summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineSink.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineSink.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineSink.cpp323
1 files changed, 323 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineSink.cpp b/contrib/llvm/lib/CodeGen/MachineSink.cpp
new file mode 100644
index 0000000..1610e6c
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineSink.cpp
@@ -0,0 +1,323 @@
+//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass moves instructions into successor blocks, when possible, so that
+// they aren't executed on paths where their results aren't needed.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for an LLVM-IR-level sinking pass. It is only designed to sink simple
+// constructs that are not exposed before lowering and instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "machine-sink"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+STATISTIC(NumSunk, "Number of machine instructions sunk");
+
+namespace {
+ class MachineSinking : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ MachineRegisterInfo *RegInfo; // Machine register information
+ MachineDominatorTree *DT; // Machine dominator tree
+ MachineLoopInfo *LI;
+ AliasAnalysis *AA;
+ BitVector AllocatableSet; // Which physregs are allocatable?
+
+ public:
+ static char ID; // Pass identification
+ MachineSinking() : MachineFunctionPass(&ID) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addPreserved<MachineLoopInfo>();
+ }
+ private:
+ bool ProcessBlock(MachineBasicBlock &MBB);
+ bool SinkInstruction(MachineInstr *MI, bool &SawStore);
+ bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
+ };
+} // end anonymous namespace
+
+char MachineSinking::ID = 0;
+static RegisterPass<MachineSinking>
+X("machine-sink", "Machine code sinking");
+
+FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
+
+/// AllUsesDominatedByBlock - Return true if all uses of the specified register
+/// occur in blocks dominated by the specified block.
+bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
+ MachineBasicBlock *MBB) const {
+ assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
+ "Only makes sense for vregs");
+ // Ignoring debug uses is necessary so debug info doesn't affect the code.
+ // This may leave a referencing dbg_value in the original block, before
+ // the definition of the vreg. Dwarf generator handles this although the
+ // user might not get the right info at runtime.
+ for (MachineRegisterInfo::use_nodbg_iterator I =
+ RegInfo->use_nodbg_begin(Reg),
+ E = RegInfo->use_nodbg_end(); I != E; ++I) {
+ // Determine the block of the use.
+ MachineInstr *UseInst = &*I;
+ MachineBasicBlock *UseBlock = UseInst->getParent();
+ if (UseInst->isPHI()) {
+ // PHI nodes use the operand in the predecessor block, not the block with
+ // the PHI.
+ UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
+ }
+ // Check that it dominates.
+ if (!DT->dominates(MBB, UseBlock))
+ return false;
+ }
+ return true;
+}
+
+bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "******** Machine Sinking ********\n");
+
+ const TargetMachine &TM = MF.getTarget();
+ TII = TM.getInstrInfo();
+ TRI = TM.getRegisterInfo();
+ RegInfo = &MF.getRegInfo();
+ DT = &getAnalysis<MachineDominatorTree>();
+ LI = &getAnalysis<MachineLoopInfo>();
+ AA = &getAnalysis<AliasAnalysis>();
+ AllocatableSet = TRI->getAllocatableSet(MF);
+
+ bool EverMadeChange = false;
+
+ while (1) {
+ bool MadeChange = false;
+
+ // Process all basic blocks.
+ for (MachineFunction::iterator I = MF.begin(), E = MF.end();
+ I != E; ++I)
+ MadeChange |= ProcessBlock(*I);
+
+ // If this iteration over the code changed anything, keep iterating.
+ if (!MadeChange) break;
+ EverMadeChange = true;
+ }
+ return EverMadeChange;
+}
+
+bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
+ // Can't sink anything out of a block that has less than two successors.
+ if (MBB.succ_size() <= 1 || MBB.empty()) return false;
+
+ // Don't bother sinking code out of unreachable blocks. In addition to being
+ // unprofitable, it can also lead to infinite looping, because in an unreachable
+ // loop there may be nowhere to stop.
+ if (!DT->isReachableFromEntry(&MBB)) return false;
+
+ bool MadeChange = false;
+
+ // Walk the basic block bottom-up. Remember if we saw a store.
+ MachineBasicBlock::iterator I = MBB.end();
+ --I;
+ bool ProcessedBegin, SawStore = false;
+ do {
+ MachineInstr *MI = I; // The instruction to sink.
+
+ // Predecrement I (if it's not begin) so that it isn't invalidated by
+ // sinking.
+ ProcessedBegin = I == MBB.begin();
+ if (!ProcessedBegin)
+ --I;
+
+ if (MI->isDebugValue())
+ continue;
+
+ if (SinkInstruction(MI, SawStore))
+ ++NumSunk, MadeChange = true;
+
+ // If we just processed the first instruction in the block, we're done.
+ } while (!ProcessedBegin);
+
+ return MadeChange;
+}
+
+/// SinkInstruction - Determine whether it is safe to sink the specified machine
+/// instruction out of its current block into a successor.
+bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
+ // Check if it's safe to move the instruction.
+ if (!MI->isSafeToMove(TII, AA, SawStore))
+ return false;
+
+ // FIXME: This should include support for sinking instructions within the
+ // block they are currently in to shorten the live ranges. We often get
+ // instructions sunk into the top of a large block, but it would be better to
+ // also sink them down before their first use in the block. This xform has to
+ // be careful not to *increase* register pressure though, e.g. sinking
+ // "x = y + z" down if it kills y and z would increase the live ranges of y
+ // and z and only shrink the live range of x.
+
+ // Loop over all the operands of the specified instruction. If there is
+ // anything we can't handle, bail out.
+ MachineBasicBlock *ParentBlock = MI->getParent();
+
+ // SuccToSinkTo - This is the successor to sink this instruction to, once we
+ // decide.
+ MachineBasicBlock *SuccToSinkTo = 0;
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg()) continue; // Ignore non-register operands.
+
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!RegInfo->def_empty(Reg))
+ return false;
+ if (AllocatableSet.test(Reg))
+ return false;
+ // Check for a def among the register's aliases too.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ if (!RegInfo->def_empty(AliasReg))
+ return false;
+ if (AllocatableSet.test(AliasReg))
+ return false;
+ }
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
+ return false;
+ }
+ } else {
+ // Virtual register uses are always safe to sink.
+ if (MO.isUse()) continue;
+
+ // If it's not safe to move defs of the register class, then abort.
+ if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
+ return false;
+
+ // FIXME: This picks a successor to sink into based on having one
+ // successor that dominates all the uses. However, there are cases where
+ // sinking can happen but where the sink point isn't a successor. For
+ // example:
+ // x = computation
+ // if () {} else {}
+ // use x
+ // the instruction could be sunk over the whole diamond for the
+ // if/then/else (or loop, etc), allowing it to be sunk into other blocks
+ // after that.
+
+ // Virtual register defs can only be sunk if all their uses are in blocks
+ // dominated by one of the successors.
+ if (SuccToSinkTo) {
+ // If a previous operand picked a block to sink to, then this operand
+ // must be sinkable to the same block.
+ if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo))
+ return false;
+ continue;
+ }
+
+ // Otherwise, we should look at all the successors and decide which one
+ // we should sink to.
+ for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
+ E = ParentBlock->succ_end(); SI != E; ++SI) {
+ if (AllUsesDominatedByBlock(Reg, *SI)) {
+ SuccToSinkTo = *SI;
+ break;
+ }
+ }
+
+ // If we couldn't find a block to sink to, ignore this instruction.
+ if (SuccToSinkTo == 0)
+ return false;
+ }
+ }
+
+ // If there are no outputs, it must have side-effects.
+ if (SuccToSinkTo == 0)
+ return false;
+
+ // It's not safe to sink instructions to EH landing pad. Control flow into
+ // landing pad is implicitly defined.
+ if (SuccToSinkTo->isLandingPad())
+ return false;
+
+ // It is not possible to sink an instruction into its own block. This can
+ // happen with loops.
+ if (MI->getParent() == SuccToSinkTo)
+ return false;
+
+ DEBUG(dbgs() << "Sink instr " << *MI);
+ DEBUG(dbgs() << "to block " << *SuccToSinkTo);
+
+ // If the block has multiple predecessors, this would introduce computation on
+ // a path that it doesn't already exist. We could split the critical edge,
+ // but for now we just punt.
+ // FIXME: Split critical edges if not backedges.
+ if (SuccToSinkTo->pred_size() > 1) {
+ // We cannot sink a load across a critical edge - there may be stores in
+ // other code paths.
+ bool store = true;
+ if (!MI->isSafeToMove(TII, AA, store)) {
+ DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n");
+ return false;
+ }
+
+ // We don't want to sink across a critical edge if we don't dominate the
+ // successor. We could be introducing calculations to new code paths.
+ if (!DT->dominates(ParentBlock, SuccToSinkTo)) {
+ DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
+ return false;
+ }
+
+ // Don't sink instructions into a loop.
+ if (LI->isLoopHeader(SuccToSinkTo)) {
+ DEBUG(dbgs() << " *** PUNTING: Loop header found\n");
+ return false;
+ }
+
+ // Otherwise we are OK with sinking along a critical edge.
+ DEBUG(dbgs() << "Sinking along critical edge.\n");
+ }
+
+ // Determine where to insert into. Skip phi nodes.
+ MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
+ while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
+ ++InsertPos;
+
+ // Move the instruction.
+ SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
+ ++MachineBasicBlock::iterator(MI));
+
+ // Conservatively, clear any kill flags, since it's possible that
+ // they are no longer correct.
+ MI->clearKillInfo();
+
+ return true;
+}
OpenPOWER on IntegriCloud