diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineScheduler.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/MachineScheduler.cpp | 3140 |
1 files changed, 3140 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp new file mode 100644 index 0000000..e71c4df --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp @@ -0,0 +1,3140 @@ +//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// MachineScheduler schedules machine instructions after phi elimination. It +// preserves LiveIntervals so it can be invoked before register allocation. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "misched" + +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/ADT/PriorityQueue.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/ScheduleDFS.h" +#include "llvm/CodeGen/ScheduleHazardRecognizer.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include <queue> + +using namespace llvm; + +namespace llvm { +cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, + cl::desc("Force top-down list scheduling")); +cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, + cl::desc("Force bottom-up list scheduling")); +} + +#ifndef NDEBUG +static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, + cl::desc("Pop up a window to show MISched dags after they are processed")); + +static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, + cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); +#else +static bool ViewMISchedDAGs = false; +#endif // NDEBUG + +static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, + cl::desc("Enable register pressure scheduling."), cl::init(true)); + +static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, + cl::desc("Enable cyclic critical path analysis."), cl::init(true)); + +static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, + cl::desc("Enable load clustering."), cl::init(true)); + +// Experimental heuristics +static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, + cl::desc("Enable scheduling for macro fusion."), cl::init(true)); + +static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, + cl::desc("Verify machine instrs before and after machine scheduling")); + +// DAG subtrees must have at least this many nodes. +static const unsigned MinSubtreeSize = 8; + +// Pin the vtables to this file. +void MachineSchedStrategy::anchor() {} +void ScheduleDAGMutation::anchor() {} + +//===----------------------------------------------------------------------===// +// Machine Instruction Scheduling Pass and Registry +//===----------------------------------------------------------------------===// + +MachineSchedContext::MachineSchedContext(): + MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { + RegClassInfo = new RegisterClassInfo(); +} + +MachineSchedContext::~MachineSchedContext() { + delete RegClassInfo; +} + +namespace { +/// MachineScheduler runs after coalescing and before register allocation. +class MachineScheduler : public MachineSchedContext, + public MachineFunctionPass { +public: + MachineScheduler(); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const; + + virtual void releaseMemory() {} + + virtual bool runOnMachineFunction(MachineFunction&); + + virtual void print(raw_ostream &O, const Module* = 0) const; + + static char ID; // Class identification, replacement for typeinfo + +protected: + ScheduleDAGInstrs *createMachineScheduler(); +}; +} // namespace + +char MachineScheduler::ID = 0; + +char &llvm::MachineSchedulerID = MachineScheduler::ID; + +INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", + "Machine Instruction Scheduler", false, false) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_DEPENDENCY(SlotIndexes) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(MachineScheduler, "misched", + "Machine Instruction Scheduler", false, false) + +MachineScheduler::MachineScheduler() +: MachineFunctionPass(ID) { + initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); +} + +void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequiredID(MachineDominatorsID); + AU.addRequired<MachineLoopInfo>(); + AU.addRequired<AliasAnalysis>(); + AU.addRequired<TargetPassConfig>(); + AU.addRequired<SlotIndexes>(); + AU.addPreserved<SlotIndexes>(); + AU.addRequired<LiveIntervals>(); + AU.addPreserved<LiveIntervals>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +MachinePassRegistry MachineSchedRegistry::Registry; + +/// A dummy default scheduler factory indicates whether the scheduler +/// is overridden on the command line. +static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { + return 0; +} + +/// MachineSchedOpt allows command line selection of the scheduler. +static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, + RegisterPassParser<MachineSchedRegistry> > +MachineSchedOpt("misched", + cl::init(&useDefaultMachineSched), cl::Hidden, + cl::desc("Machine instruction scheduler to use")); + +static MachineSchedRegistry +DefaultSchedRegistry("default", "Use the target's default scheduler choice.", + useDefaultMachineSched); + +/// Forward declare the standard machine scheduler. This will be used as the +/// default scheduler if the target does not set a default. +static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C); + + +/// Decrement this iterator until reaching the top or a non-debug instr. +static MachineBasicBlock::const_iterator +priorNonDebug(MachineBasicBlock::const_iterator I, + MachineBasicBlock::const_iterator Beg) { + assert(I != Beg && "reached the top of the region, cannot decrement"); + while (--I != Beg) { + if (!I->isDebugValue()) + break; + } + return I; +} + +/// Non-const version. +static MachineBasicBlock::iterator +priorNonDebug(MachineBasicBlock::iterator I, + MachineBasicBlock::const_iterator Beg) { + return const_cast<MachineInstr*>( + &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg)); +} + +/// If this iterator is a debug value, increment until reaching the End or a +/// non-debug instruction. +static MachineBasicBlock::const_iterator +nextIfDebug(MachineBasicBlock::const_iterator I, + MachineBasicBlock::const_iterator End) { + for(; I != End; ++I) { + if (!I->isDebugValue()) + break; + } + return I; +} + +/// Non-const version. +static MachineBasicBlock::iterator +nextIfDebug(MachineBasicBlock::iterator I, + MachineBasicBlock::const_iterator End) { + // Cast the return value to nonconst MachineInstr, then cast to an + // instr_iterator, which does not check for null, finally return a + // bundle_iterator. + return MachineBasicBlock::instr_iterator( + const_cast<MachineInstr*>( + &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); +} + +/// Instantiate a ScheduleDAGInstrs that will be owned by the caller. +ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { + // Select the scheduler, or set the default. + MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; + if (Ctor != useDefaultMachineSched) + return Ctor(this); + + // Get the default scheduler set by the target for this function. + ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); + if (Scheduler) + return Scheduler; + + // Default to GenericScheduler. + return createGenericSched(this); +} + +/// Top-level MachineScheduler pass driver. +/// +/// Visit blocks in function order. Divide each block into scheduling regions +/// and visit them bottom-up. Visiting regions bottom-up is not required, but is +/// consistent with the DAG builder, which traverses the interior of the +/// scheduling regions bottom-up. +/// +/// This design avoids exposing scheduling boundaries to the DAG builder, +/// simplifying the DAG builder's support for "special" target instructions. +/// At the same time the design allows target schedulers to operate across +/// scheduling boundaries, for example to bundle the boudary instructions +/// without reordering them. This creates complexity, because the target +/// scheduler must update the RegionBegin and RegionEnd positions cached by +/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler +/// design would be to split blocks at scheduling boundaries, but LLVM has a +/// general bias against block splitting purely for implementation simplicity. +bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { + DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); + + // Initialize the context of the pass. + MF = &mf; + MLI = &getAnalysis<MachineLoopInfo>(); + MDT = &getAnalysis<MachineDominatorTree>(); + PassConfig = &getAnalysis<TargetPassConfig>(); + AA = &getAnalysis<AliasAnalysis>(); + + LIS = &getAnalysis<LiveIntervals>(); + const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); + + if (VerifyScheduling) { + DEBUG(LIS->dump()); + MF->verify(this, "Before machine scheduling."); + } + RegClassInfo->runOnMachineFunction(*MF); + + // Instantiate the selected scheduler for this target, function, and + // optimization level. + OwningPtr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); + + // Visit all machine basic blocks. + // + // TODO: Visit blocks in global postorder or postorder within the bottom-up + // loop tree. Then we can optionally compute global RegPressure. + for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); + MBB != MBBEnd; ++MBB) { + + Scheduler->startBlock(MBB); + + // Break the block into scheduling regions [I, RegionEnd), and schedule each + // region as soon as it is discovered. RegionEnd points the scheduling + // boundary at the bottom of the region. The DAG does not include RegionEnd, + // but the region does (i.e. the next RegionEnd is above the previous + // RegionBegin). If the current block has no terminator then RegionEnd == + // MBB->end() for the bottom region. + // + // The Scheduler may insert instructions during either schedule() or + // exitRegion(), even for empty regions. So the local iterators 'I' and + // 'RegionEnd' are invalid across these calls. + unsigned RemainingInstrs = MBB->size(); + for(MachineBasicBlock::iterator RegionEnd = MBB->end(); + RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { + + // Avoid decrementing RegionEnd for blocks with no terminator. + if (RegionEnd != MBB->end() + || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { + --RegionEnd; + // Count the boundary instruction. + --RemainingInstrs; + } + + // The next region starts above the previous region. Look backward in the + // instruction stream until we find the nearest boundary. + unsigned NumRegionInstrs = 0; + MachineBasicBlock::iterator I = RegionEnd; + for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) { + if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) + break; + } + // Notify the scheduler of the region, even if we may skip scheduling + // it. Perhaps it still needs to be bundled. + Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs); + + // Skip empty scheduling regions (0 or 1 schedulable instructions). + if (I == RegionEnd || I == llvm::prior(RegionEnd)) { + // Close the current region. Bundle the terminator if needed. + // This invalidates 'RegionEnd' and 'I'. + Scheduler->exitRegion(); + continue; + } + DEBUG(dbgs() << "********** MI Scheduling **********\n"); + DEBUG(dbgs() << MF->getName() + << ":BB#" << MBB->getNumber() << " " << MBB->getName() + << "\n From: " << *I << " To: "; + if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; + else dbgs() << "End"; + dbgs() << " RegionInstrs: " << NumRegionInstrs + << " Remaining: " << RemainingInstrs << "\n"); + + // Schedule a region: possibly reorder instructions. + // This invalidates 'RegionEnd' and 'I'. + Scheduler->schedule(); + + // Close the current region. + Scheduler->exitRegion(); + + // Scheduling has invalidated the current iterator 'I'. Ask the + // scheduler for the top of it's scheduled region. + RegionEnd = Scheduler->begin(); + } + assert(RemainingInstrs == 0 && "Instruction count mismatch!"); + Scheduler->finishBlock(); + } + Scheduler->finalizeSchedule(); + DEBUG(LIS->dump()); + if (VerifyScheduling) + MF->verify(this, "After machine scheduling."); + return true; +} + +void MachineScheduler::print(raw_ostream &O, const Module* m) const { + // unimplemented +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ReadyQueue::dump() { + dbgs() << Name << ": "; + for (unsigned i = 0, e = Queue.size(); i < e; ++i) + dbgs() << Queue[i]->NodeNum << " "; + dbgs() << "\n"; +} +#endif + +//===----------------------------------------------------------------------===// +// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals +// preservation. +//===----------------------------------------------------------------------===// + +ScheduleDAGMI::~ScheduleDAGMI() { + delete DFSResult; + DeleteContainerPointers(Mutations); + delete SchedImpl; +} + +bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { + return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); +} + +bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { + if (SuccSU != &ExitSU) { + // Do not use WillCreateCycle, it assumes SD scheduling. + // If Pred is reachable from Succ, then the edge creates a cycle. + if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) + return false; + Topo.AddPred(SuccSU, PredDep.getSUnit()); + } + SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); + // Return true regardless of whether a new edge needed to be inserted. + return true; +} + +/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When +/// NumPredsLeft reaches zero, release the successor node. +/// +/// FIXME: Adjust SuccSU height based on MinLatency. +void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { + SUnit *SuccSU = SuccEdge->getSUnit(); + + if (SuccEdge->isWeak()) { + --SuccSU->WeakPredsLeft; + if (SuccEdge->isCluster()) + NextClusterSucc = SuccSU; + return; + } +#ifndef NDEBUG + if (SuccSU->NumPredsLeft == 0) { + dbgs() << "*** Scheduling failed! ***\n"; + SuccSU->dump(this); + dbgs() << " has been released too many times!\n"; + llvm_unreachable(0); + } +#endif + --SuccSU->NumPredsLeft; + if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) + SchedImpl->releaseTopNode(SuccSU); +} + +/// releaseSuccessors - Call releaseSucc on each of SU's successors. +void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { + for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); + I != E; ++I) { + releaseSucc(SU, &*I); + } +} + +/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When +/// NumSuccsLeft reaches zero, release the predecessor node. +/// +/// FIXME: Adjust PredSU height based on MinLatency. +void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { + SUnit *PredSU = PredEdge->getSUnit(); + + if (PredEdge->isWeak()) { + --PredSU->WeakSuccsLeft; + if (PredEdge->isCluster()) + NextClusterPred = PredSU; + return; + } +#ifndef NDEBUG + if (PredSU->NumSuccsLeft == 0) { + dbgs() << "*** Scheduling failed! ***\n"; + PredSU->dump(this); + dbgs() << " has been released too many times!\n"; + llvm_unreachable(0); + } +#endif + --PredSU->NumSuccsLeft; + if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) + SchedImpl->releaseBottomNode(PredSU); +} + +/// releasePredecessors - Call releasePred on each of SU's predecessors. +void ScheduleDAGMI::releasePredecessors(SUnit *SU) { + for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + releasePred(SU, &*I); + } +} + +/// This is normally called from the main scheduler loop but may also be invoked +/// by the scheduling strategy to perform additional code motion. +void ScheduleDAGMI::moveInstruction(MachineInstr *MI, + MachineBasicBlock::iterator InsertPos) { + // Advance RegionBegin if the first instruction moves down. + if (&*RegionBegin == MI) + ++RegionBegin; + + // Update the instruction stream. + BB->splice(InsertPos, BB, MI); + + // Update LiveIntervals + LIS->handleMove(MI, /*UpdateFlags=*/true); + + // Recede RegionBegin if an instruction moves above the first. + if (RegionBegin == InsertPos) + RegionBegin = MI; +} + +bool ScheduleDAGMI::checkSchedLimit() { +#ifndef NDEBUG + if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { + CurrentTop = CurrentBottom; + return false; + } + ++NumInstrsScheduled; +#endif + return true; +} + +/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after +/// crossing a scheduling boundary. [begin, end) includes all instructions in +/// the region, including the boundary itself and single-instruction regions +/// that don't get scheduled. +void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, + MachineBasicBlock::iterator begin, + MachineBasicBlock::iterator end, + unsigned regioninstrs) +{ + ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); + + // For convenience remember the end of the liveness region. + LiveRegionEnd = + (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); + + SUPressureDiffs.clear(); + + SchedImpl->initPolicy(begin, end, regioninstrs); + + ShouldTrackPressure = SchedImpl->shouldTrackPressure(); +} + +// Setup the register pressure trackers for the top scheduled top and bottom +// scheduled regions. +void ScheduleDAGMI::initRegPressure() { + TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); + BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); + + // Close the RPTracker to finalize live ins. + RPTracker.closeRegion(); + + DEBUG(RPTracker.dump()); + + // Initialize the live ins and live outs. + TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); + BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); + + // Close one end of the tracker so we can call + // getMaxUpward/DownwardPressureDelta before advancing across any + // instructions. This converts currently live regs into live ins/outs. + TopRPTracker.closeTop(); + BotRPTracker.closeBottom(); + + BotRPTracker.initLiveThru(RPTracker); + if (!BotRPTracker.getLiveThru().empty()) { + TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); + DEBUG(dbgs() << "Live Thru: "; + dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); + }; + + // For each live out vreg reduce the pressure change associated with other + // uses of the same vreg below the live-out reaching def. + updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); + + // Account for liveness generated by the region boundary. + if (LiveRegionEnd != RegionEnd) { + SmallVector<unsigned, 8> LiveUses; + BotRPTracker.recede(&LiveUses); + updatePressureDiffs(LiveUses); + } + + assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); + + // Cache the list of excess pressure sets in this region. This will also track + // the max pressure in the scheduled code for these sets. + RegionCriticalPSets.clear(); + const std::vector<unsigned> &RegionPressure = + RPTracker.getPressure().MaxSetPressure; + for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { + unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); + if (RegionPressure[i] > Limit) { + DEBUG(dbgs() << TRI->getRegPressureSetName(i) + << " Limit " << Limit + << " Actual " << RegionPressure[i] << "\n"); + RegionCriticalPSets.push_back(PressureChange(i)); + } + } + DEBUG(dbgs() << "Excess PSets: "; + for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) + dbgs() << TRI->getRegPressureSetName( + RegionCriticalPSets[i].getPSet()) << " "; + dbgs() << "\n"); +} + +void ScheduleDAGMI:: +updateScheduledPressure(const SUnit *SU, + const std::vector<unsigned> &NewMaxPressure) { + const PressureDiff &PDiff = getPressureDiff(SU); + unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); + for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end(); + I != E; ++I) { + if (!I->isValid()) + break; + unsigned ID = I->getPSet(); + while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) + ++CritIdx; + if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { + if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() + && NewMaxPressure[ID] <= INT16_MAX) + RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); + } + unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); + if (NewMaxPressure[ID] >= Limit - 2) { + DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " + << NewMaxPressure[ID] << " > " << Limit << "(+ " + << BotRPTracker.getLiveThru()[ID] << " livethru)\n"); + } + } +} + +/// Update the PressureDiff array for liveness after scheduling this +/// instruction. +void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) { + for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) { + /// FIXME: Currently assuming single-use physregs. + unsigned Reg = LiveUses[LUIdx]; + DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n"); + if (!TRI->isVirtualRegister(Reg)) + continue; + + // This may be called before CurrentBottom has been initialized. However, + // BotRPTracker must have a valid position. We want the value live into the + // instruction or live out of the block, so ask for the previous + // instruction's live-out. + const LiveInterval &LI = LIS->getInterval(Reg); + VNInfo *VNI; + MachineBasicBlock::const_iterator I = + nextIfDebug(BotRPTracker.getPos(), BB->end()); + if (I == BB->end()) + VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); + else { + LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I)); + VNI = LRQ.valueIn(); + } + // RegisterPressureTracker guarantees that readsReg is true for LiveUses. + assert(VNI && "No live value at use."); + for (VReg2UseMap::iterator + UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { + SUnit *SU = UI->SU; + DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " + << *SU->getInstr()); + // If this use comes before the reaching def, it cannot be a last use, so + // descrease its pressure change. + if (!SU->isScheduled && SU != &ExitSU) { + LiveQueryResult LRQ + = LI.Query(LIS->getInstructionIndex(SU->getInstr())); + if (LRQ.valueIn() == VNI) + getPressureDiff(SU).addPressureChange(Reg, true, &MRI); + } + } + } +} + +/// schedule - Called back from MachineScheduler::runOnMachineFunction +/// after setting up the current scheduling region. [RegionBegin, RegionEnd) +/// only includes instructions that have DAG nodes, not scheduling boundaries. +/// +/// This is a skeletal driver, with all the functionality pushed into helpers, +/// so that it can be easilly extended by experimental schedulers. Generally, +/// implementing MachineSchedStrategy should be sufficient to implement a new +/// scheduling algorithm. However, if a scheduler further subclasses +/// ScheduleDAGMI then it will want to override this virtual method in order to +/// update any specialized state. +void ScheduleDAGMI::schedule() { + buildDAGWithRegPressure(); + + Topo.InitDAGTopologicalSorting(); + + postprocessDAG(); + + SmallVector<SUnit*, 8> TopRoots, BotRoots; + findRootsAndBiasEdges(TopRoots, BotRoots); + + // Initialize the strategy before modifying the DAG. + // This may initialize a DFSResult to be used for queue priority. + SchedImpl->initialize(this); + + DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) + SUnits[su].dumpAll(this)); + if (ViewMISchedDAGs) viewGraph(); + + // Initialize ready queues now that the DAG and priority data are finalized. + initQueues(TopRoots, BotRoots); + + bool IsTopNode = false; + while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { + assert(!SU->isScheduled && "Node already scheduled"); + if (!checkSchedLimit()) + break; + + scheduleMI(SU, IsTopNode); + + updateQueues(SU, IsTopNode); + } + assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); + + placeDebugValues(); + + DEBUG({ + unsigned BBNum = begin()->getParent()->getNumber(); + dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; + dumpSchedule(); + dbgs() << '\n'; + }); +} + +/// Build the DAG and setup three register pressure trackers. +void ScheduleDAGMI::buildDAGWithRegPressure() { + if (!ShouldTrackPressure) { + RPTracker.reset(); + RegionCriticalPSets.clear(); + buildSchedGraph(AA); + return; + } + + // Initialize the register pressure tracker used by buildSchedGraph. + RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, + /*TrackUntiedDefs=*/true); + + // Account for liveness generate by the region boundary. + if (LiveRegionEnd != RegionEnd) + RPTracker.recede(); + + // Build the DAG, and compute current register pressure. + buildSchedGraph(AA, &RPTracker, &SUPressureDiffs); + + // Initialize top/bottom trackers after computing region pressure. + initRegPressure(); +} + +/// Apply each ScheduleDAGMutation step in order. +void ScheduleDAGMI::postprocessDAG() { + for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { + Mutations[i]->apply(this); + } +} + +void ScheduleDAGMI::computeDFSResult() { + if (!DFSResult) + DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); + DFSResult->clear(); + ScheduledTrees.clear(); + DFSResult->resize(SUnits.size()); + DFSResult->compute(SUnits); + ScheduledTrees.resize(DFSResult->getNumSubtrees()); +} + +void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, + SmallVectorImpl<SUnit*> &BotRoots) { + for (std::vector<SUnit>::iterator + I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { + SUnit *SU = &(*I); + assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); + + // Order predecessors so DFSResult follows the critical path. + SU->biasCriticalPath(); + + // A SUnit is ready to top schedule if it has no predecessors. + if (!I->NumPredsLeft) + TopRoots.push_back(SU); + // A SUnit is ready to bottom schedule if it has no successors. + if (!I->NumSuccsLeft) + BotRoots.push_back(SU); + } + ExitSU.biasCriticalPath(); +} + +/// Compute the max cyclic critical path through the DAG. The scheduling DAG +/// only provides the critical path for single block loops. To handle loops that +/// span blocks, we could use the vreg path latencies provided by +/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently +/// available for use in the scheduler. +/// +/// The cyclic path estimation identifies a def-use pair that crosses the back +/// edge and considers the depth and height of the nodes. For example, consider +/// the following instruction sequence where each instruction has unit latency +/// and defines an epomymous virtual register: +/// +/// a->b(a,c)->c(b)->d(c)->exit +/// +/// The cyclic critical path is a two cycles: b->c->b +/// The acyclic critical path is four cycles: a->b->c->d->exit +/// LiveOutHeight = height(c) = len(c->d->exit) = 2 +/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 +/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 +/// LiveInDepth = depth(b) = len(a->b) = 1 +/// +/// LiveOutDepth - LiveInDepth = 3 - 1 = 2 +/// LiveInHeight - LiveOutHeight = 4 - 2 = 2 +/// CyclicCriticalPath = min(2, 2) = 2 +unsigned ScheduleDAGMI::computeCyclicCriticalPath() { + // This only applies to single block loop. + if (!BB->isSuccessor(BB)) + return 0; + + unsigned MaxCyclicLatency = 0; + // Visit each live out vreg def to find def/use pairs that cross iterations. + ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs; + for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end(); + RI != RE; ++RI) { + unsigned Reg = *RI; + if (!TRI->isVirtualRegister(Reg)) + continue; + const LiveInterval &LI = LIS->getInterval(Reg); + const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); + if (!DefVNI) + continue; + + MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); + const SUnit *DefSU = getSUnit(DefMI); + if (!DefSU) + continue; + + unsigned LiveOutHeight = DefSU->getHeight(); + unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; + // Visit all local users of the vreg def. + for (VReg2UseMap::iterator + UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) { + if (UI->SU == &ExitSU) + continue; + + // Only consider uses of the phi. + LiveQueryResult LRQ = + LI.Query(LIS->getInstructionIndex(UI->SU->getInstr())); + if (!LRQ.valueIn()->isPHIDef()) + continue; + + // Assume that a path spanning two iterations is a cycle, which could + // overestimate in strange cases. This allows cyclic latency to be + // estimated as the minimum slack of the vreg's depth or height. + unsigned CyclicLatency = 0; + if (LiveOutDepth > UI->SU->getDepth()) + CyclicLatency = LiveOutDepth - UI->SU->getDepth(); + + unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency; + if (LiveInHeight > LiveOutHeight) { + if (LiveInHeight - LiveOutHeight < CyclicLatency) + CyclicLatency = LiveInHeight - LiveOutHeight; + } + else + CyclicLatency = 0; + + DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" + << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n"); + if (CyclicLatency > MaxCyclicLatency) + MaxCyclicLatency = CyclicLatency; + } + } + DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); + return MaxCyclicLatency; +} + +/// Identify DAG roots and setup scheduler queues. +void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, + ArrayRef<SUnit*> BotRoots) { + NextClusterSucc = NULL; + NextClusterPred = NULL; + + // Release all DAG roots for scheduling, not including EntrySU/ExitSU. + // + // Nodes with unreleased weak edges can still be roots. + // Release top roots in forward order. + for (SmallVectorImpl<SUnit*>::const_iterator + I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { + SchedImpl->releaseTopNode(*I); + } + // Release bottom roots in reverse order so the higher priority nodes appear + // first. This is more natural and slightly more efficient. + for (SmallVectorImpl<SUnit*>::const_reverse_iterator + I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { + SchedImpl->releaseBottomNode(*I); + } + + releaseSuccessors(&EntrySU); + releasePredecessors(&ExitSU); + + SchedImpl->registerRoots(); + + // Advance past initial DebugValues. + CurrentTop = nextIfDebug(RegionBegin, RegionEnd); + CurrentBottom = RegionEnd; + + if (ShouldTrackPressure) { + assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); + TopRPTracker.setPos(CurrentTop); + } +} + +/// Move an instruction and update register pressure. +void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { + // Move the instruction to its new location in the instruction stream. + MachineInstr *MI = SU->getInstr(); + + if (IsTopNode) { + assert(SU->isTopReady() && "node still has unscheduled dependencies"); + if (&*CurrentTop == MI) + CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); + else { + moveInstruction(MI, CurrentTop); + TopRPTracker.setPos(MI); + } + + if (ShouldTrackPressure) { + // Update top scheduled pressure. + TopRPTracker.advance(); + assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); + updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); + } + } + else { + assert(SU->isBottomReady() && "node still has unscheduled dependencies"); + MachineBasicBlock::iterator priorII = + priorNonDebug(CurrentBottom, CurrentTop); + if (&*priorII == MI) + CurrentBottom = priorII; + else { + if (&*CurrentTop == MI) { + CurrentTop = nextIfDebug(++CurrentTop, priorII); + TopRPTracker.setPos(CurrentTop); + } + moveInstruction(MI, CurrentBottom); + CurrentBottom = MI; + } + if (ShouldTrackPressure) { + // Update bottom scheduled pressure. + SmallVector<unsigned, 8> LiveUses; + BotRPTracker.recede(&LiveUses); + assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); + updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); + updatePressureDiffs(LiveUses); + } + } +} + +/// Update scheduler queues after scheduling an instruction. +void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { + // Release dependent instructions for scheduling. + if (IsTopNode) + releaseSuccessors(SU); + else + releasePredecessors(SU); + + SU->isScheduled = true; + + if (DFSResult) { + unsigned SubtreeID = DFSResult->getSubtreeID(SU); + if (!ScheduledTrees.test(SubtreeID)) { + ScheduledTrees.set(SubtreeID); + DFSResult->scheduleTree(SubtreeID); + SchedImpl->scheduleTree(SubtreeID); + } + } + + // Notify the scheduling strategy after updating the DAG. + SchedImpl->schedNode(SU, IsTopNode); +} + +/// Reinsert any remaining debug_values, just like the PostRA scheduler. +void ScheduleDAGMI::placeDebugValues() { + // If first instruction was a DBG_VALUE then put it back. + if (FirstDbgValue) { + BB->splice(RegionBegin, BB, FirstDbgValue); + RegionBegin = FirstDbgValue; + } + + for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator + DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { + std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); + MachineInstr *DbgValue = P.first; + MachineBasicBlock::iterator OrigPrevMI = P.second; + if (&*RegionBegin == DbgValue) + ++RegionBegin; + BB->splice(++OrigPrevMI, BB, DbgValue); + if (OrigPrevMI == llvm::prior(RegionEnd)) + RegionEnd = DbgValue; + } + DbgValues.clear(); + FirstDbgValue = NULL; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ScheduleDAGMI::dumpSchedule() const { + for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { + if (SUnit *SU = getSUnit(&(*MI))) + SU->dump(this); + else + dbgs() << "Missing SUnit\n"; + } +} +#endif + +//===----------------------------------------------------------------------===// +// LoadClusterMutation - DAG post-processing to cluster loads. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Post-process the DAG to create cluster edges between neighboring +/// loads. +class LoadClusterMutation : public ScheduleDAGMutation { + struct LoadInfo { + SUnit *SU; + unsigned BaseReg; + unsigned Offset; + LoadInfo(SUnit *su, unsigned reg, unsigned ofs) + : SU(su), BaseReg(reg), Offset(ofs) {} + }; + static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, + const LoadClusterMutation::LoadInfo &RHS); + + const TargetInstrInfo *TII; + const TargetRegisterInfo *TRI; +public: + LoadClusterMutation(const TargetInstrInfo *tii, + const TargetRegisterInfo *tri) + : TII(tii), TRI(tri) {} + + virtual void apply(ScheduleDAGMI *DAG); +protected: + void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); +}; +} // anonymous + +bool LoadClusterMutation::LoadInfoLess( + const LoadClusterMutation::LoadInfo &LHS, + const LoadClusterMutation::LoadInfo &RHS) { + if (LHS.BaseReg != RHS.BaseReg) + return LHS.BaseReg < RHS.BaseReg; + return LHS.Offset < RHS.Offset; +} + +void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, + ScheduleDAGMI *DAG) { + SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; + for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { + SUnit *SU = Loads[Idx]; + unsigned BaseReg; + unsigned Offset; + if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) + LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); + } + if (LoadRecords.size() < 2) + return; + std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); + unsigned ClusterLength = 1; + for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { + if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { + ClusterLength = 1; + continue; + } + + SUnit *SUa = LoadRecords[Idx].SU; + SUnit *SUb = LoadRecords[Idx+1].SU; + if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) + && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { + + DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" + << SUb->NodeNum << ")\n"); + // Copy successor edges from SUa to SUb. Interleaving computation + // dependent on SUa can prevent load combining due to register reuse. + // Predecessor edges do not need to be copied from SUb to SUa since nearby + // loads should have effectively the same inputs. + for (SUnit::const_succ_iterator + SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { + if (SI->getSUnit() == SUb) + continue; + DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); + DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); + } + ++ClusterLength; + } + else + ClusterLength = 1; + } +} + +/// \brief Callback from DAG postProcessing to create cluster edges for loads. +void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { + // Map DAG NodeNum to store chain ID. + DenseMap<unsigned, unsigned> StoreChainIDs; + // Map each store chain to a set of dependent loads. + SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; + for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { + SUnit *SU = &DAG->SUnits[Idx]; + if (!SU->getInstr()->mayLoad()) + continue; + unsigned ChainPredID = DAG->SUnits.size(); + for (SUnit::const_pred_iterator + PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { + if (PI->isCtrl()) { + ChainPredID = PI->getSUnit()->NodeNum; + break; + } + } + // Check if this chain-like pred has been seen + // before. ChainPredID==MaxNodeID for loads at the top of the schedule. + unsigned NumChains = StoreChainDependents.size(); + std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = + StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); + if (Result.second) + StoreChainDependents.resize(NumChains + 1); + StoreChainDependents[Result.first->second].push_back(SU); + } + // Iterate over the store chains. + for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) + clusterNeighboringLoads(StoreChainDependents[Idx], DAG); +} + +//===----------------------------------------------------------------------===// +// MacroFusion - DAG post-processing to encourage fusion of macro ops. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Post-process the DAG to create cluster edges between instructions +/// that may be fused by the processor into a single operation. +class MacroFusion : public ScheduleDAGMutation { + const TargetInstrInfo *TII; +public: + MacroFusion(const TargetInstrInfo *tii): TII(tii) {} + + virtual void apply(ScheduleDAGMI *DAG); +}; +} // anonymous + +/// \brief Callback from DAG postProcessing to create cluster edges to encourage +/// fused operations. +void MacroFusion::apply(ScheduleDAGMI *DAG) { + // For now, assume targets can only fuse with the branch. + MachineInstr *Branch = DAG->ExitSU.getInstr(); + if (!Branch) + return; + + for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { + SUnit *SU = &DAG->SUnits[--Idx]; + if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) + continue; + + // Create a single weak edge from SU to ExitSU. The only effect is to cause + // bottom-up scheduling to heavily prioritize the clustered SU. There is no + // need to copy predecessor edges from ExitSU to SU, since top-down + // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling + // of SU, we could create an artificial edge from the deepest root, but it + // hasn't been needed yet. + bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); + (void)Success; + assert(Success && "No DAG nodes should be reachable from ExitSU"); + + DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); + break; + } +} + +//===----------------------------------------------------------------------===// +// CopyConstrain - DAG post-processing to encourage copy elimination. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Post-process the DAG to create weak edges from all uses of a copy to +/// the one use that defines the copy's source vreg, most likely an induction +/// variable increment. +class CopyConstrain : public ScheduleDAGMutation { + // Transient state. + SlotIndex RegionBeginIdx; + // RegionEndIdx is the slot index of the last non-debug instruction in the + // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. + SlotIndex RegionEndIdx; +public: + CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} + + virtual void apply(ScheduleDAGMI *DAG); + +protected: + void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG); +}; +} // anonymous + +/// constrainLocalCopy handles two possibilities: +/// 1) Local src: +/// I0: = dst +/// I1: src = ... +/// I2: = dst +/// I3: dst = src (copy) +/// (create pred->succ edges I0->I1, I2->I1) +/// +/// 2) Local copy: +/// I0: dst = src (copy) +/// I1: = dst +/// I2: src = ... +/// I3: = dst +/// (create pred->succ edges I1->I2, I3->I2) +/// +/// Although the MachineScheduler is currently constrained to single blocks, +/// this algorithm should handle extended blocks. An EBB is a set of +/// contiguously numbered blocks such that the previous block in the EBB is +/// always the single predecessor. +void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) { + LiveIntervals *LIS = DAG->getLIS(); + MachineInstr *Copy = CopySU->getInstr(); + + // Check for pure vreg copies. + unsigned SrcReg = Copy->getOperand(1).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) + return; + + unsigned DstReg = Copy->getOperand(0).getReg(); + if (!TargetRegisterInfo::isVirtualRegister(DstReg)) + return; + + // Check if either the dest or source is local. If it's live across a back + // edge, it's not local. Note that if both vregs are live across the back + // edge, we cannot successfully contrain the copy without cyclic scheduling. + unsigned LocalReg = DstReg; + unsigned GlobalReg = SrcReg; + LiveInterval *LocalLI = &LIS->getInterval(LocalReg); + if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { + LocalReg = SrcReg; + GlobalReg = DstReg; + LocalLI = &LIS->getInterval(LocalReg); + if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) + return; + } + LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); + + // Find the global segment after the start of the local LI. + LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); + // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a + // local live range. We could create edges from other global uses to the local + // start, but the coalescer should have already eliminated these cases, so + // don't bother dealing with it. + if (GlobalSegment == GlobalLI->end()) + return; + + // If GlobalSegment is killed at the LocalLI->start, the call to find() + // returned the next global segment. But if GlobalSegment overlaps with + // LocalLI->start, then advance to the next segement. If a hole in GlobalLI + // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. + if (GlobalSegment->contains(LocalLI->beginIndex())) + ++GlobalSegment; + + if (GlobalSegment == GlobalLI->end()) + return; + + // Check if GlobalLI contains a hole in the vicinity of LocalLI. + if (GlobalSegment != GlobalLI->begin()) { + // Two address defs have no hole. + if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end, + GlobalSegment->start)) { + return; + } + // If the prior global segment may be defined by the same two-address + // instruction that also defines LocalLI, then can't make a hole here. + if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start, + LocalLI->beginIndex())) { + return; + } + // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise + // it would be a disconnected component in the live range. + assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() && + "Disconnected LRG within the scheduling region."); + } + MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); + if (!GlobalDef) + return; + + SUnit *GlobalSU = DAG->getSUnit(GlobalDef); + if (!GlobalSU) + return; + + // GlobalDef is the bottom of the GlobalLI hole. Open the hole by + // constraining the uses of the last local def to precede GlobalDef. + SmallVector<SUnit*,8> LocalUses; + const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); + MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); + SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); + for (SUnit::const_succ_iterator + I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end(); + I != E; ++I) { + if (I->getKind() != SDep::Data || I->getReg() != LocalReg) + continue; + if (I->getSUnit() == GlobalSU) + continue; + if (!DAG->canAddEdge(GlobalSU, I->getSUnit())) + return; + LocalUses.push_back(I->getSUnit()); + } + // Open the top of the GlobalLI hole by constraining any earlier global uses + // to precede the start of LocalLI. + SmallVector<SUnit*,8> GlobalUses; + MachineInstr *FirstLocalDef = + LIS->getInstructionFromIndex(LocalLI->beginIndex()); + SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); + for (SUnit::const_pred_iterator + I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) { + if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg) + continue; + if (I->getSUnit() == FirstLocalSU) + continue; + if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit())) + return; + GlobalUses.push_back(I->getSUnit()); + } + DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); + // Add the weak edges. + for (SmallVectorImpl<SUnit*>::const_iterator + I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) { + DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU(" + << GlobalSU->NodeNum << ")\n"); + DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak)); + } + for (SmallVectorImpl<SUnit*>::const_iterator + I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) { + DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU(" + << FirstLocalSU->NodeNum << ")\n"); + DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak)); + } +} + +/// \brief Callback from DAG postProcessing to create weak edges to encourage +/// copy elimination. +void CopyConstrain::apply(ScheduleDAGMI *DAG) { + MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); + if (FirstPos == DAG->end()) + return; + RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos); + RegionEndIdx = DAG->getLIS()->getInstructionIndex( + &*priorNonDebug(DAG->end(), DAG->begin())); + + for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { + SUnit *SU = &DAG->SUnits[Idx]; + if (!SU->getInstr()->isCopy()) + continue; + + constrainLocalCopy(SU, DAG); + } +} + +//===----------------------------------------------------------------------===// +// GenericScheduler - Implementation of the generic MachineSchedStrategy. +//===----------------------------------------------------------------------===// + +namespace { +/// GenericScheduler shrinks the unscheduled zone using heuristics to balance +/// the schedule. +class GenericScheduler : public MachineSchedStrategy { +public: + /// Represent the type of SchedCandidate found within a single queue. + /// pickNodeBidirectional depends on these listed by decreasing priority. + enum CandReason { + NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax, + ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, + TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; + +#ifndef NDEBUG + static const char *getReasonStr(GenericScheduler::CandReason Reason); +#endif + + /// Policy for scheduling the next instruction in the candidate's zone. + struct CandPolicy { + bool ReduceLatency; + unsigned ReduceResIdx; + unsigned DemandResIdx; + + CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} + }; + + /// Status of an instruction's critical resource consumption. + struct SchedResourceDelta { + // Count critical resources in the scheduled region required by SU. + unsigned CritResources; + + // Count critical resources from another region consumed by SU. + unsigned DemandedResources; + + SchedResourceDelta(): CritResources(0), DemandedResources(0) {} + + bool operator==(const SchedResourceDelta &RHS) const { + return CritResources == RHS.CritResources + && DemandedResources == RHS.DemandedResources; + } + bool operator!=(const SchedResourceDelta &RHS) const { + return !operator==(RHS); + } + }; + + /// Store the state used by GenericScheduler heuristics, required for the + /// lifetime of one invocation of pickNode(). + struct SchedCandidate { + CandPolicy Policy; + + // The best SUnit candidate. + SUnit *SU; + + // The reason for this candidate. + CandReason Reason; + + // Set of reasons that apply to multiple candidates. + uint32_t RepeatReasonSet; + + // Register pressure values for the best candidate. + RegPressureDelta RPDelta; + + // Critical resource consumption of the best candidate. + SchedResourceDelta ResDelta; + + SchedCandidate(const CandPolicy &policy) + : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {} + + bool isValid() const { return SU; } + + // Copy the status of another candidate without changing policy. + void setBest(SchedCandidate &Best) { + assert(Best.Reason != NoCand && "uninitialized Sched candidate"); + SU = Best.SU; + Reason = Best.Reason; + RPDelta = Best.RPDelta; + ResDelta = Best.ResDelta; + } + + bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); } + void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); } + + void initResourceDelta(const ScheduleDAGMI *DAG, + const TargetSchedModel *SchedModel); + }; + + /// Summarize the unscheduled region. + struct SchedRemainder { + // Critical path through the DAG in expected latency. + unsigned CriticalPath; + unsigned CyclicCritPath; + + // Scaled count of micro-ops left to schedule. + unsigned RemIssueCount; + + bool IsAcyclicLatencyLimited; + + // Unscheduled resources + SmallVector<unsigned, 16> RemainingCounts; + + void reset() { + CriticalPath = 0; + CyclicCritPath = 0; + RemIssueCount = 0; + IsAcyclicLatencyLimited = false; + RemainingCounts.clear(); + } + + SchedRemainder() { reset(); } + + void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); + }; + + /// Each Scheduling boundary is associated with ready queues. It tracks the + /// current cycle in the direction of movement, and maintains the state + /// of "hazards" and other interlocks at the current cycle. + struct SchedBoundary { + ScheduleDAGMI *DAG; + const TargetSchedModel *SchedModel; + SchedRemainder *Rem; + + ReadyQueue Available; + ReadyQueue Pending; + bool CheckPending; + + // For heuristics, keep a list of the nodes that immediately depend on the + // most recently scheduled node. + SmallPtrSet<const SUnit*, 8> NextSUs; + + ScheduleHazardRecognizer *HazardRec; + + /// Number of cycles it takes to issue the instructions scheduled in this + /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. + /// See getStalls(). + unsigned CurrCycle; + + /// Micro-ops issued in the current cycle + unsigned CurrMOps; + + /// MinReadyCycle - Cycle of the soonest available instruction. + unsigned MinReadyCycle; + + // The expected latency of the critical path in this scheduled zone. + unsigned ExpectedLatency; + + // The latency of dependence chains leading into this zone. + // For each node scheduled bottom-up: DLat = max DLat, N.Depth. + // For each cycle scheduled: DLat -= 1. + unsigned DependentLatency; + + /// Count the scheduled (issued) micro-ops that can be retired by + /// time=CurrCycle assuming the first scheduled instr is retired at time=0. + unsigned RetiredMOps; + + // Count scheduled resources that have been executed. Resources are + // considered executed if they become ready in the time that it takes to + // saturate any resource including the one in question. Counts are scaled + // for direct comparison with other resources. Counts can be compared with + // MOps * getMicroOpFactor and Latency * getLatencyFactor. + SmallVector<unsigned, 16> ExecutedResCounts; + + /// Cache the max count for a single resource. + unsigned MaxExecutedResCount; + + // Cache the critical resources ID in this scheduled zone. + unsigned ZoneCritResIdx; + + // Is the scheduled region resource limited vs. latency limited. + bool IsResourceLimited; + +#ifndef NDEBUG + // Remember the greatest operand latency as an upper bound on the number of + // times we should retry the pending queue because of a hazard. + unsigned MaxObservedLatency; +#endif + + void reset() { + // A new HazardRec is created for each DAG and owned by SchedBoundary. + // Destroying and reconstructing it is very expensive though. So keep + // invalid, placeholder HazardRecs. + if (HazardRec && HazardRec->isEnabled()) { + delete HazardRec; + HazardRec = 0; + } + Available.clear(); + Pending.clear(); + CheckPending = false; + NextSUs.clear(); + CurrCycle = 0; + CurrMOps = 0; + MinReadyCycle = UINT_MAX; + ExpectedLatency = 0; + DependentLatency = 0; + RetiredMOps = 0; + MaxExecutedResCount = 0; + ZoneCritResIdx = 0; + IsResourceLimited = false; +#ifndef NDEBUG + MaxObservedLatency = 0; +#endif + // Reserve a zero-count for invalid CritResIdx. + ExecutedResCounts.resize(1); + assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); + } + + /// Pending queues extend the ready queues with the same ID and the + /// PendingFlag set. + SchedBoundary(unsigned ID, const Twine &Name): + DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), + Pending(ID << GenericScheduler::LogMaxQID, Name+".P"), + HazardRec(0) { + reset(); + } + + ~SchedBoundary() { delete HazardRec; } + + void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, + SchedRemainder *rem); + + bool isTop() const { + return Available.getID() == GenericScheduler::TopQID; + } + +#ifndef NDEBUG + const char *getResourceName(unsigned PIdx) { + if (!PIdx) + return "MOps"; + return SchedModel->getProcResource(PIdx)->Name; + } +#endif + + /// Get the number of latency cycles "covered" by the scheduled + /// instructions. This is the larger of the critical path within the zone + /// and the number of cycles required to issue the instructions. + unsigned getScheduledLatency() const { + return std::max(ExpectedLatency, CurrCycle); + } + + unsigned getUnscheduledLatency(SUnit *SU) const { + return isTop() ? SU->getHeight() : SU->getDepth(); + } + + unsigned getResourceCount(unsigned ResIdx) const { + return ExecutedResCounts[ResIdx]; + } + + /// Get the scaled count of scheduled micro-ops and resources, including + /// executed resources. + unsigned getCriticalCount() const { + if (!ZoneCritResIdx) + return RetiredMOps * SchedModel->getMicroOpFactor(); + return getResourceCount(ZoneCritResIdx); + } + + /// Get a scaled count for the minimum execution time of the scheduled + /// micro-ops that are ready to execute by getExecutedCount. Notice the + /// feedback loop. + unsigned getExecutedCount() const { + return std::max(CurrCycle * SchedModel->getLatencyFactor(), + MaxExecutedResCount); + } + + bool checkHazard(SUnit *SU); + + unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); + + unsigned getOtherResourceCount(unsigned &OtherCritIdx); + + void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone); + + void releaseNode(SUnit *SU, unsigned ReadyCycle); + + void bumpCycle(unsigned NextCycle); + + void incExecutedResources(unsigned PIdx, unsigned Count); + + unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle); + + void bumpNode(SUnit *SU); + + void releasePending(); + + void removeReady(SUnit *SU); + + SUnit *pickOnlyChoice(); + +#ifndef NDEBUG + void dumpScheduledState(); +#endif + }; + +private: + const MachineSchedContext *Context; + ScheduleDAGMI *DAG; + const TargetSchedModel *SchedModel; + const TargetRegisterInfo *TRI; + + // State of the top and bottom scheduled instruction boundaries. + SchedRemainder Rem; + SchedBoundary Top; + SchedBoundary Bot; + + MachineSchedPolicy RegionPolicy; +public: + /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) + enum { + TopQID = 1, + BotQID = 2, + LogMaxQID = 2 + }; + + GenericScheduler(const MachineSchedContext *C): + Context(C), DAG(0), SchedModel(0), TRI(0), + Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} + + virtual void initPolicy(MachineBasicBlock::iterator Begin, + MachineBasicBlock::iterator End, + unsigned NumRegionInstrs); + + bool shouldTrackPressure() const { return RegionPolicy.ShouldTrackPressure; } + + virtual void initialize(ScheduleDAGMI *dag); + + virtual SUnit *pickNode(bool &IsTopNode); + + virtual void schedNode(SUnit *SU, bool IsTopNode); + + virtual void releaseTopNode(SUnit *SU); + + virtual void releaseBottomNode(SUnit *SU); + + virtual void registerRoots(); + +protected: + void checkAcyclicLatency(); + + void tryCandidate(SchedCandidate &Cand, + SchedCandidate &TryCand, + SchedBoundary &Zone, + const RegPressureTracker &RPTracker, + RegPressureTracker &TempTracker); + + SUnit *pickNodeBidirectional(bool &IsTopNode); + + void pickNodeFromQueue(SchedBoundary &Zone, + const RegPressureTracker &RPTracker, + SchedCandidate &Candidate); + + void reschedulePhysRegCopies(SUnit *SU, bool isTop); + +#ifndef NDEBUG + void traceCandidate(const SchedCandidate &Cand); +#endif +}; +} // namespace + +void GenericScheduler::SchedRemainder:: +init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { + reset(); + if (!SchedModel->hasInstrSchedModel()) + return; + RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); + for (std::vector<SUnit>::iterator + I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { + const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); + RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC) + * SchedModel->getMicroOpFactor(); + for (TargetSchedModel::ProcResIter + PI = SchedModel->getWriteProcResBegin(SC), + PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { + unsigned PIdx = PI->ProcResourceIdx; + unsigned Factor = SchedModel->getResourceFactor(PIdx); + RemainingCounts[PIdx] += (Factor * PI->Cycles); + } + } +} + +void GenericScheduler::SchedBoundary:: +init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { + reset(); + DAG = dag; + SchedModel = smodel; + Rem = rem; + if (SchedModel->hasInstrSchedModel()) + ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds()); +} + +/// Initialize the per-region scheduling policy. +void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, + MachineBasicBlock::iterator End, + unsigned NumRegionInstrs) { + const TargetMachine &TM = Context->MF->getTarget(); + + // Avoid setting up the register pressure tracker for small regions to save + // compile time. As a rough heuristic, only track pressure when the number of + // schedulable instructions exceeds half the integer register file. + unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( + TM.getTargetLowering()->getRegClassFor(MVT::i32)); + + RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); + + // For generic targets, we default to bottom-up, because it's simpler and more + // compile-time optimizations have been implemented in that direction. + RegionPolicy.OnlyBottomUp = true; + + // Allow the subtarget to override default policy. + const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); + ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs); + + // After subtarget overrides, apply command line options. + if (!EnableRegPressure) + RegionPolicy.ShouldTrackPressure = false; + + // Check -misched-topdown/bottomup can force or unforce scheduling direction. + // e.g. -misched-bottomup=false allows scheduling in both directions. + assert((!ForceTopDown || !ForceBottomUp) && + "-misched-topdown incompatible with -misched-bottomup"); + if (ForceBottomUp.getNumOccurrences() > 0) { + RegionPolicy.OnlyBottomUp = ForceBottomUp; + if (RegionPolicy.OnlyBottomUp) + RegionPolicy.OnlyTopDown = false; + } + if (ForceTopDown.getNumOccurrences() > 0) { + RegionPolicy.OnlyTopDown = ForceTopDown; + if (RegionPolicy.OnlyTopDown) + RegionPolicy.OnlyBottomUp = false; + } +} + +void GenericScheduler::initialize(ScheduleDAGMI *dag) { + DAG = dag; + SchedModel = DAG->getSchedModel(); + TRI = DAG->TRI; + + Rem.init(DAG, SchedModel); + Top.init(DAG, SchedModel, &Rem); + Bot.init(DAG, SchedModel, &Rem); + + // Initialize resource counts. + + // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or + // are disabled, then these HazardRecs will be disabled. + const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); + const TargetMachine &TM = DAG->MF.getTarget(); + if (!Top.HazardRec) { + Top.HazardRec = + TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); + } + if (!Bot.HazardRec) { + Bot.HazardRec = + TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); + } +} + +void GenericScheduler::releaseTopNode(SUnit *SU) { + if (SU->isScheduled) + return; + + for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + if (I->isWeak()) + continue; + unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; + unsigned Latency = I->getLatency(); +#ifndef NDEBUG + Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency); +#endif + if (SU->TopReadyCycle < PredReadyCycle + Latency) + SU->TopReadyCycle = PredReadyCycle + Latency; + } + Top.releaseNode(SU, SU->TopReadyCycle); +} + +void GenericScheduler::releaseBottomNode(SUnit *SU) { + if (SU->isScheduled) + return; + + assert(SU->getInstr() && "Scheduled SUnit must have instr"); + + for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); + I != E; ++I) { + if (I->isWeak()) + continue; + unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; + unsigned Latency = I->getLatency(); +#ifndef NDEBUG + Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency); +#endif + if (SU->BotReadyCycle < SuccReadyCycle + Latency) + SU->BotReadyCycle = SuccReadyCycle + Latency; + } + Bot.releaseNode(SU, SU->BotReadyCycle); +} + +/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic +/// critical path by more cycles than it takes to drain the instruction buffer. +/// We estimate an upper bounds on in-flight instructions as: +/// +/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) +/// InFlightIterations = AcyclicPath / CyclesPerIteration +/// InFlightResources = InFlightIterations * LoopResources +/// +/// TODO: Check execution resources in addition to IssueCount. +void GenericScheduler::checkAcyclicLatency() { + if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) + return; + + // Scaled number of cycles per loop iteration. + unsigned IterCount = + std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), + Rem.RemIssueCount); + // Scaled acyclic critical path. + unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); + // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop + unsigned InFlightCount = + (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; + unsigned BufferLimit = + SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); + + Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; + + DEBUG(dbgs() << "IssueCycles=" + << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " + << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() + << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount + << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() + << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; + if (Rem.IsAcyclicLatencyLimited) + dbgs() << " ACYCLIC LATENCY LIMIT\n"); +} + +void GenericScheduler::registerRoots() { + Rem.CriticalPath = DAG->ExitSU.getDepth(); + + // Some roots may not feed into ExitSU. Check all of them in case. + for (std::vector<SUnit*>::const_iterator + I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { + if ((*I)->getDepth() > Rem.CriticalPath) + Rem.CriticalPath = (*I)->getDepth(); + } + DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); + + if (EnableCyclicPath) { + Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); + checkAcyclicLatency(); + } +} + +/// Does this SU have a hazard within the current instruction group. +/// +/// The scheduler supports two modes of hazard recognition. The first is the +/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that +/// supports highly complicated in-order reservation tables +/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. +/// +/// The second is a streamlined mechanism that checks for hazards based on +/// simple counters that the scheduler itself maintains. It explicitly checks +/// for instruction dispatch limitations, including the number of micro-ops that +/// can dispatch per cycle. +/// +/// TODO: Also check whether the SU must start a new group. +bool GenericScheduler::SchedBoundary::checkHazard(SUnit *SU) { + if (HazardRec->isEnabled()) + return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; + + unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); + if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { + DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" + << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); + return true; + } + return false; +} + +// Find the unscheduled node in ReadySUs with the highest latency. +unsigned GenericScheduler::SchedBoundary:: +findMaxLatency(ArrayRef<SUnit*> ReadySUs) { + SUnit *LateSU = 0; + unsigned RemLatency = 0; + for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end(); + I != E; ++I) { + unsigned L = getUnscheduledLatency(*I); + if (L > RemLatency) { + RemLatency = L; + LateSU = *I; + } + } + if (LateSU) { + DEBUG(dbgs() << Available.getName() << " RemLatency SU(" + << LateSU->NodeNum << ") " << RemLatency << "c\n"); + } + return RemLatency; +} + +// Count resources in this zone and the remaining unscheduled +// instruction. Return the max count, scaled. Set OtherCritIdx to the critical +// resource index, or zero if the zone is issue limited. +unsigned GenericScheduler::SchedBoundary:: +getOtherResourceCount(unsigned &OtherCritIdx) { + OtherCritIdx = 0; + if (!SchedModel->hasInstrSchedModel()) + return 0; + + unsigned OtherCritCount = Rem->RemIssueCount + + (RetiredMOps * SchedModel->getMicroOpFactor()); + DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " + << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); + for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); + PIdx != PEnd; ++PIdx) { + unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; + if (OtherCount > OtherCritCount) { + OtherCritCount = OtherCount; + OtherCritIdx = PIdx; + } + } + if (OtherCritIdx) { + DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: " + << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) + << " " << getResourceName(OtherCritIdx) << "\n"); + } + return OtherCritCount; +} + +/// Set the CandPolicy for this zone given the current resources and latencies +/// inside and outside the zone. +void GenericScheduler::SchedBoundary::setPolicy(CandPolicy &Policy, + SchedBoundary &OtherZone) { + // Now that potential stalls have been considered, apply preemptive heuristics + // based on the the total latency and resources inside and outside this + // zone. + + // Compute remaining latency. We need this both to determine whether the + // overall schedule has become latency-limited and whether the instructions + // outside this zone are resource or latency limited. + // + // The "dependent" latency is updated incrementally during scheduling as the + // max height/depth of scheduled nodes minus the cycles since it was + // scheduled: + // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone + // + // The "independent" latency is the max ready queue depth: + // ILat = max N.depth for N in Available|Pending + // + // RemainingLatency is the greater of independent and dependent latency. + unsigned RemLatency = DependentLatency; + RemLatency = std::max(RemLatency, findMaxLatency(Available.elements())); + RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements())); + + // Compute the critical resource outside the zone. + unsigned OtherCritIdx; + unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx); + + bool OtherResLimited = false; + if (SchedModel->hasInstrSchedModel()) { + unsigned LFactor = SchedModel->getLatencyFactor(); + OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor; + } + if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) { + Policy.ReduceLatency |= true; + DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency " + << RemLatency << " + " << CurrCycle << "c > CritPath " + << Rem->CriticalPath << "\n"); + } + // If the same resource is limiting inside and outside the zone, do nothing. + if (ZoneCritResIdx == OtherCritIdx) + return; + + DEBUG( + if (IsResourceLimited) { + dbgs() << " " << Available.getName() << " ResourceLimited: " + << getResourceName(ZoneCritResIdx) << "\n"; + } + if (OtherResLimited) + dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n"; + if (!IsResourceLimited && !OtherResLimited) + dbgs() << " Latency limited both directions.\n"); + + if (IsResourceLimited && !Policy.ReduceResIdx) + Policy.ReduceResIdx = ZoneCritResIdx; + + if (OtherResLimited) + Policy.DemandResIdx = OtherCritIdx; +} + +void GenericScheduler::SchedBoundary::releaseNode(SUnit *SU, + unsigned ReadyCycle) { + if (ReadyCycle < MinReadyCycle) + MinReadyCycle = ReadyCycle; + + // Check for interlocks first. For the purpose of other heuristics, an + // instruction that cannot issue appears as if it's not in the ReadyQueue. + bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; + if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU)) + Pending.push(SU); + else + Available.push(SU); + + // Record this node as an immediate dependent of the scheduled node. + NextSUs.insert(SU); +} + +/// Move the boundary of scheduled code by one cycle. +void GenericScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) { + if (SchedModel->getMicroOpBufferSize() == 0) { + assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); + if (MinReadyCycle > NextCycle) + NextCycle = MinReadyCycle; + } + // Update the current micro-ops, which will issue in the next cycle. + unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); + CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; + + // Decrement DependentLatency based on the next cycle. + if ((NextCycle - CurrCycle) > DependentLatency) + DependentLatency = 0; + else + DependentLatency -= (NextCycle - CurrCycle); + + if (!HazardRec->isEnabled()) { + // Bypass HazardRec virtual calls. + CurrCycle = NextCycle; + } + else { + // Bypass getHazardType calls in case of long latency. + for (; CurrCycle != NextCycle; ++CurrCycle) { + if (isTop()) + HazardRec->AdvanceCycle(); + else + HazardRec->RecedeCycle(); + } + } + CheckPending = true; + unsigned LFactor = SchedModel->getLatencyFactor(); + IsResourceLimited = + (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) + > (int)LFactor; + + DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n'); +} + +void GenericScheduler::SchedBoundary::incExecutedResources(unsigned PIdx, + unsigned Count) { + ExecutedResCounts[PIdx] += Count; + if (ExecutedResCounts[PIdx] > MaxExecutedResCount) + MaxExecutedResCount = ExecutedResCounts[PIdx]; +} + +/// Add the given processor resource to this scheduled zone. +/// +/// \param Cycles indicates the number of consecutive (non-pipelined) cycles +/// during which this resource is consumed. +/// +/// \return the next cycle at which the instruction may execute without +/// oversubscribing resources. +unsigned GenericScheduler::SchedBoundary:: +countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) { + unsigned Factor = SchedModel->getResourceFactor(PIdx); + unsigned Count = Factor * Cycles; + DEBUG(dbgs() << " " << getResourceName(PIdx) + << " +" << Cycles << "x" << Factor << "u\n"); + + // Update Executed resources counts. + incExecutedResources(PIdx, Count); + assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); + Rem->RemainingCounts[PIdx] -= Count; + + // Check if this resource exceeds the current critical resource. If so, it + // becomes the critical resource. + if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { + ZoneCritResIdx = PIdx; + DEBUG(dbgs() << " *** Critical resource " + << getResourceName(PIdx) << ": " + << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n"); + } + // TODO: We don't yet model reserved resources. It's not hard though. + return CurrCycle; +} + +/// Move the boundary of scheduled code by one SUnit. +void GenericScheduler::SchedBoundary::bumpNode(SUnit *SU) { + // Update the reservation table. + if (HazardRec->isEnabled()) { + if (!isTop() && SU->isCall) { + // Calls are scheduled with their preceding instructions. For bottom-up + // scheduling, clear the pipeline state before emitting. + HazardRec->Reset(); + } + HazardRec->EmitInstruction(SU); + } + const MCSchedClassDesc *SC = DAG->getSchedClass(SU); + unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); + CurrMOps += IncMOps; + // checkHazard prevents scheduling multiple instructions per cycle that exceed + // issue width. However, we commonly reach the maximum. In this case + // opportunistically bump the cycle to avoid uselessly checking everything in + // the readyQ. Furthermore, a single instruction may produce more than one + // cycle's worth of micro-ops. + // + // TODO: Also check if this SU must end a dispatch group. + unsigned NextCycle = CurrCycle; + if (CurrMOps >= SchedModel->getIssueWidth()) { + ++NextCycle; + DEBUG(dbgs() << " *** Max MOps " << CurrMOps + << " at cycle " << CurrCycle << '\n'); + } + unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); + DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); + + switch (SchedModel->getMicroOpBufferSize()) { + case 0: + assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); + break; + case 1: + if (ReadyCycle > NextCycle) { + NextCycle = ReadyCycle; + DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); + } + break; + default: + // We don't currently model the OOO reorder buffer, so consider all + // scheduled MOps to be "retired". + break; + } + RetiredMOps += IncMOps; + + // Update resource counts and critical resource. + if (SchedModel->hasInstrSchedModel()) { + unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); + assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); + Rem->RemIssueCount -= DecRemIssue; + if (ZoneCritResIdx) { + // Scale scheduled micro-ops for comparing with the critical resource. + unsigned ScaledMOps = + RetiredMOps * SchedModel->getMicroOpFactor(); + + // If scaled micro-ops are now more than the previous critical resource by + // a full cycle, then micro-ops issue becomes critical. + if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) + >= (int)SchedModel->getLatencyFactor()) { + ZoneCritResIdx = 0; + DEBUG(dbgs() << " *** Critical resource NumMicroOps: " + << ScaledMOps / SchedModel->getLatencyFactor() << "c\n"); + } + } + for (TargetSchedModel::ProcResIter + PI = SchedModel->getWriteProcResBegin(SC), + PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { + unsigned RCycle = + countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle); + if (RCycle > NextCycle) + NextCycle = RCycle; + } + } + // Update ExpectedLatency and DependentLatency. + unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; + unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; + if (SU->getDepth() > TopLatency) { + TopLatency = SU->getDepth(); + DEBUG(dbgs() << " " << Available.getName() + << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n"); + } + if (SU->getHeight() > BotLatency) { + BotLatency = SU->getHeight(); + DEBUG(dbgs() << " " << Available.getName() + << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n"); + } + // If we stall for any reason, bump the cycle. + if (NextCycle > CurrCycle) { + bumpCycle(NextCycle); + } + else { + // After updating ZoneCritResIdx and ExpectedLatency, check if we're + // resource limited. If a stall occured, bumpCycle does this. + unsigned LFactor = SchedModel->getLatencyFactor(); + IsResourceLimited = + (int)(getCriticalCount() - (getScheduledLatency() * LFactor)) + > (int)LFactor; + } + DEBUG(dumpScheduledState()); +} + +/// Release pending ready nodes in to the available queue. This makes them +/// visible to heuristics. +void GenericScheduler::SchedBoundary::releasePending() { + // If the available queue is empty, it is safe to reset MinReadyCycle. + if (Available.empty()) + MinReadyCycle = UINT_MAX; + + // Check to see if any of the pending instructions are ready to issue. If + // so, add them to the available queue. + bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; + for (unsigned i = 0, e = Pending.size(); i != e; ++i) { + SUnit *SU = *(Pending.begin()+i); + unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; + + if (ReadyCycle < MinReadyCycle) + MinReadyCycle = ReadyCycle; + + if (!IsBuffered && ReadyCycle > CurrCycle) + continue; + + if (checkHazard(SU)) + continue; + + Available.push(SU); + Pending.remove(Pending.begin()+i); + --i; --e; + } + DEBUG(if (!Pending.empty()) Pending.dump()); + CheckPending = false; +} + +/// Remove SU from the ready set for this boundary. +void GenericScheduler::SchedBoundary::removeReady(SUnit *SU) { + if (Available.isInQueue(SU)) + Available.remove(Available.find(SU)); + else { + assert(Pending.isInQueue(SU) && "bad ready count"); + Pending.remove(Pending.find(SU)); + } +} + +/// If this queue only has one ready candidate, return it. As a side effect, +/// defer any nodes that now hit a hazard, and advance the cycle until at least +/// one node is ready. If multiple instructions are ready, return NULL. +SUnit *GenericScheduler::SchedBoundary::pickOnlyChoice() { + if (CheckPending) + releasePending(); + + if (CurrMOps > 0) { + // Defer any ready instrs that now have a hazard. + for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { + if (checkHazard(*I)) { + Pending.push(*I); + I = Available.remove(I); + continue; + } + ++I; + } + } + for (unsigned i = 0; Available.empty(); ++i) { + assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) && + "permanent hazard"); (void)i; + bumpCycle(CurrCycle + 1); + releasePending(); + } + if (Available.size() == 1) + return *Available.begin(); + return NULL; +} + +#ifndef NDEBUG +// This is useful information to dump after bumpNode. +// Note that the Queue contents are more useful before pickNodeFromQueue. +void GenericScheduler::SchedBoundary::dumpScheduledState() { + unsigned ResFactor; + unsigned ResCount; + if (ZoneCritResIdx) { + ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); + ResCount = getResourceCount(ZoneCritResIdx); + } + else { + ResFactor = SchedModel->getMicroOpFactor(); + ResCount = RetiredMOps * SchedModel->getMicroOpFactor(); + } + unsigned LFactor = SchedModel->getLatencyFactor(); + dbgs() << Available.getName() << " @" << CurrCycle << "c\n" + << " Retired: " << RetiredMOps; + dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; + dbgs() << "\n Critical: " << ResCount / LFactor << "c, " + << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx) + << "\n ExpectedLatency: " << ExpectedLatency << "c\n" + << (IsResourceLimited ? " - Resource" : " - Latency") + << " limited.\n"; +} +#endif + +void GenericScheduler::SchedCandidate:: +initResourceDelta(const ScheduleDAGMI *DAG, + const TargetSchedModel *SchedModel) { + if (!Policy.ReduceResIdx && !Policy.DemandResIdx) + return; + + const MCSchedClassDesc *SC = DAG->getSchedClass(SU); + for (TargetSchedModel::ProcResIter + PI = SchedModel->getWriteProcResBegin(SC), + PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { + if (PI->ProcResourceIdx == Policy.ReduceResIdx) + ResDelta.CritResources += PI->Cycles; + if (PI->ProcResourceIdx == Policy.DemandResIdx) + ResDelta.DemandedResources += PI->Cycles; + } +} + + +/// Return true if this heuristic determines order. +static bool tryLess(int TryVal, int CandVal, + GenericScheduler::SchedCandidate &TryCand, + GenericScheduler::SchedCandidate &Cand, + GenericScheduler::CandReason Reason) { + if (TryVal < CandVal) { + TryCand.Reason = Reason; + return true; + } + if (TryVal > CandVal) { + if (Cand.Reason > Reason) + Cand.Reason = Reason; + return true; + } + Cand.setRepeat(Reason); + return false; +} + +static bool tryGreater(int TryVal, int CandVal, + GenericScheduler::SchedCandidate &TryCand, + GenericScheduler::SchedCandidate &Cand, + GenericScheduler::CandReason Reason) { + if (TryVal > CandVal) { + TryCand.Reason = Reason; + return true; + } + if (TryVal < CandVal) { + if (Cand.Reason > Reason) + Cand.Reason = Reason; + return true; + } + Cand.setRepeat(Reason); + return false; +} + +static bool tryPressure(const PressureChange &TryP, + const PressureChange &CandP, + GenericScheduler::SchedCandidate &TryCand, + GenericScheduler::SchedCandidate &Cand, + GenericScheduler::CandReason Reason) { + int TryRank = TryP.getPSetOrMax(); + int CandRank = CandP.getPSetOrMax(); + // If both candidates affect the same set, go with the smallest increase. + if (TryRank == CandRank) { + return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, + Reason); + } + // If one candidate decreases and the other increases, go with it. + // Invalid candidates have UnitInc==0. + if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, + Reason)) { + return true; + } + // If the candidates are decreasing pressure, reverse priority. + if (TryP.getUnitInc() < 0) + std::swap(TryRank, CandRank); + return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); +} + +static unsigned getWeakLeft(const SUnit *SU, bool isTop) { + return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; +} + +/// Minimize physical register live ranges. Regalloc wants them adjacent to +/// their physreg def/use. +/// +/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf +/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled +/// with the operation that produces or consumes the physreg. We'll do this when +/// regalloc has support for parallel copies. +static int biasPhysRegCopy(const SUnit *SU, bool isTop) { + const MachineInstr *MI = SU->getInstr(); + if (!MI->isCopy()) + return 0; + + unsigned ScheduledOper = isTop ? 1 : 0; + unsigned UnscheduledOper = isTop ? 0 : 1; + // If we have already scheduled the physreg produce/consumer, immediately + // schedule the copy. + if (TargetRegisterInfo::isPhysicalRegister( + MI->getOperand(ScheduledOper).getReg())) + return 1; + // If the physreg is at the boundary, defer it. Otherwise schedule it + // immediately to free the dependent. We can hoist the copy later. + bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; + if (TargetRegisterInfo::isPhysicalRegister( + MI->getOperand(UnscheduledOper).getReg())) + return AtBoundary ? -1 : 1; + return 0; +} + +static bool tryLatency(GenericScheduler::SchedCandidate &TryCand, + GenericScheduler::SchedCandidate &Cand, + GenericScheduler::SchedBoundary &Zone) { + if (Zone.isTop()) { + if (Cand.SU->getDepth() > Zone.getScheduledLatency()) { + if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), + TryCand, Cand, GenericScheduler::TopDepthReduce)) + return true; + } + if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), + TryCand, Cand, GenericScheduler::TopPathReduce)) + return true; + } + else { + if (Cand.SU->getHeight() > Zone.getScheduledLatency()) { + if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), + TryCand, Cand, GenericScheduler::BotHeightReduce)) + return true; + } + if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), + TryCand, Cand, GenericScheduler::BotPathReduce)) + return true; + } + return false; +} + +/// Apply a set of heursitics to a new candidate. Heuristics are currently +/// hierarchical. This may be more efficient than a graduated cost model because +/// we don't need to evaluate all aspects of the model for each node in the +/// queue. But it's really done to make the heuristics easier to debug and +/// statistically analyze. +/// +/// \param Cand provides the policy and current best candidate. +/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. +/// \param Zone describes the scheduled zone that we are extending. +/// \param RPTracker describes reg pressure within the scheduled zone. +/// \param TempTracker is a scratch pressure tracker to reuse in queries. +void GenericScheduler::tryCandidate(SchedCandidate &Cand, + SchedCandidate &TryCand, + SchedBoundary &Zone, + const RegPressureTracker &RPTracker, + RegPressureTracker &TempTracker) { + + if (DAG->isTrackingPressure()) { + // Always initialize TryCand's RPDelta. + if (Zone.isTop()) { + TempTracker.getMaxDownwardPressureDelta( + TryCand.SU->getInstr(), + TryCand.RPDelta, + DAG->getRegionCriticalPSets(), + DAG->getRegPressure().MaxSetPressure); + } + else { + if (VerifyScheduling) { + TempTracker.getMaxUpwardPressureDelta( + TryCand.SU->getInstr(), + &DAG->getPressureDiff(TryCand.SU), + TryCand.RPDelta, + DAG->getRegionCriticalPSets(), + DAG->getRegPressure().MaxSetPressure); + } + else { + RPTracker.getUpwardPressureDelta( + TryCand.SU->getInstr(), + DAG->getPressureDiff(TryCand.SU), + TryCand.RPDelta, + DAG->getRegionCriticalPSets(), + DAG->getRegPressure().MaxSetPressure); + } + } + } + DEBUG(if (TryCand.RPDelta.Excess.isValid()) + dbgs() << " SU(" << TryCand.SU->NodeNum << ") " + << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet()) + << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n"); + + // Initialize the candidate if needed. + if (!Cand.isValid()) { + TryCand.Reason = NodeOrder; + return; + } + + if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()), + biasPhysRegCopy(Cand.SU, Zone.isTop()), + TryCand, Cand, PhysRegCopy)) + return; + + // Avoid exceeding the target's limit. If signed PSetID is negative, it is + // invalid; convert it to INT_MAX to give it lowest priority. + if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, + Cand.RPDelta.Excess, + TryCand, Cand, RegExcess)) + return; + + // Avoid increasing the max critical pressure in the scheduled region. + if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, + Cand.RPDelta.CriticalMax, + TryCand, Cand, RegCritical)) + return; + + // For loops that are acyclic path limited, aggressively schedule for latency. + // This can result in very long dependence chains scheduled in sequence, so + // once every cycle (when CurrMOps == 0), switch to normal heuristics. + if (Rem.IsAcyclicLatencyLimited && !Zone.CurrMOps + && tryLatency(TryCand, Cand, Zone)) + return; + + // Keep clustered nodes together to encourage downstream peephole + // optimizations which may reduce resource requirements. + // + // This is a best effort to set things up for a post-RA pass. Optimizations + // like generating loads of multiple registers should ideally be done within + // the scheduler pass by combining the loads during DAG postprocessing. + const SUnit *NextClusterSU = + Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); + if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, + TryCand, Cand, Cluster)) + return; + + // Weak edges are for clustering and other constraints. + if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), + getWeakLeft(Cand.SU, Zone.isTop()), + TryCand, Cand, Weak)) { + return; + } + // Avoid increasing the max pressure of the entire region. + if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, + Cand.RPDelta.CurrentMax, + TryCand, Cand, RegMax)) + return; + + // Avoid critical resource consumption and balance the schedule. + TryCand.initResourceDelta(DAG, SchedModel); + if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, + TryCand, Cand, ResourceReduce)) + return; + if (tryGreater(TryCand.ResDelta.DemandedResources, + Cand.ResDelta.DemandedResources, + TryCand, Cand, ResourceDemand)) + return; + + // Avoid serializing long latency dependence chains. + // For acyclic path limited loops, latency was already checked above. + if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited + && tryLatency(TryCand, Cand, Zone)) { + return; + } + + // Prefer immediate defs/users of the last scheduled instruction. This is a + // local pressure avoidance strategy that also makes the machine code + // readable. + if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), + TryCand, Cand, NextDefUse)) + return; + + // Fall through to original instruction order. + if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) + || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { + TryCand.Reason = NodeOrder; + } +} + +#ifndef NDEBUG +const char *GenericScheduler::getReasonStr( + GenericScheduler::CandReason Reason) { + switch (Reason) { + case NoCand: return "NOCAND "; + case PhysRegCopy: return "PREG-COPY"; + case RegExcess: return "REG-EXCESS"; + case RegCritical: return "REG-CRIT "; + case Cluster: return "CLUSTER "; + case Weak: return "WEAK "; + case RegMax: return "REG-MAX "; + case ResourceReduce: return "RES-REDUCE"; + case ResourceDemand: return "RES-DEMAND"; + case TopDepthReduce: return "TOP-DEPTH "; + case TopPathReduce: return "TOP-PATH "; + case BotHeightReduce:return "BOT-HEIGHT"; + case BotPathReduce: return "BOT-PATH "; + case NextDefUse: return "DEF-USE "; + case NodeOrder: return "ORDER "; + }; + llvm_unreachable("Unknown reason!"); +} + +void GenericScheduler::traceCandidate(const SchedCandidate &Cand) { + PressureChange P; + unsigned ResIdx = 0; + unsigned Latency = 0; + switch (Cand.Reason) { + default: + break; + case RegExcess: + P = Cand.RPDelta.Excess; + break; + case RegCritical: + P = Cand.RPDelta.CriticalMax; + break; + case RegMax: + P = Cand.RPDelta.CurrentMax; + break; + case ResourceReduce: + ResIdx = Cand.Policy.ReduceResIdx; + break; + case ResourceDemand: + ResIdx = Cand.Policy.DemandResIdx; + break; + case TopDepthReduce: + Latency = Cand.SU->getDepth(); + break; + case TopPathReduce: + Latency = Cand.SU->getHeight(); + break; + case BotHeightReduce: + Latency = Cand.SU->getHeight(); + break; + case BotPathReduce: + Latency = Cand.SU->getDepth(); + break; + } + dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); + if (P.isValid()) + dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) + << ":" << P.getUnitInc() << " "; + else + dbgs() << " "; + if (ResIdx) + dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; + else + dbgs() << " "; + if (Latency) + dbgs() << " " << Latency << " cycles "; + else + dbgs() << " "; + dbgs() << '\n'; +} +#endif + +/// Pick the best candidate from the queue. +/// +/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during +/// DAG building. To adjust for the current scheduling location we need to +/// maintain the number of vreg uses remaining to be top-scheduled. +void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, + const RegPressureTracker &RPTracker, + SchedCandidate &Cand) { + ReadyQueue &Q = Zone.Available; + + DEBUG(Q.dump()); + + // getMaxPressureDelta temporarily modifies the tracker. + RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); + + for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { + + SchedCandidate TryCand(Cand.Policy); + TryCand.SU = *I; + tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); + if (TryCand.Reason != NoCand) { + // Initialize resource delta if needed in case future heuristics query it. + if (TryCand.ResDelta == SchedResourceDelta()) + TryCand.initResourceDelta(DAG, SchedModel); + Cand.setBest(TryCand); + DEBUG(traceCandidate(Cand)); + } + } +} + +static void tracePick(const GenericScheduler::SchedCandidate &Cand, + bool IsTop) { + DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") + << GenericScheduler::getReasonStr(Cand.Reason) << '\n'); +} + +/// Pick the best candidate node from either the top or bottom queue. +SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { + // Schedule as far as possible in the direction of no choice. This is most + // efficient, but also provides the best heuristics for CriticalPSets. + if (SUnit *SU = Bot.pickOnlyChoice()) { + IsTopNode = false; + DEBUG(dbgs() << "Pick Bot NOCAND\n"); + return SU; + } + if (SUnit *SU = Top.pickOnlyChoice()) { + IsTopNode = true; + DEBUG(dbgs() << "Pick Top NOCAND\n"); + return SU; + } + CandPolicy NoPolicy; + SchedCandidate BotCand(NoPolicy); + SchedCandidate TopCand(NoPolicy); + Bot.setPolicy(BotCand.Policy, Top); + Top.setPolicy(TopCand.Policy, Bot); + + // Prefer bottom scheduling when heuristics are silent. + pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); + assert(BotCand.Reason != NoCand && "failed to find the first candidate"); + + // If either Q has a single candidate that provides the least increase in + // Excess pressure, we can immediately schedule from that Q. + // + // RegionCriticalPSets summarizes the pressure within the scheduled region and + // affects picking from either Q. If scheduling in one direction must + // increase pressure for one of the excess PSets, then schedule in that + // direction first to provide more freedom in the other direction. + if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess)) + || (BotCand.Reason == RegCritical + && !BotCand.isRepeat(RegCritical))) + { + IsTopNode = false; + tracePick(BotCand, IsTopNode); + return BotCand.SU; + } + // Check if the top Q has a better candidate. + pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); + assert(TopCand.Reason != NoCand && "failed to find the first candidate"); + + // Choose the queue with the most important (lowest enum) reason. + if (TopCand.Reason < BotCand.Reason) { + IsTopNode = true; + tracePick(TopCand, IsTopNode); + return TopCand.SU; + } + // Otherwise prefer the bottom candidate, in node order if all else failed. + IsTopNode = false; + tracePick(BotCand, IsTopNode); + return BotCand.SU; +} + +/// Pick the best node to balance the schedule. Implements MachineSchedStrategy. +SUnit *GenericScheduler::pickNode(bool &IsTopNode) { + if (DAG->top() == DAG->bottom()) { + assert(Top.Available.empty() && Top.Pending.empty() && + Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); + return NULL; + } + SUnit *SU; + do { + if (RegionPolicy.OnlyTopDown) { + SU = Top.pickOnlyChoice(); + if (!SU) { + CandPolicy NoPolicy; + SchedCandidate TopCand(NoPolicy); + pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); + assert(TopCand.Reason != NoCand && "failed to find a candidate"); + tracePick(TopCand, true); + SU = TopCand.SU; + } + IsTopNode = true; + } + else if (RegionPolicy.OnlyBottomUp) { + SU = Bot.pickOnlyChoice(); + if (!SU) { + CandPolicy NoPolicy; + SchedCandidate BotCand(NoPolicy); + pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); + assert(BotCand.Reason != NoCand && "failed to find a candidate"); + tracePick(BotCand, false); + SU = BotCand.SU; + } + IsTopNode = false; + } + else { + SU = pickNodeBidirectional(IsTopNode); + } + } while (SU->isScheduled); + + if (SU->isTopReady()) + Top.removeReady(SU); + if (SU->isBottomReady()) + Bot.removeReady(SU); + + DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr()); + return SU; +} + +void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) { + + MachineBasicBlock::iterator InsertPos = SU->getInstr(); + if (!isTop) + ++InsertPos; + SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; + + // Find already scheduled copies with a single physreg dependence and move + // them just above the scheduled instruction. + for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end(); + I != E; ++I) { + if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg())) + continue; + SUnit *DepSU = I->getSUnit(); + if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) + continue; + MachineInstr *Copy = DepSU->getInstr(); + if (!Copy->isCopy()) + continue; + DEBUG(dbgs() << " Rescheduling physreg copy "; + I->getSUnit()->dump(DAG)); + DAG->moveInstruction(Copy, InsertPos); + } +} + +/// Update the scheduler's state after scheduling a node. This is the same node +/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update +/// it's state based on the current cycle before MachineSchedStrategy does. +/// +/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling +/// them here. See comments in biasPhysRegCopy. +void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { + if (IsTopNode) { + SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle); + Top.bumpNode(SU); + if (SU->hasPhysRegUses) + reschedulePhysRegCopies(SU, true); + } + else { + SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle); + Bot.bumpNode(SU); + if (SU->hasPhysRegDefs) + reschedulePhysRegCopies(SU, false); + } +} + +/// Create the standard converging machine scheduler. This will be used as the +/// default scheduler if the target does not set a default. +static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C) { + ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new GenericScheduler(C)); + // Register DAG post-processors. + // + // FIXME: extend the mutation API to allow earlier mutations to instantiate + // data and pass it to later mutations. Have a single mutation that gathers + // the interesting nodes in one pass. + DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI)); + if (EnableLoadCluster && DAG->TII->enableClusterLoads()) + DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); + if (EnableMacroFusion) + DAG->addMutation(new MacroFusion(DAG->TII)); + return DAG; +} +static MachineSchedRegistry +GenericSchedRegistry("converge", "Standard converging scheduler.", + createGenericSched); + +//===----------------------------------------------------------------------===// +// ILP Scheduler. Currently for experimental analysis of heuristics. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Order nodes by the ILP metric. +struct ILPOrder { + const SchedDFSResult *DFSResult; + const BitVector *ScheduledTrees; + bool MaximizeILP; + + ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} + + /// \brief Apply a less-than relation on node priority. + /// + /// (Return true if A comes after B in the Q.) + bool operator()(const SUnit *A, const SUnit *B) const { + unsigned SchedTreeA = DFSResult->getSubtreeID(A); + unsigned SchedTreeB = DFSResult->getSubtreeID(B); + if (SchedTreeA != SchedTreeB) { + // Unscheduled trees have lower priority. + if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) + return ScheduledTrees->test(SchedTreeB); + + // Trees with shallower connections have have lower priority. + if (DFSResult->getSubtreeLevel(SchedTreeA) + != DFSResult->getSubtreeLevel(SchedTreeB)) { + return DFSResult->getSubtreeLevel(SchedTreeA) + < DFSResult->getSubtreeLevel(SchedTreeB); + } + } + if (MaximizeILP) + return DFSResult->getILP(A) < DFSResult->getILP(B); + else + return DFSResult->getILP(A) > DFSResult->getILP(B); + } +}; + +/// \brief Schedule based on the ILP metric. +class ILPScheduler : public MachineSchedStrategy { + ScheduleDAGMI *DAG; + ILPOrder Cmp; + + std::vector<SUnit*> ReadyQ; +public: + ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} + + virtual void initialize(ScheduleDAGMI *dag) { + DAG = dag; + DAG->computeDFSResult(); + Cmp.DFSResult = DAG->getDFSResult(); + Cmp.ScheduledTrees = &DAG->getScheduledTrees(); + ReadyQ.clear(); + } + + virtual void registerRoots() { + // Restore the heap in ReadyQ with the updated DFS results. + std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + } + + /// Implement MachineSchedStrategy interface. + /// ----------------------------------------- + + /// Callback to select the highest priority node from the ready Q. + virtual SUnit *pickNode(bool &IsTopNode) { + if (ReadyQ.empty()) return NULL; + std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + SUnit *SU = ReadyQ.back(); + ReadyQ.pop_back(); + IsTopNode = false; + DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") " + << " ILP: " << DAG->getDFSResult()->getILP(SU) + << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" + << DAG->getDFSResult()->getSubtreeLevel( + DAG->getDFSResult()->getSubtreeID(SU)) << '\n' + << "Scheduling " << *SU->getInstr()); + return SU; + } + + /// \brief Scheduler callback to notify that a new subtree is scheduled. + virtual void scheduleTree(unsigned SubtreeID) { + std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + } + + /// Callback after a node is scheduled. Mark a newly scheduled tree, notify + /// DFSResults, and resort the priority Q. + virtual void schedNode(SUnit *SU, bool IsTopNode) { + assert(!IsTopNode && "SchedDFSResult needs bottom-up"); + } + + virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } + + virtual void releaseBottomNode(SUnit *SU) { + ReadyQ.push_back(SU); + std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + } +}; +} // namespace + +static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { + return new ScheduleDAGMI(C, new ILPScheduler(true)); +} +static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { + return new ScheduleDAGMI(C, new ILPScheduler(false)); +} +static MachineSchedRegistry ILPMaxRegistry( + "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); +static MachineSchedRegistry ILPMinRegistry( + "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); + +//===----------------------------------------------------------------------===// +// Machine Instruction Shuffler for Correctness Testing +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +namespace { +/// Apply a less-than relation on the node order, which corresponds to the +/// instruction order prior to scheduling. IsReverse implements greater-than. +template<bool IsReverse> +struct SUnitOrder { + bool operator()(SUnit *A, SUnit *B) const { + if (IsReverse) + return A->NodeNum > B->NodeNum; + else + return A->NodeNum < B->NodeNum; + } +}; + +/// Reorder instructions as much as possible. +class InstructionShuffler : public MachineSchedStrategy { + bool IsAlternating; + bool IsTopDown; + + // Using a less-than relation (SUnitOrder<false>) for the TopQ priority + // gives nodes with a higher number higher priority causing the latest + // instructions to be scheduled first. + PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > + TopQ; + // When scheduling bottom-up, use greater-than as the queue priority. + PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > + BottomQ; +public: + InstructionShuffler(bool alternate, bool topdown) + : IsAlternating(alternate), IsTopDown(topdown) {} + + virtual void initialize(ScheduleDAGMI *) { + TopQ.clear(); + BottomQ.clear(); + } + + /// Implement MachineSchedStrategy interface. + /// ----------------------------------------- + + virtual SUnit *pickNode(bool &IsTopNode) { + SUnit *SU; + if (IsTopDown) { + do { + if (TopQ.empty()) return NULL; + SU = TopQ.top(); + TopQ.pop(); + } while (SU->isScheduled); + IsTopNode = true; + } + else { + do { + if (BottomQ.empty()) return NULL; + SU = BottomQ.top(); + BottomQ.pop(); + } while (SU->isScheduled); + IsTopNode = false; + } + if (IsAlternating) + IsTopDown = !IsTopDown; + return SU; + } + + virtual void schedNode(SUnit *SU, bool IsTopNode) {} + + virtual void releaseTopNode(SUnit *SU) { + TopQ.push(SU); + } + virtual void releaseBottomNode(SUnit *SU) { + BottomQ.push(SU); + } +}; +} // namespace + +static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { + bool Alternate = !ForceTopDown && !ForceBottomUp; + bool TopDown = !ForceBottomUp; + assert((TopDown || !ForceTopDown) && + "-misched-topdown incompatible with -misched-bottomup"); + return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); +} +static MachineSchedRegistry ShufflerRegistry( + "shuffle", "Shuffle machine instructions alternating directions", + createInstructionShuffler); +#endif // !NDEBUG + +//===----------------------------------------------------------------------===// +// GraphWriter support for ScheduleDAGMI. +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +namespace llvm { + +template<> struct GraphTraits< + ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; + +template<> +struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { + + DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} + + static std::string getGraphName(const ScheduleDAG *G) { + return G->MF.getName(); + } + + static bool renderGraphFromBottomUp() { + return true; + } + + static bool isNodeHidden(const SUnit *Node) { + return (Node->Preds.size() > 10 || Node->Succs.size() > 10); + } + + static bool hasNodeAddressLabel(const SUnit *Node, + const ScheduleDAG *Graph) { + return false; + } + + /// If you want to override the dot attributes printed for a particular + /// edge, override this method. + static std::string getEdgeAttributes(const SUnit *Node, + SUnitIterator EI, + const ScheduleDAG *Graph) { + if (EI.isArtificialDep()) + return "color=cyan,style=dashed"; + if (EI.isCtrlDep()) + return "color=blue,style=dashed"; + return ""; + } + + static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { + std::string Str; + raw_string_ostream SS(Str); + const SchedDFSResult *DFS = + static_cast<const ScheduleDAGMI*>(G)->getDFSResult(); + SS << "SU:" << SU->NodeNum; + if (DFS) + SS << " I:" << DFS->getNumInstrs(SU); + return SS.str(); + } + static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { + return G->getGraphNodeLabel(SU); + } + + static std::string getNodeAttributes(const SUnit *N, + const ScheduleDAG *Graph) { + std::string Str("shape=Mrecord"); + const SchedDFSResult *DFS = + static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); + if (DFS) { + Str += ",style=filled,fillcolor=\"#"; + Str += DOT::getColorString(DFS->getSubtreeID(N)); + Str += '"'; + } + return Str; + } +}; +} // namespace llvm +#endif // NDEBUG + +/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG +/// rendered using 'dot'. +/// +void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { +#ifndef NDEBUG + ViewGraph(this, Name, false, Title); +#else + errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " + << "systems with Graphviz or gv!\n"; +#endif // NDEBUG +} + +/// Out-of-line implementation with no arguments is handy for gdb. +void ScheduleDAGMI::viewGraph() { + viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); +} |