diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineScheduler.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/MachineScheduler.cpp | 2396 |
1 files changed, 2396 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineScheduler.cpp b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp new file mode 100644 index 0000000..5bd2349 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachineScheduler.cpp @@ -0,0 +1,2396 @@ +//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// MachineScheduler schedules machine instructions after phi elimination. It +// preserves LiveIntervals so it can be invoked before register allocation. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "misched" + +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/ADT/OwningPtr.h" +#include "llvm/ADT/PriorityQueue.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/ScheduleDFS.h" +#include "llvm/CodeGen/ScheduleHazardRecognizer.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/raw_ostream.h" +#include <queue> + +using namespace llvm; + +namespace llvm { +cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, + cl::desc("Force top-down list scheduling")); +cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, + cl::desc("Force bottom-up list scheduling")); +} + +#ifndef NDEBUG +static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden, + cl::desc("Pop up a window to show MISched dags after they are processed")); + +static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, + cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); +#else +static bool ViewMISchedDAGs = false; +#endif // NDEBUG + +// Experimental heuristics +static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden, + cl::desc("Enable load clustering."), cl::init(true)); + +// Experimental heuristics +static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden, + cl::desc("Enable scheduling for macro fusion."), cl::init(true)); + +static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden, + cl::desc("Verify machine instrs before and after machine scheduling")); + +// DAG subtrees must have at least this many nodes. +static const unsigned MinSubtreeSize = 8; + +//===----------------------------------------------------------------------===// +// Machine Instruction Scheduling Pass and Registry +//===----------------------------------------------------------------------===// + +MachineSchedContext::MachineSchedContext(): + MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) { + RegClassInfo = new RegisterClassInfo(); +} + +MachineSchedContext::~MachineSchedContext() { + delete RegClassInfo; +} + +namespace { +/// MachineScheduler runs after coalescing and before register allocation. +class MachineScheduler : public MachineSchedContext, + public MachineFunctionPass { +public: + MachineScheduler(); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const; + + virtual void releaseMemory() {} + + virtual bool runOnMachineFunction(MachineFunction&); + + virtual void print(raw_ostream &O, const Module* = 0) const; + + static char ID; // Class identification, replacement for typeinfo +}; +} // namespace + +char MachineScheduler::ID = 0; + +char &llvm::MachineSchedulerID = MachineScheduler::ID; + +INITIALIZE_PASS_BEGIN(MachineScheduler, "misched", + "Machine Instruction Scheduler", false, false) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_DEPENDENCY(SlotIndexes) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(MachineScheduler, "misched", + "Machine Instruction Scheduler", false, false) + +MachineScheduler::MachineScheduler() +: MachineFunctionPass(ID) { + initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); +} + +void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequiredID(MachineDominatorsID); + AU.addRequired<MachineLoopInfo>(); + AU.addRequired<AliasAnalysis>(); + AU.addRequired<TargetPassConfig>(); + AU.addRequired<SlotIndexes>(); + AU.addPreserved<SlotIndexes>(); + AU.addRequired<LiveIntervals>(); + AU.addPreserved<LiveIntervals>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +MachinePassRegistry MachineSchedRegistry::Registry; + +/// A dummy default scheduler factory indicates whether the scheduler +/// is overridden on the command line. +static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { + return 0; +} + +/// MachineSchedOpt allows command line selection of the scheduler. +static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, + RegisterPassParser<MachineSchedRegistry> > +MachineSchedOpt("misched", + cl::init(&useDefaultMachineSched), cl::Hidden, + cl::desc("Machine instruction scheduler to use")); + +static MachineSchedRegistry +DefaultSchedRegistry("default", "Use the target's default scheduler choice.", + useDefaultMachineSched); + +/// Forward declare the standard machine scheduler. This will be used as the +/// default scheduler if the target does not set a default. +static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C); + + +/// Decrement this iterator until reaching the top or a non-debug instr. +static MachineBasicBlock::iterator +priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) { + assert(I != Beg && "reached the top of the region, cannot decrement"); + while (--I != Beg) { + if (!I->isDebugValue()) + break; + } + return I; +} + +/// If this iterator is a debug value, increment until reaching the End or a +/// non-debug instruction. +static MachineBasicBlock::iterator +nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) { + for(; I != End; ++I) { + if (!I->isDebugValue()) + break; + } + return I; +} + +/// Top-level MachineScheduler pass driver. +/// +/// Visit blocks in function order. Divide each block into scheduling regions +/// and visit them bottom-up. Visiting regions bottom-up is not required, but is +/// consistent with the DAG builder, which traverses the interior of the +/// scheduling regions bottom-up. +/// +/// This design avoids exposing scheduling boundaries to the DAG builder, +/// simplifying the DAG builder's support for "special" target instructions. +/// At the same time the design allows target schedulers to operate across +/// scheduling boundaries, for example to bundle the boudary instructions +/// without reordering them. This creates complexity, because the target +/// scheduler must update the RegionBegin and RegionEnd positions cached by +/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler +/// design would be to split blocks at scheduling boundaries, but LLVM has a +/// general bias against block splitting purely for implementation simplicity. +bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { + DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs())); + + // Initialize the context of the pass. + MF = &mf; + MLI = &getAnalysis<MachineLoopInfo>(); + MDT = &getAnalysis<MachineDominatorTree>(); + PassConfig = &getAnalysis<TargetPassConfig>(); + AA = &getAnalysis<AliasAnalysis>(); + + LIS = &getAnalysis<LiveIntervals>(); + const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); + + if (VerifyScheduling) { + DEBUG(LIS->print(dbgs())); + MF->verify(this, "Before machine scheduling."); + } + RegClassInfo->runOnMachineFunction(*MF); + + // Select the scheduler, or set the default. + MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; + if (Ctor == useDefaultMachineSched) { + // Get the default scheduler set by the target. + Ctor = MachineSchedRegistry::getDefault(); + if (!Ctor) { + Ctor = createConvergingSched; + MachineSchedRegistry::setDefault(Ctor); + } + } + // Instantiate the selected scheduler. + OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this)); + + // Visit all machine basic blocks. + // + // TODO: Visit blocks in global postorder or postorder within the bottom-up + // loop tree. Then we can optionally compute global RegPressure. + for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); + MBB != MBBEnd; ++MBB) { + + Scheduler->startBlock(MBB); + + // Break the block into scheduling regions [I, RegionEnd), and schedule each + // region as soon as it is discovered. RegionEnd points the scheduling + // boundary at the bottom of the region. The DAG does not include RegionEnd, + // but the region does (i.e. the next RegionEnd is above the previous + // RegionBegin). If the current block has no terminator then RegionEnd == + // MBB->end() for the bottom region. + // + // The Scheduler may insert instructions during either schedule() or + // exitRegion(), even for empty regions. So the local iterators 'I' and + // 'RegionEnd' are invalid across these calls. + unsigned RemainingInstrs = MBB->size(); + for(MachineBasicBlock::iterator RegionEnd = MBB->end(); + RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) { + + // Avoid decrementing RegionEnd for blocks with no terminator. + if (RegionEnd != MBB->end() + || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) { + --RegionEnd; + // Count the boundary instruction. + --RemainingInstrs; + } + + // The next region starts above the previous region. Look backward in the + // instruction stream until we find the nearest boundary. + MachineBasicBlock::iterator I = RegionEnd; + for(;I != MBB->begin(); --I, --RemainingInstrs) { + if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF)) + break; + } + // Notify the scheduler of the region, even if we may skip scheduling + // it. Perhaps it still needs to be bundled. + Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs); + + // Skip empty scheduling regions (0 or 1 schedulable instructions). + if (I == RegionEnd || I == llvm::prior(RegionEnd)) { + // Close the current region. Bundle the terminator if needed. + // This invalidates 'RegionEnd' and 'I'. + Scheduler->exitRegion(); + continue; + } + DEBUG(dbgs() << "********** MI Scheduling **********\n"); + DEBUG(dbgs() << MF->getName() + << ":BB#" << MBB->getNumber() << " " << MBB->getName() + << "\n From: " << *I << " To: "; + if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; + else dbgs() << "End"; + dbgs() << " Remaining: " << RemainingInstrs << "\n"); + + // Schedule a region: possibly reorder instructions. + // This invalidates 'RegionEnd' and 'I'. + Scheduler->schedule(); + + // Close the current region. + Scheduler->exitRegion(); + + // Scheduling has invalidated the current iterator 'I'. Ask the + // scheduler for the top of it's scheduled region. + RegionEnd = Scheduler->begin(); + } + assert(RemainingInstrs == 0 && "Instruction count mismatch!"); + Scheduler->finishBlock(); + } + Scheduler->finalizeSchedule(); + DEBUG(LIS->print(dbgs())); + if (VerifyScheduling) + MF->verify(this, "After machine scheduling."); + return true; +} + +void MachineScheduler::print(raw_ostream &O, const Module* m) const { + // unimplemented +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ReadyQueue::dump() { + dbgs() << " " << Name << ": "; + for (unsigned i = 0, e = Queue.size(); i < e; ++i) + dbgs() << Queue[i]->NodeNum << " "; + dbgs() << "\n"; +} +#endif + +//===----------------------------------------------------------------------===// +// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals +// preservation. +//===----------------------------------------------------------------------===// + +ScheduleDAGMI::~ScheduleDAGMI() { + delete DFSResult; + DeleteContainerPointers(Mutations); + delete SchedImpl; +} + +bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) { + if (SuccSU != &ExitSU) { + // Do not use WillCreateCycle, it assumes SD scheduling. + // If Pred is reachable from Succ, then the edge creates a cycle. + if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) + return false; + Topo.AddPred(SuccSU, PredDep.getSUnit()); + } + SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); + // Return true regardless of whether a new edge needed to be inserted. + return true; +} + +/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When +/// NumPredsLeft reaches zero, release the successor node. +/// +/// FIXME: Adjust SuccSU height based on MinLatency. +void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { + SUnit *SuccSU = SuccEdge->getSUnit(); + + if (SuccEdge->isWeak()) { + --SuccSU->WeakPredsLeft; + if (SuccEdge->isCluster()) + NextClusterSucc = SuccSU; + return; + } +#ifndef NDEBUG + if (SuccSU->NumPredsLeft == 0) { + dbgs() << "*** Scheduling failed! ***\n"; + SuccSU->dump(this); + dbgs() << " has been released too many times!\n"; + llvm_unreachable(0); + } +#endif + --SuccSU->NumPredsLeft; + if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) + SchedImpl->releaseTopNode(SuccSU); +} + +/// releaseSuccessors - Call releaseSucc on each of SU's successors. +void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { + for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); + I != E; ++I) { + releaseSucc(SU, &*I); + } +} + +/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When +/// NumSuccsLeft reaches zero, release the predecessor node. +/// +/// FIXME: Adjust PredSU height based on MinLatency. +void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { + SUnit *PredSU = PredEdge->getSUnit(); + + if (PredEdge->isWeak()) { + --PredSU->WeakSuccsLeft; + if (PredEdge->isCluster()) + NextClusterPred = PredSU; + return; + } +#ifndef NDEBUG + if (PredSU->NumSuccsLeft == 0) { + dbgs() << "*** Scheduling failed! ***\n"; + PredSU->dump(this); + dbgs() << " has been released too many times!\n"; + llvm_unreachable(0); + } +#endif + --PredSU->NumSuccsLeft; + if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) + SchedImpl->releaseBottomNode(PredSU); +} + +/// releasePredecessors - Call releasePred on each of SU's predecessors. +void ScheduleDAGMI::releasePredecessors(SUnit *SU) { + for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + releasePred(SU, &*I); + } +} + +void ScheduleDAGMI::moveInstruction(MachineInstr *MI, + MachineBasicBlock::iterator InsertPos) { + // Advance RegionBegin if the first instruction moves down. + if (&*RegionBegin == MI) + ++RegionBegin; + + // Update the instruction stream. + BB->splice(InsertPos, BB, MI); + + // Update LiveIntervals + LIS->handleMove(MI, /*UpdateFlags=*/true); + + // Recede RegionBegin if an instruction moves above the first. + if (RegionBegin == InsertPos) + RegionBegin = MI; +} + +bool ScheduleDAGMI::checkSchedLimit() { +#ifndef NDEBUG + if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { + CurrentTop = CurrentBottom; + return false; + } + ++NumInstrsScheduled; +#endif + return true; +} + +/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after +/// crossing a scheduling boundary. [begin, end) includes all instructions in +/// the region, including the boundary itself and single-instruction regions +/// that don't get scheduled. +void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, + MachineBasicBlock::iterator begin, + MachineBasicBlock::iterator end, + unsigned endcount) +{ + ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); + + // For convenience remember the end of the liveness region. + LiveRegionEnd = + (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd); +} + +// Setup the register pressure trackers for the top scheduled top and bottom +// scheduled regions. +void ScheduleDAGMI::initRegPressure() { + TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin); + BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); + + // Close the RPTracker to finalize live ins. + RPTracker.closeRegion(); + + DEBUG(RPTracker.getPressure().dump(TRI)); + + // Initialize the live ins and live outs. + TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); + BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); + + // Close one end of the tracker so we can call + // getMaxUpward/DownwardPressureDelta before advancing across any + // instructions. This converts currently live regs into live ins/outs. + TopRPTracker.closeTop(); + BotRPTracker.closeBottom(); + + // Account for liveness generated by the region boundary. + if (LiveRegionEnd != RegionEnd) + BotRPTracker.recede(); + + assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom"); + + // Cache the list of excess pressure sets in this region. This will also track + // the max pressure in the scheduled code for these sets. + RegionCriticalPSets.clear(); + const std::vector<unsigned> &RegionPressure = + RPTracker.getPressure().MaxSetPressure; + for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { + unsigned Limit = TRI->getRegPressureSetLimit(i); + DEBUG(dbgs() << TRI->getRegPressureSetName(i) + << "Limit " << Limit + << " Actual " << RegionPressure[i] << "\n"); + if (RegionPressure[i] > Limit) + RegionCriticalPSets.push_back(PressureElement(i, 0)); + } + DEBUG(dbgs() << "Excess PSets: "; + for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i) + dbgs() << TRI->getRegPressureSetName( + RegionCriticalPSets[i].PSetID) << " "; + dbgs() << "\n"); +} + +// FIXME: When the pressure tracker deals in pressure differences then we won't +// iterate over all RegionCriticalPSets[i]. +void ScheduleDAGMI:: +updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) { + for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) { + unsigned ID = RegionCriticalPSets[i].PSetID; + int &MaxUnits = RegionCriticalPSets[i].UnitIncrease; + if ((int)NewMaxPressure[ID] > MaxUnits) + MaxUnits = NewMaxPressure[ID]; + } +} + +/// schedule - Called back from MachineScheduler::runOnMachineFunction +/// after setting up the current scheduling region. [RegionBegin, RegionEnd) +/// only includes instructions that have DAG nodes, not scheduling boundaries. +/// +/// This is a skeletal driver, with all the functionality pushed into helpers, +/// so that it can be easilly extended by experimental schedulers. Generally, +/// implementing MachineSchedStrategy should be sufficient to implement a new +/// scheduling algorithm. However, if a scheduler further subclasses +/// ScheduleDAGMI then it will want to override this virtual method in order to +/// update any specialized state. +void ScheduleDAGMI::schedule() { + buildDAGWithRegPressure(); + + Topo.InitDAGTopologicalSorting(); + + postprocessDAG(); + + SmallVector<SUnit*, 8> TopRoots, BotRoots; + findRootsAndBiasEdges(TopRoots, BotRoots); + + // Initialize the strategy before modifying the DAG. + // This may initialize a DFSResult to be used for queue priority. + SchedImpl->initialize(this); + + DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) + SUnits[su].dumpAll(this)); + if (ViewMISchedDAGs) viewGraph(); + + // Initialize ready queues now that the DAG and priority data are finalized. + initQueues(TopRoots, BotRoots); + + bool IsTopNode = false; + while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { + assert(!SU->isScheduled && "Node already scheduled"); + if (!checkSchedLimit()) + break; + + scheduleMI(SU, IsTopNode); + + updateQueues(SU, IsTopNode); + } + assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); + + placeDebugValues(); + + DEBUG({ + unsigned BBNum = begin()->getParent()->getNumber(); + dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; + dumpSchedule(); + dbgs() << '\n'; + }); +} + +/// Build the DAG and setup three register pressure trackers. +void ScheduleDAGMI::buildDAGWithRegPressure() { + // Initialize the register pressure tracker used by buildSchedGraph. + RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd); + + // Account for liveness generate by the region boundary. + if (LiveRegionEnd != RegionEnd) + RPTracker.recede(); + + // Build the DAG, and compute current register pressure. + buildSchedGraph(AA, &RPTracker); + + // Initialize top/bottom trackers after computing region pressure. + initRegPressure(); +} + +/// Apply each ScheduleDAGMutation step in order. +void ScheduleDAGMI::postprocessDAG() { + for (unsigned i = 0, e = Mutations.size(); i < e; ++i) { + Mutations[i]->apply(this); + } +} + +void ScheduleDAGMI::computeDFSResult() { + if (!DFSResult) + DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); + DFSResult->clear(); + ScheduledTrees.clear(); + DFSResult->resize(SUnits.size()); + DFSResult->compute(SUnits); + ScheduledTrees.resize(DFSResult->getNumSubtrees()); +} + +void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, + SmallVectorImpl<SUnit*> &BotRoots) { + for (std::vector<SUnit>::iterator + I = SUnits.begin(), E = SUnits.end(); I != E; ++I) { + SUnit *SU = &(*I); + assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits"); + + // Order predecessors so DFSResult follows the critical path. + SU->biasCriticalPath(); + + // A SUnit is ready to top schedule if it has no predecessors. + if (!I->NumPredsLeft) + TopRoots.push_back(SU); + // A SUnit is ready to bottom schedule if it has no successors. + if (!I->NumSuccsLeft) + BotRoots.push_back(SU); + } + ExitSU.biasCriticalPath(); +} + +/// Identify DAG roots and setup scheduler queues. +void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, + ArrayRef<SUnit*> BotRoots) { + NextClusterSucc = NULL; + NextClusterPred = NULL; + + // Release all DAG roots for scheduling, not including EntrySU/ExitSU. + // + // Nodes with unreleased weak edges can still be roots. + // Release top roots in forward order. + for (SmallVectorImpl<SUnit*>::const_iterator + I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) { + SchedImpl->releaseTopNode(*I); + } + // Release bottom roots in reverse order so the higher priority nodes appear + // first. This is more natural and slightly more efficient. + for (SmallVectorImpl<SUnit*>::const_reverse_iterator + I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { + SchedImpl->releaseBottomNode(*I); + } + + releaseSuccessors(&EntrySU); + releasePredecessors(&ExitSU); + + SchedImpl->registerRoots(); + + // Advance past initial DebugValues. + assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); + CurrentTop = nextIfDebug(RegionBegin, RegionEnd); + TopRPTracker.setPos(CurrentTop); + + CurrentBottom = RegionEnd; +} + +/// Move an instruction and update register pressure. +void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) { + // Move the instruction to its new location in the instruction stream. + MachineInstr *MI = SU->getInstr(); + + if (IsTopNode) { + assert(SU->isTopReady() && "node still has unscheduled dependencies"); + if (&*CurrentTop == MI) + CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); + else { + moveInstruction(MI, CurrentTop); + TopRPTracker.setPos(MI); + } + + // Update top scheduled pressure. + TopRPTracker.advance(); + assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); + updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure); + } + else { + assert(SU->isBottomReady() && "node still has unscheduled dependencies"); + MachineBasicBlock::iterator priorII = + priorNonDebug(CurrentBottom, CurrentTop); + if (&*priorII == MI) + CurrentBottom = priorII; + else { + if (&*CurrentTop == MI) { + CurrentTop = nextIfDebug(++CurrentTop, priorII); + TopRPTracker.setPos(CurrentTop); + } + moveInstruction(MI, CurrentBottom); + CurrentBottom = MI; + } + // Update bottom scheduled pressure. + BotRPTracker.recede(); + assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); + updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure); + } +} + +/// Update scheduler queues after scheduling an instruction. +void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { + // Release dependent instructions for scheduling. + if (IsTopNode) + releaseSuccessors(SU); + else + releasePredecessors(SU); + + SU->isScheduled = true; + + if (DFSResult) { + unsigned SubtreeID = DFSResult->getSubtreeID(SU); + if (!ScheduledTrees.test(SubtreeID)) { + ScheduledTrees.set(SubtreeID); + DFSResult->scheduleTree(SubtreeID); + SchedImpl->scheduleTree(SubtreeID); + } + } + + // Notify the scheduling strategy after updating the DAG. + SchedImpl->schedNode(SU, IsTopNode); +} + +/// Reinsert any remaining debug_values, just like the PostRA scheduler. +void ScheduleDAGMI::placeDebugValues() { + // If first instruction was a DBG_VALUE then put it back. + if (FirstDbgValue) { + BB->splice(RegionBegin, BB, FirstDbgValue); + RegionBegin = FirstDbgValue; + } + + for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator + DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { + std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); + MachineInstr *DbgValue = P.first; + MachineBasicBlock::iterator OrigPrevMI = P.second; + if (&*RegionBegin == DbgValue) + ++RegionBegin; + BB->splice(++OrigPrevMI, BB, DbgValue); + if (OrigPrevMI == llvm::prior(RegionEnd)) + RegionEnd = DbgValue; + } + DbgValues.clear(); + FirstDbgValue = NULL; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ScheduleDAGMI::dumpSchedule() const { + for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) { + if (SUnit *SU = getSUnit(&(*MI))) + SU->dump(this); + else + dbgs() << "Missing SUnit\n"; + } +} +#endif + +//===----------------------------------------------------------------------===// +// LoadClusterMutation - DAG post-processing to cluster loads. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Post-process the DAG to create cluster edges between neighboring +/// loads. +class LoadClusterMutation : public ScheduleDAGMutation { + struct LoadInfo { + SUnit *SU; + unsigned BaseReg; + unsigned Offset; + LoadInfo(SUnit *su, unsigned reg, unsigned ofs) + : SU(su), BaseReg(reg), Offset(ofs) {} + }; + static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS, + const LoadClusterMutation::LoadInfo &RHS); + + const TargetInstrInfo *TII; + const TargetRegisterInfo *TRI; +public: + LoadClusterMutation(const TargetInstrInfo *tii, + const TargetRegisterInfo *tri) + : TII(tii), TRI(tri) {} + + virtual void apply(ScheduleDAGMI *DAG); +protected: + void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG); +}; +} // anonymous + +bool LoadClusterMutation::LoadInfoLess( + const LoadClusterMutation::LoadInfo &LHS, + const LoadClusterMutation::LoadInfo &RHS) { + if (LHS.BaseReg != RHS.BaseReg) + return LHS.BaseReg < RHS.BaseReg; + return LHS.Offset < RHS.Offset; +} + +void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads, + ScheduleDAGMI *DAG) { + SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords; + for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) { + SUnit *SU = Loads[Idx]; + unsigned BaseReg; + unsigned Offset; + if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI)) + LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset)); + } + if (LoadRecords.size() < 2) + return; + std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess); + unsigned ClusterLength = 1; + for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) { + if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) { + ClusterLength = 1; + continue; + } + + SUnit *SUa = LoadRecords[Idx].SU; + SUnit *SUb = LoadRecords[Idx+1].SU; + if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength) + && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) { + + DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU(" + << SUb->NodeNum << ")\n"); + // Copy successor edges from SUa to SUb. Interleaving computation + // dependent on SUa can prevent load combining due to register reuse. + // Predecessor edges do not need to be copied from SUb to SUa since nearby + // loads should have effectively the same inputs. + for (SUnit::const_succ_iterator + SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) { + if (SI->getSUnit() == SUb) + continue; + DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n"); + DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial)); + } + ++ClusterLength; + } + else + ClusterLength = 1; + } +} + +/// \brief Callback from DAG postProcessing to create cluster edges for loads. +void LoadClusterMutation::apply(ScheduleDAGMI *DAG) { + // Map DAG NodeNum to store chain ID. + DenseMap<unsigned, unsigned> StoreChainIDs; + // Map each store chain to a set of dependent loads. + SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents; + for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) { + SUnit *SU = &DAG->SUnits[Idx]; + if (!SU->getInstr()->mayLoad()) + continue; + unsigned ChainPredID = DAG->SUnits.size(); + for (SUnit::const_pred_iterator + PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) { + if (PI->isCtrl()) { + ChainPredID = PI->getSUnit()->NodeNum; + break; + } + } + // Check if this chain-like pred has been seen + // before. ChainPredID==MaxNodeID for loads at the top of the schedule. + unsigned NumChains = StoreChainDependents.size(); + std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result = + StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains)); + if (Result.second) + StoreChainDependents.resize(NumChains + 1); + StoreChainDependents[Result.first->second].push_back(SU); + } + // Iterate over the store chains. + for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx) + clusterNeighboringLoads(StoreChainDependents[Idx], DAG); +} + +//===----------------------------------------------------------------------===// +// MacroFusion - DAG post-processing to encourage fusion of macro ops. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Post-process the DAG to create cluster edges between instructions +/// that may be fused by the processor into a single operation. +class MacroFusion : public ScheduleDAGMutation { + const TargetInstrInfo *TII; +public: + MacroFusion(const TargetInstrInfo *tii): TII(tii) {} + + virtual void apply(ScheduleDAGMI *DAG); +}; +} // anonymous + +/// \brief Callback from DAG postProcessing to create cluster edges to encourage +/// fused operations. +void MacroFusion::apply(ScheduleDAGMI *DAG) { + // For now, assume targets can only fuse with the branch. + MachineInstr *Branch = DAG->ExitSU.getInstr(); + if (!Branch) + return; + + for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) { + SUnit *SU = &DAG->SUnits[--Idx]; + if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch)) + continue; + + // Create a single weak edge from SU to ExitSU. The only effect is to cause + // bottom-up scheduling to heavily prioritize the clustered SU. There is no + // need to copy predecessor edges from ExitSU to SU, since top-down + // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling + // of SU, we could create an artificial edge from the deepest root, but it + // hasn't been needed yet. + bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster)); + (void)Success; + assert(Success && "No DAG nodes should be reachable from ExitSU"); + + DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n"); + break; + } +} + +//===----------------------------------------------------------------------===// +// ConvergingScheduler - Implementation of the standard MachineSchedStrategy. +//===----------------------------------------------------------------------===// + +namespace { +/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance +/// the schedule. +class ConvergingScheduler : public MachineSchedStrategy { +public: + /// Represent the type of SchedCandidate found within a single queue. + /// pickNodeBidirectional depends on these listed by decreasing priority. + enum CandReason { + NoCand, SingleExcess, SingleCritical, Cluster, + ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, + TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse, + NodeOrder}; + +#ifndef NDEBUG + static const char *getReasonStr(ConvergingScheduler::CandReason Reason); +#endif + + /// Policy for scheduling the next instruction in the candidate's zone. + struct CandPolicy { + bool ReduceLatency; + unsigned ReduceResIdx; + unsigned DemandResIdx; + + CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {} + }; + + /// Status of an instruction's critical resource consumption. + struct SchedResourceDelta { + // Count critical resources in the scheduled region required by SU. + unsigned CritResources; + + // Count critical resources from another region consumed by SU. + unsigned DemandedResources; + + SchedResourceDelta(): CritResources(0), DemandedResources(0) {} + + bool operator==(const SchedResourceDelta &RHS) const { + return CritResources == RHS.CritResources + && DemandedResources == RHS.DemandedResources; + } + bool operator!=(const SchedResourceDelta &RHS) const { + return !operator==(RHS); + } + }; + + /// Store the state used by ConvergingScheduler heuristics, required for the + /// lifetime of one invocation of pickNode(). + struct SchedCandidate { + CandPolicy Policy; + + // The best SUnit candidate. + SUnit *SU; + + // The reason for this candidate. + CandReason Reason; + + // Register pressure values for the best candidate. + RegPressureDelta RPDelta; + + // Critical resource consumption of the best candidate. + SchedResourceDelta ResDelta; + + SchedCandidate(const CandPolicy &policy) + : Policy(policy), SU(NULL), Reason(NoCand) {} + + bool isValid() const { return SU; } + + // Copy the status of another candidate without changing policy. + void setBest(SchedCandidate &Best) { + assert(Best.Reason != NoCand && "uninitialized Sched candidate"); + SU = Best.SU; + Reason = Best.Reason; + RPDelta = Best.RPDelta; + ResDelta = Best.ResDelta; + } + + void initResourceDelta(const ScheduleDAGMI *DAG, + const TargetSchedModel *SchedModel); + }; + + /// Summarize the unscheduled region. + struct SchedRemainder { + // Critical path through the DAG in expected latency. + unsigned CriticalPath; + + // Unscheduled resources + SmallVector<unsigned, 16> RemainingCounts; + // Critical resource for the unscheduled zone. + unsigned CritResIdx; + // Number of micro-ops left to schedule. + unsigned RemainingMicroOps; + + void reset() { + CriticalPath = 0; + RemainingCounts.clear(); + CritResIdx = 0; + RemainingMicroOps = 0; + } + + SchedRemainder() { reset(); } + + void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); + + unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const { + if (!SchedModel->hasInstrSchedModel()) + return 0; + + return std::max( + RemainingMicroOps * SchedModel->getMicroOpFactor(), + RemainingCounts[CritResIdx]); + } + }; + + /// Each Scheduling boundary is associated with ready queues. It tracks the + /// current cycle in the direction of movement, and maintains the state + /// of "hazards" and other interlocks at the current cycle. + struct SchedBoundary { + ScheduleDAGMI *DAG; + const TargetSchedModel *SchedModel; + SchedRemainder *Rem; + + ReadyQueue Available; + ReadyQueue Pending; + bool CheckPending; + + // For heuristics, keep a list of the nodes that immediately depend on the + // most recently scheduled node. + SmallPtrSet<const SUnit*, 8> NextSUs; + + ScheduleHazardRecognizer *HazardRec; + + unsigned CurrCycle; + unsigned IssueCount; + + /// MinReadyCycle - Cycle of the soonest available instruction. + unsigned MinReadyCycle; + + // The expected latency of the critical path in this scheduled zone. + unsigned ExpectedLatency; + + // Resources used in the scheduled zone beyond this boundary. + SmallVector<unsigned, 16> ResourceCounts; + + // Cache the critical resources ID in this scheduled zone. + unsigned CritResIdx; + + // Is the scheduled region resource limited vs. latency limited. + bool IsResourceLimited; + + unsigned ExpectedCount; + +#ifndef NDEBUG + // Remember the greatest min operand latency. + unsigned MaxMinLatency; +#endif + + void reset() { + // A new HazardRec is created for each DAG and owned by SchedBoundary. + delete HazardRec; + + Available.clear(); + Pending.clear(); + CheckPending = false; + NextSUs.clear(); + HazardRec = 0; + CurrCycle = 0; + IssueCount = 0; + MinReadyCycle = UINT_MAX; + ExpectedLatency = 0; + ResourceCounts.resize(1); + assert(!ResourceCounts[0] && "nonzero count for bad resource"); + CritResIdx = 0; + IsResourceLimited = false; + ExpectedCount = 0; +#ifndef NDEBUG + MaxMinLatency = 0; +#endif + // Reserve a zero-count for invalid CritResIdx. + ResourceCounts.resize(1); + } + + /// Pending queues extend the ready queues with the same ID and the + /// PendingFlag set. + SchedBoundary(unsigned ID, const Twine &Name): + DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"), + Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"), + HazardRec(0) { + reset(); + } + + ~SchedBoundary() { delete HazardRec; } + + void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, + SchedRemainder *rem); + + bool isTop() const { + return Available.getID() == ConvergingScheduler::TopQID; + } + + unsigned getUnscheduledLatency(SUnit *SU) const { + if (isTop()) + return SU->getHeight(); + return SU->getDepth() + SU->Latency; + } + + unsigned getCriticalCount() const { + return ResourceCounts[CritResIdx]; + } + + bool checkHazard(SUnit *SU); + + void setLatencyPolicy(CandPolicy &Policy); + + void releaseNode(SUnit *SU, unsigned ReadyCycle); + + void bumpCycle(); + + void countResource(unsigned PIdx, unsigned Cycles); + + void bumpNode(SUnit *SU); + + void releasePending(); + + void removeReady(SUnit *SU); + + SUnit *pickOnlyChoice(); + }; + +private: + ScheduleDAGMI *DAG; + const TargetSchedModel *SchedModel; + const TargetRegisterInfo *TRI; + + // State of the top and bottom scheduled instruction boundaries. + SchedRemainder Rem; + SchedBoundary Top; + SchedBoundary Bot; + +public: + /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) + enum { + TopQID = 1, + BotQID = 2, + LogMaxQID = 2 + }; + + ConvergingScheduler(): + DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {} + + virtual void initialize(ScheduleDAGMI *dag); + + virtual SUnit *pickNode(bool &IsTopNode); + + virtual void schedNode(SUnit *SU, bool IsTopNode); + + virtual void releaseTopNode(SUnit *SU); + + virtual void releaseBottomNode(SUnit *SU); + + virtual void registerRoots(); + +protected: + void balanceZones( + ConvergingScheduler::SchedBoundary &CriticalZone, + ConvergingScheduler::SchedCandidate &CriticalCand, + ConvergingScheduler::SchedBoundary &OppositeZone, + ConvergingScheduler::SchedCandidate &OppositeCand); + + void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand, + ConvergingScheduler::SchedCandidate &BotCand); + + void tryCandidate(SchedCandidate &Cand, + SchedCandidate &TryCand, + SchedBoundary &Zone, + const RegPressureTracker &RPTracker, + RegPressureTracker &TempTracker); + + SUnit *pickNodeBidirectional(bool &IsTopNode); + + void pickNodeFromQueue(SchedBoundary &Zone, + const RegPressureTracker &RPTracker, + SchedCandidate &Candidate); + +#ifndef NDEBUG + void traceCandidate(const SchedCandidate &Cand); +#endif +}; +} // namespace + +void ConvergingScheduler::SchedRemainder:: +init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { + reset(); + if (!SchedModel->hasInstrSchedModel()) + return; + RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); + for (std::vector<SUnit>::iterator + I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) { + const MCSchedClassDesc *SC = DAG->getSchedClass(&*I); + RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC); + for (TargetSchedModel::ProcResIter + PI = SchedModel->getWriteProcResBegin(SC), + PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { + unsigned PIdx = PI->ProcResourceIdx; + unsigned Factor = SchedModel->getResourceFactor(PIdx); + RemainingCounts[PIdx] += (Factor * PI->Cycles); + } + } + for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds(); + PIdx != PEnd; ++PIdx) { + if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx]) + >= (int)SchedModel->getLatencyFactor()) { + CritResIdx = PIdx; + } + } +} + +void ConvergingScheduler::SchedBoundary:: +init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { + reset(); + DAG = dag; + SchedModel = smodel; + Rem = rem; + if (SchedModel->hasInstrSchedModel()) + ResourceCounts.resize(SchedModel->getNumProcResourceKinds()); +} + +void ConvergingScheduler::initialize(ScheduleDAGMI *dag) { + DAG = dag; + SchedModel = DAG->getSchedModel(); + TRI = DAG->TRI; + + Rem.init(DAG, SchedModel); + Top.init(DAG, SchedModel, &Rem); + Bot.init(DAG, SchedModel, &Rem); + + // Initialize resource counts. + + // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or + // are disabled, then these HazardRecs will be disabled. + const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); + const TargetMachine &TM = DAG->MF.getTarget(); + Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); + Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); + + assert((!ForceTopDown || !ForceBottomUp) && + "-misched-topdown incompatible with -misched-bottomup"); +} + +void ConvergingScheduler::releaseTopNode(SUnit *SU) { + if (SU->isScheduled) + return; + + for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; + unsigned MinLatency = I->getMinLatency(); +#ifndef NDEBUG + Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); +#endif + if (SU->TopReadyCycle < PredReadyCycle + MinLatency) + SU->TopReadyCycle = PredReadyCycle + MinLatency; + } + Top.releaseNode(SU, SU->TopReadyCycle); +} + +void ConvergingScheduler::releaseBottomNode(SUnit *SU) { + if (SU->isScheduled) + return; + + assert(SU->getInstr() && "Scheduled SUnit must have instr"); + + for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); + I != E; ++I) { + if (I->isWeak()) + continue; + unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; + unsigned MinLatency = I->getMinLatency(); +#ifndef NDEBUG + Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); +#endif + if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) + SU->BotReadyCycle = SuccReadyCycle + MinLatency; + } + Bot.releaseNode(SU, SU->BotReadyCycle); +} + +void ConvergingScheduler::registerRoots() { + Rem.CriticalPath = DAG->ExitSU.getDepth(); + // Some roots may not feed into ExitSU. Check all of them in case. + for (std::vector<SUnit*>::const_iterator + I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) { + if ((*I)->getDepth() > Rem.CriticalPath) + Rem.CriticalPath = (*I)->getDepth(); + } + DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n'); +} + +/// Does this SU have a hazard within the current instruction group. +/// +/// The scheduler supports two modes of hazard recognition. The first is the +/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that +/// supports highly complicated in-order reservation tables +/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic. +/// +/// The second is a streamlined mechanism that checks for hazards based on +/// simple counters that the scheduler itself maintains. It explicitly checks +/// for instruction dispatch limitations, including the number of micro-ops that +/// can dispatch per cycle. +/// +/// TODO: Also check whether the SU must start a new group. +bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) { + if (HazardRec->isEnabled()) + return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; + + unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); + if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) { + DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" + << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); + return true; + } + return false; +} + +/// Compute the remaining latency to determine whether ILP should be increased. +void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) { + // FIXME: compile time. In all, we visit four queues here one we should only + // need to visit the one that was last popped if we cache the result. + unsigned RemLatency = 0; + for (ReadyQueue::iterator I = Available.begin(), E = Available.end(); + I != E; ++I) { + unsigned L = getUnscheduledLatency(*I); + if (L > RemLatency) + RemLatency = L; + } + for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end(); + I != E; ++I) { + unsigned L = getUnscheduledLatency(*I); + if (L > RemLatency) + RemLatency = L; + } + unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow(); + if (RemLatency + ExpectedLatency >= CriticalPathLimit + && RemLatency > Rem->getMaxRemainingCount(SchedModel)) { + Policy.ReduceLatency = true; + DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n'); + } +} + +void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU, + unsigned ReadyCycle) { + + if (ReadyCycle < MinReadyCycle) + MinReadyCycle = ReadyCycle; + + // Check for interlocks first. For the purpose of other heuristics, an + // instruction that cannot issue appears as if it's not in the ReadyQueue. + if (ReadyCycle > CurrCycle || checkHazard(SU)) + Pending.push(SU); + else + Available.push(SU); + + // Record this node as an immediate dependent of the scheduled node. + NextSUs.insert(SU); +} + +/// Move the boundary of scheduled code by one cycle. +void ConvergingScheduler::SchedBoundary::bumpCycle() { + unsigned Width = SchedModel->getIssueWidth(); + IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; + + unsigned NextCycle = CurrCycle + 1; + assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); + if (MinReadyCycle > NextCycle) { + IssueCount = 0; + NextCycle = MinReadyCycle; + } + + if (!HazardRec->isEnabled()) { + // Bypass HazardRec virtual calls. + CurrCycle = NextCycle; + } + else { + // Bypass getHazardType calls in case of long latency. + for (; CurrCycle != NextCycle; ++CurrCycle) { + if (isTop()) + HazardRec->AdvanceCycle(); + else + HazardRec->RecedeCycle(); + } + } + CheckPending = true; + IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); + + DEBUG(dbgs() << " " << Available.getName() + << " Cycle: " << CurrCycle << '\n'); +} + +/// Add the given processor resource to this scheduled zone. +void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx, + unsigned Cycles) { + unsigned Factor = SchedModel->getResourceFactor(PIdx); + DEBUG(dbgs() << " " << SchedModel->getProcResource(PIdx)->Name + << " +(" << Cycles << "x" << Factor + << ") / " << SchedModel->getLatencyFactor() << '\n'); + + unsigned Count = Factor * Cycles; + ResourceCounts[PIdx] += Count; + assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); + Rem->RemainingCounts[PIdx] -= Count; + + // Check if this resource exceeds the current critical resource by a full + // cycle. If so, it becomes the critical resource. + if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx]) + >= (int)SchedModel->getLatencyFactor()) { + CritResIdx = PIdx; + DEBUG(dbgs() << " *** Critical resource " + << SchedModel->getProcResource(PIdx)->Name << " x" + << ResourceCounts[PIdx] << '\n'); + } +} + +/// Move the boundary of scheduled code by one SUnit. +void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) { + // Update the reservation table. + if (HazardRec->isEnabled()) { + if (!isTop() && SU->isCall) { + // Calls are scheduled with their preceding instructions. For bottom-up + // scheduling, clear the pipeline state before emitting. + HazardRec->Reset(); + } + HazardRec->EmitInstruction(SU); + } + // Update resource counts and critical resource. + if (SchedModel->hasInstrSchedModel()) { + const MCSchedClassDesc *SC = DAG->getSchedClass(SU); + Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC); + for (TargetSchedModel::ProcResIter + PI = SchedModel->getWriteProcResBegin(SC), + PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { + countResource(PI->ProcResourceIdx, PI->Cycles); + } + } + if (isTop()) { + if (SU->getDepth() > ExpectedLatency) + ExpectedLatency = SU->getDepth(); + } + else { + if (SU->getHeight() > ExpectedLatency) + ExpectedLatency = SU->getHeight(); + } + + IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle); + + // Check the instruction group dispatch limit. + // TODO: Check if this SU must end a dispatch group. + IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); + + // checkHazard prevents scheduling multiple instructions per cycle that exceed + // issue width. However, we commonly reach the maximum. In this case + // opportunistically bump the cycle to avoid uselessly checking everything in + // the readyQ. Furthermore, a single instruction may produce more than one + // cycle's worth of micro-ops. + if (IssueCount >= SchedModel->getIssueWidth()) { + DEBUG(dbgs() << " *** Max instrs at cycle " << CurrCycle << '\n'); + bumpCycle(); + } +} + +/// Release pending ready nodes in to the available queue. This makes them +/// visible to heuristics. +void ConvergingScheduler::SchedBoundary::releasePending() { + // If the available queue is empty, it is safe to reset MinReadyCycle. + if (Available.empty()) + MinReadyCycle = UINT_MAX; + + // Check to see if any of the pending instructions are ready to issue. If + // so, add them to the available queue. + for (unsigned i = 0, e = Pending.size(); i != e; ++i) { + SUnit *SU = *(Pending.begin()+i); + unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; + + if (ReadyCycle < MinReadyCycle) + MinReadyCycle = ReadyCycle; + + if (ReadyCycle > CurrCycle) + continue; + + if (checkHazard(SU)) + continue; + + Available.push(SU); + Pending.remove(Pending.begin()+i); + --i; --e; + } + DEBUG(if (!Pending.empty()) Pending.dump()); + CheckPending = false; +} + +/// Remove SU from the ready set for this boundary. +void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) { + if (Available.isInQueue(SU)) + Available.remove(Available.find(SU)); + else { + assert(Pending.isInQueue(SU) && "bad ready count"); + Pending.remove(Pending.find(SU)); + } +} + +/// If this queue only has one ready candidate, return it. As a side effect, +/// defer any nodes that now hit a hazard, and advance the cycle until at least +/// one node is ready. If multiple instructions are ready, return NULL. +SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() { + if (CheckPending) + releasePending(); + + if (IssueCount > 0) { + // Defer any ready instrs that now have a hazard. + for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { + if (checkHazard(*I)) { + Pending.push(*I); + I = Available.remove(I); + continue; + } + ++I; + } + } + for (unsigned i = 0; Available.empty(); ++i) { + assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && + "permanent hazard"); (void)i; + bumpCycle(); + releasePending(); + } + if (Available.size() == 1) + return *Available.begin(); + return NULL; +} + +/// Record the candidate policy for opposite zones with different critical +/// resources. +/// +/// If the CriticalZone is latency limited, don't force a policy for the +/// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed. +void ConvergingScheduler::balanceZones( + ConvergingScheduler::SchedBoundary &CriticalZone, + ConvergingScheduler::SchedCandidate &CriticalCand, + ConvergingScheduler::SchedBoundary &OppositeZone, + ConvergingScheduler::SchedCandidate &OppositeCand) { + + if (!CriticalZone.IsResourceLimited) + return; + assert(SchedModel->hasInstrSchedModel() && "required schedmodel"); + + SchedRemainder *Rem = CriticalZone.Rem; + + // If the critical zone is overconsuming a resource relative to the + // remainder, try to reduce it. + unsigned RemainingCritCount = + Rem->RemainingCounts[CriticalZone.CritResIdx]; + if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount) + > (int)SchedModel->getLatencyFactor()) { + CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx; + DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce " + << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name + << '\n'); + } + // If the other zone is underconsuming a resource relative to the full zone, + // try to increase it. + unsigned OppositeCount = + OppositeZone.ResourceCounts[CriticalZone.CritResIdx]; + if ((int)(OppositeZone.ExpectedCount - OppositeCount) + > (int)SchedModel->getLatencyFactor()) { + OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx; + DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand " + << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name + << '\n'); + } +} + +/// Determine if the scheduled zones exceed resource limits or critical path and +/// set each candidate's ReduceHeight policy accordingly. +void ConvergingScheduler::checkResourceLimits( + ConvergingScheduler::SchedCandidate &TopCand, + ConvergingScheduler::SchedCandidate &BotCand) { + + // Set ReduceLatency to true if needed. + Bot.setLatencyPolicy(BotCand.Policy); + Top.setLatencyPolicy(TopCand.Policy); + + // Handle resource-limited regions. + if (Top.IsResourceLimited && Bot.IsResourceLimited + && Top.CritResIdx == Bot.CritResIdx) { + // If the scheduled critical resource in both zones is no longer the + // critical remaining resource, attempt to reduce resource height both ways. + if (Top.CritResIdx != Rem.CritResIdx) { + TopCand.Policy.ReduceResIdx = Top.CritResIdx; + BotCand.Policy.ReduceResIdx = Bot.CritResIdx; + DEBUG(dbgs() << "Reduce scheduled " + << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n'); + } + return; + } + // Handle latency-limited regions. + if (!Top.IsResourceLimited && !Bot.IsResourceLimited) { + // If the total scheduled expected latency exceeds the region's critical + // path then reduce latency both ways. + // + // Just because a zone is not resource limited does not mean it is latency + // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle + // to exceed expected latency. + if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath) + && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) { + TopCand.Policy.ReduceLatency = true; + BotCand.Policy.ReduceLatency = true; + DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency + << " + " << Bot.ExpectedLatency << '\n'); + } + return; + } + // The critical resource is different in each zone, so request balancing. + + // Compute the cost of each zone. + Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle); + Top.ExpectedCount = std::max( + Top.getCriticalCount(), + Top.ExpectedCount * SchedModel->getLatencyFactor()); + Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle); + Bot.ExpectedCount = std::max( + Bot.getCriticalCount(), + Bot.ExpectedCount * SchedModel->getLatencyFactor()); + + balanceZones(Top, TopCand, Bot, BotCand); + balanceZones(Bot, BotCand, Top, TopCand); +} + +void ConvergingScheduler::SchedCandidate:: +initResourceDelta(const ScheduleDAGMI *DAG, + const TargetSchedModel *SchedModel) { + if (!Policy.ReduceResIdx && !Policy.DemandResIdx) + return; + + const MCSchedClassDesc *SC = DAG->getSchedClass(SU); + for (TargetSchedModel::ProcResIter + PI = SchedModel->getWriteProcResBegin(SC), + PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { + if (PI->ProcResourceIdx == Policy.ReduceResIdx) + ResDelta.CritResources += PI->Cycles; + if (PI->ProcResourceIdx == Policy.DemandResIdx) + ResDelta.DemandedResources += PI->Cycles; + } +} + +/// Return true if this heuristic determines order. +static bool tryLess(int TryVal, int CandVal, + ConvergingScheduler::SchedCandidate &TryCand, + ConvergingScheduler::SchedCandidate &Cand, + ConvergingScheduler::CandReason Reason) { + if (TryVal < CandVal) { + TryCand.Reason = Reason; + return true; + } + if (TryVal > CandVal) { + if (Cand.Reason > Reason) + Cand.Reason = Reason; + return true; + } + return false; +} + +static bool tryGreater(int TryVal, int CandVal, + ConvergingScheduler::SchedCandidate &TryCand, + ConvergingScheduler::SchedCandidate &Cand, + ConvergingScheduler::CandReason Reason) { + if (TryVal > CandVal) { + TryCand.Reason = Reason; + return true; + } + if (TryVal < CandVal) { + if (Cand.Reason > Reason) + Cand.Reason = Reason; + return true; + } + return false; +} + +static unsigned getWeakLeft(const SUnit *SU, bool isTop) { + return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; +} + +/// Apply a set of heursitics to a new candidate. Heuristics are currently +/// hierarchical. This may be more efficient than a graduated cost model because +/// we don't need to evaluate all aspects of the model for each node in the +/// queue. But it's really done to make the heuristics easier to debug and +/// statistically analyze. +/// +/// \param Cand provides the policy and current best candidate. +/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. +/// \param Zone describes the scheduled zone that we are extending. +/// \param RPTracker describes reg pressure within the scheduled zone. +/// \param TempTracker is a scratch pressure tracker to reuse in queries. +void ConvergingScheduler::tryCandidate(SchedCandidate &Cand, + SchedCandidate &TryCand, + SchedBoundary &Zone, + const RegPressureTracker &RPTracker, + RegPressureTracker &TempTracker) { + + // Always initialize TryCand's RPDelta. + TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta, + DAG->getRegionCriticalPSets(), + DAG->getRegPressure().MaxSetPressure); + + // Initialize the candidate if needed. + if (!Cand.isValid()) { + TryCand.Reason = NodeOrder; + return; + } + // Avoid exceeding the target's limit. + if (tryLess(TryCand.RPDelta.Excess.UnitIncrease, + Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess)) + return; + if (Cand.Reason == SingleExcess) + Cand.Reason = MultiPressure; + + // Avoid increasing the max critical pressure in the scheduled region. + if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease, + Cand.RPDelta.CriticalMax.UnitIncrease, + TryCand, Cand, SingleCritical)) + return; + if (Cand.Reason == SingleCritical) + Cand.Reason = MultiPressure; + + // Keep clustered nodes together to encourage downstream peephole + // optimizations which may reduce resource requirements. + // + // This is a best effort to set things up for a post-RA pass. Optimizations + // like generating loads of multiple registers should ideally be done within + // the scheduler pass by combining the loads during DAG postprocessing. + const SUnit *NextClusterSU = + Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); + if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU, + TryCand, Cand, Cluster)) + return; + // Currently, weak edges are for clustering, so we hard-code that reason. + // However, deferring the current TryCand will not change Cand's reason. + CandReason OrigReason = Cand.Reason; + if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()), + getWeakLeft(Cand.SU, Zone.isTop()), + TryCand, Cand, Cluster)) { + Cand.Reason = OrigReason; + return; + } + // Avoid critical resource consumption and balance the schedule. + TryCand.initResourceDelta(DAG, SchedModel); + if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, + TryCand, Cand, ResourceReduce)) + return; + if (tryGreater(TryCand.ResDelta.DemandedResources, + Cand.ResDelta.DemandedResources, + TryCand, Cand, ResourceDemand)) + return; + + // Avoid serializing long latency dependence chains. + if (Cand.Policy.ReduceLatency) { + if (Zone.isTop()) { + if (Cand.SU->getDepth() * SchedModel->getLatencyFactor() + > Zone.ExpectedCount) { + if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), + TryCand, Cand, TopDepthReduce)) + return; + } + if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), + TryCand, Cand, TopPathReduce)) + return; + } + else { + if (Cand.SU->getHeight() * SchedModel->getLatencyFactor() + > Zone.ExpectedCount) { + if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), + TryCand, Cand, BotHeightReduce)) + return; + } + if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), + TryCand, Cand, BotPathReduce)) + return; + } + } + + // Avoid increasing the max pressure of the entire region. + if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease, + Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax)) + return; + if (Cand.Reason == SingleMax) + Cand.Reason = MultiPressure; + + // Prefer immediate defs/users of the last scheduled instruction. This is a + // nice pressure avoidance strategy that also conserves the processor's + // register renaming resources and keeps the machine code readable. + if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU), + TryCand, Cand, NextDefUse)) + return; + + // Fall through to original instruction order. + if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) + || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { + TryCand.Reason = NodeOrder; + } +} + +/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is +/// more desirable than RHS from scheduling standpoint. +static bool compareRPDelta(const RegPressureDelta &LHS, + const RegPressureDelta &RHS) { + // Compare each component of pressure in decreasing order of importance + // without checking if any are valid. Invalid PressureElements are assumed to + // have UnitIncrease==0, so are neutral. + + // Avoid increasing the max critical pressure in the scheduled region. + if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) { + DEBUG(dbgs() << "RP excess top - bot: " + << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n'); + return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease; + } + // Avoid increasing the max critical pressure in the scheduled region. + if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) { + DEBUG(dbgs() << "RP critical top - bot: " + << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease) + << '\n'); + return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease; + } + // Avoid increasing the max pressure of the entire region. + if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) { + DEBUG(dbgs() << "RP current top - bot: " + << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease) + << '\n'); + return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease; + } + return false; +} + +#ifndef NDEBUG +const char *ConvergingScheduler::getReasonStr( + ConvergingScheduler::CandReason Reason) { + switch (Reason) { + case NoCand: return "NOCAND "; + case SingleExcess: return "REG-EXCESS"; + case SingleCritical: return "REG-CRIT "; + case Cluster: return "CLUSTER "; + case SingleMax: return "REG-MAX "; + case MultiPressure: return "REG-MULTI "; + case ResourceReduce: return "RES-REDUCE"; + case ResourceDemand: return "RES-DEMAND"; + case TopDepthReduce: return "TOP-DEPTH "; + case TopPathReduce: return "TOP-PATH "; + case BotHeightReduce:return "BOT-HEIGHT"; + case BotPathReduce: return "BOT-PATH "; + case NextDefUse: return "DEF-USE "; + case NodeOrder: return "ORDER "; + }; + llvm_unreachable("Unknown reason!"); +} + +void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) { + PressureElement P; + unsigned ResIdx = 0; + unsigned Latency = 0; + switch (Cand.Reason) { + default: + break; + case SingleExcess: + P = Cand.RPDelta.Excess; + break; + case SingleCritical: + P = Cand.RPDelta.CriticalMax; + break; + case SingleMax: + P = Cand.RPDelta.CurrentMax; + break; + case ResourceReduce: + ResIdx = Cand.Policy.ReduceResIdx; + break; + case ResourceDemand: + ResIdx = Cand.Policy.DemandResIdx; + break; + case TopDepthReduce: + Latency = Cand.SU->getDepth(); + break; + case TopPathReduce: + Latency = Cand.SU->getHeight(); + break; + case BotHeightReduce: + Latency = Cand.SU->getHeight(); + break; + case BotPathReduce: + Latency = Cand.SU->getDepth(); + break; + } + dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); + if (P.isValid()) + dbgs() << " " << TRI->getRegPressureSetName(P.PSetID) + << ":" << P.UnitIncrease << " "; + else + dbgs() << " "; + if (ResIdx) + dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; + else + dbgs() << " "; + if (Latency) + dbgs() << " " << Latency << " cycles "; + else + dbgs() << " "; + dbgs() << '\n'; +} +#endif + +/// Pick the best candidate from the top queue. +/// +/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during +/// DAG building. To adjust for the current scheduling location we need to +/// maintain the number of vreg uses remaining to be top-scheduled. +void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone, + const RegPressureTracker &RPTracker, + SchedCandidate &Cand) { + ReadyQueue &Q = Zone.Available; + + DEBUG(Q.dump()); + + // getMaxPressureDelta temporarily modifies the tracker. + RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); + + for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { + + SchedCandidate TryCand(Cand.Policy); + TryCand.SU = *I; + tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker); + if (TryCand.Reason != NoCand) { + // Initialize resource delta if needed in case future heuristics query it. + if (TryCand.ResDelta == SchedResourceDelta()) + TryCand.initResourceDelta(DAG, SchedModel); + Cand.setBest(TryCand); + DEBUG(traceCandidate(Cand)); + } + } +} + +static void tracePick(const ConvergingScheduler::SchedCandidate &Cand, + bool IsTop) { + DEBUG(dbgs() << "Pick " << (IsTop ? "Top" : "Bot") + << " SU(" << Cand.SU->NodeNum << ") " + << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n'); +} + +/// Pick the best candidate node from either the top or bottom queue. +SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) { + // Schedule as far as possible in the direction of no choice. This is most + // efficient, but also provides the best heuristics for CriticalPSets. + if (SUnit *SU = Bot.pickOnlyChoice()) { + IsTopNode = false; + return SU; + } + if (SUnit *SU = Top.pickOnlyChoice()) { + IsTopNode = true; + return SU; + } + CandPolicy NoPolicy; + SchedCandidate BotCand(NoPolicy); + SchedCandidate TopCand(NoPolicy); + checkResourceLimits(TopCand, BotCand); + + // Prefer bottom scheduling when heuristics are silent. + pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); + assert(BotCand.Reason != NoCand && "failed to find the first candidate"); + + // If either Q has a single candidate that provides the least increase in + // Excess pressure, we can immediately schedule from that Q. + // + // RegionCriticalPSets summarizes the pressure within the scheduled region and + // affects picking from either Q. If scheduling in one direction must + // increase pressure for one of the excess PSets, then schedule in that + // direction first to provide more freedom in the other direction. + if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) { + IsTopNode = false; + tracePick(BotCand, IsTopNode); + return BotCand.SU; + } + // Check if the top Q has a better candidate. + pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); + assert(TopCand.Reason != NoCand && "failed to find the first candidate"); + + // If either Q has a single candidate that minimizes pressure above the + // original region's pressure pick it. + if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) { + if (TopCand.Reason < BotCand.Reason) { + IsTopNode = true; + tracePick(TopCand, IsTopNode); + return TopCand.SU; + } + IsTopNode = false; + tracePick(BotCand, IsTopNode); + return BotCand.SU; + } + // Check for a salient pressure difference and pick the best from either side. + if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) { + IsTopNode = true; + tracePick(TopCand, IsTopNode); + return TopCand.SU; + } + // Otherwise prefer the bottom candidate, in node order if all else failed. + if (TopCand.Reason < BotCand.Reason) { + IsTopNode = true; + tracePick(TopCand, IsTopNode); + return TopCand.SU; + } + IsTopNode = false; + tracePick(BotCand, IsTopNode); + return BotCand.SU; +} + +/// Pick the best node to balance the schedule. Implements MachineSchedStrategy. +SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) { + if (DAG->top() == DAG->bottom()) { + assert(Top.Available.empty() && Top.Pending.empty() && + Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); + return NULL; + } + SUnit *SU; + do { + if (ForceTopDown) { + SU = Top.pickOnlyChoice(); + if (!SU) { + CandPolicy NoPolicy; + SchedCandidate TopCand(NoPolicy); + pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand); + assert(TopCand.Reason != NoCand && "failed to find the first candidate"); + SU = TopCand.SU; + } + IsTopNode = true; + } + else if (ForceBottomUp) { + SU = Bot.pickOnlyChoice(); + if (!SU) { + CandPolicy NoPolicy; + SchedCandidate BotCand(NoPolicy); + pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand); + assert(BotCand.Reason != NoCand && "failed to find the first candidate"); + SU = BotCand.SU; + } + IsTopNode = false; + } + else { + SU = pickNodeBidirectional(IsTopNode); + } + } while (SU->isScheduled); + + if (SU->isTopReady()) + Top.removeReady(SU); + if (SU->isBottomReady()) + Bot.removeReady(SU); + + DEBUG(dbgs() << "Scheduling " << *SU->getInstr()); + return SU; +} + +/// Update the scheduler's state after scheduling a node. This is the same node +/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update +/// it's state based on the current cycle before MachineSchedStrategy does. +void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) { + if (IsTopNode) { + SU->TopReadyCycle = Top.CurrCycle; + Top.bumpNode(SU); + } + else { + SU->BotReadyCycle = Bot.CurrCycle; + Bot.bumpNode(SU); + } +} + +/// Create the standard converging machine scheduler. This will be used as the +/// default scheduler if the target does not set a default. +static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { + assert((!ForceTopDown || !ForceBottomUp) && + "-misched-topdown incompatible with -misched-bottomup"); + ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler()); + // Register DAG post-processors. + if (EnableLoadCluster) + DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI)); + if (EnableMacroFusion) + DAG->addMutation(new MacroFusion(DAG->TII)); + return DAG; +} +static MachineSchedRegistry +ConvergingSchedRegistry("converge", "Standard converging scheduler.", + createConvergingSched); + +//===----------------------------------------------------------------------===// +// ILP Scheduler. Currently for experimental analysis of heuristics. +//===----------------------------------------------------------------------===// + +namespace { +/// \brief Order nodes by the ILP metric. +struct ILPOrder { + const SchedDFSResult *DFSResult; + const BitVector *ScheduledTrees; + bool MaximizeILP; + + ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {} + + /// \brief Apply a less-than relation on node priority. + /// + /// (Return true if A comes after B in the Q.) + bool operator()(const SUnit *A, const SUnit *B) const { + unsigned SchedTreeA = DFSResult->getSubtreeID(A); + unsigned SchedTreeB = DFSResult->getSubtreeID(B); + if (SchedTreeA != SchedTreeB) { + // Unscheduled trees have lower priority. + if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) + return ScheduledTrees->test(SchedTreeB); + + // Trees with shallower connections have have lower priority. + if (DFSResult->getSubtreeLevel(SchedTreeA) + != DFSResult->getSubtreeLevel(SchedTreeB)) { + return DFSResult->getSubtreeLevel(SchedTreeA) + < DFSResult->getSubtreeLevel(SchedTreeB); + } + } + if (MaximizeILP) + return DFSResult->getILP(A) < DFSResult->getILP(B); + else + return DFSResult->getILP(A) > DFSResult->getILP(B); + } +}; + +/// \brief Schedule based on the ILP metric. +class ILPScheduler : public MachineSchedStrategy { + /// In case all subtrees are eventually connected to a common root through + /// data dependence (e.g. reduction), place an upper limit on their size. + /// + /// FIXME: A subtree limit is generally good, but in the situation commented + /// above, where multiple similar subtrees feed a common root, we should + /// only split at a point where the resulting subtrees will be balanced. + /// (a motivating test case must be found). + static const unsigned SubtreeLimit = 16; + + ScheduleDAGMI *DAG; + ILPOrder Cmp; + + std::vector<SUnit*> ReadyQ; +public: + ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {} + + virtual void initialize(ScheduleDAGMI *dag) { + DAG = dag; + DAG->computeDFSResult(); + Cmp.DFSResult = DAG->getDFSResult(); + Cmp.ScheduledTrees = &DAG->getScheduledTrees(); + ReadyQ.clear(); + } + + virtual void registerRoots() { + // Restore the heap in ReadyQ with the updated DFS results. + std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + } + + /// Implement MachineSchedStrategy interface. + /// ----------------------------------------- + + /// Callback to select the highest priority node from the ready Q. + virtual SUnit *pickNode(bool &IsTopNode) { + if (ReadyQ.empty()) return NULL; + std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + SUnit *SU = ReadyQ.back(); + ReadyQ.pop_back(); + IsTopNode = false; + DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): " + << *SU->getInstr() + << " ILP: " << DAG->getDFSResult()->getILP(SU) + << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @" + << DAG->getDFSResult()->getSubtreeLevel( + DAG->getDFSResult()->getSubtreeID(SU)) << '\n'); + return SU; + } + + /// \brief Scheduler callback to notify that a new subtree is scheduled. + virtual void scheduleTree(unsigned SubtreeID) { + std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + } + + /// Callback after a node is scheduled. Mark a newly scheduled tree, notify + /// DFSResults, and resort the priority Q. + virtual void schedNode(SUnit *SU, bool IsTopNode) { + assert(!IsTopNode && "SchedDFSResult needs bottom-up"); + } + + virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ } + + virtual void releaseBottomNode(SUnit *SU) { + ReadyQ.push_back(SU); + std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); + } +}; +} // namespace + +static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { + return new ScheduleDAGMI(C, new ILPScheduler(true)); +} +static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { + return new ScheduleDAGMI(C, new ILPScheduler(false)); +} +static MachineSchedRegistry ILPMaxRegistry( + "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); +static MachineSchedRegistry ILPMinRegistry( + "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); + +//===----------------------------------------------------------------------===// +// Machine Instruction Shuffler for Correctness Testing +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +namespace { +/// Apply a less-than relation on the node order, which corresponds to the +/// instruction order prior to scheduling. IsReverse implements greater-than. +template<bool IsReverse> +struct SUnitOrder { + bool operator()(SUnit *A, SUnit *B) const { + if (IsReverse) + return A->NodeNum > B->NodeNum; + else + return A->NodeNum < B->NodeNum; + } +}; + +/// Reorder instructions as much as possible. +class InstructionShuffler : public MachineSchedStrategy { + bool IsAlternating; + bool IsTopDown; + + // Using a less-than relation (SUnitOrder<false>) for the TopQ priority + // gives nodes with a higher number higher priority causing the latest + // instructions to be scheduled first. + PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> > + TopQ; + // When scheduling bottom-up, use greater-than as the queue priority. + PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> > + BottomQ; +public: + InstructionShuffler(bool alternate, bool topdown) + : IsAlternating(alternate), IsTopDown(topdown) {} + + virtual void initialize(ScheduleDAGMI *) { + TopQ.clear(); + BottomQ.clear(); + } + + /// Implement MachineSchedStrategy interface. + /// ----------------------------------------- + + virtual SUnit *pickNode(bool &IsTopNode) { + SUnit *SU; + if (IsTopDown) { + do { + if (TopQ.empty()) return NULL; + SU = TopQ.top(); + TopQ.pop(); + } while (SU->isScheduled); + IsTopNode = true; + } + else { + do { + if (BottomQ.empty()) return NULL; + SU = BottomQ.top(); + BottomQ.pop(); + } while (SU->isScheduled); + IsTopNode = false; + } + if (IsAlternating) + IsTopDown = !IsTopDown; + return SU; + } + + virtual void schedNode(SUnit *SU, bool IsTopNode) {} + + virtual void releaseTopNode(SUnit *SU) { + TopQ.push(SU); + } + virtual void releaseBottomNode(SUnit *SU) { + BottomQ.push(SU); + } +}; +} // namespace + +static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { + bool Alternate = !ForceTopDown && !ForceBottomUp; + bool TopDown = !ForceBottomUp; + assert((TopDown || !ForceTopDown) && + "-misched-topdown incompatible with -misched-bottomup"); + return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown)); +} +static MachineSchedRegistry ShufflerRegistry( + "shuffle", "Shuffle machine instructions alternating directions", + createInstructionShuffler); +#endif // !NDEBUG + +//===----------------------------------------------------------------------===// +// GraphWriter support for ScheduleDAGMI. +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +namespace llvm { + +template<> struct GraphTraits< + ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; + +template<> +struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { + + DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} + + static std::string getGraphName(const ScheduleDAG *G) { + return G->MF.getName(); + } + + static bool renderGraphFromBottomUp() { + return true; + } + + static bool isNodeHidden(const SUnit *Node) { + return (Node->NumPreds > 10 || Node->NumSuccs > 10); + } + + static bool hasNodeAddressLabel(const SUnit *Node, + const ScheduleDAG *Graph) { + return false; + } + + /// If you want to override the dot attributes printed for a particular + /// edge, override this method. + static std::string getEdgeAttributes(const SUnit *Node, + SUnitIterator EI, + const ScheduleDAG *Graph) { + if (EI.isArtificialDep()) + return "color=cyan,style=dashed"; + if (EI.isCtrlDep()) + return "color=blue,style=dashed"; + return ""; + } + + static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { + std::string Str; + raw_string_ostream SS(Str); + SS << "SU(" << SU->NodeNum << ')'; + return SS.str(); + } + static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { + return G->getGraphNodeLabel(SU); + } + + static std::string getNodeAttributes(const SUnit *N, + const ScheduleDAG *Graph) { + std::string Str("shape=Mrecord"); + const SchedDFSResult *DFS = + static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult(); + if (DFS) { + Str += ",style=filled,fillcolor=\"#"; + Str += DOT::getColorString(DFS->getSubtreeID(N)); + Str += '"'; + } + return Str; + } +}; +} // namespace llvm +#endif // NDEBUG + +/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG +/// rendered using 'dot'. +/// +void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { +#ifndef NDEBUG + ViewGraph(this, Name, false, Title); +#else + errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " + << "systems with Graphviz or gv!\n"; +#endif // NDEBUG +} + +/// Out-of-line implementation with no arguments is handy for gdb. +void ScheduleDAGMI::viewGraph() { + viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); +} |