summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineScheduler.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineScheduler.cpp2396
1 files changed, 2396 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
new file mode 100644
index 0000000..5bd2349
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp
@@ -0,0 +1,2396 @@
+//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// MachineScheduler schedules machine instructions after phi elimination. It
+// preserves LiveIntervals so it can be invoked before register allocation.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "misched"
+
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/ScheduleDFS.h"
+#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
+#include <queue>
+
+using namespace llvm;
+
+namespace llvm {
+cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
+ cl::desc("Force top-down list scheduling"));
+cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
+ cl::desc("Force bottom-up list scheduling"));
+}
+
+#ifndef NDEBUG
+static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
+ cl::desc("Pop up a window to show MISched dags after they are processed"));
+
+static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
+ cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
+#else
+static bool ViewMISchedDAGs = false;
+#endif // NDEBUG
+
+// Experimental heuristics
+static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
+ cl::desc("Enable load clustering."), cl::init(true));
+
+// Experimental heuristics
+static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
+ cl::desc("Enable scheduling for macro fusion."), cl::init(true));
+
+static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
+ cl::desc("Verify machine instrs before and after machine scheduling"));
+
+// DAG subtrees must have at least this many nodes.
+static const unsigned MinSubtreeSize = 8;
+
+//===----------------------------------------------------------------------===//
+// Machine Instruction Scheduling Pass and Registry
+//===----------------------------------------------------------------------===//
+
+MachineSchedContext::MachineSchedContext():
+ MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
+ RegClassInfo = new RegisterClassInfo();
+}
+
+MachineSchedContext::~MachineSchedContext() {
+ delete RegClassInfo;
+}
+
+namespace {
+/// MachineScheduler runs after coalescing and before register allocation.
+class MachineScheduler : public MachineSchedContext,
+ public MachineFunctionPass {
+public:
+ MachineScheduler();
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+
+ virtual void releaseMemory() {}
+
+ virtual bool runOnMachineFunction(MachineFunction&);
+
+ virtual void print(raw_ostream &O, const Module* = 0) const;
+
+ static char ID; // Class identification, replacement for typeinfo
+};
+} // namespace
+
+char MachineScheduler::ID = 0;
+
+char &llvm::MachineSchedulerID = MachineScheduler::ID;
+
+INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
+ "Machine Instruction Scheduler", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(MachineScheduler, "misched",
+ "Machine Instruction Scheduler", false, false)
+
+MachineScheduler::MachineScheduler()
+: MachineFunctionPass(ID) {
+ initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
+}
+
+void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequiredID(MachineDominatorsID);
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<AliasAnalysis>();
+ AU.addRequired<TargetPassConfig>();
+ AU.addRequired<SlotIndexes>();
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequired<LiveIntervals>();
+ AU.addPreserved<LiveIntervals>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+MachinePassRegistry MachineSchedRegistry::Registry;
+
+/// A dummy default scheduler factory indicates whether the scheduler
+/// is overridden on the command line.
+static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
+ return 0;
+}
+
+/// MachineSchedOpt allows command line selection of the scheduler.
+static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
+ RegisterPassParser<MachineSchedRegistry> >
+MachineSchedOpt("misched",
+ cl::init(&useDefaultMachineSched), cl::Hidden,
+ cl::desc("Machine instruction scheduler to use"));
+
+static MachineSchedRegistry
+DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
+ useDefaultMachineSched);
+
+/// Forward declare the standard machine scheduler. This will be used as the
+/// default scheduler if the target does not set a default.
+static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
+
+
+/// Decrement this iterator until reaching the top or a non-debug instr.
+static MachineBasicBlock::iterator
+priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
+ assert(I != Beg && "reached the top of the region, cannot decrement");
+ while (--I != Beg) {
+ if (!I->isDebugValue())
+ break;
+ }
+ return I;
+}
+
+/// If this iterator is a debug value, increment until reaching the End or a
+/// non-debug instruction.
+static MachineBasicBlock::iterator
+nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
+ for(; I != End; ++I) {
+ if (!I->isDebugValue())
+ break;
+ }
+ return I;
+}
+
+/// Top-level MachineScheduler pass driver.
+///
+/// Visit blocks in function order. Divide each block into scheduling regions
+/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
+/// consistent with the DAG builder, which traverses the interior of the
+/// scheduling regions bottom-up.
+///
+/// This design avoids exposing scheduling boundaries to the DAG builder,
+/// simplifying the DAG builder's support for "special" target instructions.
+/// At the same time the design allows target schedulers to operate across
+/// scheduling boundaries, for example to bundle the boudary instructions
+/// without reordering them. This creates complexity, because the target
+/// scheduler must update the RegionBegin and RegionEnd positions cached by
+/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
+/// design would be to split blocks at scheduling boundaries, but LLVM has a
+/// general bias against block splitting purely for implementation simplicity.
+bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
+ DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
+
+ // Initialize the context of the pass.
+ MF = &mf;
+ MLI = &getAnalysis<MachineLoopInfo>();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ PassConfig = &getAnalysis<TargetPassConfig>();
+ AA = &getAnalysis<AliasAnalysis>();
+
+ LIS = &getAnalysis<LiveIntervals>();
+ const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+
+ if (VerifyScheduling) {
+ DEBUG(LIS->print(dbgs()));
+ MF->verify(this, "Before machine scheduling.");
+ }
+ RegClassInfo->runOnMachineFunction(*MF);
+
+ // Select the scheduler, or set the default.
+ MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
+ if (Ctor == useDefaultMachineSched) {
+ // Get the default scheduler set by the target.
+ Ctor = MachineSchedRegistry::getDefault();
+ if (!Ctor) {
+ Ctor = createConvergingSched;
+ MachineSchedRegistry::setDefault(Ctor);
+ }
+ }
+ // Instantiate the selected scheduler.
+ OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
+
+ // Visit all machine basic blocks.
+ //
+ // TODO: Visit blocks in global postorder or postorder within the bottom-up
+ // loop tree. Then we can optionally compute global RegPressure.
+ for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
+ MBB != MBBEnd; ++MBB) {
+
+ Scheduler->startBlock(MBB);
+
+ // Break the block into scheduling regions [I, RegionEnd), and schedule each
+ // region as soon as it is discovered. RegionEnd points the scheduling
+ // boundary at the bottom of the region. The DAG does not include RegionEnd,
+ // but the region does (i.e. the next RegionEnd is above the previous
+ // RegionBegin). If the current block has no terminator then RegionEnd ==
+ // MBB->end() for the bottom region.
+ //
+ // The Scheduler may insert instructions during either schedule() or
+ // exitRegion(), even for empty regions. So the local iterators 'I' and
+ // 'RegionEnd' are invalid across these calls.
+ unsigned RemainingInstrs = MBB->size();
+ for(MachineBasicBlock::iterator RegionEnd = MBB->end();
+ RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
+
+ // Avoid decrementing RegionEnd for blocks with no terminator.
+ if (RegionEnd != MBB->end()
+ || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
+ --RegionEnd;
+ // Count the boundary instruction.
+ --RemainingInstrs;
+ }
+
+ // The next region starts above the previous region. Look backward in the
+ // instruction stream until we find the nearest boundary.
+ MachineBasicBlock::iterator I = RegionEnd;
+ for(;I != MBB->begin(); --I, --RemainingInstrs) {
+ if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
+ break;
+ }
+ // Notify the scheduler of the region, even if we may skip scheduling
+ // it. Perhaps it still needs to be bundled.
+ Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
+
+ // Skip empty scheduling regions (0 or 1 schedulable instructions).
+ if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
+ // Close the current region. Bundle the terminator if needed.
+ // This invalidates 'RegionEnd' and 'I'.
+ Scheduler->exitRegion();
+ continue;
+ }
+ DEBUG(dbgs() << "********** MI Scheduling **********\n");
+ DEBUG(dbgs() << MF->getName()
+ << ":BB#" << MBB->getNumber() << " " << MBB->getName()
+ << "\n From: " << *I << " To: ";
+ if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
+ else dbgs() << "End";
+ dbgs() << " Remaining: " << RemainingInstrs << "\n");
+
+ // Schedule a region: possibly reorder instructions.
+ // This invalidates 'RegionEnd' and 'I'.
+ Scheduler->schedule();
+
+ // Close the current region.
+ Scheduler->exitRegion();
+
+ // Scheduling has invalidated the current iterator 'I'. Ask the
+ // scheduler for the top of it's scheduled region.
+ RegionEnd = Scheduler->begin();
+ }
+ assert(RemainingInstrs == 0 && "Instruction count mismatch!");
+ Scheduler->finishBlock();
+ }
+ Scheduler->finalizeSchedule();
+ DEBUG(LIS->print(dbgs()));
+ if (VerifyScheduling)
+ MF->verify(this, "After machine scheduling.");
+ return true;
+}
+
+void MachineScheduler::print(raw_ostream &O, const Module* m) const {
+ // unimplemented
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ReadyQueue::dump() {
+ dbgs() << " " << Name << ": ";
+ for (unsigned i = 0, e = Queue.size(); i < e; ++i)
+ dbgs() << Queue[i]->NodeNum << " ";
+ dbgs() << "\n";
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
+// preservation.
+//===----------------------------------------------------------------------===//
+
+ScheduleDAGMI::~ScheduleDAGMI() {
+ delete DFSResult;
+ DeleteContainerPointers(Mutations);
+ delete SchedImpl;
+}
+
+bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
+ if (SuccSU != &ExitSU) {
+ // Do not use WillCreateCycle, it assumes SD scheduling.
+ // If Pred is reachable from Succ, then the edge creates a cycle.
+ if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
+ return false;
+ Topo.AddPred(SuccSU, PredDep.getSUnit());
+ }
+ SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
+ // Return true regardless of whether a new edge needed to be inserted.
+ return true;
+}
+
+/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
+/// NumPredsLeft reaches zero, release the successor node.
+///
+/// FIXME: Adjust SuccSU height based on MinLatency.
+void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
+ SUnit *SuccSU = SuccEdge->getSUnit();
+
+ if (SuccEdge->isWeak()) {
+ --SuccSU->WeakPredsLeft;
+ if (SuccEdge->isCluster())
+ NextClusterSucc = SuccSU;
+ return;
+ }
+#ifndef NDEBUG
+ if (SuccSU->NumPredsLeft == 0) {
+ dbgs() << "*** Scheduling failed! ***\n";
+ SuccSU->dump(this);
+ dbgs() << " has been released too many times!\n";
+ llvm_unreachable(0);
+ }
+#endif
+ --SuccSU->NumPredsLeft;
+ if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
+ SchedImpl->releaseTopNode(SuccSU);
+}
+
+/// releaseSuccessors - Call releaseSucc on each of SU's successors.
+void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ releaseSucc(SU, &*I);
+ }
+}
+
+/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
+/// NumSuccsLeft reaches zero, release the predecessor node.
+///
+/// FIXME: Adjust PredSU height based on MinLatency.
+void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
+ SUnit *PredSU = PredEdge->getSUnit();
+
+ if (PredEdge->isWeak()) {
+ --PredSU->WeakSuccsLeft;
+ if (PredEdge->isCluster())
+ NextClusterPred = PredSU;
+ return;
+ }
+#ifndef NDEBUG
+ if (PredSU->NumSuccsLeft == 0) {
+ dbgs() << "*** Scheduling failed! ***\n";
+ PredSU->dump(this);
+ dbgs() << " has been released too many times!\n";
+ llvm_unreachable(0);
+ }
+#endif
+ --PredSU->NumSuccsLeft;
+ if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
+ SchedImpl->releaseBottomNode(PredSU);
+}
+
+/// releasePredecessors - Call releasePred on each of SU's predecessors.
+void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
+ for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ releasePred(SU, &*I);
+ }
+}
+
+void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
+ MachineBasicBlock::iterator InsertPos) {
+ // Advance RegionBegin if the first instruction moves down.
+ if (&*RegionBegin == MI)
+ ++RegionBegin;
+
+ // Update the instruction stream.
+ BB->splice(InsertPos, BB, MI);
+
+ // Update LiveIntervals
+ LIS->handleMove(MI, /*UpdateFlags=*/true);
+
+ // Recede RegionBegin if an instruction moves above the first.
+ if (RegionBegin == InsertPos)
+ RegionBegin = MI;
+}
+
+bool ScheduleDAGMI::checkSchedLimit() {
+#ifndef NDEBUG
+ if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
+ CurrentTop = CurrentBottom;
+ return false;
+ }
+ ++NumInstrsScheduled;
+#endif
+ return true;
+}
+
+/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
+/// crossing a scheduling boundary. [begin, end) includes all instructions in
+/// the region, including the boundary itself and single-instruction regions
+/// that don't get scheduled.
+void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
+ MachineBasicBlock::iterator begin,
+ MachineBasicBlock::iterator end,
+ unsigned endcount)
+{
+ ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
+
+ // For convenience remember the end of the liveness region.
+ LiveRegionEnd =
+ (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
+}
+
+// Setup the register pressure trackers for the top scheduled top and bottom
+// scheduled regions.
+void ScheduleDAGMI::initRegPressure() {
+ TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
+ BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
+
+ // Close the RPTracker to finalize live ins.
+ RPTracker.closeRegion();
+
+ DEBUG(RPTracker.getPressure().dump(TRI));
+
+ // Initialize the live ins and live outs.
+ TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
+ BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
+
+ // Close one end of the tracker so we can call
+ // getMaxUpward/DownwardPressureDelta before advancing across any
+ // instructions. This converts currently live regs into live ins/outs.
+ TopRPTracker.closeTop();
+ BotRPTracker.closeBottom();
+
+ // Account for liveness generated by the region boundary.
+ if (LiveRegionEnd != RegionEnd)
+ BotRPTracker.recede();
+
+ assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
+
+ // Cache the list of excess pressure sets in this region. This will also track
+ // the max pressure in the scheduled code for these sets.
+ RegionCriticalPSets.clear();
+ const std::vector<unsigned> &RegionPressure =
+ RPTracker.getPressure().MaxSetPressure;
+ for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
+ unsigned Limit = TRI->getRegPressureSetLimit(i);
+ DEBUG(dbgs() << TRI->getRegPressureSetName(i)
+ << "Limit " << Limit
+ << " Actual " << RegionPressure[i] << "\n");
+ if (RegionPressure[i] > Limit)
+ RegionCriticalPSets.push_back(PressureElement(i, 0));
+ }
+ DEBUG(dbgs() << "Excess PSets: ";
+ for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
+ dbgs() << TRI->getRegPressureSetName(
+ RegionCriticalPSets[i].PSetID) << " ";
+ dbgs() << "\n");
+}
+
+// FIXME: When the pressure tracker deals in pressure differences then we won't
+// iterate over all RegionCriticalPSets[i].
+void ScheduleDAGMI::
+updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
+ for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
+ unsigned ID = RegionCriticalPSets[i].PSetID;
+ int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
+ if ((int)NewMaxPressure[ID] > MaxUnits)
+ MaxUnits = NewMaxPressure[ID];
+ }
+}
+
+/// schedule - Called back from MachineScheduler::runOnMachineFunction
+/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
+/// only includes instructions that have DAG nodes, not scheduling boundaries.
+///
+/// This is a skeletal driver, with all the functionality pushed into helpers,
+/// so that it can be easilly extended by experimental schedulers. Generally,
+/// implementing MachineSchedStrategy should be sufficient to implement a new
+/// scheduling algorithm. However, if a scheduler further subclasses
+/// ScheduleDAGMI then it will want to override this virtual method in order to
+/// update any specialized state.
+void ScheduleDAGMI::schedule() {
+ buildDAGWithRegPressure();
+
+ Topo.InitDAGTopologicalSorting();
+
+ postprocessDAG();
+
+ SmallVector<SUnit*, 8> TopRoots, BotRoots;
+ findRootsAndBiasEdges(TopRoots, BotRoots);
+
+ // Initialize the strategy before modifying the DAG.
+ // This may initialize a DFSResult to be used for queue priority.
+ SchedImpl->initialize(this);
+
+ DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(this));
+ if (ViewMISchedDAGs) viewGraph();
+
+ // Initialize ready queues now that the DAG and priority data are finalized.
+ initQueues(TopRoots, BotRoots);
+
+ bool IsTopNode = false;
+ while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
+ assert(!SU->isScheduled && "Node already scheduled");
+ if (!checkSchedLimit())
+ break;
+
+ scheduleMI(SU, IsTopNode);
+
+ updateQueues(SU, IsTopNode);
+ }
+ assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
+
+ placeDebugValues();
+
+ DEBUG({
+ unsigned BBNum = begin()->getParent()->getNumber();
+ dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
+ dumpSchedule();
+ dbgs() << '\n';
+ });
+}
+
+/// Build the DAG and setup three register pressure trackers.
+void ScheduleDAGMI::buildDAGWithRegPressure() {
+ // Initialize the register pressure tracker used by buildSchedGraph.
+ RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
+
+ // Account for liveness generate by the region boundary.
+ if (LiveRegionEnd != RegionEnd)
+ RPTracker.recede();
+
+ // Build the DAG, and compute current register pressure.
+ buildSchedGraph(AA, &RPTracker);
+
+ // Initialize top/bottom trackers after computing region pressure.
+ initRegPressure();
+}
+
+/// Apply each ScheduleDAGMutation step in order.
+void ScheduleDAGMI::postprocessDAG() {
+ for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
+ Mutations[i]->apply(this);
+ }
+}
+
+void ScheduleDAGMI::computeDFSResult() {
+ if (!DFSResult)
+ DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
+ DFSResult->clear();
+ ScheduledTrees.clear();
+ DFSResult->resize(SUnits.size());
+ DFSResult->compute(SUnits);
+ ScheduledTrees.resize(DFSResult->getNumSubtrees());
+}
+
+void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
+ SmallVectorImpl<SUnit*> &BotRoots) {
+ for (std::vector<SUnit>::iterator
+ I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
+ SUnit *SU = &(*I);
+ assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
+
+ // Order predecessors so DFSResult follows the critical path.
+ SU->biasCriticalPath();
+
+ // A SUnit is ready to top schedule if it has no predecessors.
+ if (!I->NumPredsLeft)
+ TopRoots.push_back(SU);
+ // A SUnit is ready to bottom schedule if it has no successors.
+ if (!I->NumSuccsLeft)
+ BotRoots.push_back(SU);
+ }
+ ExitSU.biasCriticalPath();
+}
+
+/// Identify DAG roots and setup scheduler queues.
+void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
+ ArrayRef<SUnit*> BotRoots) {
+ NextClusterSucc = NULL;
+ NextClusterPred = NULL;
+
+ // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
+ //
+ // Nodes with unreleased weak edges can still be roots.
+ // Release top roots in forward order.
+ for (SmallVectorImpl<SUnit*>::const_iterator
+ I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
+ SchedImpl->releaseTopNode(*I);
+ }
+ // Release bottom roots in reverse order so the higher priority nodes appear
+ // first. This is more natural and slightly more efficient.
+ for (SmallVectorImpl<SUnit*>::const_reverse_iterator
+ I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
+ SchedImpl->releaseBottomNode(*I);
+ }
+
+ releaseSuccessors(&EntrySU);
+ releasePredecessors(&ExitSU);
+
+ SchedImpl->registerRoots();
+
+ // Advance past initial DebugValues.
+ assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
+ CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
+ TopRPTracker.setPos(CurrentTop);
+
+ CurrentBottom = RegionEnd;
+}
+
+/// Move an instruction and update register pressure.
+void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
+ // Move the instruction to its new location in the instruction stream.
+ MachineInstr *MI = SU->getInstr();
+
+ if (IsTopNode) {
+ assert(SU->isTopReady() && "node still has unscheduled dependencies");
+ if (&*CurrentTop == MI)
+ CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
+ else {
+ moveInstruction(MI, CurrentTop);
+ TopRPTracker.setPos(MI);
+ }
+
+ // Update top scheduled pressure.
+ TopRPTracker.advance();
+ assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
+ updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
+ }
+ else {
+ assert(SU->isBottomReady() && "node still has unscheduled dependencies");
+ MachineBasicBlock::iterator priorII =
+ priorNonDebug(CurrentBottom, CurrentTop);
+ if (&*priorII == MI)
+ CurrentBottom = priorII;
+ else {
+ if (&*CurrentTop == MI) {
+ CurrentTop = nextIfDebug(++CurrentTop, priorII);
+ TopRPTracker.setPos(CurrentTop);
+ }
+ moveInstruction(MI, CurrentBottom);
+ CurrentBottom = MI;
+ }
+ // Update bottom scheduled pressure.
+ BotRPTracker.recede();
+ assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
+ updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
+ }
+}
+
+/// Update scheduler queues after scheduling an instruction.
+void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
+ // Release dependent instructions for scheduling.
+ if (IsTopNode)
+ releaseSuccessors(SU);
+ else
+ releasePredecessors(SU);
+
+ SU->isScheduled = true;
+
+ if (DFSResult) {
+ unsigned SubtreeID = DFSResult->getSubtreeID(SU);
+ if (!ScheduledTrees.test(SubtreeID)) {
+ ScheduledTrees.set(SubtreeID);
+ DFSResult->scheduleTree(SubtreeID);
+ SchedImpl->scheduleTree(SubtreeID);
+ }
+ }
+
+ // Notify the scheduling strategy after updating the DAG.
+ SchedImpl->schedNode(SU, IsTopNode);
+}
+
+/// Reinsert any remaining debug_values, just like the PostRA scheduler.
+void ScheduleDAGMI::placeDebugValues() {
+ // If first instruction was a DBG_VALUE then put it back.
+ if (FirstDbgValue) {
+ BB->splice(RegionBegin, BB, FirstDbgValue);
+ RegionBegin = FirstDbgValue;
+ }
+
+ for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
+ DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
+ std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
+ MachineInstr *DbgValue = P.first;
+ MachineBasicBlock::iterator OrigPrevMI = P.second;
+ if (&*RegionBegin == DbgValue)
+ ++RegionBegin;
+ BB->splice(++OrigPrevMI, BB, DbgValue);
+ if (OrigPrevMI == llvm::prior(RegionEnd))
+ RegionEnd = DbgValue;
+ }
+ DbgValues.clear();
+ FirstDbgValue = NULL;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ScheduleDAGMI::dumpSchedule() const {
+ for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
+ if (SUnit *SU = getSUnit(&(*MI)))
+ SU->dump(this);
+ else
+ dbgs() << "Missing SUnit\n";
+ }
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+// LoadClusterMutation - DAG post-processing to cluster loads.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Post-process the DAG to create cluster edges between neighboring
+/// loads.
+class LoadClusterMutation : public ScheduleDAGMutation {
+ struct LoadInfo {
+ SUnit *SU;
+ unsigned BaseReg;
+ unsigned Offset;
+ LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
+ : SU(su), BaseReg(reg), Offset(ofs) {}
+ };
+ static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
+ const LoadClusterMutation::LoadInfo &RHS);
+
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+public:
+ LoadClusterMutation(const TargetInstrInfo *tii,
+ const TargetRegisterInfo *tri)
+ : TII(tii), TRI(tri) {}
+
+ virtual void apply(ScheduleDAGMI *DAG);
+protected:
+ void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
+};
+} // anonymous
+
+bool LoadClusterMutation::LoadInfoLess(
+ const LoadClusterMutation::LoadInfo &LHS,
+ const LoadClusterMutation::LoadInfo &RHS) {
+ if (LHS.BaseReg != RHS.BaseReg)
+ return LHS.BaseReg < RHS.BaseReg;
+ return LHS.Offset < RHS.Offset;
+}
+
+void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
+ ScheduleDAGMI *DAG) {
+ SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
+ for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
+ SUnit *SU = Loads[Idx];
+ unsigned BaseReg;
+ unsigned Offset;
+ if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
+ LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
+ }
+ if (LoadRecords.size() < 2)
+ return;
+ std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
+ unsigned ClusterLength = 1;
+ for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
+ if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
+ ClusterLength = 1;
+ continue;
+ }
+
+ SUnit *SUa = LoadRecords[Idx].SU;
+ SUnit *SUb = LoadRecords[Idx+1].SU;
+ if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
+ && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
+
+ DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
+ << SUb->NodeNum << ")\n");
+ // Copy successor edges from SUa to SUb. Interleaving computation
+ // dependent on SUa can prevent load combining due to register reuse.
+ // Predecessor edges do not need to be copied from SUb to SUa since nearby
+ // loads should have effectively the same inputs.
+ for (SUnit::const_succ_iterator
+ SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
+ if (SI->getSUnit() == SUb)
+ continue;
+ DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
+ DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
+ }
+ ++ClusterLength;
+ }
+ else
+ ClusterLength = 1;
+ }
+}
+
+/// \brief Callback from DAG postProcessing to create cluster edges for loads.
+void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
+ // Map DAG NodeNum to store chain ID.
+ DenseMap<unsigned, unsigned> StoreChainIDs;
+ // Map each store chain to a set of dependent loads.
+ SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
+ for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
+ SUnit *SU = &DAG->SUnits[Idx];
+ if (!SU->getInstr()->mayLoad())
+ continue;
+ unsigned ChainPredID = DAG->SUnits.size();
+ for (SUnit::const_pred_iterator
+ PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
+ if (PI->isCtrl()) {
+ ChainPredID = PI->getSUnit()->NodeNum;
+ break;
+ }
+ }
+ // Check if this chain-like pred has been seen
+ // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
+ unsigned NumChains = StoreChainDependents.size();
+ std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
+ StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
+ if (Result.second)
+ StoreChainDependents.resize(NumChains + 1);
+ StoreChainDependents[Result.first->second].push_back(SU);
+ }
+ // Iterate over the store chains.
+ for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
+ clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
+}
+
+//===----------------------------------------------------------------------===//
+// MacroFusion - DAG post-processing to encourage fusion of macro ops.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Post-process the DAG to create cluster edges between instructions
+/// that may be fused by the processor into a single operation.
+class MacroFusion : public ScheduleDAGMutation {
+ const TargetInstrInfo *TII;
+public:
+ MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
+
+ virtual void apply(ScheduleDAGMI *DAG);
+};
+} // anonymous
+
+/// \brief Callback from DAG postProcessing to create cluster edges to encourage
+/// fused operations.
+void MacroFusion::apply(ScheduleDAGMI *DAG) {
+ // For now, assume targets can only fuse with the branch.
+ MachineInstr *Branch = DAG->ExitSU.getInstr();
+ if (!Branch)
+ return;
+
+ for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
+ SUnit *SU = &DAG->SUnits[--Idx];
+ if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
+ continue;
+
+ // Create a single weak edge from SU to ExitSU. The only effect is to cause
+ // bottom-up scheduling to heavily prioritize the clustered SU. There is no
+ // need to copy predecessor edges from ExitSU to SU, since top-down
+ // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
+ // of SU, we could create an artificial edge from the deepest root, but it
+ // hasn't been needed yet.
+ bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
+ (void)Success;
+ assert(Success && "No DAG nodes should be reachable from ExitSU");
+
+ DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
+ break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
+/// the schedule.
+class ConvergingScheduler : public MachineSchedStrategy {
+public:
+ /// Represent the type of SchedCandidate found within a single queue.
+ /// pickNodeBidirectional depends on these listed by decreasing priority.
+ enum CandReason {
+ NoCand, SingleExcess, SingleCritical, Cluster,
+ ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
+ TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse,
+ NodeOrder};
+
+#ifndef NDEBUG
+ static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
+#endif
+
+ /// Policy for scheduling the next instruction in the candidate's zone.
+ struct CandPolicy {
+ bool ReduceLatency;
+ unsigned ReduceResIdx;
+ unsigned DemandResIdx;
+
+ CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
+ };
+
+ /// Status of an instruction's critical resource consumption.
+ struct SchedResourceDelta {
+ // Count critical resources in the scheduled region required by SU.
+ unsigned CritResources;
+
+ // Count critical resources from another region consumed by SU.
+ unsigned DemandedResources;
+
+ SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
+
+ bool operator==(const SchedResourceDelta &RHS) const {
+ return CritResources == RHS.CritResources
+ && DemandedResources == RHS.DemandedResources;
+ }
+ bool operator!=(const SchedResourceDelta &RHS) const {
+ return !operator==(RHS);
+ }
+ };
+
+ /// Store the state used by ConvergingScheduler heuristics, required for the
+ /// lifetime of one invocation of pickNode().
+ struct SchedCandidate {
+ CandPolicy Policy;
+
+ // The best SUnit candidate.
+ SUnit *SU;
+
+ // The reason for this candidate.
+ CandReason Reason;
+
+ // Register pressure values for the best candidate.
+ RegPressureDelta RPDelta;
+
+ // Critical resource consumption of the best candidate.
+ SchedResourceDelta ResDelta;
+
+ SchedCandidate(const CandPolicy &policy)
+ : Policy(policy), SU(NULL), Reason(NoCand) {}
+
+ bool isValid() const { return SU; }
+
+ // Copy the status of another candidate without changing policy.
+ void setBest(SchedCandidate &Best) {
+ assert(Best.Reason != NoCand && "uninitialized Sched candidate");
+ SU = Best.SU;
+ Reason = Best.Reason;
+ RPDelta = Best.RPDelta;
+ ResDelta = Best.ResDelta;
+ }
+
+ void initResourceDelta(const ScheduleDAGMI *DAG,
+ const TargetSchedModel *SchedModel);
+ };
+
+ /// Summarize the unscheduled region.
+ struct SchedRemainder {
+ // Critical path through the DAG in expected latency.
+ unsigned CriticalPath;
+
+ // Unscheduled resources
+ SmallVector<unsigned, 16> RemainingCounts;
+ // Critical resource for the unscheduled zone.
+ unsigned CritResIdx;
+ // Number of micro-ops left to schedule.
+ unsigned RemainingMicroOps;
+
+ void reset() {
+ CriticalPath = 0;
+ RemainingCounts.clear();
+ CritResIdx = 0;
+ RemainingMicroOps = 0;
+ }
+
+ SchedRemainder() { reset(); }
+
+ void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
+
+ unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const {
+ if (!SchedModel->hasInstrSchedModel())
+ return 0;
+
+ return std::max(
+ RemainingMicroOps * SchedModel->getMicroOpFactor(),
+ RemainingCounts[CritResIdx]);
+ }
+ };
+
+ /// Each Scheduling boundary is associated with ready queues. It tracks the
+ /// current cycle in the direction of movement, and maintains the state
+ /// of "hazards" and other interlocks at the current cycle.
+ struct SchedBoundary {
+ ScheduleDAGMI *DAG;
+ const TargetSchedModel *SchedModel;
+ SchedRemainder *Rem;
+
+ ReadyQueue Available;
+ ReadyQueue Pending;
+ bool CheckPending;
+
+ // For heuristics, keep a list of the nodes that immediately depend on the
+ // most recently scheduled node.
+ SmallPtrSet<const SUnit*, 8> NextSUs;
+
+ ScheduleHazardRecognizer *HazardRec;
+
+ unsigned CurrCycle;
+ unsigned IssueCount;
+
+ /// MinReadyCycle - Cycle of the soonest available instruction.
+ unsigned MinReadyCycle;
+
+ // The expected latency of the critical path in this scheduled zone.
+ unsigned ExpectedLatency;
+
+ // Resources used in the scheduled zone beyond this boundary.
+ SmallVector<unsigned, 16> ResourceCounts;
+
+ // Cache the critical resources ID in this scheduled zone.
+ unsigned CritResIdx;
+
+ // Is the scheduled region resource limited vs. latency limited.
+ bool IsResourceLimited;
+
+ unsigned ExpectedCount;
+
+#ifndef NDEBUG
+ // Remember the greatest min operand latency.
+ unsigned MaxMinLatency;
+#endif
+
+ void reset() {
+ // A new HazardRec is created for each DAG and owned by SchedBoundary.
+ delete HazardRec;
+
+ Available.clear();
+ Pending.clear();
+ CheckPending = false;
+ NextSUs.clear();
+ HazardRec = 0;
+ CurrCycle = 0;
+ IssueCount = 0;
+ MinReadyCycle = UINT_MAX;
+ ExpectedLatency = 0;
+ ResourceCounts.resize(1);
+ assert(!ResourceCounts[0] && "nonzero count for bad resource");
+ CritResIdx = 0;
+ IsResourceLimited = false;
+ ExpectedCount = 0;
+#ifndef NDEBUG
+ MaxMinLatency = 0;
+#endif
+ // Reserve a zero-count for invalid CritResIdx.
+ ResourceCounts.resize(1);
+ }
+
+ /// Pending queues extend the ready queues with the same ID and the
+ /// PendingFlag set.
+ SchedBoundary(unsigned ID, const Twine &Name):
+ DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
+ Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
+ HazardRec(0) {
+ reset();
+ }
+
+ ~SchedBoundary() { delete HazardRec; }
+
+ void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
+ SchedRemainder *rem);
+
+ bool isTop() const {
+ return Available.getID() == ConvergingScheduler::TopQID;
+ }
+
+ unsigned getUnscheduledLatency(SUnit *SU) const {
+ if (isTop())
+ return SU->getHeight();
+ return SU->getDepth() + SU->Latency;
+ }
+
+ unsigned getCriticalCount() const {
+ return ResourceCounts[CritResIdx];
+ }
+
+ bool checkHazard(SUnit *SU);
+
+ void setLatencyPolicy(CandPolicy &Policy);
+
+ void releaseNode(SUnit *SU, unsigned ReadyCycle);
+
+ void bumpCycle();
+
+ void countResource(unsigned PIdx, unsigned Cycles);
+
+ void bumpNode(SUnit *SU);
+
+ void releasePending();
+
+ void removeReady(SUnit *SU);
+
+ SUnit *pickOnlyChoice();
+ };
+
+private:
+ ScheduleDAGMI *DAG;
+ const TargetSchedModel *SchedModel;
+ const TargetRegisterInfo *TRI;
+
+ // State of the top and bottom scheduled instruction boundaries.
+ SchedRemainder Rem;
+ SchedBoundary Top;
+ SchedBoundary Bot;
+
+public:
+ /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
+ enum {
+ TopQID = 1,
+ BotQID = 2,
+ LogMaxQID = 2
+ };
+
+ ConvergingScheduler():
+ DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
+
+ virtual void initialize(ScheduleDAGMI *dag);
+
+ virtual SUnit *pickNode(bool &IsTopNode);
+
+ virtual void schedNode(SUnit *SU, bool IsTopNode);
+
+ virtual void releaseTopNode(SUnit *SU);
+
+ virtual void releaseBottomNode(SUnit *SU);
+
+ virtual void registerRoots();
+
+protected:
+ void balanceZones(
+ ConvergingScheduler::SchedBoundary &CriticalZone,
+ ConvergingScheduler::SchedCandidate &CriticalCand,
+ ConvergingScheduler::SchedBoundary &OppositeZone,
+ ConvergingScheduler::SchedCandidate &OppositeCand);
+
+ void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
+ ConvergingScheduler::SchedCandidate &BotCand);
+
+ void tryCandidate(SchedCandidate &Cand,
+ SchedCandidate &TryCand,
+ SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ RegPressureTracker &TempTracker);
+
+ SUnit *pickNodeBidirectional(bool &IsTopNode);
+
+ void pickNodeFromQueue(SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ SchedCandidate &Candidate);
+
+#ifndef NDEBUG
+ void traceCandidate(const SchedCandidate &Cand);
+#endif
+};
+} // namespace
+
+void ConvergingScheduler::SchedRemainder::
+init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
+ reset();
+ if (!SchedModel->hasInstrSchedModel())
+ return;
+ RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
+ for (std::vector<SUnit>::iterator
+ I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
+ const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
+ RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ unsigned PIdx = PI->ProcResourceIdx;
+ unsigned Factor = SchedModel->getResourceFactor(PIdx);
+ RemainingCounts[PIdx] += (Factor * PI->Cycles);
+ }
+ }
+ for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds();
+ PIdx != PEnd; ++PIdx) {
+ if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx])
+ >= (int)SchedModel->getLatencyFactor()) {
+ CritResIdx = PIdx;
+ }
+ }
+}
+
+void ConvergingScheduler::SchedBoundary::
+init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
+ reset();
+ DAG = dag;
+ SchedModel = smodel;
+ Rem = rem;
+ if (SchedModel->hasInstrSchedModel())
+ ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
+}
+
+void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
+ DAG = dag;
+ SchedModel = DAG->getSchedModel();
+ TRI = DAG->TRI;
+
+ Rem.init(DAG, SchedModel);
+ Top.init(DAG, SchedModel, &Rem);
+ Bot.init(DAG, SchedModel, &Rem);
+
+ // Initialize resource counts.
+
+ // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
+ // are disabled, then these HazardRecs will be disabled.
+ const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
+ const TargetMachine &TM = DAG->MF.getTarget();
+ Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+ Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+
+ assert((!ForceTopDown || !ForceBottomUp) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+}
+
+void ConvergingScheduler::releaseTopNode(SUnit *SU) {
+ if (SU->isScheduled)
+ return;
+
+ for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+ I != E; ++I) {
+ unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
+ unsigned MinLatency = I->getMinLatency();
+#ifndef NDEBUG
+ Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
+#endif
+ if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
+ SU->TopReadyCycle = PredReadyCycle + MinLatency;
+ }
+ Top.releaseNode(SU, SU->TopReadyCycle);
+}
+
+void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
+ if (SU->isScheduled)
+ return;
+
+ assert(SU->getInstr() && "Scheduled SUnit must have instr");
+
+ for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
+ I != E; ++I) {
+ if (I->isWeak())
+ continue;
+ unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
+ unsigned MinLatency = I->getMinLatency();
+#ifndef NDEBUG
+ Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
+#endif
+ if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
+ SU->BotReadyCycle = SuccReadyCycle + MinLatency;
+ }
+ Bot.releaseNode(SU, SU->BotReadyCycle);
+}
+
+void ConvergingScheduler::registerRoots() {
+ Rem.CriticalPath = DAG->ExitSU.getDepth();
+ // Some roots may not feed into ExitSU. Check all of them in case.
+ for (std::vector<SUnit*>::const_iterator
+ I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
+ if ((*I)->getDepth() > Rem.CriticalPath)
+ Rem.CriticalPath = (*I)->getDepth();
+ }
+ DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
+}
+
+/// Does this SU have a hazard within the current instruction group.
+///
+/// The scheduler supports two modes of hazard recognition. The first is the
+/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
+/// supports highly complicated in-order reservation tables
+/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
+///
+/// The second is a streamlined mechanism that checks for hazards based on
+/// simple counters that the scheduler itself maintains. It explicitly checks
+/// for instruction dispatch limitations, including the number of micro-ops that
+/// can dispatch per cycle.
+///
+/// TODO: Also check whether the SU must start a new group.
+bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
+ if (HazardRec->isEnabled())
+ return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
+
+ unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
+ if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
+ DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
+ << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
+ return true;
+ }
+ return false;
+}
+
+/// Compute the remaining latency to determine whether ILP should be increased.
+void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
+ // FIXME: compile time. In all, we visit four queues here one we should only
+ // need to visit the one that was last popped if we cache the result.
+ unsigned RemLatency = 0;
+ for (ReadyQueue::iterator I = Available.begin(), E = Available.end();
+ I != E; ++I) {
+ unsigned L = getUnscheduledLatency(*I);
+ if (L > RemLatency)
+ RemLatency = L;
+ }
+ for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end();
+ I != E; ++I) {
+ unsigned L = getUnscheduledLatency(*I);
+ if (L > RemLatency)
+ RemLatency = L;
+ }
+ unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow();
+ if (RemLatency + ExpectedLatency >= CriticalPathLimit
+ && RemLatency > Rem->getMaxRemainingCount(SchedModel)) {
+ Policy.ReduceLatency = true;
+ DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n');
+ }
+}
+
+void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
+ unsigned ReadyCycle) {
+
+ if (ReadyCycle < MinReadyCycle)
+ MinReadyCycle = ReadyCycle;
+
+ // Check for interlocks first. For the purpose of other heuristics, an
+ // instruction that cannot issue appears as if it's not in the ReadyQueue.
+ if (ReadyCycle > CurrCycle || checkHazard(SU))
+ Pending.push(SU);
+ else
+ Available.push(SU);
+
+ // Record this node as an immediate dependent of the scheduled node.
+ NextSUs.insert(SU);
+}
+
+/// Move the boundary of scheduled code by one cycle.
+void ConvergingScheduler::SchedBoundary::bumpCycle() {
+ unsigned Width = SchedModel->getIssueWidth();
+ IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
+
+ unsigned NextCycle = CurrCycle + 1;
+ assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
+ if (MinReadyCycle > NextCycle) {
+ IssueCount = 0;
+ NextCycle = MinReadyCycle;
+ }
+
+ if (!HazardRec->isEnabled()) {
+ // Bypass HazardRec virtual calls.
+ CurrCycle = NextCycle;
+ }
+ else {
+ // Bypass getHazardType calls in case of long latency.
+ for (; CurrCycle != NextCycle; ++CurrCycle) {
+ if (isTop())
+ HazardRec->AdvanceCycle();
+ else
+ HazardRec->RecedeCycle();
+ }
+ }
+ CheckPending = true;
+ IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
+
+ DEBUG(dbgs() << " " << Available.getName()
+ << " Cycle: " << CurrCycle << '\n');
+}
+
+/// Add the given processor resource to this scheduled zone.
+void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
+ unsigned Cycles) {
+ unsigned Factor = SchedModel->getResourceFactor(PIdx);
+ DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name
+ << " +(" << Cycles << "x" << Factor
+ << ") / " << SchedModel->getLatencyFactor() << '\n');
+
+ unsigned Count = Factor * Cycles;
+ ResourceCounts[PIdx] += Count;
+ assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
+ Rem->RemainingCounts[PIdx] -= Count;
+
+ // Check if this resource exceeds the current critical resource by a full
+ // cycle. If so, it becomes the critical resource.
+ if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
+ >= (int)SchedModel->getLatencyFactor()) {
+ CritResIdx = PIdx;
+ DEBUG(dbgs() << " *** Critical resource "
+ << SchedModel->getProcResource(PIdx)->Name << " x"
+ << ResourceCounts[PIdx] << '\n');
+ }
+}
+
+/// Move the boundary of scheduled code by one SUnit.
+void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
+ // Update the reservation table.
+ if (HazardRec->isEnabled()) {
+ if (!isTop() && SU->isCall) {
+ // Calls are scheduled with their preceding instructions. For bottom-up
+ // scheduling, clear the pipeline state before emitting.
+ HazardRec->Reset();
+ }
+ HazardRec->EmitInstruction(SU);
+ }
+ // Update resource counts and critical resource.
+ if (SchedModel->hasInstrSchedModel()) {
+ const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+ Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ countResource(PI->ProcResourceIdx, PI->Cycles);
+ }
+ }
+ if (isTop()) {
+ if (SU->getDepth() > ExpectedLatency)
+ ExpectedLatency = SU->getDepth();
+ }
+ else {
+ if (SU->getHeight() > ExpectedLatency)
+ ExpectedLatency = SU->getHeight();
+ }
+
+ IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
+
+ // Check the instruction group dispatch limit.
+ // TODO: Check if this SU must end a dispatch group.
+ IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
+
+ // checkHazard prevents scheduling multiple instructions per cycle that exceed
+ // issue width. However, we commonly reach the maximum. In this case
+ // opportunistically bump the cycle to avoid uselessly checking everything in
+ // the readyQ. Furthermore, a single instruction may produce more than one
+ // cycle's worth of micro-ops.
+ if (IssueCount >= SchedModel->getIssueWidth()) {
+ DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n');
+ bumpCycle();
+ }
+}
+
+/// Release pending ready nodes in to the available queue. This makes them
+/// visible to heuristics.
+void ConvergingScheduler::SchedBoundary::releasePending() {
+ // If the available queue is empty, it is safe to reset MinReadyCycle.
+ if (Available.empty())
+ MinReadyCycle = UINT_MAX;
+
+ // Check to see if any of the pending instructions are ready to issue. If
+ // so, add them to the available queue.
+ for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
+ SUnit *SU = *(Pending.begin()+i);
+ unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
+
+ if (ReadyCycle < MinReadyCycle)
+ MinReadyCycle = ReadyCycle;
+
+ if (ReadyCycle > CurrCycle)
+ continue;
+
+ if (checkHazard(SU))
+ continue;
+
+ Available.push(SU);
+ Pending.remove(Pending.begin()+i);
+ --i; --e;
+ }
+ DEBUG(if (!Pending.empty()) Pending.dump());
+ CheckPending = false;
+}
+
+/// Remove SU from the ready set for this boundary.
+void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
+ if (Available.isInQueue(SU))
+ Available.remove(Available.find(SU));
+ else {
+ assert(Pending.isInQueue(SU) && "bad ready count");
+ Pending.remove(Pending.find(SU));
+ }
+}
+
+/// If this queue only has one ready candidate, return it. As a side effect,
+/// defer any nodes that now hit a hazard, and advance the cycle until at least
+/// one node is ready. If multiple instructions are ready, return NULL.
+SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
+ if (CheckPending)
+ releasePending();
+
+ if (IssueCount > 0) {
+ // Defer any ready instrs that now have a hazard.
+ for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
+ if (checkHazard(*I)) {
+ Pending.push(*I);
+ I = Available.remove(I);
+ continue;
+ }
+ ++I;
+ }
+ }
+ for (unsigned i = 0; Available.empty(); ++i) {
+ assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
+ "permanent hazard"); (void)i;
+ bumpCycle();
+ releasePending();
+ }
+ if (Available.size() == 1)
+ return *Available.begin();
+ return NULL;
+}
+
+/// Record the candidate policy for opposite zones with different critical
+/// resources.
+///
+/// If the CriticalZone is latency limited, don't force a policy for the
+/// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed.
+void ConvergingScheduler::balanceZones(
+ ConvergingScheduler::SchedBoundary &CriticalZone,
+ ConvergingScheduler::SchedCandidate &CriticalCand,
+ ConvergingScheduler::SchedBoundary &OppositeZone,
+ ConvergingScheduler::SchedCandidate &OppositeCand) {
+
+ if (!CriticalZone.IsResourceLimited)
+ return;
+ assert(SchedModel->hasInstrSchedModel() && "required schedmodel");
+
+ SchedRemainder *Rem = CriticalZone.Rem;
+
+ // If the critical zone is overconsuming a resource relative to the
+ // remainder, try to reduce it.
+ unsigned RemainingCritCount =
+ Rem->RemainingCounts[CriticalZone.CritResIdx];
+ if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount)
+ > (int)SchedModel->getLatencyFactor()) {
+ CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
+ DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce "
+ << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
+ << '\n');
+ }
+ // If the other zone is underconsuming a resource relative to the full zone,
+ // try to increase it.
+ unsigned OppositeCount =
+ OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
+ if ((int)(OppositeZone.ExpectedCount - OppositeCount)
+ > (int)SchedModel->getLatencyFactor()) {
+ OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
+ DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand "
+ << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
+ << '\n');
+ }
+}
+
+/// Determine if the scheduled zones exceed resource limits or critical path and
+/// set each candidate's ReduceHeight policy accordingly.
+void ConvergingScheduler::checkResourceLimits(
+ ConvergingScheduler::SchedCandidate &TopCand,
+ ConvergingScheduler::SchedCandidate &BotCand) {
+
+ // Set ReduceLatency to true if needed.
+ Bot.setLatencyPolicy(BotCand.Policy);
+ Top.setLatencyPolicy(TopCand.Policy);
+
+ // Handle resource-limited regions.
+ if (Top.IsResourceLimited && Bot.IsResourceLimited
+ && Top.CritResIdx == Bot.CritResIdx) {
+ // If the scheduled critical resource in both zones is no longer the
+ // critical remaining resource, attempt to reduce resource height both ways.
+ if (Top.CritResIdx != Rem.CritResIdx) {
+ TopCand.Policy.ReduceResIdx = Top.CritResIdx;
+ BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
+ DEBUG(dbgs() << "Reduce scheduled "
+ << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
+ }
+ return;
+ }
+ // Handle latency-limited regions.
+ if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
+ // If the total scheduled expected latency exceeds the region's critical
+ // path then reduce latency both ways.
+ //
+ // Just because a zone is not resource limited does not mean it is latency
+ // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
+ // to exceed expected latency.
+ if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
+ && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
+ TopCand.Policy.ReduceLatency = true;
+ BotCand.Policy.ReduceLatency = true;
+ DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency
+ << " + " << Bot.ExpectedLatency << '\n');
+ }
+ return;
+ }
+ // The critical resource is different in each zone, so request balancing.
+
+ // Compute the cost of each zone.
+ Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
+ Top.ExpectedCount = std::max(
+ Top.getCriticalCount(),
+ Top.ExpectedCount * SchedModel->getLatencyFactor());
+ Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
+ Bot.ExpectedCount = std::max(
+ Bot.getCriticalCount(),
+ Bot.ExpectedCount * SchedModel->getLatencyFactor());
+
+ balanceZones(Top, TopCand, Bot, BotCand);
+ balanceZones(Bot, BotCand, Top, TopCand);
+}
+
+void ConvergingScheduler::SchedCandidate::
+initResourceDelta(const ScheduleDAGMI *DAG,
+ const TargetSchedModel *SchedModel) {
+ if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
+ return;
+
+ const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+ for (TargetSchedModel::ProcResIter
+ PI = SchedModel->getWriteProcResBegin(SC),
+ PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+ if (PI->ProcResourceIdx == Policy.ReduceResIdx)
+ ResDelta.CritResources += PI->Cycles;
+ if (PI->ProcResourceIdx == Policy.DemandResIdx)
+ ResDelta.DemandedResources += PI->Cycles;
+ }
+}
+
+/// Return true if this heuristic determines order.
+static bool tryLess(int TryVal, int CandVal,
+ ConvergingScheduler::SchedCandidate &TryCand,
+ ConvergingScheduler::SchedCandidate &Cand,
+ ConvergingScheduler::CandReason Reason) {
+ if (TryVal < CandVal) {
+ TryCand.Reason = Reason;
+ return true;
+ }
+ if (TryVal > CandVal) {
+ if (Cand.Reason > Reason)
+ Cand.Reason = Reason;
+ return true;
+ }
+ return false;
+}
+
+static bool tryGreater(int TryVal, int CandVal,
+ ConvergingScheduler::SchedCandidate &TryCand,
+ ConvergingScheduler::SchedCandidate &Cand,
+ ConvergingScheduler::CandReason Reason) {
+ if (TryVal > CandVal) {
+ TryCand.Reason = Reason;
+ return true;
+ }
+ if (TryVal < CandVal) {
+ if (Cand.Reason > Reason)
+ Cand.Reason = Reason;
+ return true;
+ }
+ return false;
+}
+
+static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
+ return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
+}
+
+/// Apply a set of heursitics to a new candidate. Heuristics are currently
+/// hierarchical. This may be more efficient than a graduated cost model because
+/// we don't need to evaluate all aspects of the model for each node in the
+/// queue. But it's really done to make the heuristics easier to debug and
+/// statistically analyze.
+///
+/// \param Cand provides the policy and current best candidate.
+/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
+/// \param Zone describes the scheduled zone that we are extending.
+/// \param RPTracker describes reg pressure within the scheduled zone.
+/// \param TempTracker is a scratch pressure tracker to reuse in queries.
+void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
+ SchedCandidate &TryCand,
+ SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ RegPressureTracker &TempTracker) {
+
+ // Always initialize TryCand's RPDelta.
+ TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
+ DAG->getRegionCriticalPSets(),
+ DAG->getRegPressure().MaxSetPressure);
+
+ // Initialize the candidate if needed.
+ if (!Cand.isValid()) {
+ TryCand.Reason = NodeOrder;
+ return;
+ }
+ // Avoid exceeding the target's limit.
+ if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
+ Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
+ return;
+ if (Cand.Reason == SingleExcess)
+ Cand.Reason = MultiPressure;
+
+ // Avoid increasing the max critical pressure in the scheduled region.
+ if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
+ Cand.RPDelta.CriticalMax.UnitIncrease,
+ TryCand, Cand, SingleCritical))
+ return;
+ if (Cand.Reason == SingleCritical)
+ Cand.Reason = MultiPressure;
+
+ // Keep clustered nodes together to encourage downstream peephole
+ // optimizations which may reduce resource requirements.
+ //
+ // This is a best effort to set things up for a post-RA pass. Optimizations
+ // like generating loads of multiple registers should ideally be done within
+ // the scheduler pass by combining the loads during DAG postprocessing.
+ const SUnit *NextClusterSU =
+ Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
+ if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
+ TryCand, Cand, Cluster))
+ return;
+ // Currently, weak edges are for clustering, so we hard-code that reason.
+ // However, deferring the current TryCand will not change Cand's reason.
+ CandReason OrigReason = Cand.Reason;
+ if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
+ getWeakLeft(Cand.SU, Zone.isTop()),
+ TryCand, Cand, Cluster)) {
+ Cand.Reason = OrigReason;
+ return;
+ }
+ // Avoid critical resource consumption and balance the schedule.
+ TryCand.initResourceDelta(DAG, SchedModel);
+ if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
+ TryCand, Cand, ResourceReduce))
+ return;
+ if (tryGreater(TryCand.ResDelta.DemandedResources,
+ Cand.ResDelta.DemandedResources,
+ TryCand, Cand, ResourceDemand))
+ return;
+
+ // Avoid serializing long latency dependence chains.
+ if (Cand.Policy.ReduceLatency) {
+ if (Zone.isTop()) {
+ if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
+ > Zone.ExpectedCount) {
+ if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, TopDepthReduce))
+ return;
+ }
+ if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, TopPathReduce))
+ return;
+ }
+ else {
+ if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
+ > Zone.ExpectedCount) {
+ if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+ TryCand, Cand, BotHeightReduce))
+ return;
+ }
+ if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+ TryCand, Cand, BotPathReduce))
+ return;
+ }
+ }
+
+ // Avoid increasing the max pressure of the entire region.
+ if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
+ Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
+ return;
+ if (Cand.Reason == SingleMax)
+ Cand.Reason = MultiPressure;
+
+ // Prefer immediate defs/users of the last scheduled instruction. This is a
+ // nice pressure avoidance strategy that also conserves the processor's
+ // register renaming resources and keeps the machine code readable.
+ if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
+ TryCand, Cand, NextDefUse))
+ return;
+
+ // Fall through to original instruction order.
+ if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
+ || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
+ TryCand.Reason = NodeOrder;
+ }
+}
+
+/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
+/// more desirable than RHS from scheduling standpoint.
+static bool compareRPDelta(const RegPressureDelta &LHS,
+ const RegPressureDelta &RHS) {
+ // Compare each component of pressure in decreasing order of importance
+ // without checking if any are valid. Invalid PressureElements are assumed to
+ // have UnitIncrease==0, so are neutral.
+
+ // Avoid increasing the max critical pressure in the scheduled region.
+ if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
+ DEBUG(dbgs() << "RP excess top - bot: "
+ << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
+ return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
+ }
+ // Avoid increasing the max critical pressure in the scheduled region.
+ if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
+ DEBUG(dbgs() << "RP critical top - bot: "
+ << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
+ << '\n');
+ return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
+ }
+ // Avoid increasing the max pressure of the entire region.
+ if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
+ DEBUG(dbgs() << "RP current top - bot: "
+ << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
+ << '\n');
+ return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
+ }
+ return false;
+}
+
+#ifndef NDEBUG
+const char *ConvergingScheduler::getReasonStr(
+ ConvergingScheduler::CandReason Reason) {
+ switch (Reason) {
+ case NoCand: return "NOCAND ";
+ case SingleExcess: return "REG-EXCESS";
+ case SingleCritical: return "REG-CRIT ";
+ case Cluster: return "CLUSTER ";
+ case SingleMax: return "REG-MAX ";
+ case MultiPressure: return "REG-MULTI ";
+ case ResourceReduce: return "RES-REDUCE";
+ case ResourceDemand: return "RES-DEMAND";
+ case TopDepthReduce: return "TOP-DEPTH ";
+ case TopPathReduce: return "TOP-PATH ";
+ case BotHeightReduce:return "BOT-HEIGHT";
+ case BotPathReduce: return "BOT-PATH ";
+ case NextDefUse: return "DEF-USE ";
+ case NodeOrder: return "ORDER ";
+ };
+ llvm_unreachable("Unknown reason!");
+}
+
+void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
+ PressureElement P;
+ unsigned ResIdx = 0;
+ unsigned Latency = 0;
+ switch (Cand.Reason) {
+ default:
+ break;
+ case SingleExcess:
+ P = Cand.RPDelta.Excess;
+ break;
+ case SingleCritical:
+ P = Cand.RPDelta.CriticalMax;
+ break;
+ case SingleMax:
+ P = Cand.RPDelta.CurrentMax;
+ break;
+ case ResourceReduce:
+ ResIdx = Cand.Policy.ReduceResIdx;
+ break;
+ case ResourceDemand:
+ ResIdx = Cand.Policy.DemandResIdx;
+ break;
+ case TopDepthReduce:
+ Latency = Cand.SU->getDepth();
+ break;
+ case TopPathReduce:
+ Latency = Cand.SU->getHeight();
+ break;
+ case BotHeightReduce:
+ Latency = Cand.SU->getHeight();
+ break;
+ case BotPathReduce:
+ Latency = Cand.SU->getDepth();
+ break;
+ }
+ dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
+ if (P.isValid())
+ dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
+ << ":" << P.UnitIncrease << " ";
+ else
+ dbgs() << " ";
+ if (ResIdx)
+ dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
+ else
+ dbgs() << " ";
+ if (Latency)
+ dbgs() << " " << Latency << " cycles ";
+ else
+ dbgs() << " ";
+ dbgs() << '\n';
+}
+#endif
+
+/// Pick the best candidate from the top queue.
+///
+/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
+/// DAG building. To adjust for the current scheduling location we need to
+/// maintain the number of vreg uses remaining to be top-scheduled.
+void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
+ const RegPressureTracker &RPTracker,
+ SchedCandidate &Cand) {
+ ReadyQueue &Q = Zone.Available;
+
+ DEBUG(Q.dump());
+
+ // getMaxPressureDelta temporarily modifies the tracker.
+ RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
+
+ for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
+
+ SchedCandidate TryCand(Cand.Policy);
+ TryCand.SU = *I;
+ tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
+ if (TryCand.Reason != NoCand) {
+ // Initialize resource delta if needed in case future heuristics query it.
+ if (TryCand.ResDelta == SchedResourceDelta())
+ TryCand.initResourceDelta(DAG, SchedModel);
+ Cand.setBest(TryCand);
+ DEBUG(traceCandidate(Cand));
+ }
+ }
+}
+
+static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
+ bool IsTop) {
+ DEBUG(dbgs() << "Pick " << (IsTop ? "Top" : "Bot")
+ << " SU(" << Cand.SU->NodeNum << ") "
+ << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
+}
+
+/// Pick the best candidate node from either the top or bottom queue.
+SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
+ // Schedule as far as possible in the direction of no choice. This is most
+ // efficient, but also provides the best heuristics for CriticalPSets.
+ if (SUnit *SU = Bot.pickOnlyChoice()) {
+ IsTopNode = false;
+ return SU;
+ }
+ if (SUnit *SU = Top.pickOnlyChoice()) {
+ IsTopNode = true;
+ return SU;
+ }
+ CandPolicy NoPolicy;
+ SchedCandidate BotCand(NoPolicy);
+ SchedCandidate TopCand(NoPolicy);
+ checkResourceLimits(TopCand, BotCand);
+
+ // Prefer bottom scheduling when heuristics are silent.
+ pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
+ assert(BotCand.Reason != NoCand && "failed to find the first candidate");
+
+ // If either Q has a single candidate that provides the least increase in
+ // Excess pressure, we can immediately schedule from that Q.
+ //
+ // RegionCriticalPSets summarizes the pressure within the scheduled region and
+ // affects picking from either Q. If scheduling in one direction must
+ // increase pressure for one of the excess PSets, then schedule in that
+ // direction first to provide more freedom in the other direction.
+ if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
+ IsTopNode = false;
+ tracePick(BotCand, IsTopNode);
+ return BotCand.SU;
+ }
+ // Check if the top Q has a better candidate.
+ pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
+ assert(TopCand.Reason != NoCand && "failed to find the first candidate");
+
+ // If either Q has a single candidate that minimizes pressure above the
+ // original region's pressure pick it.
+ if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
+ if (TopCand.Reason < BotCand.Reason) {
+ IsTopNode = true;
+ tracePick(TopCand, IsTopNode);
+ return TopCand.SU;
+ }
+ IsTopNode = false;
+ tracePick(BotCand, IsTopNode);
+ return BotCand.SU;
+ }
+ // Check for a salient pressure difference and pick the best from either side.
+ if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
+ IsTopNode = true;
+ tracePick(TopCand, IsTopNode);
+ return TopCand.SU;
+ }
+ // Otherwise prefer the bottom candidate, in node order if all else failed.
+ if (TopCand.Reason < BotCand.Reason) {
+ IsTopNode = true;
+ tracePick(TopCand, IsTopNode);
+ return TopCand.SU;
+ }
+ IsTopNode = false;
+ tracePick(BotCand, IsTopNode);
+ return BotCand.SU;
+}
+
+/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
+SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
+ if (DAG->top() == DAG->bottom()) {
+ assert(Top.Available.empty() && Top.Pending.empty() &&
+ Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
+ return NULL;
+ }
+ SUnit *SU;
+ do {
+ if (ForceTopDown) {
+ SU = Top.pickOnlyChoice();
+ if (!SU) {
+ CandPolicy NoPolicy;
+ SchedCandidate TopCand(NoPolicy);
+ pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
+ assert(TopCand.Reason != NoCand && "failed to find the first candidate");
+ SU = TopCand.SU;
+ }
+ IsTopNode = true;
+ }
+ else if (ForceBottomUp) {
+ SU = Bot.pickOnlyChoice();
+ if (!SU) {
+ CandPolicy NoPolicy;
+ SchedCandidate BotCand(NoPolicy);
+ pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
+ assert(BotCand.Reason != NoCand && "failed to find the first candidate");
+ SU = BotCand.SU;
+ }
+ IsTopNode = false;
+ }
+ else {
+ SU = pickNodeBidirectional(IsTopNode);
+ }
+ } while (SU->isScheduled);
+
+ if (SU->isTopReady())
+ Top.removeReady(SU);
+ if (SU->isBottomReady())
+ Bot.removeReady(SU);
+
+ DEBUG(dbgs() << "Scheduling " << *SU->getInstr());
+ return SU;
+}
+
+/// Update the scheduler's state after scheduling a node. This is the same node
+/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
+/// it's state based on the current cycle before MachineSchedStrategy does.
+void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
+ if (IsTopNode) {
+ SU->TopReadyCycle = Top.CurrCycle;
+ Top.bumpNode(SU);
+ }
+ else {
+ SU->BotReadyCycle = Bot.CurrCycle;
+ Bot.bumpNode(SU);
+ }
+}
+
+/// Create the standard converging machine scheduler. This will be used as the
+/// default scheduler if the target does not set a default.
+static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
+ assert((!ForceTopDown || !ForceBottomUp) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+ ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
+ // Register DAG post-processors.
+ if (EnableLoadCluster)
+ DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
+ if (EnableMacroFusion)
+ DAG->addMutation(new MacroFusion(DAG->TII));
+ return DAG;
+}
+static MachineSchedRegistry
+ConvergingSchedRegistry("converge", "Standard converging scheduler.",
+ createConvergingSched);
+
+//===----------------------------------------------------------------------===//
+// ILP Scheduler. Currently for experimental analysis of heuristics.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Order nodes by the ILP metric.
+struct ILPOrder {
+ const SchedDFSResult *DFSResult;
+ const BitVector *ScheduledTrees;
+ bool MaximizeILP;
+
+ ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
+
+ /// \brief Apply a less-than relation on node priority.
+ ///
+ /// (Return true if A comes after B in the Q.)
+ bool operator()(const SUnit *A, const SUnit *B) const {
+ unsigned SchedTreeA = DFSResult->getSubtreeID(A);
+ unsigned SchedTreeB = DFSResult->getSubtreeID(B);
+ if (SchedTreeA != SchedTreeB) {
+ // Unscheduled trees have lower priority.
+ if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
+ return ScheduledTrees->test(SchedTreeB);
+
+ // Trees with shallower connections have have lower priority.
+ if (DFSResult->getSubtreeLevel(SchedTreeA)
+ != DFSResult->getSubtreeLevel(SchedTreeB)) {
+ return DFSResult->getSubtreeLevel(SchedTreeA)
+ < DFSResult->getSubtreeLevel(SchedTreeB);
+ }
+ }
+ if (MaximizeILP)
+ return DFSResult->getILP(A) < DFSResult->getILP(B);
+ else
+ return DFSResult->getILP(A) > DFSResult->getILP(B);
+ }
+};
+
+/// \brief Schedule based on the ILP metric.
+class ILPScheduler : public MachineSchedStrategy {
+ /// In case all subtrees are eventually connected to a common root through
+ /// data dependence (e.g. reduction), place an upper limit on their size.
+ ///
+ /// FIXME: A subtree limit is generally good, but in the situation commented
+ /// above, where multiple similar subtrees feed a common root, we should
+ /// only split at a point where the resulting subtrees will be balanced.
+ /// (a motivating test case must be found).
+ static const unsigned SubtreeLimit = 16;
+
+ ScheduleDAGMI *DAG;
+ ILPOrder Cmp;
+
+ std::vector<SUnit*> ReadyQ;
+public:
+ ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
+
+ virtual void initialize(ScheduleDAGMI *dag) {
+ DAG = dag;
+ DAG->computeDFSResult();
+ Cmp.DFSResult = DAG->getDFSResult();
+ Cmp.ScheduledTrees = &DAG->getScheduledTrees();
+ ReadyQ.clear();
+ }
+
+ virtual void registerRoots() {
+ // Restore the heap in ReadyQ with the updated DFS results.
+ std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+ }
+
+ /// Implement MachineSchedStrategy interface.
+ /// -----------------------------------------
+
+ /// Callback to select the highest priority node from the ready Q.
+ virtual SUnit *pickNode(bool &IsTopNode) {
+ if (ReadyQ.empty()) return NULL;
+ std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+ SUnit *SU = ReadyQ.back();
+ ReadyQ.pop_back();
+ IsTopNode = false;
+ DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): "
+ << *SU->getInstr()
+ << " ILP: " << DAG->getDFSResult()->getILP(SU)
+ << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
+ << DAG->getDFSResult()->getSubtreeLevel(
+ DAG->getDFSResult()->getSubtreeID(SU)) << '\n');
+ return SU;
+ }
+
+ /// \brief Scheduler callback to notify that a new subtree is scheduled.
+ virtual void scheduleTree(unsigned SubtreeID) {
+ std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+ }
+
+ /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
+ /// DFSResults, and resort the priority Q.
+ virtual void schedNode(SUnit *SU, bool IsTopNode) {
+ assert(!IsTopNode && "SchedDFSResult needs bottom-up");
+ }
+
+ virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
+
+ virtual void releaseBottomNode(SUnit *SU) {
+ ReadyQ.push_back(SU);
+ std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+ }
+};
+} // namespace
+
+static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
+ return new ScheduleDAGMI(C, new ILPScheduler(true));
+}
+static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
+ return new ScheduleDAGMI(C, new ILPScheduler(false));
+}
+static MachineSchedRegistry ILPMaxRegistry(
+ "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
+static MachineSchedRegistry ILPMinRegistry(
+ "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
+
+//===----------------------------------------------------------------------===//
+// Machine Instruction Shuffler for Correctness Testing
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+namespace {
+/// Apply a less-than relation on the node order, which corresponds to the
+/// instruction order prior to scheduling. IsReverse implements greater-than.
+template<bool IsReverse>
+struct SUnitOrder {
+ bool operator()(SUnit *A, SUnit *B) const {
+ if (IsReverse)
+ return A->NodeNum > B->NodeNum;
+ else
+ return A->NodeNum < B->NodeNum;
+ }
+};
+
+/// Reorder instructions as much as possible.
+class InstructionShuffler : public MachineSchedStrategy {
+ bool IsAlternating;
+ bool IsTopDown;
+
+ // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
+ // gives nodes with a higher number higher priority causing the latest
+ // instructions to be scheduled first.
+ PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
+ TopQ;
+ // When scheduling bottom-up, use greater-than as the queue priority.
+ PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
+ BottomQ;
+public:
+ InstructionShuffler(bool alternate, bool topdown)
+ : IsAlternating(alternate), IsTopDown(topdown) {}
+
+ virtual void initialize(ScheduleDAGMI *) {
+ TopQ.clear();
+ BottomQ.clear();
+ }
+
+ /// Implement MachineSchedStrategy interface.
+ /// -----------------------------------------
+
+ virtual SUnit *pickNode(bool &IsTopNode) {
+ SUnit *SU;
+ if (IsTopDown) {
+ do {
+ if (TopQ.empty()) return NULL;
+ SU = TopQ.top();
+ TopQ.pop();
+ } while (SU->isScheduled);
+ IsTopNode = true;
+ }
+ else {
+ do {
+ if (BottomQ.empty()) return NULL;
+ SU = BottomQ.top();
+ BottomQ.pop();
+ } while (SU->isScheduled);
+ IsTopNode = false;
+ }
+ if (IsAlternating)
+ IsTopDown = !IsTopDown;
+ return SU;
+ }
+
+ virtual void schedNode(SUnit *SU, bool IsTopNode) {}
+
+ virtual void releaseTopNode(SUnit *SU) {
+ TopQ.push(SU);
+ }
+ virtual void releaseBottomNode(SUnit *SU) {
+ BottomQ.push(SU);
+ }
+};
+} // namespace
+
+static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
+ bool Alternate = !ForceTopDown && !ForceBottomUp;
+ bool TopDown = !ForceBottomUp;
+ assert((TopDown || !ForceTopDown) &&
+ "-misched-topdown incompatible with -misched-bottomup");
+ return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
+}
+static MachineSchedRegistry ShufflerRegistry(
+ "shuffle", "Shuffle machine instructions alternating directions",
+ createInstructionShuffler);
+#endif // !NDEBUG
+
+//===----------------------------------------------------------------------===//
+// GraphWriter support for ScheduleDAGMI.
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+namespace llvm {
+
+template<> struct GraphTraits<
+ ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
+
+template<>
+struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
+
+ DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getGraphName(const ScheduleDAG *G) {
+ return G->MF.getName();
+ }
+
+ static bool renderGraphFromBottomUp() {
+ return true;
+ }
+
+ static bool isNodeHidden(const SUnit *Node) {
+ return (Node->NumPreds > 10 || Node->NumSuccs > 10);
+ }
+
+ static bool hasNodeAddressLabel(const SUnit *Node,
+ const ScheduleDAG *Graph) {
+ return false;
+ }
+
+ /// If you want to override the dot attributes printed for a particular
+ /// edge, override this method.
+ static std::string getEdgeAttributes(const SUnit *Node,
+ SUnitIterator EI,
+ const ScheduleDAG *Graph) {
+ if (EI.isArtificialDep())
+ return "color=cyan,style=dashed";
+ if (EI.isCtrlDep())
+ return "color=blue,style=dashed";
+ return "";
+ }
+
+ static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
+ std::string Str;
+ raw_string_ostream SS(Str);
+ SS << "SU(" << SU->NodeNum << ')';
+ return SS.str();
+ }
+ static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
+ return G->getGraphNodeLabel(SU);
+ }
+
+ static std::string getNodeAttributes(const SUnit *N,
+ const ScheduleDAG *Graph) {
+ std::string Str("shape=Mrecord");
+ const SchedDFSResult *DFS =
+ static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
+ if (DFS) {
+ Str += ",style=filled,fillcolor=\"#";
+ Str += DOT::getColorString(DFS->getSubtreeID(N));
+ Str += '"';
+ }
+ return Str;
+ }
+};
+} // namespace llvm
+#endif // NDEBUG
+
+/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
+/// rendered using 'dot'.
+///
+void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
+#ifndef NDEBUG
+ ViewGraph(this, Name, false, Title);
+#else
+ errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
+ << "systems with Graphviz or gv!\n";
+#endif // NDEBUG
+}
+
+/// Out-of-line implementation with no arguments is handy for gdb.
+void ScheduleDAGMI::viewGraph() {
+ viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
+}
OpenPOWER on IntegriCloud