summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineScheduler.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineScheduler.cpp3140
1 files changed, 3140 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
new file mode 100644
index 0000000..e71c4df
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
@@ -0,0 +1,3140 @@
+//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// MachineScheduler schedules machine instructions after phi elimination. It
+// preserves LiveIntervals so it can be invoked before register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "misched"
+
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/ScheduleDFS.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include <queue>
+
+using namespace llvm;
+
+namespace llvm {
+cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
+ cl::desc("Force top-down list scheduling"));
+cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
+ cl::desc("Force bottom-up list scheduling"));
+}
+
+#ifndef NDEBUG
+static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
+ cl::desc("Pop up a window to show MISched dags after they are processed"));
+
+static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
+ cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
+#else
+static bool ViewMISchedDAGs = false;
+#endif // NDEBUG
+
+static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
+ cl::desc("Enable register pressure scheduling."), cl::init(true));
+
+static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
+ cl::desc("Enable cyclic critical path analysis."), cl::init(true));
+
+static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
+ cl::desc("Enable load clustering."), cl::init(true));
+
+// Experimental heuristics
+static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
+ cl::desc("Enable scheduling for macro fusion."), cl::init(true));
+
+static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
+ cl::desc("Verify machine instrs before and after machine scheduling"));
+
+// DAG subtrees must have at least this many nodes.
+static const unsigned MinSubtreeSize = 8;
+
+// Pin the vtables to this file.
+void MachineSchedStrategy::anchor() {}
+void ScheduleDAGMutation::anchor() {}
+
+//===----------------------------------------------------------------------===//
+// Machine Instruction Scheduling Pass and Registry
+//===----------------------------------------------------------------------===//
+
+MachineSchedContext::MachineSchedContext():
+ MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
+ RegClassInfo = new RegisterClassInfo();
+}
+
+MachineSchedContext::~MachineSchedContext() {
+ delete RegClassInfo;
+}
+
+namespace {
+/// MachineScheduler runs after coalescing and before register allocation.
+class MachineScheduler : public MachineSchedContext,
+ public MachineFunctionPass {
+public:
+ MachineScheduler();
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ virtual void releaseMemory() {}
+
+ virtual bool runOnMachineFunction(MachineFunction&);
+
+ virtual void print(raw_ostream &O, const Module* = 0) const;
+
+ static char ID; // Class identification, replacement for typeinfo
+
+protected:
+ ScheduleDAGInstrs *createMachineScheduler();
+};
+} // namespace
+
+char MachineScheduler::ID = 0;
+
+char &llvm::MachineSchedulerID = MachineScheduler::ID;
+
+INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
+ "Machine Instruction Scheduler", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(MachineScheduler, "misched",
+ "Machine Instruction Scheduler", false, false)
+
+MachineScheduler::MachineScheduler()
+: MachineFunctionPass(ID) {
+ initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
+}
+
+void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequiredID(MachineDominatorsID);
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<TargetPassConfig>();
+ AU.addRequired<SlotIndexes>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+MachinePassRegistry MachineSchedRegistry::Registry;
+
+/// A dummy default scheduler factory indicates whether the scheduler
+/// is overridden on the command line.
+static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
+ return 0;
+}
+
+/// MachineSchedOpt allows command line selection of the scheduler.
+static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
+ RegisterPassParser<MachineSchedRegistry> >
+MachineSchedOpt("misched",
+ cl::init(&useDefaultMachineSched), cl::Hidden,
+ cl::desc("Machine instruction scheduler to use"));
+
+static MachineSchedRegistry
+DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
+ useDefaultMachineSched);
+
+/// Forward declare the standard machine scheduler. This will be used as the
+/// default scheduler if the target does not set a default.
+static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C);
+
+
+/// Decrement this iterator until reaching the top or a non-debug instr.
+static MachineBasicBlock::const_iterator
+priorNonDebug(MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator Beg) {
+ assert(I != Beg && "reached the top of the region, cannot decrement");
+ while (--I != Beg) {
+ if (!I->isDebugValue())
+ break;
+ }
+ return I;
+}
+
+/// Non-const version.
+static MachineBasicBlock::iterator
+priorNonDebug(MachineBasicBlock::iterator I,
+ MachineBasicBlock::const_iterator Beg) {
+ return const_cast<MachineInstr*>(
+ &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
+}
+
+/// If this iterator is a debug value, increment until reaching the End or a
+/// non-debug instruction.
+static MachineBasicBlock::const_iterator
+nextIfDebug(MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator End) {
+ for(; I != End; ++I) {
+ if (!I->isDebugValue())
+ break;
+ }
+ return I;
+}
+
+/// Non-const version.
+static MachineBasicBlock::iterator
+nextIfDebug(MachineBasicBlock::iterator I,
+ MachineBasicBlock::const_iterator End) {
+ // Cast the return value to nonconst MachineInstr, then cast to an
+ // instr_iterator, which does not check for null, finally return a
+ // bundle_iterator.
+ return MachineBasicBlock::instr_iterator(
+ const_cast<MachineInstr*>(
+ &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
+}
+
+/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
+ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
+ // Select the scheduler, or set the default.
+ MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
+ if (Ctor != useDefaultMachineSched)
+ return Ctor(this);
+
+ // Get the default scheduler set by the target for this function.
+ ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
+ if (Scheduler)
+ return Scheduler;
+
+ // Default to GenericScheduler.
+ return createGenericSched(this);
+}
+
+/// Top-level MachineScheduler pass driver.
+///
+/// Visit blocks in function order. Divide each block into scheduling regions
+/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
+/// consistent with the DAG builder, which traverses the interior of the
+/// scheduling regions bottom-up.
+///
+/// This design avoids exposing scheduling boundaries to the DAG builder,
+/// simplifying the DAG builder's support for "special" target instructions.
+/// At the same time the design allows target schedulers to operate across
+/// scheduling boundaries, for example to bundle the boudary instructions
+/// without reordering them. This creates complexity, because the target
+/// scheduler must update the RegionBegin and RegionEnd positions cached by
+/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
+/// design would be to split blocks at scheduling boundaries, but LLVM has a
+/// general bias against block splitting purely for implementation simplicity.
+bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
+ DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
+
+ // Initialize the context of the pass.
+ MF = &mf;
+ MLI = &getAnalysis<MachineLoopInfo>();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ PassConfig = &getAnalysis<TargetPassConfig>();
+ AA = &getAnalysis<AliasAnalysis>();
+
+ LIS = &getAnalysis<LiveIntervals>();
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+
+ if (VerifyScheduling) {
+ DEBUG(LIS->dump());
+ MF->verify(this, "Before machine scheduling.");
+ }
+ RegClassInfo->runOnMachineFunction(*MF);
+
+ // Instantiate the selected scheduler for this target, function, and
+ // optimization level.
+ OwningPtr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
+
+ // Visit all machine basic blocks.
+ //
+ // TODO: Visit blocks in global postorder or postorder within the bottom-up
+ // loop tree. Then we can optionally compute global RegPressure.
+ for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
+ MBB != MBBEnd; ++MBB) {
+
+ Scheduler->startBlock(MBB);
+
+ // Break the block into scheduling regions [I, RegionEnd), and schedule each
+ // region as soon as it is discovered. RegionEnd points the scheduling
+ // boundary at the bottom of the region. The DAG does not include RegionEnd,
+ // but the region does (i.e. the next RegionEnd is above the previous
+ // RegionBegin). If the current block has no terminator then RegionEnd ==
+ // MBB->end() for the bottom region.
+ //
+ // The Scheduler may insert instructions during either schedule() or
+ // exitRegion(), even for empty regions. So the local iterators 'I' and
+ // 'RegionEnd' are invalid across these calls.
+ unsigned RemainingInstrs = MBB->size();
+ for(MachineBasicBlock::iterator RegionEnd = MBB->end();
+ RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
+
+ // Avoid decrementing RegionEnd for blocks with no terminator.
+ if (RegionEnd != MBB->end()
+ || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
+ --RegionEnd;
+ // Count the boundary instruction.
+ --RemainingInstrs;
+ }
+
+ // The next region starts above the previous region. Look backward in the
+ // instruction stream until we find the nearest boundary.
+ unsigned NumRegionInstrs = 0;
+ MachineBasicBlock::iterator I = RegionEnd;
+ for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
+ if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
+ break;
+ }
+ // Notify the scheduler of the region, even if we may skip scheduling
+ // it. Perhaps it still needs to be bundled.
+ Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
+
+ // Skip empty scheduling regions (0 or 1 schedulable instructions).
+ if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
+ // Close the current region. Bundle the terminator if needed.
+ // This invalidates 'RegionEnd' and 'I'.
+ Scheduler->exitRegion();
+ continue;
+ }
+ DEBUG(dbgs() << "********** MI Scheduling **********\n");
+ DEBUG(dbgs() << MF->getName()
+ << ":BB#" << MBB->getNumber() << " " << MBB->getName()
+ << "\n From: " << *I << " To: ";
+ if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
+ else dbgs() << "End";
+ dbgs() << " RegionInstrs: " << NumRegionInstrs
+ << " Remaining: " << RemainingInstrs << "\n");
+
+ // Schedule a region: possibly reorder instructions.
+ // This invalidates 'RegionEnd' and 'I'.
+ Scheduler->schedule();
+
+ // Close the current region.
+ Scheduler->exitRegion();
+
+ // Scheduling has invalidated the current iterator 'I'. Ask the
+ // scheduler for the top of it's scheduled region.
+ RegionEnd = Scheduler->begin();
+ }
+ assert(RemainingInstrs == 0 && "Instruction count mismatch!");
+ Scheduler->finishBlock();
+ }
+ Scheduler->finalizeSchedule();
+ DEBUG(LIS->dump());
+ if (VerifyScheduling)
+ MF->verify(this, "After machine scheduling.");
+ return true;
+}
+
+void MachineScheduler::print(raw_ostream &O, const Module* m) const {
+ // unimplemented
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ReadyQueue::dump() {
+ dbgs() << Name << ": ";
+ for (unsigned i = 0, e = Queue.size(); i < e; ++i)
+ dbgs() << Queue[i]->NodeNum << " ";
+ dbgs() << "\n";
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
+// preservation.
+//===----------------------------------------------------------------------===//
+
+ScheduleDAGMI::~ScheduleDAGMI() {
+ delete DFSResult;
+ DeleteContainerPointers(Mutations);
+ delete SchedImpl;
+}
+
+bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
+ return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
+}
+
+bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
+ if (SuccSU != &ExitSU) {
+ // Do not use WillCreateCycle, it assumes SD scheduling.
+ // If Pred is reachable from Succ, then the edge creates a cycle.
+ if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
+ return false;
+ Topo.AddPred(SuccSU, PredDep.getSUnit());
+ }
+ SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
+ // Return true regardless of whether a new edge needed to be inserted.
+ return true;
+}
+
+/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
+/// NumPredsLeft reaches zero, release the successor node.
+///
+/// FIXME: Adjust SuccSU height based on MinLatency.
+void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
+ SUnit *SuccSU = SuccEdge->getSUnit();
+
+ if (SuccEdge->isWeak()) {
+ --SuccSU->WeakPredsLeft;
+ if (SuccEdge->isCluster())
+ NextClusterSucc = SuccSU;
+ return;
+ }
+#ifndef NDEBUG
+ if (SuccSU->NumPredsLeft == 0) {
+ dbgs() << "*** Scheduling failed! ***\n";
+ SuccSU->dump(this);
+ dbgs() << " has been released too many times!\n";
+ llvm_unreachable(0);
+ }
+#endif
+ --SuccSU->NumPredsLeft;
+ if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
+ SchedImpl->releaseTopNode(SuccSU);
+}
+
+/// releaseSuccessors - Call releaseSucc on each of SU's successors.
+void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ releaseSucc(SU, &*I);
+ }
+}
+
+/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
+/// NumSuccsLeft reaches zero, release the predecessor node.
+///
+/// FIXME: Adjust PredSU height based on MinLatency.
+void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
+ SUnit *PredSU = PredEdge->getSUnit();
+
+ if (PredEdge->isWeak()) {
+ --PredSU->WeakSuccsLeft;
+ if (PredEdge->isCluster())
+ NextClusterPred = PredSU;
+ return;
+ }
+#ifndef NDEBUG
+ if (PredSU->NumSuccsLeft == 0) {
+ dbgs() << "*** Scheduling failed! ***\n";
+ PredSU->dump(this);
+ dbgs() << " has been released too many times!\n";
+ llvm_unreachable(0);
+ }
+#endif
+ --PredSU->NumSuccsLeft;
+ if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
+ SchedImpl->releaseBottomNode(PredSU);
+}
+
+/// releasePredecessors - Call releasePred on each of SU's predecessors.
+void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
+ for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ releasePred(SU, &*I);
+ }
+}
+
+/// This is normally called from the main scheduler loop but may also be invoked
+/// by the scheduling strategy to perform additional code motion.
+void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
+ MachineBasicBlock::iterator InsertPos) {
+ // Advance RegionBegin if the first instruction moves down.
+ if (&*RegionBegin == MI)
+ ++RegionBegin;
+
+ // Update the instruction stream.
+ BB->splice(InsertPos, BB, MI);
+
+ // Update LiveIntervals
+ LIS->handleMove(MI, /*UpdateFlags=*/true);
+
+ // Recede RegionBegin if an instruction moves above the first.
+ if (RegionBegin == InsertPos)
+ RegionBegin = MI;
+}
+
+bool ScheduleDAGMI::checkSchedLimit() {
+#ifndef NDEBUG
+ if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
+ CurrentTop = CurrentBottom;
+ return false;
+ }
+ ++NumInstrsScheduled;
+#endif
+ return true;
+}
+
+/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
+/// crossing a scheduling boundary. [begin, end) includes all instructions in
+/// the region, including the boundary itself and single-instruction regions
+/// that don't get scheduled.
+void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
+ MachineBasicBlock::iterator begin,
+ MachineBasicBlock::iterator end,
+ unsigned regioninstrs)
+{
+ ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
+
+ // For convenience remember the end of the liveness region.
+ LiveRegionEnd =
+ (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
+
+ SUPressureDiffs.clear();
+
+ SchedImpl->initPolicy(begin, end, regioninstrs);
+
+ ShouldTrackPressure = SchedImpl->shouldTrackPressure();
+}
+
+// Setup the register pressure trackers for the top scheduled top and bottom
+// scheduled regions.
+void ScheduleDAGMI::initRegPressure() {
+ TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
+ BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
+
+ // Close the RPTracker to finalize live ins.
+ RPTracker.closeRegion();
+
+ DEBUG(RPTracker.dump());
+
+ // Initialize the live ins and live outs.
+ TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
+ BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
+
+ // Close one end of the tracker so we can call
+ // getMaxUpward/DownwardPressureDelta before advancing across any
+ // instructions. This converts currently live regs into live ins/outs.
+ TopRPTracker.closeTop();
+ BotRPTracker.closeBottom();
+
+ BotRPTracker.initLiveThru(RPTracker);
+ if (!BotRPTracker.getLiveThru().empty()) {
+ TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
+ DEBUG(dbgs() << "Live Thru: ";
+ dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
+ };
+
+ // For each live out vreg reduce the pressure change associated with other
+ // uses of the same vreg below the live-out reaching def.
+ updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
+
+ // Account for liveness generated by the region boundary.
+ if (LiveRegionEnd != RegionEnd) {
+ SmallVector<unsigned, 8> LiveUses;
+ BotRPTracker.recede(&LiveUses);
+ updatePressureDiffs(LiveUses);
+ }
+
+ assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
+
+ // Cache the list of excess pressure sets in this region. This will also track
+ // the max pressure in the scheduled code for these sets.
+ RegionCriticalPSets.clear();
+ const std::vector<unsigned> &RegionPressure =
+ RPTracker.getPressure().MaxSetPressure;
+ for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
+ unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
+ if (RegionPressure[i] > Limit) {
+ DEBUG(dbgs() << TRI->getRegPressureSetName(i)
+ << " Limit " << Limit
+ << " Actual " << RegionPressure[i] << "\n");
+ RegionCriticalPSets.push_back(PressureChange(i));
+ }
+ }
+ DEBUG(dbgs() << "Excess PSets: ";
+ for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
+ dbgs() << TRI->getRegPressureSetName(
+ RegionCriticalPSets[i].getPSet()) << " ";
+ dbgs() << "\n");
+}
+
+void ScheduleDAGMI::
+updateScheduledPressure(const SUnit *SU,
+ const std::vector<unsigned> &NewMaxPressure) {
+ const PressureDiff &PDiff = getPressureDiff(SU);
+ unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
+ for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
+ I != E; ++I) {
+ if (!I->isValid())
+ break;
+ unsigned ID = I->getPSet();
+ while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
+ ++CritIdx;
+ if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
+ if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
+ && NewMaxPressure[ID] <= INT16_MAX)
+ RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
+ }
+ unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
+ if (NewMaxPressure[ID] >= Limit - 2) {
+ DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
+ << NewMaxPressure[ID] << " > " << Limit << "(+ "
+ << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
+ }
+ }
+}
+
+/// Update the PressureDiff array for liveness after scheduling this
+/// instruction.
+void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
+ for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
+ /// FIXME: Currently assuming single-use physregs.
+ unsigned Reg = LiveUses[LUIdx];
+ DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
+ if (!TRI->isVirtualRegister(Reg))
+ continue;
+
+ // This may be called before CurrentBottom has been initialized. However,
+ // BotRPTracker must have a valid position. We want the value live into the
+ // instruction or live out of the block, so ask for the previous
+ // instruction's live-out.
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ VNInfo *VNI;
+ MachineBasicBlock::const_iterator I =
+ nextIfDebug(BotRPTracker.getPos(), BB->end());
+ if (I == BB->end())
+ VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
+ else {
+ LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
+ VNI = LRQ.valueIn();
+ }
+ // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
+ assert(VNI && "No live value at use.");
+ for (VReg2UseMap::iterator
+ UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
+ SUnit *SU = UI->SU;
+ DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
+ << *SU->getInstr());
+ // If this use comes before the reaching def, it cannot be a last use, so
+ // descrease its pressure change.
+ if (!SU->isScheduled && SU != &ExitSU) {
+ LiveQueryResult LRQ
+ = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
+ if (LRQ.valueIn() == VNI)
+ getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
+ }
+ }
+ }
+}
+
+/// schedule - Called back from MachineScheduler::runOnMachineFunction
+/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
+/// only includes instructions that have DAG nodes, not scheduling boundaries.
+///
+/// This is a skeletal driver, with all the functionality pushed into helpers,
+/// so that it can be easilly extended by experimental schedulers. Generally,
+/// implementing MachineSchedStrategy should be sufficient to implement a new
+/// scheduling algorithm. However, if a scheduler further subclasses
+/// ScheduleDAGMI then it will want to override this virtual method in order to
+/// update any specialized state.
+void ScheduleDAGMI::schedule() {
+ buildDAGWithRegPressure();
+
+ Topo.InitDAGTopologicalSorting();
+
+ postprocessDAG();
+
+ SmallVector<SUnit*, 8> TopRoots, BotRoots;
+ findRootsAndBiasEdges(TopRoots, BotRoots);
+
+ // Initialize the strategy before modifying the DAG.
+ // This may initialize a DFSResult to be used for queue priority.
+ SchedImpl->initialize(this);
+
+ DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(this));
+ if (ViewMISchedDAGs) viewGraph();
+
+ // Initialize ready queues now that the DAG and priority data are finalized.
+ initQueues(TopRoots, BotRoots);
+
+ bool IsTopNode = false;
+ while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
+ assert(!SU->isScheduled && "Node already scheduled");
+ if (!checkSchedLimit())
+ break;
+
+ scheduleMI(SU, IsTopNode);
+
+ updateQueues(SU, IsTopNode);
+ }
+ assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
+
+ placeDebugValues();
+
+ DEBUG({
+ unsigned BBNum = begin()->getParent()->getNumber();
+ dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
+ dumpSchedule();
+ dbgs() << '\n';
+ });
+}
+
+/// Build the DAG and setup three register pressure trackers.
+void ScheduleDAGMI::buildDAGWithRegPressure() {
+ if (!ShouldTrackPressure) {
+ RPTracker.reset();
+ RegionCriticalPSets.clear();
+ buildSchedGraph(AA);
+ return;
+ }
+
+ // Initialize the register pressure tracker used by buildSchedGraph.
+ RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
+ /*TrackUntiedDefs=*/true);
+
+ // Account for liveness generate by the region boundary.
+ if (LiveRegionEnd != RegionEnd)
+ RPTracker.recede();
+
+ // Build the DAG, and compute current register pressure.
+ buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
+
+ // Initialize top/bottom trackers after computing region pressure.
+ initRegPressure();
+}
+
+/// Apply each ScheduleDAGMutation step in order.
+void ScheduleDAGMI::postprocessDAG() {
+ for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
+ Mutations[i]->apply(this);
+ }
+}
+
+void ScheduleDAGMI::computeDFSResult() {
+ if (!DFSResult)
+ DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
+ DFSResult->clear();
+ ScheduledTrees.clear();
+ DFSResult->resize(SUnits.size());
+ DFSResult->compute(SUnits);
+ ScheduledTrees.resize(DFSResult->getNumSubtrees());
+}
+
+void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
+ SmallVectorImpl<SUnit*> &BotRoots) {
+ for (std::vector<SUnit>::iterator
+ I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
+ SUnit *SU = &(*I);
+ assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
+
+ // Order predecessors so DFSResult follows the critical path.
+ SU->biasCriticalPath();
+
+ // A SUnit is ready to top schedule if it has no predecessors.
+ if (!I->NumPredsLeft)
+ TopRoots.push_back(SU);
+ // A SUnit is ready to bottom schedule if it has no successors.
+ if (!I->NumSuccsLeft)
+ BotRoots.push_back(SU);
+ }
+ ExitSU.biasCriticalPath();
+}
+
+/// Compute the max cyclic critical path through the DAG. The scheduling DAG
+/// only provides the critical path for single block loops. To handle loops that
+/// span blocks, we could use the vreg path latencies provided by
+/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
+/// available for use in the scheduler.
+///
+/// The cyclic path estimation identifies a def-use pair that crosses the back
+/// edge and considers the depth and height of the nodes. For example, consider
+/// the following instruction sequence where each instruction has unit latency
+/// and defines an epomymous virtual register:
+///
+/// a->b(a,c)->c(b)->d(c)->exit
+///
+/// The cyclic critical path is a two cycles: b->c->b
+/// The acyclic critical path is four cycles: a->b->c->d->exit
+/// LiveOutHeight = height(c) = len(c->d->exit) = 2
+/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
+/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
+/// LiveInDepth = depth(b) = len(a->b) = 1
+///
+/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
+/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
+/// CyclicCriticalPath = min(2, 2) = 2
+unsigned ScheduleDAGMI::computeCyclicCriticalPath() {
+ // This only applies to single block loop.
+ if (!BB->isSuccessor(BB))
+ return 0;
+
+ unsigned MaxCyclicLatency = 0;
+ // Visit each live out vreg def to find def/use pairs that cross iterations.
+ ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
+ for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
+ RI != RE; ++RI) {
+ unsigned Reg = *RI;
+ if (!TRI->isVirtualRegister(Reg))
+ continue;
+ const LiveInterval &LI = LIS->getInterval(Reg);
+ const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
+ if (!DefVNI)
+ continue;
+
+ MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
+ const SUnit *DefSU = getSUnit(DefMI);
+ if (!DefSU)
+ continue;
+
+ unsigned LiveOutHeight = DefSU->getHeight();
+ unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
+ // Visit all local users of the vreg def.
+ for (VReg2UseMap::iterator
+ UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
+ if (UI->SU == &ExitSU)
+ continue;
+
+ // Only consider uses of the phi.
+ LiveQueryResult LRQ =
+ LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
+ if (!LRQ.valueIn()->isPHIDef())
+ continue;
+
+ // Assume that a path spanning two iterations is a cycle, which could
+ // overestimate in strange cases. This allows cyclic latency to be
+ // estimated as the minimum slack of the vreg's depth or height.
+ unsigned CyclicLatency = 0;
+ if (LiveOutDepth > UI->SU->getDepth())
+ CyclicLatency = LiveOutDepth - UI->SU->getDepth();
+
+ unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
+ if (LiveInHeight > LiveOutHeight) {
+ if (LiveInHeight - LiveOutHeight < CyclicLatency)
+ CyclicLatency = LiveInHeight - LiveOutHeight;
+ }
+ else
+ CyclicLatency = 0;
+
+ DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
+ << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
+ if (CyclicLatency > MaxCyclicLatency)
+ MaxCyclicLatency = CyclicLatency;
+ }
+ }
+ DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
+ return MaxCyclicLatency;
+}
+
+/// Identify DAG roots and setup scheduler queues.
+void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
+ ArrayRef<SUnit*> BotRoots) {
+ NextClusterSucc = NULL;
+ NextClusterPred = NULL;
+
+ // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
+ //
+ // Nodes with unreleased weak edges can still be roots.
+ // Release top roots in forward order.
+ for (SmallVectorImpl<SUnit*>::const_iterator
+ I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
+ SchedImpl->releaseTopNode(*I);
+ }
+ // Release bottom roots in reverse order so the higher priority nodes appear
+ // first. This is more natural and slightly more efficient.
+ for (SmallVectorImpl<SUnit*>::const_reverse_iterator
+ I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
+ SchedImpl->releaseBottomNode(*I);
+ }
+
+ releaseSuccessors(&EntrySU);
+ releasePredecessors(&ExitSU);
+
+ SchedImpl->registerRoots();
+
+ // Advance past initial DebugValues.
+ CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
+ CurrentBottom = RegionEnd;
+
+ if (ShouldTrackPressure) {
+ assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
+ TopRPTracker.setPos(CurrentTop);
+ }
+}
+
+/// Move an instruction and update register pressure.
+void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
+ // Move the instruction to its new location in the instruction stream.
+ MachineInstr *MI = SU->getInstr();
+
+ if (IsTopNode) {
+ assert(SU->isTopReady() && "node still has unscheduled dependencies");
+ if (&*CurrentTop == MI)
+ CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
+ else {
+ moveInstruction(MI, CurrentTop);
+ TopRPTracker.setPos(MI);
+ }
+
+ if (ShouldTrackPressure) {
+ // Update top scheduled pressure.
+ TopRPTracker.advance();
+ assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
+ updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
+ }
+ }
+ else {
+ assert(SU->isBottomReady() && "node still has unscheduled dependencies");
+ MachineBasicBlock::iterator priorII =
+ priorNonDebug(CurrentBottom, CurrentTop);
+ if (&*priorII == MI)
+ CurrentBottom = priorII;
+ else {
+ if (&*CurrentTop == MI) {
+ CurrentTop = nextIfDebug(++CurrentTop, priorII);
+ TopRPTracker.setPos(CurrentTop);
+ }
+ moveInstruction(MI, CurrentBottom);
+ CurrentBottom = MI;
+ }
+ if (ShouldTrackPressure) {
+ // Update bottom scheduled pressure.
+ SmallVector<unsigned, 8> LiveUses;
+ BotRPTracker.recede(&LiveUses);
+ assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
+ updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
+ updatePressureDiffs(LiveUses);
+ }
+ }
+}
+
+/// Update scheduler queues after scheduling an instruction.
+void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
+ // Release dependent instructions for scheduling.
+ if (IsTopNode)
+ releaseSuccessors(SU);
+ else
+ releasePredecessors(SU);
+
+ SU->isScheduled = true;
+
+ if (DFSResult) {
+ unsigned SubtreeID = DFSResult->getSubtreeID(SU);
+ if (!ScheduledTrees.test(SubtreeID)) {
+ ScheduledTrees.set(SubtreeID);
+ DFSResult->scheduleTree(SubtreeID);
+ SchedImpl->scheduleTree(SubtreeID);
+ }
+ }
+
+ // Notify the scheduling strategy after updating the DAG.
+ SchedImpl->schedNode(SU, IsTopNode);
+}
+
+/// Reinsert any remaining debug_values, just like the PostRA scheduler.
+void ScheduleDAGMI::placeDebugValues() {
+ // If first instruction was a DBG_VALUE then put it back.
+ if (FirstDbgValue) {
+ BB->splice(RegionBegin, BB, FirstDbgValue);
+ RegionBegin = FirstDbgValue;
+ }
+
+ for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
+ DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
+ std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
+ MachineInstr *DbgValue = P.first;
+ MachineBasicBlock::iterator OrigPrevMI = P.second;
+ if (&*RegionBegin == DbgValue)
+ ++RegionBegin;
+ BB->splice(++OrigPrevMI, BB, DbgValue);
+ if (OrigPrevMI == llvm::prior(RegionEnd))
+ RegionEnd = DbgValue;
+ }
+ DbgValues.clear();
+ FirstDbgValue = NULL;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ScheduleDAGMI::dumpSchedule() const {
+ for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
+ if (SUnit *SU = getSUnit(&(*MI)))
+ SU->dump(this);
+ else
+ dbgs() << "Missing SUnit\n";
+ }
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+// LoadClusterMutation - DAG post-processing to cluster loads.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Post-process the DAG to create cluster edges between neighboring
+/// loads.
+class LoadClusterMutation : public ScheduleDAGMutation {
+ struct LoadInfo {
+ SUnit *SU;
+ unsigned BaseReg;
+ unsigned Offset;
+ LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
+ : SU(su), BaseReg(reg), Offset(ofs) {}
+ };
+ static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
+ const LoadClusterMutation::LoadInfo &RHS);
+
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+public:
+ LoadClusterMutation(const TargetInstrInfo *tii,
+ const TargetRegisterInfo *tri)
+ : TII(tii), TRI(tri) {}
+
+ virtual void apply(ScheduleDAGMI *DAG);
+protected:
+ void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
+};
+} // anonymous
+
+bool LoadClusterMutation::LoadInfoLess(
+ const LoadClusterMutation::LoadInfo &LHS,
+ const LoadClusterMutation::LoadInfo &RHS) {
+ if (LHS.BaseReg != RHS.BaseReg)
+ return LHS.BaseReg < RHS.BaseReg;
+ return LHS.Offset < RHS.Offset;
+}
+
+void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
+ ScheduleDAGMI *DAG) {
+ SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
+ for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
+ SUnit *SU = Loads[Idx];
+ unsigned BaseReg;
+ unsigned Offset;
+ if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
+ LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
+ }
+ if (LoadRecords.size() < 2)
+ return;
+ std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
+ unsigned ClusterLength = 1;
+ for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
+ if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
+ ClusterLength = 1;
+ continue;
+ }
+
+ SUnit *SUa = LoadRecords[Idx].SU;
+ SUnit *SUb = LoadRecords[Idx+1].SU;
+ if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
+ && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
+
+ DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
+ << SUb->NodeNum << ")\n");
+ // Copy successor edges from SUa to SUb. Interleaving computation
+ // dependent on SUa can prevent load combining due to register reuse.
+ // Predecessor edges do not need to be copied from SUb to SUa since nearby
+ // loads should have effectively the same inputs.
+ for (SUnit::const_succ_iterator
+ SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
+ if (SI->getSUnit() == SUb)
+ continue;
+ DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
+ DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
+ }
+ ++ClusterLength;
+ }
+ else
+ ClusterLength = 1;
+ }
+}
+
+/// \brief Callback from DAG postProcessing to create cluster edges for loads.
+void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
+ // Map DAG NodeNum to store chain ID.
+ DenseMap<unsigned, unsigned> StoreChainIDs;
+ // Map each store chain to a set of dependent loads.
+ SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
+ for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
+ SUnit *SU = &DAG->SUnits[Idx];
+ if (!SU->getInstr()->mayLoad())
+ continue;
+ unsigned ChainPredID = DAG->SUnits.size();
+ for (SUnit::const_pred_iterator
+ PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
+ if (PI->isCtrl()) {
+ ChainPredID = PI->getSUnit()->NodeNum;
+ break;
+ }
+ }
+ // Check if this chain-like pred has been seen
+ // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
+ unsigned NumChains = StoreChainDependents.size();
+ std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
+ StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
+ if (Result.second)
+ StoreChainDependents.resize(NumChains + 1);
+ StoreChainDependents[Result.first->second].push_back(SU);
+ }
+ // Iterate over the store chains.
+ for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
+ clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
+}
+
+//===----------------------------------------------------------------------===//
+// MacroFusion - DAG post-processing to encourage fusion of macro ops.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Post-process the DAG to create cluster edges between instructions
+/// that may be fused by the processor into a single operation.
+class MacroFusion : public ScheduleDAGMutation {
+ const TargetInstrInfo *TII;
+public:
+ MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
+
+ virtual void apply(ScheduleDAGMI *DAG);
+};
+} // anonymous
+
+/// \brief Callback from DAG postProcessing to create cluster edges to encourage
+/// fused operations.
+void MacroFusion::apply(ScheduleDAGMI *DAG) {
+ // For now, assume targets can only fuse with the branch.
+ MachineInstr *Branch = DAG->ExitSU.getInstr();
+ if (!Branch)
+ return;
+
+ for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
+ SUnit *SU = &DAG->SUnits[--Idx];
+ if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
+ continue;
+
+ // Create a single weak edge from SU to ExitSU. The only effect is to cause
+ // bottom-up scheduling to heavily prioritize the clustered SU. There is no
+ // need to copy predecessor edges from ExitSU to SU, since top-down
+ // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
+ // of SU, we could create an artificial edge from the deepest root, but it
+ // hasn't been needed yet.
+ bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
+ (void)Success;
+ assert(Success && "No DAG nodes should be reachable from ExitSU");
+
+ DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// CopyConstrain - DAG post-processing to encourage copy elimination.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Post-process the DAG to create weak edges from all uses of a copy to
+/// the one use that defines the copy's source vreg, most likely an induction
+/// variable increment.
+class CopyConstrain : public ScheduleDAGMutation {
+ // Transient state.
+ SlotIndex RegionBeginIdx;
+ // RegionEndIdx is the slot index of the last non-debug instruction in the
+ // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
+ SlotIndex RegionEndIdx;
+public:
+ CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
+
+ virtual void apply(ScheduleDAGMI *DAG);
+
+protected:
+ void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
+};
+} // anonymous
+
+/// constrainLocalCopy handles two possibilities:
+/// 1) Local src:
+/// I0: = dst
+/// I1: src = ...
+/// I2: = dst
+/// I3: dst = src (copy)
+/// (create pred->succ edges I0->I1, I2->I1)
+///
+/// 2) Local copy:
+/// I0: dst = src (copy)
+/// I1: = dst
+/// I2: src = ...
+/// I3: = dst
+/// (create pred->succ edges I1->I2, I3->I2)
+///
+/// Although the MachineScheduler is currently constrained to single blocks,
+/// this algorithm should handle extended blocks. An EBB is a set of
+/// contiguously numbered blocks such that the previous block in the EBB is
+/// always the single predecessor.
+void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
+ LiveIntervals *LIS = DAG->getLIS();
+ MachineInstr *Copy = CopySU->getInstr();
+
+ // Check for pure vreg copies.
+ unsigned SrcReg = Copy->getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ return;
+
+ unsigned DstReg = Copy->getOperand(0).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(DstReg))
+ return;
+
+ // Check if either the dest or source is local. If it's live across a back
+ // edge, it's not local. Note that if both vregs are live across the back
+ // edge, we cannot successfully contrain the copy without cyclic scheduling.
+ unsigned LocalReg = DstReg;
+ unsigned GlobalReg = SrcReg;
+ LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
+ if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
+ LocalReg = SrcReg;
+ GlobalReg = DstReg;
+ LocalLI = &LIS->getInterval(LocalReg);
+ if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
+ return;
+ }
+ LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
+
+ // Find the global segment after the start of the local LI.
+ LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
+ // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
+ // local live range. We could create edges from other global uses to the local
+ // start, but the coalescer should have already eliminated these cases, so
+ // don't bother dealing with it.
+ if (GlobalSegment == GlobalLI->end())
+ return;
+
+ // If GlobalSegment is killed at the LocalLI->start, the call to find()
+ // returned the next global segment. But if GlobalSegment overlaps with
+ // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
+ // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
+ if (GlobalSegment->contains(LocalLI->beginIndex()))
+ ++GlobalSegment;
+
+ if (GlobalSegment == GlobalLI->end())
+ return;
+
+ // Check if GlobalLI contains a hole in the vicinity of LocalLI.
+ if (GlobalSegment != GlobalLI->begin()) {
+ // Two address defs have no hole.
+ if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
+ GlobalSegment->start)) {
+ return;
+ }
+ // If the prior global segment may be defined by the same two-address
+ // instruction that also defines LocalLI, then can't make a hole here.
+ if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start,
+ LocalLI->beginIndex())) {
+ return;
+ }
+ // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
+ // it would be a disconnected component in the live range.
+ assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
+ "Disconnected LRG within the scheduling region.");
+ }
+ MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
+ if (!GlobalDef)
+ return;
+
+ SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
+ if (!GlobalSU)
+ return;
+
+ // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
+ // constraining the uses of the last local def to precede GlobalDef.
+ SmallVector<SUnit*,8> LocalUses;
+ const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
+ MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
+ SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
+ for (SUnit::const_succ_iterator
+ I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
+ I != E; ++I) {
+ if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
+ continue;
+ if (I->getSUnit() == GlobalSU)
+ continue;
+ if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
+ return;
+ LocalUses.push_back(I->getSUnit());
+ }
+ // Open the top of the GlobalLI hole by constraining any earlier global uses
+ // to precede the start of LocalLI.
+ SmallVector<SUnit*,8> GlobalUses;
+ MachineInstr *FirstLocalDef =
+ LIS->getInstructionFromIndex(LocalLI->beginIndex());
+ SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
+ for (SUnit::const_pred_iterator
+ I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
+ if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
+ continue;
+ if (I->getSUnit() == FirstLocalSU)
+ continue;
+ if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
+ return;
+ GlobalUses.push_back(I->getSUnit());
+ }
+ DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
+ // Add the weak edges.
+ for (SmallVectorImpl<SUnit*>::const_iterator
+ I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
+ DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
+ << GlobalSU->NodeNum << ")\n");
+ DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
+ }
+ for (SmallVectorImpl<SUnit*>::const_iterator
+ I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
+ DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
+ << FirstLocalSU->NodeNum << ")\n");
+ DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
+ }
+}
+
+/// \brief Callback from DAG postProcessing to create weak edges to encourage
+/// copy elimination.
+void CopyConstrain::apply(ScheduleDAGMI *DAG) {
+ MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
+ if (FirstPos == DAG->end())
+ return;
+ RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
+ RegionEndIdx = DAG->getLIS()->getInstructionIndex(
+ &*priorNonDebug(DAG->end(), DAG->begin()));
+
+ for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
+ SUnit *SU = &DAG->SUnits[Idx];
+ if (!SU->getInstr()->isCopy())
+ continue;
+
+ constrainLocalCopy(SU, DAG);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// GenericScheduler - Implementation of the generic MachineSchedStrategy.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
+/// the schedule.
+class GenericScheduler : public MachineSchedStrategy {
+public:
+ /// Represent the type of SchedCandidate found within a single queue.
+ /// pickNodeBidirectional depends on these listed by decreasing priority.
+ enum CandReason {
+ NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax,
+ ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
+ TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
+
+#ifndef NDEBUG
+ static const char *getReasonStr(GenericScheduler::CandReason Reason);
+#endif
+
+ /// Policy for scheduling the next instruction in the candidate's zone.
+ struct CandPolicy {
+ bool ReduceLatency;
+ unsigned ReduceResIdx;
+ unsigned DemandResIdx;
+
+ CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
+ };
+
+ /// Status of an instruction's critical resource consumption.
+ struct SchedResourceDelta {
+ // Count critical resources in the scheduled region required by SU.
+ unsigned CritResources;
+
+ // Count critical resources from another region consumed by SU.
+ unsigned DemandedResources;
+
+ SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
+
+ bool operator==(const SchedResourceDelta &RHS) const {
+ return CritResources == RHS.CritResources
+ && DemandedResources == RHS.DemandedResources;
+ }
+ bool operator!=(const SchedResourceDelta &RHS) const {
+ return !operator==(RHS);
+ }
+ };
+
+ /// Store the state used by GenericScheduler heuristics, required for the
+ /// lifetime of one invocation of pickNode().
+ struct SchedCandidate {
+ CandPolicy Policy;
+
+ // The best SUnit candidate.
+ SUnit *SU;
+
+ // The reason for this candidate.
+ CandReason Reason;
+
+ // Set of reasons that apply to multiple candidates.
+ uint32_t RepeatReasonSet;
+
+ // Register pressure values for the best candidate.
+ RegPressureDelta RPDelta;
+
+ // Critical resource consumption of the best candidate.
+ SchedResourceDelta ResDelta;
+
+ SchedCandidate(const CandPolicy &policy)
+ : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {}
+
+ bool isValid() const { return SU; }
+
+ // Copy the status of another candidate without changing policy.
+ void setBest(SchedCandidate &Best) {
+ assert(Best.Reason != NoCand && "uninitialized Sched candidate");
+ SU = Best.SU;
+ Reason = Best.Reason;
+ RPDelta = Best.RPDelta;
+ ResDelta = Best.ResDelta;
+ }
+
+ bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
+ void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
+
+ void initResourceDelta(const ScheduleDAGMI *DAG,
+ const TargetSchedModel *SchedModel);
+ };
+
+ /// Summarize the unscheduled region.
+ struct SchedRemainder {
+ // Critical path through the DAG in expected latency.
+ unsigned CriticalPath;
+ unsigned CyclicCritPath;
+
+ // Scaled count of micro-ops left to schedule.
+ unsigned RemIssueCount;
+
+ bool IsAcyclicLatencyLimited;
+
+ // Unscheduled resources
+ SmallVector<unsigned, 16> RemainingCounts;
+
+ void reset() {
+ CriticalPath = 0;
+ CyclicCritPath = 0;
+ RemIssueCount = 0;
+ IsAcyclicLatencyLimited = false;
+ RemainingCounts.clear();
+ }
+
+ SchedRemainder() { reset(); }
+
+ void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
+ };
+
+ /// Each Scheduling boundary is associated with ready queues. It tracks the
+ /// current cycle in the direction of movement, and maintains the state
+ /// of "hazards" and other interlocks at the current cycle.
+ struct SchedBoundary {
+ ScheduleDAGMI *DAG;
+ const TargetSchedModel *SchedModel;
+ SchedRemainder *Rem;
+
+ ReadyQueue Available;
+ ReadyQueue Pending;
+ bool CheckPending;
+
+ // For heuristics, keep a list of the nodes that immediately depend on the
+ // most recently scheduled node.
+ SmallPtrSet<const SUnit*, 8> NextSUs;
+
+ ScheduleHazardRecognizer *HazardRec;
+
+ /// Number of cycles it takes to issue the instructions scheduled in this
+ /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
+ /// See getStalls().
+ unsigned CurrCycle;
+
+ /// Micro-ops issued in the current cycle
+ unsigned CurrMOps;
+
+ /// MinReadyCycle - Cycle of the soonest available instruction.
+ unsigned MinReadyCycle;
+
+ // The expected latency of the critical path in this scheduled zone.
+ unsigned ExpectedLatency;
+
+ // The latency of dependence chains leading into this zone.
+ // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
+ // For each cycle scheduled: DLat -= 1.
+ unsigned DependentLatency;
+
+ /// Count the scheduled (issued) micro-ops that can be retired by
+ /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
+ unsigned RetiredMOps;
+
+ // Count scheduled resources that have been executed. Resources are
+ // considered executed if they become ready in the time that it takes to
+ // saturate any resource including the one in question. Counts are scaled
+ // for direct comparison with other resources. Counts can be compared with
+ // MOps * getMicroOpFactor and Latency * getLatencyFactor.
+ SmallVector<unsigned, 16> ExecutedResCounts;
+
+ /// Cache the max count for a single resource.
+ unsigned MaxExecutedResCount;
+
+ // Cache the critical resources ID in this scheduled zone.
+ unsigned ZoneCritResIdx;
+
+ // Is the scheduled region resource limited vs. latency limited.
+ bool IsResourceLimited;
+
+#ifndef NDEBUG
+ // Remember the greatest operand latency as an upper bound on the number of
+ // times we should retry the pending queue because of a hazard.
+ unsigned MaxObservedLatency;
+#endif
+
+ void reset() {
+ // A new HazardRec is created for each DAG and owned by SchedBoundary.
+ // Destroying and reconstructing it is very expensive though. So keep
+ // invalid, placeholder HazardRecs.
+ if (HazardRec && HazardRec->isEnabled()) {
+ delete HazardRec;
+ HazardRec = 0;
+ }
+ Available.clear();
+ Pending.clear();
+ CheckPending = false;
+ NextSUs.clear();
+ CurrCycle = 0;
+ CurrMOps = 0;
+ MinReadyCycle = UINT_MAX;
+ ExpectedLatency = 0;
+ DependentLatency = 0;
+ RetiredMOps = 0;
+ MaxExecutedResCount = 0;
+ ZoneCritResIdx = 0;
+ IsResourceLimited = false;
+#ifndef NDEBUG
+ MaxObservedLatency = 0;
+#endif
+ // Reserve a zero-count for invalid CritResIdx.
+ ExecutedResCounts.resize(1);
+ assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
+ }
+
+ /// Pending queues extend the ready queues with the same ID and the
+ /// PendingFlag set.
+ SchedBoundary(unsigned ID, const Twine &Name):
+ DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
+ Pending(ID << GenericScheduler::LogMaxQID, Name+".P"),
+ HazardRec(0) {
+ reset();
+ }
+
+ ~SchedBoundary() { delete HazardRec; }
+
+ void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
+ SchedRemainder *rem);
+
+ bool isTop() const {
+ return Available.getID() == GenericScheduler::TopQID;
+ }
+
+#ifndef NDEBUG
+ const char *getResourceName(unsigned PIdx) {
+ if (!PIdx)
+ return "MOps";
+ return SchedModel->getProcResource(PIdx)->Name;
+ }
+#endif
+
+ /// Get the number of latency cycles "covered" by the scheduled
+ /// instructions. This is the larger of the critical path within the zone
+ /// and the number of cycles required to issue the instructions.
+ unsigned getScheduledLatency() const {
+ return std::max(ExpectedLatency, CurrCycle);
+ }
+
+ unsigned getUnscheduledLatency(SUnit *SU) const {
+ return isTop() ? SU->getHeight() : SU->getDepth();
+ }
+
+ unsigned getResourceCount(unsigned ResIdx) const {
+ return ExecutedResCounts[ResIdx];
+ }
+
+ /// Get the scaled count of scheduled micro-ops and resources, including
+ /// executed resources.
+ unsigned getCriticalCount() const {
+ if (!ZoneCritResIdx)
+ return RetiredMOps * SchedModel->getMicroOpFactor();
+ return getResourceCount(ZoneCritResIdx);
+ }
+
+ /// Get a scaled count for the minimum execution time of the scheduled
+ /// micro-ops that are ready to execute by getExecutedCount. Notice the
+ /// feedback loop.
+ unsigned getExecutedCount() const {
+ return std::max(CurrCycle * SchedModel->getLatencyFactor(),
+ MaxExecutedResCount);
+ }
+
+ bool checkHazard(SUnit *SU);
+
+ unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
+
+ unsigned getOtherResourceCount(unsigned &OtherCritIdx);
+
+ void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone);
+
+ void releaseNode(SUnit *SU, unsigned ReadyCycle);
+
+ void bumpCycle(unsigned NextCycle);
+
+ void incExecutedResources(unsigned PIdx, unsigned Count);
+
+ unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
+
+ void bumpNode(SUnit *SU);
+
+ void releasePending();
+
+ void removeReady(SUnit *SU);
+
+ SUnit *pickOnlyChoice();
+
+#ifndef NDEBUG
+ void dumpScheduledState();
+#endif
+ };
+
+private:
+ const MachineSchedContext *Context;
+ ScheduleDAGMI *DAG;
+ const TargetSchedModel *SchedModel;
+ const TargetRegisterInfo *TRI;
+
+ // State of the top and bottom scheduled instruction boundaries.
+ SchedRemainder Rem;
+ SchedBoundary Top;
+ SchedBoundary Bot;
+
+ MachineSchedPolicy RegionPolicy;
+public:
+ /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
+ enum {
+ TopQID = 1,
+ BotQID = 2,
+ LogMaxQID = 2
+ };
+
+ GenericScheduler(const MachineSchedContext *C):
+ Context(C), DAG(0), SchedModel(0), TRI(0),
+ Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
+
+ virtual void initPolicy(MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End,
+ unsigned NumRegionInstrs);
+
+ bool shouldTrackPressure() const { return RegionPolicy.ShouldTrackPressure; }
+
+ virtual void initialize(ScheduleDAGMI *dag);
+
+ virtual SUnit *pickNode(bool &IsTopNode);
+
+ virtual void schedNode(SUnit *SU, bool IsTopNode);
+
+ virtual void releaseTopNode(SUnit *SU);
+
+ virtual void releaseBottomNode(SUnit *SU);
+
+ virtual void registerRoots();
+
+protected:
+ void checkAcyclicLatency();
+
+ void tryCandidate(SchedCandidate &Cand,
+ SchedCandidate &TryCand,
+ SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ RegPressureTracker &TempTracker);
+
+ SUnit *pickNodeBidirectional(bool &IsTopNode);
+
+ void pickNodeFromQueue(SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ SchedCandidate &Candidate);
+
+ void reschedulePhysRegCopies(SUnit *SU, bool isTop);
+
+#ifndef NDEBUG
+ void traceCandidate(const SchedCandidate &Cand);
+#endif
+};
+} // namespace
+
+void GenericScheduler::SchedRemainder::
+init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
+ reset();
+ if (!SchedModel->hasInstrSchedModel())
+ return;
+ RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
+ for (std::vector<SUnit>::iterator
+ I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
+ const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
+ RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
+ * SchedModel->getMicroOpFactor();
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ unsigned PIdx = PI->ProcResourceIdx;
+ unsigned Factor = SchedModel->getResourceFactor(PIdx);
+ RemainingCounts[PIdx] += (Factor * PI->Cycles);
+ }
+ }
+}
+
+void GenericScheduler::SchedBoundary::
+init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
+ reset();
+ DAG = dag;
+ SchedModel = smodel;
+ Rem = rem;
+ if (SchedModel->hasInstrSchedModel())
+ ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
+}
+
+/// Initialize the per-region scheduling policy.
+void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End,
+ unsigned NumRegionInstrs) {
+ const TargetMachine &TM = Context->MF->getTarget();
+
+ // Avoid setting up the register pressure tracker for small regions to save
+ // compile time. As a rough heuristic, only track pressure when the number of
+ // schedulable instructions exceeds half the integer register file.
+ unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
+ TM.getTargetLowering()->getRegClassFor(MVT::i32));
+
+ RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
+
+ // For generic targets, we default to bottom-up, because it's simpler and more
+ // compile-time optimizations have been implemented in that direction.
+ RegionPolicy.OnlyBottomUp = true;
+
+ // Allow the subtarget to override default policy.
+ const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
+ ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
+
+ // After subtarget overrides, apply command line options.
+ if (!EnableRegPressure)
+ RegionPolicy.ShouldTrackPressure = false;
+
+ // Check -misched-topdown/bottomup can force or unforce scheduling direction.
+ // e.g. -misched-bottomup=false allows scheduling in both directions.
+ assert((!ForceTopDown || !ForceBottomUp) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+ if (ForceBottomUp.getNumOccurrences() > 0) {
+ RegionPolicy.OnlyBottomUp = ForceBottomUp;
+ if (RegionPolicy.OnlyBottomUp)
+ RegionPolicy.OnlyTopDown = false;
+ }
+ if (ForceTopDown.getNumOccurrences() > 0) {
+ RegionPolicy.OnlyTopDown = ForceTopDown;
+ if (RegionPolicy.OnlyTopDown)
+ RegionPolicy.OnlyBottomUp = false;
+ }
+}
+
+void GenericScheduler::initialize(ScheduleDAGMI *dag) {
+ DAG = dag;
+ SchedModel = DAG->getSchedModel();
+ TRI = DAG->TRI;
+
+ Rem.init(DAG, SchedModel);
+ Top.init(DAG, SchedModel, &Rem);
+ Bot.init(DAG, SchedModel, &Rem);
+
+ // Initialize resource counts.
+
+ // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
+ // are disabled, then these HazardRecs will be disabled.
+ const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
+ const TargetMachine &TM = DAG->MF.getTarget();
+ if (!Top.HazardRec) {
+ Top.HazardRec =
+ TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ }
+ if (!Bot.HazardRec) {
+ Bot.HazardRec =
+ TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ }
+}
+
+void GenericScheduler::releaseTopNode(SUnit *SU) {
+ if (SU->isScheduled)
+ return;
+
+ for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ if (I->isWeak())
+ continue;
+ unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
+ unsigned Latency = I->getLatency();
+#ifndef NDEBUG
+ Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency);
+#endif
+ if (SU->TopReadyCycle < PredReadyCycle + Latency)
+ SU->TopReadyCycle = PredReadyCycle + Latency;
+ }
+ Top.releaseNode(SU, SU->TopReadyCycle);
+}
+
+void GenericScheduler::releaseBottomNode(SUnit *SU) {
+ if (SU->isScheduled)
+ return;
+
+ assert(SU->getInstr() && "Scheduled SUnit must have instr");
+
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ if (I->isWeak())
+ continue;
+ unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
+ unsigned Latency = I->getLatency();
+#ifndef NDEBUG
+ Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency);
+#endif
+ if (SU->BotReadyCycle < SuccReadyCycle + Latency)
+ SU->BotReadyCycle = SuccReadyCycle + Latency;
+ }
+ Bot.releaseNode(SU, SU->BotReadyCycle);
+}
+
+/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
+/// critical path by more cycles than it takes to drain the instruction buffer.
+/// We estimate an upper bounds on in-flight instructions as:
+///
+/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
+/// InFlightIterations = AcyclicPath / CyclesPerIteration
+/// InFlightResources = InFlightIterations * LoopResources
+///
+/// TODO: Check execution resources in addition to IssueCount.
+void GenericScheduler::checkAcyclicLatency() {
+ if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
+ return;
+
+ // Scaled number of cycles per loop iteration.
+ unsigned IterCount =
+ std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
+ Rem.RemIssueCount);
+ // Scaled acyclic critical path.
+ unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
+ // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
+ unsigned InFlightCount =
+ (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
+ unsigned BufferLimit =
+ SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
+
+ Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
+
+ DEBUG(dbgs() << "IssueCycles="
+ << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
+ << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
+ << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
+ << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
+ << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
+ if (Rem.IsAcyclicLatencyLimited)
+ dbgs() << " ACYCLIC LATENCY LIMIT\n");
+}
+
+void GenericScheduler::registerRoots() {
+ Rem.CriticalPath = DAG->ExitSU.getDepth();
+
+ // Some roots may not feed into ExitSU. Check all of them in case.
+ for (std::vector<SUnit*>::const_iterator
+ I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
+ if ((*I)->getDepth() > Rem.CriticalPath)
+ Rem.CriticalPath = (*I)->getDepth();
+ }
+ DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
+
+ if (EnableCyclicPath) {
+ Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
+ checkAcyclicLatency();
+ }
+}
+
+/// Does this SU have a hazard within the current instruction group.
+///
+/// The scheduler supports two modes of hazard recognition. The first is the
+/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
+/// supports highly complicated in-order reservation tables
+/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
+///
+/// The second is a streamlined mechanism that checks for hazards based on
+/// simple counters that the scheduler itself maintains. It explicitly checks
+/// for instruction dispatch limitations, including the number of micro-ops that
+/// can dispatch per cycle.
+///
+/// TODO: Also check whether the SU must start a new group.
+bool GenericScheduler::SchedBoundary::checkHazard(SUnit *SU) {
+ if (HazardRec->isEnabled())
+ return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
+
+ unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
+ if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
+ DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
+ << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
+ return true;
+ }
+ return false;
+}
+
+// Find the unscheduled node in ReadySUs with the highest latency.
+unsigned GenericScheduler::SchedBoundary::
+findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
+ SUnit *LateSU = 0;
+ unsigned RemLatency = 0;
+ for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
+ I != E; ++I) {
+ unsigned L = getUnscheduledLatency(*I);
+ if (L > RemLatency) {
+ RemLatency = L;
+ LateSU = *I;
+ }
+ }
+ if (LateSU) {
+ DEBUG(dbgs() << Available.getName() << " RemLatency SU("
+ << LateSU->NodeNum << ") " << RemLatency << "c\n");
+ }
+ return RemLatency;
+}
+
+// Count resources in this zone and the remaining unscheduled
+// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
+// resource index, or zero if the zone is issue limited.
+unsigned GenericScheduler::SchedBoundary::
+getOtherResourceCount(unsigned &OtherCritIdx) {
+ OtherCritIdx = 0;
+ if (!SchedModel->hasInstrSchedModel())
+ return 0;
+
+ unsigned OtherCritCount = Rem->RemIssueCount
+ + (RetiredMOps * SchedModel->getMicroOpFactor());
+ DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
+ << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
+ for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
+ PIdx != PEnd; ++PIdx) {
+ unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
+ if (OtherCount > OtherCritCount) {
+ OtherCritCount = OtherCount;
+ OtherCritIdx = PIdx;
+ }
+ }
+ if (OtherCritIdx) {
+ DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
+ << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
+ << " " << getResourceName(OtherCritIdx) << "\n");
+ }
+ return OtherCritCount;
+}
+
+/// Set the CandPolicy for this zone given the current resources and latencies
+/// inside and outside the zone.
+void GenericScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
+ SchedBoundary &OtherZone) {
+ // Now that potential stalls have been considered, apply preemptive heuristics
+ // based on the the total latency and resources inside and outside this
+ // zone.
+
+ // Compute remaining latency. We need this both to determine whether the
+ // overall schedule has become latency-limited and whether the instructions
+ // outside this zone are resource or latency limited.
+ //
+ // The "dependent" latency is updated incrementally during scheduling as the
+ // max height/depth of scheduled nodes minus the cycles since it was
+ // scheduled:
+ // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
+ //
+ // The "independent" latency is the max ready queue depth:
+ // ILat = max N.depth for N in Available|Pending
+ //
+ // RemainingLatency is the greater of independent and dependent latency.
+ unsigned RemLatency = DependentLatency;
+ RemLatency = std::max(RemLatency, findMaxLatency(Available.elements()));
+ RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements()));
+
+ // Compute the critical resource outside the zone.
+ unsigned OtherCritIdx;
+ unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx);
+
+ bool OtherResLimited = false;
+ if (SchedModel->hasInstrSchedModel()) {
+ unsigned LFactor = SchedModel->getLatencyFactor();
+ OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
+ }
+ if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) {
+ Policy.ReduceLatency |= true;
+ DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency "
+ << RemLatency << " + " << CurrCycle << "c > CritPath "
+ << Rem->CriticalPath << "\n");
+ }
+ // If the same resource is limiting inside and outside the zone, do nothing.
+ if (ZoneCritResIdx == OtherCritIdx)
+ return;
+
+ DEBUG(
+ if (IsResourceLimited) {
+ dbgs() << " " << Available.getName() << " ResourceLimited: "
+ << getResourceName(ZoneCritResIdx) << "\n";
+ }
+ if (OtherResLimited)
+ dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n";
+ if (!IsResourceLimited && !OtherResLimited)
+ dbgs() << " Latency limited both directions.\n");
+
+ if (IsResourceLimited && !Policy.ReduceResIdx)
+ Policy.ReduceResIdx = ZoneCritResIdx;
+
+ if (OtherResLimited)
+ Policy.DemandResIdx = OtherCritIdx;
+}
+
+void GenericScheduler::SchedBoundary::releaseNode(SUnit *SU,
+ unsigned ReadyCycle) {
+ if (ReadyCycle < MinReadyCycle)
+ MinReadyCycle = ReadyCycle;
+
+ // Check for interlocks first. For the purpose of other heuristics, an
+ // instruction that cannot issue appears as if it's not in the ReadyQueue.
+ bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
+ if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
+ Pending.push(SU);
+ else
+ Available.push(SU);
+
+ // Record this node as an immediate dependent of the scheduled node.
+ NextSUs.insert(SU);
+}
+
+/// Move the boundary of scheduled code by one cycle.
+void GenericScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
+ if (SchedModel->getMicroOpBufferSize() == 0) {
+ assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
+ if (MinReadyCycle > NextCycle)
+ NextCycle = MinReadyCycle;
+ }
+ // Update the current micro-ops, which will issue in the next cycle.
+ unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
+ CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
+
+ // Decrement DependentLatency based on the next cycle.
+ if ((NextCycle - CurrCycle) > DependentLatency)
+ DependentLatency = 0;
+ else
+ DependentLatency -= (NextCycle - CurrCycle);
+
+ if (!HazardRec->isEnabled()) {
+ // Bypass HazardRec virtual calls.
+ CurrCycle = NextCycle;
+ }
+ else {
+ // Bypass getHazardType calls in case of long latency.
+ for (; CurrCycle != NextCycle; ++CurrCycle) {
+ if (isTop())
+ HazardRec->AdvanceCycle();
+ else
+ HazardRec->RecedeCycle();
+ }
+ }
+ CheckPending = true;
+ unsigned LFactor = SchedModel->getLatencyFactor();
+ IsResourceLimited =
+ (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
+ > (int)LFactor;
+
+ DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
+}
+
+void GenericScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
+ unsigned Count) {
+ ExecutedResCounts[PIdx] += Count;
+ if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
+ MaxExecutedResCount = ExecutedResCounts[PIdx];
+}
+
+/// Add the given processor resource to this scheduled zone.
+///
+/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
+/// during which this resource is consumed.
+///
+/// \return the next cycle at which the instruction may execute without
+/// oversubscribing resources.
+unsigned GenericScheduler::SchedBoundary::
+countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
+ unsigned Factor = SchedModel->getResourceFactor(PIdx);
+ unsigned Count = Factor * Cycles;
+ DEBUG(dbgs() << " " << getResourceName(PIdx)
+ << " +" << Cycles << "x" << Factor << "u\n");
+
+ // Update Executed resources counts.
+ incExecutedResources(PIdx, Count);
+ assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
+ Rem->RemainingCounts[PIdx] -= Count;
+
+ // Check if this resource exceeds the current critical resource. If so, it
+ // becomes the critical resource.
+ if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
+ ZoneCritResIdx = PIdx;
+ DEBUG(dbgs() << " *** Critical resource "
+ << getResourceName(PIdx) << ": "
+ << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
+ }
+ // TODO: We don't yet model reserved resources. It's not hard though.
+ return CurrCycle;
+}
+
+/// Move the boundary of scheduled code by one SUnit.
+void GenericScheduler::SchedBoundary::bumpNode(SUnit *SU) {
+ // Update the reservation table.
+ if (HazardRec->isEnabled()) {
+ if (!isTop() && SU->isCall) {
+ // Calls are scheduled with their preceding instructions. For bottom-up
+ // scheduling, clear the pipeline state before emitting.
+ HazardRec->Reset();
+ }
+ HazardRec->EmitInstruction(SU);
+ }
+ const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+ unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
+ CurrMOps += IncMOps;
+ // checkHazard prevents scheduling multiple instructions per cycle that exceed
+ // issue width. However, we commonly reach the maximum. In this case
+ // opportunistically bump the cycle to avoid uselessly checking everything in
+ // the readyQ. Furthermore, a single instruction may produce more than one
+ // cycle's worth of micro-ops.
+ //
+ // TODO: Also check if this SU must end a dispatch group.
+ unsigned NextCycle = CurrCycle;
+ if (CurrMOps >= SchedModel->getIssueWidth()) {
+ ++NextCycle;
+ DEBUG(dbgs() << " *** Max MOps " << CurrMOps
+ << " at cycle " << CurrCycle << '\n');
+ }
+ unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
+ DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
+
+ switch (SchedModel->getMicroOpBufferSize()) {
+ case 0:
+ assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
+ break;
+ case 1:
+ if (ReadyCycle > NextCycle) {
+ NextCycle = ReadyCycle;
+ DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
+ }
+ break;
+ default:
+ // We don't currently model the OOO reorder buffer, so consider all
+ // scheduled MOps to be "retired".
+ break;
+ }
+ RetiredMOps += IncMOps;
+
+ // Update resource counts and critical resource.
+ if (SchedModel->hasInstrSchedModel()) {
+ unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
+ assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
+ Rem->RemIssueCount -= DecRemIssue;
+ if (ZoneCritResIdx) {
+ // Scale scheduled micro-ops for comparing with the critical resource.
+ unsigned ScaledMOps =
+ RetiredMOps * SchedModel->getMicroOpFactor();
+
+ // If scaled micro-ops are now more than the previous critical resource by
+ // a full cycle, then micro-ops issue becomes critical.
+ if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
+ >= (int)SchedModel->getLatencyFactor()) {
+ ZoneCritResIdx = 0;
+ DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
+ << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
+ }
+ }
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ unsigned RCycle =
+ countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle);
+ if (RCycle > NextCycle)
+ NextCycle = RCycle;
+ }
+ }
+ // Update ExpectedLatency and DependentLatency.
+ unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
+ unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
+ if (SU->getDepth() > TopLatency) {
+ TopLatency = SU->getDepth();
+ DEBUG(dbgs() << " " << Available.getName()
+ << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
+ }
+ if (SU->getHeight() > BotLatency) {
+ BotLatency = SU->getHeight();
+ DEBUG(dbgs() << " " << Available.getName()
+ << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
+ }
+ // If we stall for any reason, bump the cycle.
+ if (NextCycle > CurrCycle) {
+ bumpCycle(NextCycle);
+ }
+ else {
+ // After updating ZoneCritResIdx and ExpectedLatency, check if we're
+ // resource limited. If a stall occured, bumpCycle does this.
+ unsigned LFactor = SchedModel->getLatencyFactor();
+ IsResourceLimited =
+ (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
+ > (int)LFactor;
+ }
+ DEBUG(dumpScheduledState());
+}
+
+/// Release pending ready nodes in to the available queue. This makes them
+/// visible to heuristics.
+void GenericScheduler::SchedBoundary::releasePending() {
+ // If the available queue is empty, it is safe to reset MinReadyCycle.
+ if (Available.empty())
+ MinReadyCycle = UINT_MAX;
+
+ // Check to see if any of the pending instructions are ready to issue. If
+ // so, add them to the available queue.
+ bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
+ for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
+ SUnit *SU = *(Pending.begin()+i);
+ unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
+
+ if (ReadyCycle < MinReadyCycle)
+ MinReadyCycle = ReadyCycle;
+
+ if (!IsBuffered && ReadyCycle > CurrCycle)
+ continue;
+
+ if (checkHazard(SU))
+ continue;
+
+ Available.push(SU);
+ Pending.remove(Pending.begin()+i);
+ --i; --e;
+ }
+ DEBUG(if (!Pending.empty()) Pending.dump());
+ CheckPending = false;
+}
+
+/// Remove SU from the ready set for this boundary.
+void GenericScheduler::SchedBoundary::removeReady(SUnit *SU) {
+ if (Available.isInQueue(SU))
+ Available.remove(Available.find(SU));
+ else {
+ assert(Pending.isInQueue(SU) && "bad ready count");
+ Pending.remove(Pending.find(SU));
+ }
+}
+
+/// If this queue only has one ready candidate, return it. As a side effect,
+/// defer any nodes that now hit a hazard, and advance the cycle until at least
+/// one node is ready. If multiple instructions are ready, return NULL.
+SUnit *GenericScheduler::SchedBoundary::pickOnlyChoice() {
+ if (CheckPending)
+ releasePending();
+
+ if (CurrMOps > 0) {
+ // Defer any ready instrs that now have a hazard.
+ for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
+ if (checkHazard(*I)) {
+ Pending.push(*I);
+ I = Available.remove(I);
+ continue;
+ }
+ ++I;
+ }
+ }
+ for (unsigned i = 0; Available.empty(); ++i) {
+ assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
+ "permanent hazard"); (void)i;
+ bumpCycle(CurrCycle + 1);
+ releasePending();
+ }
+ if (Available.size() == 1)
+ return *Available.begin();
+ return NULL;
+}
+
+#ifndef NDEBUG
+// This is useful information to dump after bumpNode.
+// Note that the Queue contents are more useful before pickNodeFromQueue.
+void GenericScheduler::SchedBoundary::dumpScheduledState() {
+ unsigned ResFactor;
+ unsigned ResCount;
+ if (ZoneCritResIdx) {
+ ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
+ ResCount = getResourceCount(ZoneCritResIdx);
+ }
+ else {
+ ResFactor = SchedModel->getMicroOpFactor();
+ ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
+ }
+ unsigned LFactor = SchedModel->getLatencyFactor();
+ dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
+ << " Retired: " << RetiredMOps;
+ dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
+ dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
+ << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx)
+ << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
+ << (IsResourceLimited ? " - Resource" : " - Latency")
+ << " limited.\n";
+}
+#endif
+
+void GenericScheduler::SchedCandidate::
+initResourceDelta(const ScheduleDAGMI *DAG,
+ const TargetSchedModel *SchedModel) {
+ if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
+ return;
+
+ const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ if (PI->ProcResourceIdx == Policy.ReduceResIdx)
+ ResDelta.CritResources += PI->Cycles;
+ if (PI->ProcResourceIdx == Policy.DemandResIdx)
+ ResDelta.DemandedResources += PI->Cycles;
+ }
+}
+
+
+/// Return true if this heuristic determines order.
+static bool tryLess(int TryVal, int CandVal,
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
+ if (TryVal < CandVal) {
+ TryCand.Reason = Reason;
+ return true;
+ }
+ if (TryVal > CandVal) {
+ if (Cand.Reason > Reason)
+ Cand.Reason = Reason;
+ return true;
+ }
+ Cand.setRepeat(Reason);
+ return false;
+}
+
+static bool tryGreater(int TryVal, int CandVal,
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
+ if (TryVal > CandVal) {
+ TryCand.Reason = Reason;
+ return true;
+ }
+ if (TryVal < CandVal) {
+ if (Cand.Reason > Reason)
+ Cand.Reason = Reason;
+ return true;
+ }
+ Cand.setRepeat(Reason);
+ return false;
+}
+
+static bool tryPressure(const PressureChange &TryP,
+ const PressureChange &CandP,
+ GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::CandReason Reason) {
+ int TryRank = TryP.getPSetOrMax();
+ int CandRank = CandP.getPSetOrMax();
+ // If both candidates affect the same set, go with the smallest increase.
+ if (TryRank == CandRank) {
+ return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
+ Reason);
+ }
+ // If one candidate decreases and the other increases, go with it.
+ // Invalid candidates have UnitInc==0.
+ if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
+ Reason)) {
+ return true;
+ }
+ // If the candidates are decreasing pressure, reverse priority.
+ if (TryP.getUnitInc() < 0)
+ std::swap(TryRank, CandRank);
+ return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
+}
+
+static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
+ return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
+}
+
+/// Minimize physical register live ranges. Regalloc wants them adjacent to
+/// their physreg def/use.
+///
+/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
+/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
+/// with the operation that produces or consumes the physreg. We'll do this when
+/// regalloc has support for parallel copies.
+static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
+ const MachineInstr *MI = SU->getInstr();
+ if (!MI->isCopy())
+ return 0;
+
+ unsigned ScheduledOper = isTop ? 1 : 0;
+ unsigned UnscheduledOper = isTop ? 0 : 1;
+ // If we have already scheduled the physreg produce/consumer, immediately
+ // schedule the copy.
+ if (TargetRegisterInfo::isPhysicalRegister(
+ MI->getOperand(ScheduledOper).getReg()))
+ return 1;
+ // If the physreg is at the boundary, defer it. Otherwise schedule it
+ // immediately to free the dependent. We can hoist the copy later.
+ bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
+ if (TargetRegisterInfo::isPhysicalRegister(
+ MI->getOperand(UnscheduledOper).getReg()))
+ return AtBoundary ? -1 : 1;
+ return 0;
+}
+
+static bool tryLatency(GenericScheduler::SchedCandidate &TryCand,
+ GenericScheduler::SchedCandidate &Cand,
+ GenericScheduler::SchedBoundary &Zone) {
+ if (Zone.isTop()) {
+ if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, GenericScheduler::TopDepthReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, GenericScheduler::TopPathReduce))
+ return true;
+ }
+ else {
+ if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
+ if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, GenericScheduler::BotHeightReduce))
+ return true;
+ }
+ if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, GenericScheduler::BotPathReduce))
+ return true;
+ }
+ return false;
+}
+
+/// Apply a set of heursitics to a new candidate. Heuristics are currently
+/// hierarchical. This may be more efficient than a graduated cost model because
+/// we don't need to evaluate all aspects of the model for each node in the
+/// queue. But it's really done to make the heuristics easier to debug and
+/// statistically analyze.
+///
+/// \param Cand provides the policy and current best candidate.
+/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
+/// \param Zone describes the scheduled zone that we are extending.
+/// \param RPTracker describes reg pressure within the scheduled zone.
+/// \param TempTracker is a scratch pressure tracker to reuse in queries.
+void GenericScheduler::tryCandidate(SchedCandidate &Cand,
+ SchedCandidate &TryCand,
+ SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ RegPressureTracker &TempTracker) {
+
+ if (DAG->isTrackingPressure()) {
+ // Always initialize TryCand's RPDelta.
+ if (Zone.isTop()) {
+ TempTracker.getMaxDownwardPressureDelta(
+ TryCand.SU->getInstr(),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ else {
+ if (VerifyScheduling) {
+ TempTracker.getMaxUpwardPressureDelta(
+ TryCand.SU->getInstr(),
+ &DAG->getPressureDiff(TryCand.SU),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ else {
+ RPTracker.getUpwardPressureDelta(
+ TryCand.SU->getInstr(),
+ DAG->getPressureDiff(TryCand.SU),
+ TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+ }
+ }
+ }
+ DEBUG(if (TryCand.RPDelta.Excess.isValid())
+ dbgs() << " SU(" << TryCand.SU->NodeNum << ") "
+ << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
+ << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
+
+ // Initialize the candidate if needed.
+ if (!Cand.isValid()) {
+ TryCand.Reason = NodeOrder;
+ return;
+ }
+
+ if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
+ biasPhysRegCopy(Cand.SU, Zone.isTop()),
+ TryCand, Cand, PhysRegCopy))
+ return;
+
+ // Avoid exceeding the target's limit. If signed PSetID is negative, it is
+ // invalid; convert it to INT_MAX to give it lowest priority.
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
+ Cand.RPDelta.Excess,
+ TryCand, Cand, RegExcess))
+ return;
+
+ // Avoid increasing the max critical pressure in the scheduled region.
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
+ Cand.RPDelta.CriticalMax,
+ TryCand, Cand, RegCritical))
+ return;
+
+ // For loops that are acyclic path limited, aggressively schedule for latency.
+ // This can result in very long dependence chains scheduled in sequence, so
+ // once every cycle (when CurrMOps == 0), switch to normal heuristics.
+ if (Rem.IsAcyclicLatencyLimited && !Zone.CurrMOps
+ && tryLatency(TryCand, Cand, Zone))
+ return;
+
+ // Keep clustered nodes together to encourage downstream peephole
+ // optimizations which may reduce resource requirements.
+ //
+ // This is a best effort to set things up for a post-RA pass. Optimizations
+ // like generating loads of multiple registers should ideally be done within
+ // the scheduler pass by combining the loads during DAG postprocessing.
+ const SUnit *NextClusterSU =
+ Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
+ if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
+ TryCand, Cand, Cluster))
+ return;
+
+ // Weak edges are for clustering and other constraints.
+ if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
+ getWeakLeft(Cand.SU, Zone.isTop()),
+ TryCand, Cand, Weak)) {
+ return;
+ }
+ // Avoid increasing the max pressure of the entire region.
+ if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
+ Cand.RPDelta.CurrentMax,
+ TryCand, Cand, RegMax))
+ return;
+
+ // Avoid critical resource consumption and balance the schedule.
+ TryCand.initResourceDelta(DAG, SchedModel);
+ if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
+ TryCand, Cand, ResourceReduce))
+ return;
+ if (tryGreater(TryCand.ResDelta.DemandedResources,
+ Cand.ResDelta.DemandedResources,
+ TryCand, Cand, ResourceDemand))
+ return;
+
+ // Avoid serializing long latency dependence chains.
+ // For acyclic path limited loops, latency was already checked above.
+ if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
+ && tryLatency(TryCand, Cand, Zone)) {
+ return;
+ }
+
+ // Prefer immediate defs/users of the last scheduled instruction. This is a
+ // local pressure avoidance strategy that also makes the machine code
+ // readable.
+ if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
+ TryCand, Cand, NextDefUse))
+ return;
+
+ // Fall through to original instruction order.
+ if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
+ || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
+ TryCand.Reason = NodeOrder;
+ }
+}
+
+#ifndef NDEBUG
+const char *GenericScheduler::getReasonStr(
+ GenericScheduler::CandReason Reason) {
+ switch (Reason) {
+ case NoCand: return "NOCAND ";
+ case PhysRegCopy: return "PREG-COPY";
+ case RegExcess: return "REG-EXCESS";
+ case RegCritical: return "REG-CRIT ";
+ case Cluster: return "CLUSTER ";
+ case Weak: return "WEAK ";
+ case RegMax: return "REG-MAX ";
+ case ResourceReduce: return "RES-REDUCE";
+ case ResourceDemand: return "RES-DEMAND";
+ case TopDepthReduce: return "TOP-DEPTH ";
+ case TopPathReduce: return "TOP-PATH ";
+ case BotHeightReduce:return "BOT-HEIGHT";
+ case BotPathReduce: return "BOT-PATH ";
+ case NextDefUse: return "DEF-USE ";
+ case NodeOrder: return "ORDER ";
+ };
+ llvm_unreachable("Unknown reason!");
+}
+
+void GenericScheduler::traceCandidate(const SchedCandidate &Cand) {
+ PressureChange P;
+ unsigned ResIdx = 0;
+ unsigned Latency = 0;
+ switch (Cand.Reason) {
+ default:
+ break;
+ case RegExcess:
+ P = Cand.RPDelta.Excess;
+ break;
+ case RegCritical:
+ P = Cand.RPDelta.CriticalMax;
+ break;
+ case RegMax:
+ P = Cand.RPDelta.CurrentMax;
+ break;
+ case ResourceReduce:
+ ResIdx = Cand.Policy.ReduceResIdx;
+ break;
+ case ResourceDemand:
+ ResIdx = Cand.Policy.DemandResIdx;
+ break;
+ case TopDepthReduce:
+ Latency = Cand.SU->getDepth();
+ break;
+ case TopPathReduce:
+ Latency = Cand.SU->getHeight();
+ break;
+ case BotHeightReduce:
+ Latency = Cand.SU->getHeight();
+ break;
+ case BotPathReduce:
+ Latency = Cand.SU->getDepth();
+ break;
+ }
+ dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
+ if (P.isValid())
+ dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
+ << ":" << P.getUnitInc() << " ";
+ else
+ dbgs() << " ";
+ if (ResIdx)
+ dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
+ else
+ dbgs() << " ";
+ if (Latency)
+ dbgs() << " " << Latency << " cycles ";
+ else
+ dbgs() << " ";
+ dbgs() << '\n';
+}
+#endif
+
+/// Pick the best candidate from the queue.
+///
+/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
+/// DAG building. To adjust for the current scheduling location we need to
+/// maintain the number of vreg uses remaining to be top-scheduled.
+void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ SchedCandidate &Cand) {
+ ReadyQueue &Q = Zone.Available;
+
+ DEBUG(Q.dump());
+
+ // getMaxPressureDelta temporarily modifies the tracker.
+ RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
+
+ for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
+
+ SchedCandidate TryCand(Cand.Policy);
+ TryCand.SU = *I;
+ tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
+ if (TryCand.Reason != NoCand) {
+ // Initialize resource delta if needed in case future heuristics query it.
+ if (TryCand.ResDelta == SchedResourceDelta())
+ TryCand.initResourceDelta(DAG, SchedModel);
+ Cand.setBest(TryCand);
+ DEBUG(traceCandidate(Cand));
+ }
+ }
+}
+
+static void tracePick(const GenericScheduler::SchedCandidate &Cand,
+ bool IsTop) {
+ DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
+ << GenericScheduler::getReasonStr(Cand.Reason) << '\n');
+}
+
+/// Pick the best candidate node from either the top or bottom queue.
+SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
+ // Schedule as far as possible in the direction of no choice. This is most
+ // efficient, but also provides the best heuristics for CriticalPSets.
+ if (SUnit *SU = Bot.pickOnlyChoice()) {
+ IsTopNode = false;
+ DEBUG(dbgs() << "Pick Bot NOCAND\n");
+ return SU;
+ }
+ if (SUnit *SU = Top.pickOnlyChoice()) {
+ IsTopNode = true;
+ DEBUG(dbgs() << "Pick Top NOCAND\n");
+ return SU;
+ }
+ CandPolicy NoPolicy;
+ SchedCandidate BotCand(NoPolicy);
+ SchedCandidate TopCand(NoPolicy);
+ Bot.setPolicy(BotCand.Policy, Top);
+ Top.setPolicy(TopCand.Policy, Bot);
+
+ // Prefer bottom scheduling when heuristics are silent.
+ pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
+ assert(BotCand.Reason != NoCand && "failed to find the first candidate");
+
+ // If either Q has a single candidate that provides the least increase in
+ // Excess pressure, we can immediately schedule from that Q.
+ //
+ // RegionCriticalPSets summarizes the pressure within the scheduled region and
+ // affects picking from either Q. If scheduling in one direction must
+ // increase pressure for one of the excess PSets, then schedule in that
+ // direction first to provide more freedom in the other direction.
+ if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
+ || (BotCand.Reason == RegCritical
+ && !BotCand.isRepeat(RegCritical)))
+ {
+ IsTopNode = false;
+ tracePick(BotCand, IsTopNode);
+ return BotCand.SU;
+ }
+ // Check if the top Q has a better candidate.
+ pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
+ assert(TopCand.Reason != NoCand && "failed to find the first candidate");
+
+ // Choose the queue with the most important (lowest enum) reason.
+ if (TopCand.Reason < BotCand.Reason) {
+ IsTopNode = true;
+ tracePick(TopCand, IsTopNode);
+ return TopCand.SU;
+ }
+ // Otherwise prefer the bottom candidate, in node order if all else failed.
+ IsTopNode = false;
+ tracePick(BotCand, IsTopNode);
+ return BotCand.SU;
+}
+
+/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
+SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
+ if (DAG->top() == DAG->bottom()) {
+ assert(Top.Available.empty() && Top.Pending.empty() &&
+ Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
+ return NULL;
+ }
+ SUnit *SU;
+ do {
+ if (RegionPolicy.OnlyTopDown) {
+ SU = Top.pickOnlyChoice();
+ if (!SU) {
+ CandPolicy NoPolicy;
+ SchedCandidate TopCand(NoPolicy);
+ pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
+ assert(TopCand.Reason != NoCand && "failed to find a candidate");
+ tracePick(TopCand, true);
+ SU = TopCand.SU;
+ }
+ IsTopNode = true;
+ }
+ else if (RegionPolicy.OnlyBottomUp) {
+ SU = Bot.pickOnlyChoice();
+ if (!SU) {
+ CandPolicy NoPolicy;
+ SchedCandidate BotCand(NoPolicy);
+ pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
+ assert(BotCand.Reason != NoCand && "failed to find a candidate");
+ tracePick(BotCand, false);
+ SU = BotCand.SU;
+ }
+ IsTopNode = false;
+ }
+ else {
+ SU = pickNodeBidirectional(IsTopNode);
+ }
+ } while (SU->isScheduled);
+
+ if (SU->isTopReady())
+ Top.removeReady(SU);
+ if (SU->isBottomReady())
+ Bot.removeReady(SU);
+
+ DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
+ return SU;
+}
+
+void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
+
+ MachineBasicBlock::iterator InsertPos = SU->getInstr();
+ if (!isTop)
+ ++InsertPos;
+ SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
+
+ // Find already scheduled copies with a single physreg dependence and move
+ // them just above the scheduled instruction.
+ for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
+ I != E; ++I) {
+ if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
+ continue;
+ SUnit *DepSU = I->getSUnit();
+ if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
+ continue;
+ MachineInstr *Copy = DepSU->getInstr();
+ if (!Copy->isCopy())
+ continue;
+ DEBUG(dbgs() << " Rescheduling physreg copy ";
+ I->getSUnit()->dump(DAG));
+ DAG->moveInstruction(Copy, InsertPos);
+ }
+}
+
+/// Update the scheduler's state after scheduling a node. This is the same node
+/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
+/// it's state based on the current cycle before MachineSchedStrategy does.
+///
+/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
+/// them here. See comments in biasPhysRegCopy.
+void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
+ if (IsTopNode) {
+ SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
+ Top.bumpNode(SU);
+ if (SU->hasPhysRegUses)
+ reschedulePhysRegCopies(SU, true);
+ }
+ else {
+ SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle);
+ Bot.bumpNode(SU);
+ if (SU->hasPhysRegDefs)
+ reschedulePhysRegCopies(SU, false);
+ }
+}
+
+/// Create the standard converging machine scheduler. This will be used as the
+/// default scheduler if the target does not set a default.
+static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C) {
+ ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new GenericScheduler(C));
+ // Register DAG post-processors.
+ //
+ // FIXME: extend the mutation API to allow earlier mutations to instantiate
+ // data and pass it to later mutations. Have a single mutation that gathers
+ // the interesting nodes in one pass.
+ DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
+ if (EnableLoadCluster && DAG->TII->enableClusterLoads())
+ DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
+ if (EnableMacroFusion)
+ DAG->addMutation(new MacroFusion(DAG->TII));
+ return DAG;
+}
+static MachineSchedRegistry
+GenericSchedRegistry("converge", "Standard converging scheduler.",
+ createGenericSched);
+
+//===----------------------------------------------------------------------===//
+// ILP Scheduler. Currently for experimental analysis of heuristics.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Order nodes by the ILP metric.
+struct ILPOrder {
+ const SchedDFSResult *DFSResult;
+ const BitVector *ScheduledTrees;
+ bool MaximizeILP;
+
+ ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
+
+ /// \brief Apply a less-than relation on node priority.
+ ///
+ /// (Return true if A comes after B in the Q.)
+ bool operator()(const SUnit *A, const SUnit *B) const {
+ unsigned SchedTreeA = DFSResult->getSubtreeID(A);
+ unsigned SchedTreeB = DFSResult->getSubtreeID(B);
+ if (SchedTreeA != SchedTreeB) {
+ // Unscheduled trees have lower priority.
+ if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
+ return ScheduledTrees->test(SchedTreeB);
+
+ // Trees with shallower connections have have lower priority.
+ if (DFSResult->getSubtreeLevel(SchedTreeA)
+ != DFSResult->getSubtreeLevel(SchedTreeB)) {
+ return DFSResult->getSubtreeLevel(SchedTreeA)
+ < DFSResult->getSubtreeLevel(SchedTreeB);
+ }
+ }
+ if (MaximizeILP)
+ return DFSResult->getILP(A) < DFSResult->getILP(B);
+ else
+ return DFSResult->getILP(A) > DFSResult->getILP(B);
+ }
+};
+
+/// \brief Schedule based on the ILP metric.
+class ILPScheduler : public MachineSchedStrategy {
+ ScheduleDAGMI *DAG;
+ ILPOrder Cmp;
+
+ std::vector<SUnit*> ReadyQ;
+public:
+ ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
+
+ virtual void initialize(ScheduleDAGMI *dag) {
+ DAG = dag;
+ DAG->computeDFSResult();
+ Cmp.DFSResult = DAG->getDFSResult();
+ Cmp.ScheduledTrees = &DAG->getScheduledTrees();
+ ReadyQ.clear();
+ }
+
+ virtual void registerRoots() {
+ // Restore the heap in ReadyQ with the updated DFS results.
+ std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+ }
+
+ /// Implement MachineSchedStrategy interface.
+ /// -----------------------------------------
+
+ /// Callback to select the highest priority node from the ready Q.
+ virtual SUnit *pickNode(bool &IsTopNode) {
+ if (ReadyQ.empty()) return NULL;
+ std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+ SUnit *SU = ReadyQ.back();
+ ReadyQ.pop_back();
+ IsTopNode = false;
+ DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
+ << " ILP: " << DAG->getDFSResult()->getILP(SU)
+ << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
+ << DAG->getDFSResult()->getSubtreeLevel(
+ DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
+ << "Scheduling " << *SU->getInstr());
+ return SU;
+ }
+
+ /// \brief Scheduler callback to notify that a new subtree is scheduled.
+ virtual void scheduleTree(unsigned SubtreeID) {
+ std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+ }
+
+ /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
+ /// DFSResults, and resort the priority Q.
+ virtual void schedNode(SUnit *SU, bool IsTopNode) {
+ assert(!IsTopNode && "SchedDFSResult needs bottom-up");
+ }
+
+ virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
+
+ virtual void releaseBottomNode(SUnit *SU) {
+ ReadyQ.push_back(SU);
+ std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+ }
+};
+} // namespace
+
+static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
+ return new ScheduleDAGMI(C, new ILPScheduler(true));
+}
+static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
+ return new ScheduleDAGMI(C, new ILPScheduler(false));
+}
+static MachineSchedRegistry ILPMaxRegistry(
+ "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
+static MachineSchedRegistry ILPMinRegistry(
+ "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
+
+//===----------------------------------------------------------------------===//
+// Machine Instruction Shuffler for Correctness Testing
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+namespace {
+/// Apply a less-than relation on the node order, which corresponds to the
+/// instruction order prior to scheduling. IsReverse implements greater-than.
+template<bool IsReverse>
+struct SUnitOrder {
+ bool operator()(SUnit *A, SUnit *B) const {
+ if (IsReverse)
+ return A->NodeNum > B->NodeNum;
+ else
+ return A->NodeNum < B->NodeNum;
+ }
+};
+
+/// Reorder instructions as much as possible.
+class InstructionShuffler : public MachineSchedStrategy {
+ bool IsAlternating;
+ bool IsTopDown;
+
+ // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
+ // gives nodes with a higher number higher priority causing the latest
+ // instructions to be scheduled first.
+ PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
+ TopQ;
+ // When scheduling bottom-up, use greater-than as the queue priority.
+ PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
+ BottomQ;
+public:
+ InstructionShuffler(bool alternate, bool topdown)
+ : IsAlternating(alternate), IsTopDown(topdown) {}
+
+ virtual void initialize(ScheduleDAGMI *) {
+ TopQ.clear();
+ BottomQ.clear();
+ }
+
+ /// Implement MachineSchedStrategy interface.
+ /// -----------------------------------------
+
+ virtual SUnit *pickNode(bool &IsTopNode) {
+ SUnit *SU;
+ if (IsTopDown) {
+ do {
+ if (TopQ.empty()) return NULL;
+ SU = TopQ.top();
+ TopQ.pop();
+ } while (SU->isScheduled);
+ IsTopNode = true;
+ }
+ else {
+ do {
+ if (BottomQ.empty()) return NULL;
+ SU = BottomQ.top();
+ BottomQ.pop();
+ } while (SU->isScheduled);
+ IsTopNode = false;
+ }
+ if (IsAlternating)
+ IsTopDown = !IsTopDown;
+ return SU;
+ }
+
+ virtual void schedNode(SUnit *SU, bool IsTopNode) {}
+
+ virtual void releaseTopNode(SUnit *SU) {
+ TopQ.push(SU);
+ }
+ virtual void releaseBottomNode(SUnit *SU) {
+ BottomQ.push(SU);
+ }
+};
+} // namespace
+
+static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
+ bool Alternate = !ForceTopDown && !ForceBottomUp;
+ bool TopDown = !ForceBottomUp;
+ assert((TopDown || !ForceTopDown) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+ return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
+}
+static MachineSchedRegistry ShufflerRegistry(
+ "shuffle", "Shuffle machine instructions alternating directions",
+ createInstructionShuffler);
+#endif // !NDEBUG
+
+//===----------------------------------------------------------------------===//
+// GraphWriter support for ScheduleDAGMI.
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+namespace llvm {
+
+template<> struct GraphTraits<
+ ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
+
+template<>
+struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
+
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getGraphName(const ScheduleDAG *G) {
+ return G->MF.getName();
+ }
+
+ static bool renderGraphFromBottomUp() {
+ return true;
+ }
+
+ static bool isNodeHidden(const SUnit *Node) {
+ return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
+ }
+
+ static bool hasNodeAddressLabel(const SUnit *Node,
+ const ScheduleDAG *Graph) {
+ return false;
+ }
+
+ /// If you want to override the dot attributes printed for a particular
+ /// edge, override this method.
+ static std::string getEdgeAttributes(const SUnit *Node,
+ SUnitIterator EI,
+ const ScheduleDAG *Graph) {
+ if (EI.isArtificialDep())
+ return "color=cyan,style=dashed";
+ if (EI.isCtrlDep())
+ return "color=blue,style=dashed";
+ return "";
+ }
+
+ static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
+ std::string Str;
+ raw_string_ostream SS(Str);
+ const SchedDFSResult *DFS =
+ static_cast<const ScheduleDAGMI*>(G)->getDFSResult();
+ SS << "SU:" << SU->NodeNum;
+ if (DFS)
+ SS << " I:" << DFS->getNumInstrs(SU);
+ return SS.str();
+ }
+ static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
+ return G->getGraphNodeLabel(SU);
+ }
+
+ static std::string getNodeAttributes(const SUnit *N,
+ const ScheduleDAG *Graph) {
+ std::string Str("shape=Mrecord");
+ const SchedDFSResult *DFS =
+ static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
+ if (DFS) {
+ Str += ",style=filled,fillcolor=\"#";
+ Str += DOT::getColorString(DFS->getSubtreeID(N));
+ Str += '"';
+ }
+ return Str;
+ }
+};
+} // namespace llvm
+#endif // NDEBUG
+
+/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
+/// rendered using 'dot'.
+///
+void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
+#ifndef NDEBUG
+ ViewGraph(this, Name, false, Title);
+#else
+ errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
+#endif // NDEBUG
+}
+
+/// Out-of-line implementation with no arguments is handy for gdb.
+void ScheduleDAGMI::viewGraph() {
+ viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
+}
OpenPOWER on IntegriCloud