diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineSink.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/MachineSink.cpp | 323 |
1 files changed, 323 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineSink.cpp b/contrib/llvm/lib/CodeGen/MachineSink.cpp new file mode 100644 index 0000000..1610e6c --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachineSink.cpp @@ -0,0 +1,323 @@ +//===-- MachineSink.cpp - Sinking for machine instructions ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass moves instructions into successor blocks, when possible, so that +// they aren't executed on paths where their results aren't needed. +// +// This pass is not intended to be a replacement or a complete alternative +// for an LLVM-IR-level sinking pass. It is only designed to sink simple +// constructs that are not exposed before lowering and instruction selection. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "machine-sink" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +STATISTIC(NumSunk, "Number of machine instructions sunk"); + +namespace { + class MachineSinking : public MachineFunctionPass { + const TargetInstrInfo *TII; + const TargetRegisterInfo *TRI; + MachineRegisterInfo *RegInfo; // Machine register information + MachineDominatorTree *DT; // Machine dominator tree + MachineLoopInfo *LI; + AliasAnalysis *AA; + BitVector AllocatableSet; // Which physregs are allocatable? + + public: + static char ID; // Pass identification + MachineSinking() : MachineFunctionPass(&ID) {} + + virtual bool runOnMachineFunction(MachineFunction &MF); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + AU.addRequired<AliasAnalysis>(); + AU.addRequired<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addPreserved<MachineLoopInfo>(); + } + private: + bool ProcessBlock(MachineBasicBlock &MBB); + bool SinkInstruction(MachineInstr *MI, bool &SawStore); + bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const; + }; +} // end anonymous namespace + +char MachineSinking::ID = 0; +static RegisterPass<MachineSinking> +X("machine-sink", "Machine code sinking"); + +FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); } + +/// AllUsesDominatedByBlock - Return true if all uses of the specified register +/// occur in blocks dominated by the specified block. +bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, + MachineBasicBlock *MBB) const { + assert(TargetRegisterInfo::isVirtualRegister(Reg) && + "Only makes sense for vregs"); + // Ignoring debug uses is necessary so debug info doesn't affect the code. + // This may leave a referencing dbg_value in the original block, before + // the definition of the vreg. Dwarf generator handles this although the + // user might not get the right info at runtime. + for (MachineRegisterInfo::use_nodbg_iterator I = + RegInfo->use_nodbg_begin(Reg), + E = RegInfo->use_nodbg_end(); I != E; ++I) { + // Determine the block of the use. + MachineInstr *UseInst = &*I; + MachineBasicBlock *UseBlock = UseInst->getParent(); + if (UseInst->isPHI()) { + // PHI nodes use the operand in the predecessor block, not the block with + // the PHI. + UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB(); + } + // Check that it dominates. + if (!DT->dominates(MBB, UseBlock)) + return false; + } + return true; +} + +bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { + DEBUG(dbgs() << "******** Machine Sinking ********\n"); + + const TargetMachine &TM = MF.getTarget(); + TII = TM.getInstrInfo(); + TRI = TM.getRegisterInfo(); + RegInfo = &MF.getRegInfo(); + DT = &getAnalysis<MachineDominatorTree>(); + LI = &getAnalysis<MachineLoopInfo>(); + AA = &getAnalysis<AliasAnalysis>(); + AllocatableSet = TRI->getAllocatableSet(MF); + + bool EverMadeChange = false; + + while (1) { + bool MadeChange = false; + + // Process all basic blocks. + for (MachineFunction::iterator I = MF.begin(), E = MF.end(); + I != E; ++I) + MadeChange |= ProcessBlock(*I); + + // If this iteration over the code changed anything, keep iterating. + if (!MadeChange) break; + EverMadeChange = true; + } + return EverMadeChange; +} + +bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { + // Can't sink anything out of a block that has less than two successors. + if (MBB.succ_size() <= 1 || MBB.empty()) return false; + + // Don't bother sinking code out of unreachable blocks. In addition to being + // unprofitable, it can also lead to infinite looping, because in an unreachable + // loop there may be nowhere to stop. + if (!DT->isReachableFromEntry(&MBB)) return false; + + bool MadeChange = false; + + // Walk the basic block bottom-up. Remember if we saw a store. + MachineBasicBlock::iterator I = MBB.end(); + --I; + bool ProcessedBegin, SawStore = false; + do { + MachineInstr *MI = I; // The instruction to sink. + + // Predecrement I (if it's not begin) so that it isn't invalidated by + // sinking. + ProcessedBegin = I == MBB.begin(); + if (!ProcessedBegin) + --I; + + if (MI->isDebugValue()) + continue; + + if (SinkInstruction(MI, SawStore)) + ++NumSunk, MadeChange = true; + + // If we just processed the first instruction in the block, we're done. + } while (!ProcessedBegin); + + return MadeChange; +} + +/// SinkInstruction - Determine whether it is safe to sink the specified machine +/// instruction out of its current block into a successor. +bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) { + // Check if it's safe to move the instruction. + if (!MI->isSafeToMove(TII, AA, SawStore)) + return false; + + // FIXME: This should include support for sinking instructions within the + // block they are currently in to shorten the live ranges. We often get + // instructions sunk into the top of a large block, but it would be better to + // also sink them down before their first use in the block. This xform has to + // be careful not to *increase* register pressure though, e.g. sinking + // "x = y + z" down if it kills y and z would increase the live ranges of y + // and z and only shrink the live range of x. + + // Loop over all the operands of the specified instruction. If there is + // anything we can't handle, bail out. + MachineBasicBlock *ParentBlock = MI->getParent(); + + // SuccToSinkTo - This is the successor to sink this instruction to, once we + // decide. + MachineBasicBlock *SuccToSinkTo = 0; + + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg()) continue; // Ignore non-register operands. + + unsigned Reg = MO.getReg(); + if (Reg == 0) continue; + + if (TargetRegisterInfo::isPhysicalRegister(Reg)) { + if (MO.isUse()) { + // If the physreg has no defs anywhere, it's just an ambient register + // and we can freely move its uses. Alternatively, if it's allocatable, + // it could get allocated to something with a def during allocation. + if (!RegInfo->def_empty(Reg)) + return false; + if (AllocatableSet.test(Reg)) + return false; + // Check for a def among the register's aliases too. + for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { + unsigned AliasReg = *Alias; + if (!RegInfo->def_empty(AliasReg)) + return false; + if (AllocatableSet.test(AliasReg)) + return false; + } + } else if (!MO.isDead()) { + // A def that isn't dead. We can't move it. + return false; + } + } else { + // Virtual register uses are always safe to sink. + if (MO.isUse()) continue; + + // If it's not safe to move defs of the register class, then abort. + if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg))) + return false; + + // FIXME: This picks a successor to sink into based on having one + // successor that dominates all the uses. However, there are cases where + // sinking can happen but where the sink point isn't a successor. For + // example: + // x = computation + // if () {} else {} + // use x + // the instruction could be sunk over the whole diamond for the + // if/then/else (or loop, etc), allowing it to be sunk into other blocks + // after that. + + // Virtual register defs can only be sunk if all their uses are in blocks + // dominated by one of the successors. + if (SuccToSinkTo) { + // If a previous operand picked a block to sink to, then this operand + // must be sinkable to the same block. + if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo)) + return false; + continue; + } + + // Otherwise, we should look at all the successors and decide which one + // we should sink to. + for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(), + E = ParentBlock->succ_end(); SI != E; ++SI) { + if (AllUsesDominatedByBlock(Reg, *SI)) { + SuccToSinkTo = *SI; + break; + } + } + + // If we couldn't find a block to sink to, ignore this instruction. + if (SuccToSinkTo == 0) + return false; + } + } + + // If there are no outputs, it must have side-effects. + if (SuccToSinkTo == 0) + return false; + + // It's not safe to sink instructions to EH landing pad. Control flow into + // landing pad is implicitly defined. + if (SuccToSinkTo->isLandingPad()) + return false; + + // It is not possible to sink an instruction into its own block. This can + // happen with loops. + if (MI->getParent() == SuccToSinkTo) + return false; + + DEBUG(dbgs() << "Sink instr " << *MI); + DEBUG(dbgs() << "to block " << *SuccToSinkTo); + + // If the block has multiple predecessors, this would introduce computation on + // a path that it doesn't already exist. We could split the critical edge, + // but for now we just punt. + // FIXME: Split critical edges if not backedges. + if (SuccToSinkTo->pred_size() > 1) { + // We cannot sink a load across a critical edge - there may be stores in + // other code paths. + bool store = true; + if (!MI->isSafeToMove(TII, AA, store)) { + DEBUG(dbgs() << " *** PUNTING: Wont sink load along critical edge.\n"); + return false; + } + + // We don't want to sink across a critical edge if we don't dominate the + // successor. We could be introducing calculations to new code paths. + if (!DT->dominates(ParentBlock, SuccToSinkTo)) { + DEBUG(dbgs() << " *** PUNTING: Critical edge found\n"); + return false; + } + + // Don't sink instructions into a loop. + if (LI->isLoopHeader(SuccToSinkTo)) { + DEBUG(dbgs() << " *** PUNTING: Loop header found\n"); + return false; + } + + // Otherwise we are OK with sinking along a critical edge. + DEBUG(dbgs() << "Sinking along critical edge.\n"); + } + + // Determine where to insert into. Skip phi nodes. + MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); + while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) + ++InsertPos; + + // Move the instruction. + SuccToSinkTo->splice(InsertPos, ParentBlock, MI, + ++MachineBasicBlock::iterator(MI)); + + // Conservatively, clear any kill flags, since it's possible that + // they are no longer correct. + MI->clearKillInfo(); + + return true; +} |