through but only has "
+ "one CFG successor!", MBB);
+ else if (TBB != *MBB->succ_begin())
+ report("MBB exits via conditional branch/branch through but the CFG "
+ "successor don't match the actual successor!", MBB);
+ } else if (MBB->succ_size() != 2) {
+ report("MBB exits via conditional branch/branch but doesn't have "
+ "exactly two CFG successors!", MBB);
+ } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
+ report("MBB exits via conditional branch/branch but the CFG "
+ "successors don't match the actual successors!", MBB);
+ }
+ if (MBB->empty()) {
+ report("MBB exits via conditional branch/branch but doesn't "
+ "contain any instructions!", MBB);
+ } else if (!MBB->back().isBarrier()) {
+ report("MBB exits via conditional branch/branch but doesn't end with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via conditional branch/branch but the branch "
+ "isn't a terminator instruction!", MBB);
+ }
+ if (Cond.empty()) {
+ report("MBB exits via conditinal branch/branch but there's no "
+ "condition!", MBB);
+ }
+ } else {
+ report("AnalyzeBranch returned invalid data!", MBB);
+ }
+ }
+
+ regsLive.clear();
+ for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
+ E = MBB->livein_end(); I != E; ++I) {
+ if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
+ report("MBB live-in list contains non-physical register", MBB);
+ continue;
+ }
+ for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
+ SubRegs.isValid(); ++SubRegs)
+ regsLive.insert(*SubRegs);
+ }
+ regsLiveInButUnused = regsLive;
+
+ const MachineFrameInfo *MFI = MF->getFrameInfo();
+ assert(MFI && "Function has no frame info");
+ BitVector PR = MFI->getPristineRegs(*MF);
+ for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
+ for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
+ SubRegs.isValid(); ++SubRegs)
+ regsLive.insert(*SubRegs);
+ }
+
+ regsKilled.clear();
+ regsDefined.clear();
+
+ if (Indexes)
+ lastIndex = Indexes->getMBBStartIdx(MBB);
+}
+
+// This function gets called for all bundle headers, including normal
+// stand-alone unbundled instructions.
+void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
+ if (Indexes && Indexes->hasIndex(MI)) {
+ SlotIndex idx = Indexes->getInstructionIndex(MI);
+ if (!(idx > lastIndex)) {
+ report("Instruction index out of order", MI);
+ errs() << "Last instruction was at " << lastIndex << '\n';
+ }
+ lastIndex = idx;
+ }
+
+ // Ensure non-terminators don't follow terminators.
+ // Ignore predicated terminators formed by if conversion.
+ // FIXME: If conversion shouldn't need to violate this rule.
+ if (MI->isTerminator() && !TII->isPredicated(MI)) {
+ if (!FirstTerminator)
+ FirstTerminator = MI;
+ } else if (FirstTerminator) {
+ report("Non-terminator instruction after the first terminator", MI);
+ errs() << "First terminator was:\t" << *FirstTerminator;
+ }
+}
+
+// The operands on an INLINEASM instruction must follow a template.
+// Verify that the flag operands make sense.
+void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
+ // The first two operands on INLINEASM are the asm string and global flags.
+ if (MI->getNumOperands() < 2) {
+ report("Too few operands on inline asm", MI);
+ return;
+ }
+ if (!MI->getOperand(0).isSymbol())
+ report("Asm string must be an external symbol", MI);
+ if (!MI->getOperand(1).isImm())
+ report("Asm flags must be an immediate", MI);
+ // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
+ // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
+ if (!isUInt<5>(MI->getOperand(1).getImm()))
+ report("Unknown asm flags", &MI->getOperand(1), 1);
+
+ static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
+
+ unsigned OpNo = InlineAsm::MIOp_FirstOperand;
+ unsigned NumOps;
+ for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ // There may be implicit ops after the fixed operands.
+ if (!MO.isImm())
+ break;
+ NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
+ }
+
+ if (OpNo > MI->getNumOperands())
+ report("Missing operands in last group", MI);
+
+ // An optional MDNode follows the groups.
+ if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
+ ++OpNo;
+
+ // All trailing operands must be implicit registers.
+ for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ if (!MO.isReg() || !MO.isImplicit())
+ report("Expected implicit register after groups", &MO, OpNo);
+ }
+}
+
+void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MI->getNumOperands() < MCID.getNumOperands()) {
+ report("Too few operands", MI);
+ errs() << MCID.getNumOperands() << " operands expected, but "
+ << MI->getNumOperands() << " given.\n";
+ }
+
+ // Check the tied operands.
+ if (MI->isInlineAsm())
+ verifyInlineAsm(MI);
+
+ // Check the MachineMemOperands for basic consistency.
+ for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
+ E = MI->memoperands_end(); I != E; ++I) {
+ if ((*I)->isLoad() && !MI->mayLoad())
+ report("Missing mayLoad flag", MI);
+ if ((*I)->isStore() && !MI->mayStore())
+ report("Missing mayStore flag", MI);
+ }
+
+ // Debug values must not have a slot index.
+ // Other instructions must have one, unless they are inside a bundle.
+ if (LiveInts) {
+ bool mapped = !LiveInts->isNotInMIMap(MI);
+ if (MI->isDebugValue()) {
+ if (mapped)
+ report("Debug instruction has a slot index", MI);
+ } else if (MI->isInsideBundle()) {
+ if (mapped)
+ report("Instruction inside bundle has a slot index", MI);
+ } else {
+ if (!mapped)
+ report("Missing slot index", MI);
+ }
+ }
+
+ StringRef ErrorInfo;
+ if (!TII->verifyInstruction(MI, ErrorInfo))
+ report(ErrorInfo.data(), MI);
+}
+
+void
+MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
+ const MachineInstr *MI = MO->getParent();
+ const MCInstrDesc &MCID = MI->getDesc();
+
+ // The first MCID.NumDefs operands must be explicit register defines
+ if (MONum < MCID.getNumDefs()) {
+ const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
+ if (!MO->isReg())
+ report("Explicit definition must be a register", MO, MONum);
+ else if (!MO->isDef() && !MCOI.isOptionalDef())
+ report("Explicit definition marked as use", MO, MONum);
+ else if (MO->isImplicit())
+ report("Explicit definition marked as implicit", MO, MONum);
+ } else if (MONum < MCID.getNumOperands()) {
+ const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
+ // Don't check if it's the last operand in a variadic instruction. See,
+ // e.g., LDM_RET in the arm back end.
+ if (MO->isReg() &&
+ !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
+ if (MO->isDef() && !MCOI.isOptionalDef())
+ report("Explicit operand marked as def", MO, MONum);
+ if (MO->isImplicit())
+ report("Explicit operand marked as implicit", MO, MONum);
+ }
+
+ int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
+ if (TiedTo != -1) {
+ if (!MO->isReg())
+ report("Tied use must be a register", MO, MONum);
+ else if (!MO->isTied())
+ report("Operand should be tied", MO, MONum);
+ else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
+ report("Tied def doesn't match MCInstrDesc", MO, MONum);
+ } else if (MO->isReg() && MO->isTied())
+ report("Explicit operand should not be tied", MO, MONum);
+ } else {
+ // ARM adds %reg0 operands to indicate predicates. We'll allow that.
+ if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
+ report("Extra explicit operand on non-variadic instruction", MO, MONum);
+ }
+
+ switch (MO->getType()) {
+ case MachineOperand::MO_Register: {
+ const unsigned Reg = MO->getReg();
+ if (!Reg)
+ return;
+ if (MRI->tracksLiveness() && !MI->isDebugValue())
+ checkLiveness(MO, MONum);
+
+ // Verify the consistency of tied operands.
+ if (MO->isTied()) {
+ unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
+ const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
+ if (!OtherMO.isReg())
+ report("Must be tied to a register", MO, MONum);
+ if (!OtherMO.isTied())
+ report("Missing tie flags on tied operand", MO, MONum);
+ if (MI->findTiedOperandIdx(OtherIdx) != MONum)
+ report("Inconsistent tie links", MO, MONum);
+ if (MONum < MCID.getNumDefs()) {
+ if (OtherIdx < MCID.getNumOperands()) {
+ if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
+ report("Explicit def tied to explicit use without tie constraint",
+ MO, MONum);
+ } else {
+ if (!OtherMO.isImplicit())
+ report("Explicit def should be tied to implicit use", MO, MONum);
+ }
+ }
+ }
+
+ // Verify two-address constraints after leaving SSA form.
+ unsigned DefIdx;
+ if (!MRI->isSSA() && MO->isUse() &&
+ MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
+ Reg != MI->getOperand(DefIdx).getReg())
+ report("Two-address instruction operands must be identical", MO, MONum);
+
+ // Check register classes.
+ if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
+ unsigned SubIdx = MO->getSubReg();
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (SubIdx) {
+ report("Illegal subregister index for physical register", MO, MONum);
+ return;
+ }
+ if (const TargetRegisterClass *DRC =
+ TII->getRegClass(MCID, MONum, TRI, *MF)) {
+ if (!DRC->contains(Reg)) {
+ report("Illegal physical register for instruction", MO, MONum);
+ errs() << TRI->getName(Reg) << " is not a "
+ << TRI->getRegClassName(DRC) << " register.\n";
+ }
+ }
+ } else {
+ // Virtual register.
+ const TargetRegisterClass *RC = MRI->getRegClass(Reg);
+ if (SubIdx) {
+ const TargetRegisterClass *SRC =
+ TRI->getSubClassWithSubReg(RC, SubIdx);
+ if (!SRC) {
+ report("Invalid subregister index for virtual register", MO, MONum);
+ errs() << "Register class " << TRI->getRegClassName(RC)
+ << " does not support subreg index " << SubIdx << "\n";
+ return;
+ }
+ if (RC != SRC) {
+ report("Invalid register class for subregister index", MO, MONum);
+ errs() << "Register class " << TRI->getRegClassName(RC)
+ << " does not fully support subreg index " << SubIdx << "\n";
+ return;
+ }
+ }
+ if (const TargetRegisterClass *DRC =
+ TII->getRegClass(MCID, MONum, TRI, *MF)) {
+ if (SubIdx) {
+ const TargetRegisterClass *SuperRC =
+ TRI->getLargestLegalSuperClass(RC, *MF);
+ if (!SuperRC) {
+ report("No largest legal super class exists.", MO, MONum);
+ return;
+ }
+ DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
+ if (!DRC) {
+ report("No matching super-reg register class.", MO, MONum);
+ return;
+ }
+ }
+ if (!RC->hasSuperClassEq(DRC)) {
+ report("Illegal virtual register for instruction", MO, MONum);
+ errs() << "Expected a " << TRI->getRegClassName(DRC)
+ << " register, but got a " << TRI->getRegClassName(RC)
+ << " register\n";
+ }
+ }
+ }
+ }
+ break;
+ }
+
+ case MachineOperand::MO_RegisterMask:
+ regMasks.push_back(MO->getRegMask());
+ break;
+
+ case MachineOperand::MO_MachineBasicBlock:
+ if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
+ report("PHI operand is not in the CFG", MO, MONum);
+ break;
+
+ case MachineOperand::MO_FrameIndex:
+ if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
+ LiveInts && !LiveInts->isNotInMIMap(MI)) {
+ LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
+ SlotIndex Idx = LiveInts->getInstructionIndex(MI);
+ if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
+ report("Instruction loads from dead spill slot", MO, MONum);
+ errs() << "Live stack: " << LI << '\n';
+ }
+ if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
+ report("Instruction stores to dead spill slot", MO, MONum);
+ errs() << "Live stack: " << LI << '\n';
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+}
+
+void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
+ const MachineInstr *MI = MO->getParent();
+ const unsigned Reg = MO->getReg();
+
+ // Both use and def operands can read a register.
+ if (MO->readsReg()) {
+ regsLiveInButUnused.erase(Reg);
+
+ if (MO->isKill())
+ addRegWithSubRegs(regsKilled, Reg);
+
+ // Check that LiveVars knows this kill.
+ if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
+ MO->isKill()) {
+ LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
+ if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
+ report("Kill missing from LiveVariables", MO, MONum);
+ }
+
+ // Check LiveInts liveness and kill.
+ if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
+ SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
+ // Check the cached regunit intervals.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
+ for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
+ if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
+ LiveQueryResult LRQ = LR->Query(UseIdx);
+ if (!LRQ.valueIn()) {
+ report("No live segment at use", MO, MONum);
+ errs() << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
+ << ' ' << *LR << '\n';
+ }
+ if (MO->isKill() && !LRQ.isKill()) {
+ report("Live range continues after kill flag", MO, MONum);
+ errs() << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
+ }
+ }
+ }
+ }
+
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (LiveInts->hasInterval(Reg)) {
+ // This is a virtual register interval.
+ const LiveInterval &LI = LiveInts->getInterval(Reg);
+ LiveQueryResult LRQ = LI.Query(UseIdx);
+ if (!LRQ.valueIn()) {
+ report("No live segment at use", MO, MONum);
+ errs() << UseIdx << " is not live in " << LI << '\n';
+ }
+ // Check for extra kill flags.
+ // Note that we allow missing kill flags for now.
+ if (MO->isKill() && !LRQ.isKill()) {
+ report("Live range continues after kill flag", MO, MONum);
+ errs() << "Live range: " << LI << '\n';
+ }
+ } else {
+ report("Virtual register has no live interval", MO, MONum);
+ }
+ }
+ }
+
+ // Use of a dead register.
+ if (!regsLive.count(Reg)) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ // Reserved registers may be used even when 'dead'.
+ bool Bad = !isReserved(Reg);
+ // We are fine if just any subregister has a defined value.
+ if (Bad) {
+ for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
+ ++SubRegs) {
+ if (regsLive.count(*SubRegs)) {
+ Bad = false;
+ break;
+ }
+ }
+ }
+ // If there is an additional implicit-use of a super register we stop
+ // here. By definition we are fine if the super register is not
+ // (completely) dead, if the complete super register is dead we will
+ // get a report for its operand.
+ if (Bad) {
+ for (const MachineOperand &MOP : MI->uses()) {
+ if (!MOP.isReg())
+ continue;
+ if (!MOP.isImplicit())
+ continue;
+ for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
+ ++SubRegs) {
+ if (*SubRegs == Reg) {
+ Bad = false;
+ break;
+ }
+ }
+ }
+ }
+ if (Bad)
+ report("Using an undefined physical register", MO, MONum);
+ } else if (MRI->def_empty(Reg)) {
+ report("Reading virtual register without a def", MO, MONum);
+ } else {
+ BBInfo &MInfo = MBBInfoMap[MI->getParent()];
+ // We don't know which virtual registers are live in, so only complain
+ // if vreg was killed in this MBB. Otherwise keep track of vregs that
+ // must be live in. PHI instructions are handled separately.
+ if (MInfo.regsKilled.count(Reg))
+ report("Using a killed virtual register", MO, MONum);
+ else if (!MI->isPHI())
+ MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
+ }
+ }
+ }
+
+ if (MO->isDef()) {
+ // Register defined.
+ // TODO: verify that earlyclobber ops are not used.
+ if (MO->isDead())
+ addRegWithSubRegs(regsDead, Reg);
+ else
+ addRegWithSubRegs(regsDefined, Reg);
+
+ // Verify SSA form.
+ if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
+ std::next(MRI->def_begin(Reg)) != MRI->def_end())
+ report("Multiple virtual register defs in SSA form", MO, MONum);
+
+ // Check LiveInts for a live segment, but only for virtual registers.
+ if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
+ !LiveInts->isNotInMIMap(MI)) {
+ SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
+ DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
+ if (LiveInts->hasInterval(Reg)) {
+ const LiveInterval &LI = LiveInts->getInterval(Reg);
+ if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
+ assert(VNI && "NULL valno is not allowed");
+ if (VNI->def != DefIdx) {
+ report("Inconsistent valno->def", MO, MONum);
+ errs() << "Valno " << VNI->id << " is not defined at "
+ << DefIdx << " in " << LI << '\n';
+ }
+ } else {
+ report("No live segment at def", MO, MONum);
+ errs() << DefIdx << " is not live in " << LI << '\n';
+ }
+ // Check that, if the dead def flag is present, LiveInts agree.
+ if (MO->isDead()) {
+ LiveQueryResult LRQ = LI.Query(DefIdx);
+ if (!LRQ.isDeadDef()) {
+ report("Live range continues after dead def flag", MO, MONum);
+ errs() << "Live range: " << LI << '\n';
+ }
+ }
+ } else {
+ report("Virtual register has no Live interval", MO, MONum);
+ }
+ }
+ }
+}
+
+void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
+}
+
+// This function gets called after visiting all instructions in a bundle. The
+// argument points to the bundle header.
+// Normal stand-alone instructions are also considered 'bundles', and this
+// function is called for all of them.
+void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
+ BBInfo &MInfo = MBBInfoMap[MI->getParent()];
+ set_union(MInfo.regsKilled, regsKilled);
+ set_subtract(regsLive, regsKilled); regsKilled.clear();
+ // Kill any masked registers.
+ while (!regMasks.empty()) {
+ const uint32_t *Mask = regMasks.pop_back_val();
+ for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
+ if (TargetRegisterInfo::isPhysicalRegister(*I) &&
+ MachineOperand::clobbersPhysReg(Mask, *I))
+ regsDead.push_back(*I);
+ }
+ set_subtract(regsLive, regsDead); regsDead.clear();
+ set_union(regsLive, regsDefined); regsDefined.clear();
+}
+
+void
+MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
+ MBBInfoMap[MBB].regsLiveOut = regsLive;
+ regsLive.clear();
+
+ if (Indexes) {
+ SlotIndex stop = Indexes->getMBBEndIdx(MBB);
+ if (!(stop > lastIndex)) {
+ report("Block ends before last instruction index", MBB);
+ errs() << "Block ends at " << stop
+ << " last instruction was at " << lastIndex << '\n';
+ }
+ lastIndex = stop;
+ }
+}
+
+// Calculate the largest possible vregsPassed sets. These are the registers that
+// can pass through an MBB live, but may not be live every time. It is assumed
+// that all vregsPassed sets are empty before the call.
+void MachineVerifier::calcRegsPassed() {
+ // First push live-out regs to successors' vregsPassed. Remember the MBBs that
+ // have any vregsPassed.
+ SmallPtrSet<const MachineBasicBlock*, 8> todo;
+ for (const auto &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+ if (!MInfo.reachable)
+ continue;
+ for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
+ SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
+ BBInfo &SInfo = MBBInfoMap[*SuI];
+ if (SInfo.addPassed(MInfo.regsLiveOut))
+ todo.insert(*SuI);
+ }
+ }
+
+ // Iteratively push vregsPassed to successors. This will converge to the same
+ // final state regardless of DenseSet iteration order.
+ while (!todo.empty()) {
+ const MachineBasicBlock *MBB = *todo.begin();
+ todo.erase(MBB);
+ BBInfo &MInfo = MBBInfoMap[MBB];
+ for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
+ SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
+ if (*SuI == MBB)
+ continue;
+ BBInfo &SInfo = MBBInfoMap[*SuI];
+ if (SInfo.addPassed(MInfo.vregsPassed))
+ todo.insert(*SuI);
+ }
+ }
+}
+
+// Calculate the set of virtual registers that must be passed through each basic
+// block in order to satisfy the requirements of successor blocks. This is very
+// similar to calcRegsPassed, only backwards.
+void MachineVerifier::calcRegsRequired() {
+ // First push live-in regs to predecessors' vregsRequired.
+ SmallPtrSet<const MachineBasicBlock*, 8> todo;
+ for (const auto &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+ for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
+ PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
+ BBInfo &PInfo = MBBInfoMap[*PrI];
+ if (PInfo.addRequired(MInfo.vregsLiveIn))
+ todo.insert(*PrI);
+ }
+ }
+
+ // Iteratively push vregsRequired to predecessors. This will converge to the
+ // same final state regardless of DenseSet iteration order.
+ while (!todo.empty()) {
+ const MachineBasicBlock *MBB = *todo.begin();
+ todo.erase(MBB);
+ BBInfo &MInfo = MBBInfoMap[MBB];
+ for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
+ PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
+ if (*PrI == MBB)
+ continue;
+ BBInfo &SInfo = MBBInfoMap[*PrI];
+ if (SInfo.addRequired(MInfo.vregsRequired))
+ todo.insert(*PrI);
+ }
+ }
+}
+
+// Check PHI instructions at the beginning of MBB. It is assumed that
+// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
+void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
+ SmallPtrSet<const MachineBasicBlock*, 8> seen;
+ for (const auto &BBI : *MBB) {
+ if (!BBI.isPHI())
+ break;
+ seen.clear();
+
+ for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
+ unsigned Reg = BBI.getOperand(i).getReg();
+ const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
+ if (!Pre->isSuccessor(MBB))
+ continue;
+ seen.insert(Pre);
+ BBInfo &PrInfo = MBBInfoMap[Pre];
+ if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
+ report("PHI operand is not live-out from predecessor",
+ &BBI.getOperand(i), i);
+ }
+
+ // Did we see all predecessors?
+ for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
+ PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
+ if (!seen.count(*PrI)) {
+ report("Missing PHI operand", &BBI);
+ errs() << "BB#" << (*PrI)->getNumber()
+ << " is a predecessor according to the CFG.\n";
+ }
+ }
+ }
+}
+
+void MachineVerifier::visitMachineFunctionAfter() {
+ calcRegsPassed();
+
+ for (const auto &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+
+ // Skip unreachable MBBs.
+ if (!MInfo.reachable)
+ continue;
+
+ checkPHIOps(&MBB);
+ }
+
+ // Now check liveness info if available
+ calcRegsRequired();
+
+ // Check for killed virtual registers that should be live out.
+ for (const auto &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+ for (RegSet::iterator
+ I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
+ ++I)
+ if (MInfo.regsKilled.count(*I)) {
+ report("Virtual register killed in block, but needed live out.", &MBB);
+ errs() << "Virtual register " << PrintReg(*I)
+ << " is used after the block.\n";
+ }
+ }
+
+ if (!MF->empty()) {
+ BBInfo &MInfo = MBBInfoMap[&MF->front()];
+ for (RegSet::iterator
+ I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
+ ++I)
+ report("Virtual register def doesn't dominate all uses.",
+ MRI->getVRegDef(*I));
+ }
+
+ if (LiveVars)
+ verifyLiveVariables();
+ if (LiveInts)
+ verifyLiveIntervals();
+}
+
+void MachineVerifier::verifyLiveVariables() {
+ assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
+ for (const auto &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+
+ // Our vregsRequired should be identical to LiveVariables' AliveBlocks
+ if (MInfo.vregsRequired.count(Reg)) {
+ if (!VI.AliveBlocks.test(MBB.getNumber())) {
+ report("LiveVariables: Block missing from AliveBlocks", &MBB);
+ errs() << "Virtual register " << PrintReg(Reg)
+ << " must be live through the block.\n";
+ }
+ } else {
+ if (VI.AliveBlocks.test(MBB.getNumber())) {
+ report("LiveVariables: Block should not be in AliveBlocks", &MBB);
+ errs() << "Virtual register " << PrintReg(Reg)
+ << " is not needed live through the block.\n";
+ }
+ }
+ }
+ }
+}
+
+void MachineVerifier::verifyLiveIntervals() {
+ assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+
+ // Spilling and splitting may leave unused registers around. Skip them.
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+
+ if (!LiveInts->hasInterval(Reg)) {
+ report("Missing live interval for virtual register", MF);
+ errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
+ continue;
+ }
+
+ const LiveInterval &LI = LiveInts->getInterval(Reg);
+ assert(Reg == LI.reg && "Invalid reg to interval mapping");
+ verifyLiveInterval(LI);
+ }
+
+ // Verify all the cached regunit intervals.
+ for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
+ if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
+ verifyLiveRange(*LR, i);
+}
+
+void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
+ const VNInfo *VNI, unsigned Reg,
+ unsigned LaneMask) {
+ if (VNI->isUnused())
+ return;
+
+ const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
+
+ if (!DefVNI) {
+ report("Valno not live at def and not marked unused", MF, LR, Reg,
+ LaneMask);
+ errs() << "Valno #" << VNI->id << '\n';
+ return;
+ }
+
+ if (DefVNI != VNI) {
+ report("Live segment at def has different valno", MF, LR, Reg, LaneMask);
+ errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << " where valno #" << DefVNI->id << " is live\n";
+ return;
+ }
+
+ const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
+ if (!MBB) {
+ report("Invalid definition index", MF, LR, Reg, LaneMask);
+ errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << " in " << LR << '\n';
+ return;
+ }
+
+ if (VNI->isPHIDef()) {
+ if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
+ report("PHIDef value is not defined at MBB start", MBB, LR, Reg,
+ LaneMask);
+ errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
+ << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
+ }
+ return;
+ }
+
+ // Non-PHI def.
+ const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
+ if (!MI) {
+ report("No instruction at def index", MBB, LR, Reg, LaneMask);
+ errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
+ return;
+ }
+
+ if (Reg != 0) {
+ bool hasDef = false;
+ bool isEarlyClobber = false;
+ for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef())
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (MOI->getReg() != Reg)
+ continue;
+ } else {
+ if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
+ !TRI->hasRegUnit(MOI->getReg(), Reg))
+ continue;
+ }
+ if (LaneMask != 0 &&
+ (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
+ continue;
+ hasDef = true;
+ if (MOI->isEarlyClobber())
+ isEarlyClobber = true;
+ }
+
+ if (!hasDef) {
+ report("Defining instruction does not modify register", MI);
+ errs() << "Valno #" << VNI->id << " in " << LR << '\n';
+ }
+
+ // Early clobber defs begin at USE slots, but other defs must begin at
+ // DEF slots.
+ if (isEarlyClobber) {
+ if (!VNI->def.isEarlyClobber()) {
+ report("Early clobber def must be at an early-clobber slot", MBB, LR,
+ Reg, LaneMask);
+ errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
+ }
+ } else if (!VNI->def.isRegister()) {
+ report("Non-PHI, non-early clobber def must be at a register slot",
+ MBB, LR, Reg, LaneMask);
+ errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
+ }
+ }
+}
+
+void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
+ const LiveRange::const_iterator I,
+ unsigned Reg, unsigned LaneMask) {
+ const LiveRange::Segment &S = *I;
+ const VNInfo *VNI = S.valno;
+ assert(VNI && "Live segment has no valno");
+
+ if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
+ report("Foreign valno in live segment", MF, LR, Reg, LaneMask);
+ errs() << S << " has a bad valno\n";
+ }
+
+ if (VNI->isUnused()) {
+ report("Live segment valno is marked unused", MF, LR, Reg, LaneMask);
+ errs() << S << '\n';
+ }
+
+ const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
+ if (!MBB) {
+ report("Bad start of live segment, no basic block", MF, LR, Reg, LaneMask);
+ errs() << S << '\n';
+ return;
+ }
+ SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
+ if (S.start != MBBStartIdx && S.start != VNI->def) {
+ report("Live segment must begin at MBB entry or valno def", MBB, LR, Reg,
+ LaneMask);
+ errs() << S << '\n';
+ }
+
+ const MachineBasicBlock *EndMBB =
+ LiveInts->getMBBFromIndex(S.end.getPrevSlot());
+ if (!EndMBB) {
+ report("Bad end of live segment, no basic block", MF, LR, Reg, LaneMask);
+ errs() << S << '\n';
+ return;
+ }
+
+ // No more checks for live-out segments.
+ if (S.end == LiveInts->getMBBEndIdx(EndMBB))
+ return;
+
+ // RegUnit intervals are allowed dead phis.
+ if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
+ S.start == VNI->def && S.end == VNI->def.getDeadSlot())
+ return;
+
+ // The live segment is ending inside EndMBB
+ const MachineInstr *MI =
+ LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
+ if (!MI) {
+ report("Live segment doesn't end at a valid instruction", EndMBB, LR, Reg,
+ LaneMask);
+ errs() << S << '\n';
+ return;
+ }
+
+ // The block slot must refer to a basic block boundary.
+ if (S.end.isBlock()) {
+ report("Live segment ends at B slot of an instruction", EndMBB, LR, Reg,
+ LaneMask);
+ errs() << S << '\n';
+ }
+
+ if (S.end.isDead()) {
+ // Segment ends on the dead slot.
+ // That means there must be a dead def.
+ if (!SlotIndex::isSameInstr(S.start, S.end)) {
+ report("Live segment ending at dead slot spans instructions", EndMBB, LR,
+ Reg, LaneMask);
+ errs() << S << '\n';
+ }
+ }
+
+ // A live segment can only end at an early-clobber slot if it is being
+ // redefined by an early-clobber def.
+ if (S.end.isEarlyClobber()) {
+ if (I+1 == LR.end() || (I+1)->start != S.end) {
+ report("Live segment ending at early clobber slot must be "
+ "redefined by an EC def in the same instruction", EndMBB, LR, Reg,
+ LaneMask);
+ errs() << S << '\n';
+ }
+ }
+
+ // The following checks only apply to virtual registers. Physreg liveness
+ // is too weird to check.
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // A live segment can end with either a redefinition, a kill flag on a
+ // use, or a dead flag on a def.
+ bool hasRead = false;
+ bool hasSubRegDef = false;
+ for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
+ if (!MOI->isReg() || MOI->getReg() != Reg)
+ continue;
+ if (LaneMask != 0 &&
+ (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
+ continue;
+ if (MOI->isDef() && MOI->getSubReg() != 0)
+ hasSubRegDef = true;
+ if (MOI->readsReg())
+ hasRead = true;
+ }
+ if (!S.end.isDead()) {
+ if (!hasRead) {
+ // When tracking subregister liveness, the main range must start new
+ // values on partial register writes, even if there is no read.
+ if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
+ !hasSubRegDef) {
+ report("Instruction ending live segment doesn't read the register",
+ MI);
+ errs() << S << " in " << LR << '\n';
+ }
+ }
+ }
+ }
+
+ // Now check all the basic blocks in this live segment.
+ MachineFunction::const_iterator MFI = MBB;
+ // Is this live segment the beginning of a non-PHIDef VN?
+ if (S.start == VNI->def && !VNI->isPHIDef()) {
+ // Not live-in to any blocks.
+ if (MBB == EndMBB)
+ return;
+ // Skip this block.
+ ++MFI;
+ }
+ for (;;) {
+ assert(LiveInts->isLiveInToMBB(LR, MFI));
+ // We don't know how to track physregs into a landing pad.
+ if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
+ MFI->isLandingPad()) {
+ if (&*MFI == EndMBB)
+ break;
+ ++MFI;
+ continue;
+ }
+
+ // Is VNI a PHI-def in the current block?
+ bool IsPHI = VNI->isPHIDef() &&
+ VNI->def == LiveInts->getMBBStartIdx(MFI);
+
+ // Check that VNI is live-out of all predecessors.
+ for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
+ PE = MFI->pred_end(); PI != PE; ++PI) {
+ SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
+ const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
+
+ // All predecessors must have a live-out value.
+ if (!PVNI) {
+ report("Register not marked live out of predecessor", *PI, LR, Reg,
+ LaneMask);
+ errs() << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
+ << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
+ << PEnd << '\n';
+ continue;
+ }
+
+ // Only PHI-defs can take different predecessor values.
+ if (!IsPHI && PVNI != VNI) {
+ report("Different value live out of predecessor", *PI, LR, Reg,
+ LaneMask);
+ errs() << "Valno #" << PVNI->id << " live out of BB#"
+ << (*PI)->getNumber() << '@' << PEnd
+ << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
+ << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
+ }
+ }
+ if (&*MFI == EndMBB)
+ break;
+ ++MFI;
+ }
+}
+
+void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
+ unsigned LaneMask) {
+ for (const VNInfo *VNI : LR.valnos)
+ verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
+
+ for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
+ verifyLiveRangeSegment(LR, I, Reg, LaneMask);
+}
+
+void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
+ unsigned Reg = LI.reg;
+ assert(TargetRegisterInfo::isVirtualRegister(Reg));
+ verifyLiveRange(LI, Reg);
+
+ unsigned Mask = 0;
+ unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ if ((Mask & SR.LaneMask) != 0)
+ report("Lane masks of sub ranges overlap in live interval", MF, LI);
+ if ((SR.LaneMask & ~MaxMask) != 0)
+ report("Subrange lanemask is invalid", MF, LI);
+ Mask |= SR.LaneMask;
+ verifyLiveRange(SR, LI.reg, SR.LaneMask);
+ if (!LI.covers(SR))
+ report("A Subrange is not covered by the main range", MF, LI);
+ }
+
+ // Check the LI only has one connected component.
+ ConnectedVNInfoEqClasses ConEQ(*LiveInts);
+ unsigned NumComp = ConEQ.Classify(&LI);
+ if (NumComp > 1) {
+ report("Multiple connected components in live interval", MF, LI);
+ for (unsigned comp = 0; comp != NumComp; ++comp) {
+ errs() << comp << ": valnos";
+ for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
+ E = LI.vni_end(); I!=E; ++I)
+ if (comp == ConEQ.getEqClass(*I))
+ errs() << ' ' << (*I)->id;
+ errs() << '\n';
+ }
+ }
+}
+
+namespace {
+ // FrameSetup and FrameDestroy can have zero adjustment, so using a single
+ // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
+ // value is zero.
+ // We use a bool plus an integer to capture the stack state.
+ struct StackStateOfBB {
+ StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
+ ExitIsSetup(false) { }
+ StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
+ EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
+ ExitIsSetup(ExitSetup) { }
+ // Can be negative, which means we are setting up a frame.
+ int EntryValue;
+ int ExitValue;
+ bool EntryIsSetup;
+ bool ExitIsSetup;
+ };
+} // namespace
+
+/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
+/// by a FrameDestroy <n>, stack adjustments are identical on all
+/// CFG edges to a merge point, and frame is destroyed at end of a return block.
+void MachineVerifier::verifyStackFrame() {
+ unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
+ unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
+
+ SmallVector<StackStateOfBB, 8> SPState;
+ SPState.resize(MF->getNumBlockIDs());
+ SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
+
+ // Visit the MBBs in DFS order.
+ for (df_ext_iterator<const MachineFunction*,
+ SmallPtrSet<const MachineBasicBlock*, 8> >
+ DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
+ DFI != DFE; ++DFI) {
+ const MachineBasicBlock *MBB = *DFI;
+
+ StackStateOfBB BBState;
+ // Check the exit state of the DFS stack predecessor.
+ if (DFI.getPathLength() >= 2) {
+ const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
+ assert(Reachable.count(StackPred) &&
+ "DFS stack predecessor is already visited.\n");
+ BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
+ BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
+ BBState.ExitValue = BBState.EntryValue;
+ BBState.ExitIsSetup = BBState.EntryIsSetup;
+ }
+
+ // Update stack state by checking contents of MBB.
+ for (const auto &I : *MBB) {
+ if (I.getOpcode() == FrameSetupOpcode) {
+ // The first operand of a FrameOpcode should be i32.
+ int Size = I.getOperand(0).getImm();
+ assert(Size >= 0 &&
+ "Value should be non-negative in FrameSetup and FrameDestroy.\n");
+
+ if (BBState.ExitIsSetup)
+ report("FrameSetup is after another FrameSetup", &I);
+ BBState.ExitValue -= Size;
+ BBState.ExitIsSetup = true;
+ }
+
+ if (I.getOpcode() == FrameDestroyOpcode) {
+ // The first operand of a FrameOpcode should be i32.
+ int Size = I.getOperand(0).getImm();
+ assert(Size >= 0 &&
+ "Value should be non-negative in FrameSetup and FrameDestroy.\n");
+
+ if (!BBState.ExitIsSetup)
+ report("FrameDestroy is not after a FrameSetup", &I);
+ int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
+ BBState.ExitValue;
+ if (BBState.ExitIsSetup && AbsSPAdj != Size) {
+ report("FrameDestroy <n> is after FrameSetup <m>", &I);
+ errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
+ << AbsSPAdj << ">.\n";
+ }
+ BBState.ExitValue += Size;
+ BBState.ExitIsSetup = false;
+ }
+ }
+ SPState[MBB->getNumber()] = BBState;
+
+ // Make sure the exit state of any predecessor is consistent with the entry
+ // state.
+ for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
+ E = MBB->pred_end(); I != E; ++I) {
+ if (Reachable.count(*I) &&
+ (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
+ SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
+ report("The exit stack state of a predecessor is inconsistent.", MBB);
+ errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
+ << SPState[(*I)->getNumber()].ExitValue << ", "
+ << SPState[(*I)->getNumber()].ExitIsSetup
+ << "), while BB#" << MBB->getNumber() << " has entry state ("
+ << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
+ }
+ }
+
+ // Make sure the entry state of any successor is consistent with the exit
+ // state.
+ for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end(); I != E; ++I) {
+ if (Reachable.count(*I) &&
+ (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
+ SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
+ report("The entry stack state of a successor is inconsistent.", MBB);
+ errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
+ << SPState[(*I)->getNumber()].EntryValue << ", "
+ << SPState[(*I)->getNumber()].EntryIsSetup
+ << "), while BB#" << MBB->getNumber() << " has exit state ("
+ << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
+ }
+ }
+
+ // Make sure a basic block with return ends with zero stack adjustment.
+ if (!MBB->empty() && MBB->back().isReturn()) {
+ if (BBState.ExitIsSetup)
+ report("A return block ends with a FrameSetup.", MBB);
+ if (BBState.ExitValue)
+ report("A return block ends with a nonzero stack adjustment.", MBB);
+ }
+ }
+}
OpenPOWER on IntegriCloud