summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachinePipeliner.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachinePipeliner.cpp3984
1 files changed, 3984 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp b/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
new file mode 100644
index 0000000..43a1809
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
@@ -0,0 +1,3984 @@
+//===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
+//
+// Software pipelining (SWP) is an instruction scheduling technique for loops
+// that overlap loop iterations and explioits ILP via a compiler transformation.
+//
+// Swing Modulo Scheduling is an implementation of software pipelining
+// that generates schedules that are near optimal in terms of initiation
+// interval, register requirements, and stage count. See the papers:
+//
+// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
+// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
+// Conference on Parallel Architectures and Compilation Techiniques.
+//
+// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
+// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
+// Transactions on Computers, Vol. 50, No. 3, 2001.
+//
+// "An Implementation of Swing Modulo Scheduling With Extensions for
+// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
+// Urbana-Chambpain, 2005.
+//
+//
+// The SMS algorithm consists of three main steps after computing the minimal
+// initiation interval (MII).
+// 1) Analyze the dependence graph and compute information about each
+// instruction in the graph.
+// 2) Order the nodes (instructions) by priority based upon the heuristics
+// described in the algorithm.
+// 3) Attempt to schedule the nodes in the specified order using the MII.
+//
+// This SMS implementation is a target-independent back-end pass. When enabled,
+// the pass runs just prior to the register allocation pass, while the machine
+// IR is in SSA form. If software pipelining is successful, then the original
+// loop is replaced by the optimized loop. The optimized loop contains one or
+// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
+// the instructions cannot be scheduled in a given MII, we increase the MII by
+// one and try again.
+//
+// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
+// represent loop carried dependences in the DAG as order edges to the Phi
+// nodes. We also perform several passes over the DAG to eliminate unnecessary
+// edges that inhibit the ability to pipeline. The implementation uses the
+// DFAPacketizer class to compute the minimum initiation interval and the check
+// where an instruction may be inserted in the pipelined schedule.
+//
+// In order for the SMS pass to work, several target specific hooks need to be
+// implemented to get information about the loop structure and to rewrite
+// instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/RegisterPressure.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/ScheduleDAGMutation.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/PassAnalysisSupport.h"
+#include "llvm/PassRegistry.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstdint>
+#include <deque>
+#include <functional>
+#include <iterator>
+#include <map>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "pipeliner"
+
+STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
+STATISTIC(NumPipelined, "Number of loops software pipelined");
+
+/// A command line option to turn software pipelining on or off.
+static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
+ cl::ZeroOrMore,
+ cl::desc("Enable Software Pipelining"));
+
+/// A command line option to enable SWP at -Os.
+static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
+ cl::desc("Enable SWP at Os."), cl::Hidden,
+ cl::init(false));
+
+/// A command line argument to limit minimum initial interval for pipelining.
+static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
+ cl::desc("Size limit for the the MII."),
+ cl::Hidden, cl::init(27));
+
+/// A command line argument to limit the number of stages in the pipeline.
+static cl::opt<int>
+ SwpMaxStages("pipeliner-max-stages",
+ cl::desc("Maximum stages allowed in the generated scheduled."),
+ cl::Hidden, cl::init(3));
+
+/// A command line option to disable the pruning of chain dependences due to
+/// an unrelated Phi.
+static cl::opt<bool>
+ SwpPruneDeps("pipeliner-prune-deps",
+ cl::desc("Prune dependences between unrelated Phi nodes."),
+ cl::Hidden, cl::init(true));
+
+/// A command line option to disable the pruning of loop carried order
+/// dependences.
+static cl::opt<bool>
+ SwpPruneLoopCarried("pipeliner-prune-loop-carried",
+ cl::desc("Prune loop carried order dependences."),
+ cl::Hidden, cl::init(true));
+
+#ifndef NDEBUG
+static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
+#endif
+
+static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
+ cl::ReallyHidden, cl::init(false),
+ cl::ZeroOrMore, cl::desc("Ignore RecMII"));
+
+namespace {
+
+class NodeSet;
+class SMSchedule;
+class SwingSchedulerDAG;
+
+/// The main class in the implementation of the target independent
+/// software pipeliner pass.
+class MachinePipeliner : public MachineFunctionPass {
+public:
+ MachineFunction *MF = nullptr;
+ const MachineLoopInfo *MLI = nullptr;
+ const MachineDominatorTree *MDT = nullptr;
+ const InstrItineraryData *InstrItins;
+ const TargetInstrInfo *TII = nullptr;
+ RegisterClassInfo RegClassInfo;
+
+#ifndef NDEBUG
+ static int NumTries;
+#endif
+ /// Cache the target analysis information about the loop.
+ struct LoopInfo {
+ MachineBasicBlock *TBB = nullptr;
+ MachineBasicBlock *FBB = nullptr;
+ SmallVector<MachineOperand, 4> BrCond;
+ MachineInstr *LoopInductionVar = nullptr;
+ MachineInstr *LoopCompare = nullptr;
+ };
+ LoopInfo LI;
+
+ static char ID;
+ MachinePipeliner() : MachineFunctionPass(ID) {
+ initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<LiveIntervals>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+private:
+ bool canPipelineLoop(MachineLoop &L);
+ bool scheduleLoop(MachineLoop &L);
+ bool swingModuloScheduler(MachineLoop &L);
+};
+
+/// This class builds the dependence graph for the instructions in a loop,
+/// and attempts to schedule the instructions using the SMS algorithm.
+class SwingSchedulerDAG : public ScheduleDAGInstrs {
+ MachinePipeliner &Pass;
+ /// The minimum initiation interval between iterations for this schedule.
+ unsigned MII;
+ /// Set to true if a valid pipelined schedule is found for the loop.
+ bool Scheduled;
+ MachineLoop &Loop;
+ LiveIntervals &LIS;
+ const RegisterClassInfo &RegClassInfo;
+
+ /// A toplogical ordering of the SUnits, which is needed for changing
+ /// dependences and iterating over the SUnits.
+ ScheduleDAGTopologicalSort Topo;
+
+ struct NodeInfo {
+ int ASAP;
+ int ALAP;
+ NodeInfo() : ASAP(0), ALAP(0) {}
+ };
+ /// Computed properties for each node in the graph.
+ std::vector<NodeInfo> ScheduleInfo;
+
+ enum OrderKind { BottomUp = 0, TopDown = 1 };
+ /// Computed node ordering for scheduling.
+ SetVector<SUnit *> NodeOrder;
+
+ typedef SmallVector<NodeSet, 8> NodeSetType;
+ typedef DenseMap<unsigned, unsigned> ValueMapTy;
+ typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy;
+ typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy;
+
+ /// Instructions to change when emitting the final schedule.
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
+
+ /// We may create a new instruction, so remember it because it
+ /// must be deleted when the pass is finished.
+ SmallPtrSet<MachineInstr *, 4> NewMIs;
+
+ /// Ordered list of DAG postprocessing steps.
+ std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
+
+ /// Helper class to implement Johnson's circuit finding algorithm.
+ class Circuits {
+ std::vector<SUnit> &SUnits;
+ SetVector<SUnit *> Stack;
+ BitVector Blocked;
+ SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
+ SmallVector<SmallVector<int, 4>, 16> AdjK;
+ unsigned NumPaths;
+ static unsigned MaxPaths;
+
+ public:
+ Circuits(std::vector<SUnit> &SUs)
+ : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()),
+ AdjK(SUs.size()) {}
+ /// Reset the data structures used in the circuit algorithm.
+ void reset() {
+ Stack.clear();
+ Blocked.reset();
+ B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
+ NumPaths = 0;
+ }
+ void createAdjacencyStructure(SwingSchedulerDAG *DAG);
+ bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
+ void unblock(int U);
+ };
+
+public:
+ SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
+ const RegisterClassInfo &rci)
+ : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0),
+ Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci),
+ Topo(SUnits, &ExitSU) {
+ P.MF->getSubtarget().getSMSMutations(Mutations);
+ }
+
+ void schedule() override;
+ void finishBlock() override;
+
+ /// Return true if the loop kernel has been scheduled.
+ bool hasNewSchedule() { return Scheduled; }
+
+ /// Return the earliest time an instruction may be scheduled.
+ int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
+
+ /// Return the latest time an instruction my be scheduled.
+ int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
+
+ /// The mobility function, which the the number of slots in which
+ /// an instruction may be scheduled.
+ int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
+
+ /// The depth, in the dependence graph, for a node.
+ int getDepth(SUnit *Node) { return Node->getDepth(); }
+
+ /// The height, in the dependence graph, for a node.
+ int getHeight(SUnit *Node) { return Node->getHeight(); }
+
+ /// Return true if the dependence is a back-edge in the data dependence graph.
+ /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
+ /// using an anti dependence from a Phi to an instruction.
+ bool isBackedge(SUnit *Source, const SDep &Dep) {
+ if (Dep.getKind() != SDep::Anti)
+ return false;
+ return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
+ }
+
+ /// Return true if the dependence is an order dependence between non-Phis.
+ static bool isOrder(SUnit *Source, const SDep &Dep) {
+ if (Dep.getKind() != SDep::Order)
+ return false;
+ return (!Source->getInstr()->isPHI() &&
+ !Dep.getSUnit()->getInstr()->isPHI());
+ }
+
+ bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
+
+ /// The latency of the dependence.
+ unsigned getLatency(SUnit *Source, const SDep &Dep) {
+ // Anti dependences represent recurrences, so use the latency of the
+ // instruction on the back-edge.
+ if (Dep.getKind() == SDep::Anti) {
+ if (Source->getInstr()->isPHI())
+ return Dep.getSUnit()->Latency;
+ if (Dep.getSUnit()->getInstr()->isPHI())
+ return Source->Latency;
+ return Dep.getLatency();
+ }
+ return Dep.getLatency();
+ }
+
+ /// The distance function, which indicates that operation V of iteration I
+ /// depends on operations U of iteration I-distance.
+ unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
+ // Instructions that feed a Phi have a distance of 1. Computing larger
+ // values for arrays requires data dependence information.
+ if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
+ return 1;
+ return 0;
+ }
+
+ /// Set the Minimum Initiation Interval for this schedule attempt.
+ void setMII(unsigned mii) { MII = mii; }
+
+ MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
+ bool UpdateDAG = false);
+
+ /// Return the new base register that was stored away for the changed
+ /// instruction.
+ unsigned getInstrBaseReg(SUnit *SU) {
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(SU);
+ if (It != InstrChanges.end())
+ return It->second.first;
+ return 0;
+ }
+
+ void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
+ Mutations.push_back(std::move(Mutation));
+ }
+
+private:
+ void addLoopCarriedDependences(AliasAnalysis *AA);
+ void updatePhiDependences();
+ void changeDependences();
+ unsigned calculateResMII();
+ unsigned calculateRecMII(NodeSetType &RecNodeSets);
+ void findCircuits(NodeSetType &NodeSets);
+ void fuseRecs(NodeSetType &NodeSets);
+ void removeDuplicateNodes(NodeSetType &NodeSets);
+ void computeNodeFunctions(NodeSetType &NodeSets);
+ void registerPressureFilter(NodeSetType &NodeSets);
+ void colocateNodeSets(NodeSetType &NodeSets);
+ void checkNodeSets(NodeSetType &NodeSets);
+ void groupRemainingNodes(NodeSetType &NodeSets);
+ void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
+ SetVector<SUnit *> &NodesAdded);
+ void computeNodeOrder(NodeSetType &NodeSets);
+ bool schedulePipeline(SMSchedule &Schedule);
+ void generatePipelinedLoop(SMSchedule &Schedule);
+ void generateProlog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
+ MBBVectorTy &PrologBBs);
+ void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
+ MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
+ void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum,
+ unsigned CurStageNum, bool IsLast);
+ void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum,
+ unsigned CurStageNum, bool IsLast);
+ void removeDeadInstructions(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs);
+ void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
+ SMSchedule &Schedule);
+ void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
+ ValueMapTy *VRMap);
+ bool computeDelta(MachineInstr &MI, unsigned &Delta);
+ void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
+ unsigned Num);
+ MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
+ unsigned InstStageNum);
+ MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
+ unsigned InstStageNum,
+ SMSchedule &Schedule);
+ void updateInstruction(MachineInstr *NewMI, bool LastDef,
+ unsigned CurStageNum, unsigned InstStageNum,
+ SMSchedule &Schedule, ValueMapTy *VRMap);
+ MachineInstr *findDefInLoop(unsigned Reg);
+ unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
+ unsigned LoopStage, ValueMapTy *VRMap,
+ MachineBasicBlock *BB);
+ void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
+ SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap);
+ void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
+ InstrMapTy &InstrMap, unsigned CurStageNum,
+ unsigned PhiNum, MachineInstr *Phi,
+ unsigned OldReg, unsigned NewReg,
+ unsigned PrevReg = 0);
+ bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
+ unsigned &OffsetPos, unsigned &NewBase,
+ int64_t &NewOffset);
+ void postprocessDAG();
+};
+
+/// A NodeSet contains a set of SUnit DAG nodes with additional information
+/// that assigns a priority to the set.
+class NodeSet {
+ SetVector<SUnit *> Nodes;
+ bool HasRecurrence;
+ unsigned RecMII = 0;
+ int MaxMOV = 0;
+ int MaxDepth = 0;
+ unsigned Colocate = 0;
+ SUnit *ExceedPressure = nullptr;
+
+public:
+ typedef SetVector<SUnit *>::const_iterator iterator;
+
+ NodeSet() : Nodes(), HasRecurrence(false) {}
+
+ NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
+
+ bool insert(SUnit *SU) { return Nodes.insert(SU); }
+
+ void insert(iterator S, iterator E) { Nodes.insert(S, E); }
+
+ template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
+ return Nodes.remove_if(P);
+ }
+
+ unsigned count(SUnit *SU) const { return Nodes.count(SU); }
+
+ bool hasRecurrence() { return HasRecurrence; };
+
+ unsigned size() const { return Nodes.size(); }
+
+ bool empty() const { return Nodes.empty(); }
+
+ SUnit *getNode(unsigned i) const { return Nodes[i]; };
+
+ void setRecMII(unsigned mii) { RecMII = mii; };
+
+ void setColocate(unsigned c) { Colocate = c; };
+
+ void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
+
+ bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
+
+ int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
+
+ int getRecMII() { return RecMII; }
+
+ /// Summarize node functions for the entire node set.
+ void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
+ for (SUnit *SU : *this) {
+ MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
+ MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
+ }
+ }
+
+ void clear() {
+ Nodes.clear();
+ RecMII = 0;
+ HasRecurrence = false;
+ MaxMOV = 0;
+ MaxDepth = 0;
+ Colocate = 0;
+ ExceedPressure = nullptr;
+ }
+
+ operator SetVector<SUnit *> &() { return Nodes; }
+
+ /// Sort the node sets by importance. First, rank them by recurrence MII,
+ /// then by mobility (least mobile done first), and finally by depth.
+ /// Each node set may contain a colocate value which is used as the first
+ /// tie breaker, if it's set.
+ bool operator>(const NodeSet &RHS) const {
+ if (RecMII == RHS.RecMII) {
+ if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
+ return Colocate < RHS.Colocate;
+ if (MaxMOV == RHS.MaxMOV)
+ return MaxDepth > RHS.MaxDepth;
+ return MaxMOV < RHS.MaxMOV;
+ }
+ return RecMII > RHS.RecMII;
+ }
+
+ bool operator==(const NodeSet &RHS) const {
+ return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
+ MaxDepth == RHS.MaxDepth;
+ }
+
+ bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
+
+ iterator begin() { return Nodes.begin(); }
+ iterator end() { return Nodes.end(); }
+
+ void print(raw_ostream &os) const {
+ os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
+ << " depth " << MaxDepth << " col " << Colocate << "\n";
+ for (const auto &I : Nodes)
+ os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
+ os << "\n";
+ }
+
+ void dump() const { print(dbgs()); }
+};
+
+/// This class repesents the scheduled code. The main data structure is a
+/// map from scheduled cycle to instructions. During scheduling, the
+/// data structure explicitly represents all stages/iterations. When
+/// the algorithm finshes, the schedule is collapsed into a single stage,
+/// which represents instructions from different loop iterations.
+///
+/// The SMS algorithm allows negative values for cycles, so the first cycle
+/// in the schedule is the smallest cycle value.
+class SMSchedule {
+private:
+ /// Map from execution cycle to instructions.
+ DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
+
+ /// Map from instruction to execution cycle.
+ std::map<SUnit *, int> InstrToCycle;
+
+ /// Map for each register and the max difference between its uses and def.
+ /// The first element in the pair is the max difference in stages. The
+ /// second is true if the register defines a Phi value and loop value is
+ /// scheduled before the Phi.
+ std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
+
+ /// Keep track of the first cycle value in the schedule. It starts
+ /// as zero, but the algorithm allows negative values.
+ int FirstCycle;
+
+ /// Keep track of the last cycle value in the schedule.
+ int LastCycle;
+
+ /// The initiation interval (II) for the schedule.
+ int InitiationInterval;
+
+ /// Target machine information.
+ const TargetSubtargetInfo &ST;
+
+ /// Virtual register information.
+ MachineRegisterInfo &MRI;
+
+ DFAPacketizer *Resources;
+
+public:
+ SMSchedule(MachineFunction *mf)
+ : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
+ Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {
+ FirstCycle = 0;
+ LastCycle = 0;
+ InitiationInterval = 0;
+ }
+
+ ~SMSchedule() {
+ ScheduledInstrs.clear();
+ InstrToCycle.clear();
+ RegToStageDiff.clear();
+ delete Resources;
+ }
+
+ void reset() {
+ ScheduledInstrs.clear();
+ InstrToCycle.clear();
+ RegToStageDiff.clear();
+ FirstCycle = 0;
+ LastCycle = 0;
+ InitiationInterval = 0;
+ }
+
+ /// Set the initiation interval for this schedule.
+ void setInitiationInterval(int ii) { InitiationInterval = ii; }
+
+ /// Return the first cycle in the completed schedule. This
+ /// can be a negative value.
+ int getFirstCycle() const { return FirstCycle; }
+
+ /// Return the last cycle in the finalized schedule.
+ int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
+
+ /// Return the cycle of the earliest scheduled instruction in the dependence
+ /// chain.
+ int earliestCycleInChain(const SDep &Dep);
+
+ /// Return the cycle of the latest scheduled instruction in the dependence
+ /// chain.
+ int latestCycleInChain(const SDep &Dep);
+
+ void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
+ int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
+ bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
+
+ /// Iterators for the cycle to instruction map.
+ typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator;
+ typedef DenseMap<int, std::deque<SUnit *>>::const_iterator
+ const_sched_iterator;
+
+ /// Return true if the instruction is scheduled at the specified stage.
+ bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
+ return (stageScheduled(SU) == (int)StageNum);
+ }
+
+ /// Return the stage for a scheduled instruction. Return -1 if
+ /// the instruction has not been scheduled.
+ int stageScheduled(SUnit *SU) const {
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
+ if (it == InstrToCycle.end())
+ return -1;
+ return (it->second - FirstCycle) / InitiationInterval;
+ }
+
+ /// Return the cycle for a scheduled instruction. This function normalizes
+ /// the first cycle to be 0.
+ unsigned cycleScheduled(SUnit *SU) const {
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
+ assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
+ return (it->second - FirstCycle) % InitiationInterval;
+ }
+
+ /// Return the maximum stage count needed for this schedule.
+ unsigned getMaxStageCount() {
+ return (LastCycle - FirstCycle) / InitiationInterval;
+ }
+
+ /// Return the max. number of stages/iterations that can occur between a
+ /// register definition and its uses.
+ unsigned getStagesForReg(int Reg, unsigned CurStage) {
+ std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+ if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
+ return 1;
+ return Stages.first;
+ }
+
+ /// The number of stages for a Phi is a little different than other
+ /// instructions. The minimum value computed in RegToStageDiff is 1
+ /// because we assume the Phi is needed for at least 1 iteration.
+ /// This is not the case if the loop value is scheduled prior to the
+ /// Phi in the same stage. This function returns the number of stages
+ /// or iterations needed between the Phi definition and any uses.
+ unsigned getStagesForPhi(int Reg) {
+ std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
+ if (Stages.second)
+ return Stages.first;
+ return Stages.first - 1;
+ }
+
+ /// Return the instructions that are scheduled at the specified cycle.
+ std::deque<SUnit *> &getInstructions(int cycle) {
+ return ScheduledInstrs[cycle];
+ }
+
+ bool isValidSchedule(SwingSchedulerDAG *SSD);
+ void finalizeSchedule(SwingSchedulerDAG *SSD);
+ bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
+ std::deque<SUnit *> &Insts);
+ bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
+ bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
+ MachineOperand &MO);
+ void print(raw_ostream &os) const;
+ void dump() const;
+};
+
+} // end anonymous namespace
+
+unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
+char MachinePipeliner::ID = 0;
+#ifndef NDEBUG
+int MachinePipeliner::NumTries = 0;
+#endif
+char &llvm::MachinePipelinerID = MachinePipeliner::ID;
+INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner",
+ "Modulo Software Pipelining", false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(MachinePipeliner, "pipeliner",
+ "Modulo Software Pipelining", false, false)
+
+/// The "main" function for implementing Swing Modulo Scheduling.
+bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
+ if (skipFunction(*mf.getFunction()))
+ return false;
+
+ if (!EnableSWP)
+ return false;
+
+ if (mf.getFunction()->getAttributes().hasAttribute(
+ AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
+ !EnableSWPOptSize.getPosition())
+ return false;
+
+ MF = &mf;
+ MLI = &getAnalysis<MachineLoopInfo>();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ TII = MF->getSubtarget().getInstrInfo();
+ RegClassInfo.runOnMachineFunction(*MF);
+
+ for (auto &L : *MLI)
+ scheduleLoop(*L);
+
+ return false;
+}
+
+/// Attempt to perform the SMS algorithm on the specified loop. This function is
+/// the main entry point for the algorithm. The function identifies candidate
+/// loops, calculates the minimum initiation interval, and attempts to schedule
+/// the loop.
+bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
+ bool Changed = false;
+ for (auto &InnerLoop : L)
+ Changed |= scheduleLoop(*InnerLoop);
+
+#ifndef NDEBUG
+ // Stop trying after reaching the limit (if any).
+ int Limit = SwpLoopLimit;
+ if (Limit >= 0) {
+ if (NumTries >= SwpLoopLimit)
+ return Changed;
+ NumTries++;
+ }
+#endif
+
+ if (!canPipelineLoop(L))
+ return Changed;
+
+ ++NumTrytoPipeline;
+
+ Changed = swingModuloScheduler(L);
+
+ return Changed;
+}
+
+/// Return true if the loop can be software pipelined. The algorithm is
+/// restricted to loops with a single basic block. Make sure that the
+/// branch in the loop can be analyzed.
+bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
+ if (L.getNumBlocks() != 1)
+ return false;
+
+ // Check if the branch can't be understood because we can't do pipelining
+ // if that's the case.
+ LI.TBB = nullptr;
+ LI.FBB = nullptr;
+ LI.BrCond.clear();
+ if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
+ return false;
+
+ LI.LoopInductionVar = nullptr;
+ LI.LoopCompare = nullptr;
+ if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
+ return false;
+
+ if (!L.getLoopPreheader())
+ return false;
+
+ // If any of the Phis contain subregs, then we can't pipeline
+ // because we don't know how to maintain subreg information in the
+ // VMap structure.
+ MachineBasicBlock *MBB = L.getHeader();
+ for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
+ BBE = MBB->getFirstNonPHI();
+ BBI != BBE; ++BBI)
+ for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
+ if (BBI->getOperand(i).getSubReg() != 0)
+ return false;
+
+ return true;
+}
+
+/// The SMS algorithm consists of the following main steps:
+/// 1. Computation and analysis of the dependence graph.
+/// 2. Ordering of the nodes (instructions).
+/// 3. Attempt to Schedule the loop.
+bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
+ assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
+
+ SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
+
+ MachineBasicBlock *MBB = L.getHeader();
+ // The kernel should not include any terminator instructions. These
+ // will be added back later.
+ SMS.startBlock(MBB);
+
+ // Compute the number of 'real' instructions in the basic block by
+ // ignoring terminators.
+ unsigned size = MBB->size();
+ for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
+ E = MBB->instr_end();
+ I != E; ++I, --size)
+ ;
+
+ SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
+ SMS.schedule();
+ SMS.exitRegion();
+
+ SMS.finishBlock();
+ return SMS.hasNewSchedule();
+}
+
+/// We override the schedule function in ScheduleDAGInstrs to implement the
+/// scheduling part of the Swing Modulo Scheduling algorithm.
+void SwingSchedulerDAG::schedule() {
+ AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
+ buildSchedGraph(AA);
+ addLoopCarriedDependences(AA);
+ updatePhiDependences();
+ Topo.InitDAGTopologicalSorting();
+ postprocessDAG();
+ changeDependences();
+ DEBUG({
+ for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+ SUnits[su].dumpAll(this);
+ });
+
+ NodeSetType NodeSets;
+ findCircuits(NodeSets);
+
+ // Calculate the MII.
+ unsigned ResMII = calculateResMII();
+ unsigned RecMII = calculateRecMII(NodeSets);
+
+ fuseRecs(NodeSets);
+
+ // This flag is used for testing and can cause correctness problems.
+ if (SwpIgnoreRecMII)
+ RecMII = 0;
+
+ MII = std::max(ResMII, RecMII);
+ DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
+ << ")\n");
+
+ // Can't schedule a loop without a valid MII.
+ if (MII == 0)
+ return;
+
+ // Don't pipeline large loops.
+ if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
+ return;
+
+ computeNodeFunctions(NodeSets);
+
+ registerPressureFilter(NodeSets);
+
+ colocateNodeSets(NodeSets);
+
+ checkNodeSets(NodeSets);
+
+ DEBUG({
+ for (auto &I : NodeSets) {
+ dbgs() << " Rec NodeSet ";
+ I.dump();
+ }
+ });
+
+ std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
+
+ groupRemainingNodes(NodeSets);
+
+ removeDuplicateNodes(NodeSets);
+
+ DEBUG({
+ for (auto &I : NodeSets) {
+ dbgs() << " NodeSet ";
+ I.dump();
+ }
+ });
+
+ computeNodeOrder(NodeSets);
+
+ SMSchedule Schedule(Pass.MF);
+ Scheduled = schedulePipeline(Schedule);
+
+ if (!Scheduled)
+ return;
+
+ unsigned numStages = Schedule.getMaxStageCount();
+ // No need to generate pipeline if there are no overlapped iterations.
+ if (numStages == 0)
+ return;
+
+ // Check that the maximum stage count is less than user-defined limit.
+ if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
+ return;
+
+ generatePipelinedLoop(Schedule);
+ ++NumPipelined;
+}
+
+/// Clean up after the software pipeliner runs.
+void SwingSchedulerDAG::finishBlock() {
+ for (MachineInstr *I : NewMIs)
+ MF.DeleteMachineInstr(I);
+ NewMIs.clear();
+
+ // Call the superclass.
+ ScheduleDAGInstrs::finishBlock();
+}
+
+/// Return the register values for the operands of a Phi instruction.
+/// This function assume the instruction is a Phi.
+static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
+ unsigned &InitVal, unsigned &LoopVal) {
+ assert(Phi.isPHI() && "Expecting a Phi.");
+
+ InitVal = 0;
+ LoopVal = 0;
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != Loop)
+ InitVal = Phi.getOperand(i).getReg();
+ else if (Phi.getOperand(i + 1).getMBB() == Loop)
+ LoopVal = Phi.getOperand(i).getReg();
+
+ assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
+}
+
+/// Return the Phi register value that comes from the incoming block.
+static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+/// Return the Phi register value that comes the the loop block.
+static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() == LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+/// Return true if SUb can be reached from SUa following the chain edges.
+static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SUnit *, 8> Worklist;
+ Worklist.push_back(SUa);
+ while (!Worklist.empty()) {
+ const SUnit *SU = Worklist.pop_back_val();
+ for (auto &SI : SU->Succs) {
+ SUnit *SuccSU = SI.getSUnit();
+ if (SI.getKind() == SDep::Order) {
+ if (Visited.count(SuccSU))
+ continue;
+ if (SuccSU == SUb)
+ return true;
+ Worklist.push_back(SuccSU);
+ Visited.insert(SuccSU);
+ }
+ }
+ }
+ return false;
+}
+
+/// Return true if the instruction causes a chain between memory
+/// references before and after it.
+static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
+ return MI.isCall() || MI.hasUnmodeledSideEffects() ||
+ (MI.hasOrderedMemoryRef() &&
+ (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
+}
+
+/// Return the underlying objects for the memory references of an instruction.
+/// This function calls the code in ValueTracking, but first checks that the
+/// instruction has a memory operand.
+static void getUnderlyingObjects(MachineInstr *MI,
+ SmallVectorImpl<Value *> &Objs,
+ const DataLayout &DL) {
+ if (!MI->hasOneMemOperand())
+ return;
+ MachineMemOperand *MM = *MI->memoperands_begin();
+ if (!MM->getValue())
+ return;
+ GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
+}
+
+/// Add a chain edge between a load and store if the store can be an
+/// alias of the load on a subsequent iteration, i.e., a loop carried
+/// dependence. This code is very similar to the code in ScheduleDAGInstrs
+/// but that code doesn't create loop carried dependences.
+void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
+ MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
+ for (auto &SU : SUnits) {
+ MachineInstr &MI = *SU.getInstr();
+ if (isDependenceBarrier(MI, AA))
+ PendingLoads.clear();
+ else if (MI.mayLoad()) {
+ SmallVector<Value *, 4> Objs;
+ getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
+ for (auto V : Objs) {
+ SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
+ SUs.push_back(&SU);
+ }
+ } else if (MI.mayStore()) {
+ SmallVector<Value *, 4> Objs;
+ getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
+ for (auto V : Objs) {
+ MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
+ PendingLoads.find(V);
+ if (I == PendingLoads.end())
+ continue;
+ for (auto Load : I->second) {
+ if (isSuccOrder(Load, &SU))
+ continue;
+ MachineInstr &LdMI = *Load->getInstr();
+ // First, perform the cheaper check that compares the base register.
+ // If they are the same and the load offset is less than the store
+ // offset, then mark the dependence as loop carried potentially.
+ unsigned BaseReg1, BaseReg2;
+ int64_t Offset1, Offset2;
+ if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
+ !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
+ assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
+ "What happened to the chain edge?");
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ // Second, the more expensive check that uses alias analysis on the
+ // base registers. If they alias, and the load offset is less than
+ // the store offset, the mark the dependence as loop carried.
+ if (!AA) {
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
+ MachineMemOperand *MMO2 = *MI.memoperands_begin();
+ if (!MMO1->getValue() || !MMO2->getValue()) {
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ if (MMO1->getValue() == MMO2->getValue() &&
+ MMO1->getOffset() <= MMO2->getOffset()) {
+ SU.addPred(SDep(Load, SDep::Barrier));
+ continue;
+ }
+ AliasResult AAResult = AA->alias(
+ MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
+ MMO1->getAAInfo()),
+ MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
+ MMO2->getAAInfo()));
+
+ if (AAResult != NoAlias)
+ SU.addPred(SDep(Load, SDep::Barrier));
+ }
+ }
+ }
+ }
+}
+
+/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
+/// processes dependences for PHIs. This function adds true dependences
+/// from a PHI to a use, and a loop carried dependence from the use to the
+/// PHI. The loop carried dependence is represented as an anti dependence
+/// edge. This function also removes chain dependences between unrelated
+/// PHIs.
+void SwingSchedulerDAG::updatePhiDependences() {
+ SmallVector<SDep, 4> RemoveDeps;
+ const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
+
+ // Iterate over each DAG node.
+ for (SUnit &I : SUnits) {
+ RemoveDeps.clear();
+ // Set to true if the instruction has an operand defined by a Phi.
+ unsigned HasPhiUse = 0;
+ unsigned HasPhiDef = 0;
+ MachineInstr *MI = I.getInstr();
+ // Iterate over each operand, and we process the definitions.
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ if (!MOI->isReg())
+ continue;
+ unsigned Reg = MOI->getReg();
+ if (MOI->isDef()) {
+ // If the register is used by a Phi, then create an anti dependence.
+ for (MachineRegisterInfo::use_instr_iterator
+ UI = MRI.use_instr_begin(Reg),
+ UE = MRI.use_instr_end();
+ UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ SUnit *SU = getSUnit(UseMI);
+ if (SU != nullptr && UseMI->isPHI()) {
+ if (!MI->isPHI()) {
+ SDep Dep(SU, SDep::Anti, Reg);
+ I.addPred(Dep);
+ } else {
+ HasPhiDef = Reg;
+ // Add a chain edge to a dependent Phi that isn't an existing
+ // predecessor.
+ if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
+ I.addPred(SDep(SU, SDep::Barrier));
+ }
+ }
+ }
+ } else if (MOI->isUse()) {
+ // If the register is defined by a Phi, then create a true dependence.
+ MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
+ if (DefMI == nullptr)
+ continue;
+ SUnit *SU = getSUnit(DefMI);
+ if (SU != nullptr && DefMI->isPHI()) {
+ if (!MI->isPHI()) {
+ SDep Dep(SU, SDep::Data, Reg);
+ Dep.setLatency(0);
+ ST.adjustSchedDependency(SU, &I, Dep);
+ I.addPred(Dep);
+ } else {
+ HasPhiUse = Reg;
+ // Add a chain edge to a dependent Phi that isn't an existing
+ // predecessor.
+ if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
+ I.addPred(SDep(SU, SDep::Barrier));
+ }
+ }
+ }
+ }
+ // Remove order dependences from an unrelated Phi.
+ if (!SwpPruneDeps)
+ continue;
+ for (auto &PI : I.Preds) {
+ MachineInstr *PMI = PI.getSUnit()->getInstr();
+ if (PMI->isPHI() && PI.getKind() == SDep::Order) {
+ if (I.getInstr()->isPHI()) {
+ if (PMI->getOperand(0).getReg() == HasPhiUse)
+ continue;
+ if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
+ continue;
+ }
+ RemoveDeps.push_back(PI);
+ }
+ }
+ for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
+ I.removePred(RemoveDeps[i]);
+ }
+}
+
+/// Iterate over each DAG node and see if we can change any dependences
+/// in order to reduce the recurrence MII.
+void SwingSchedulerDAG::changeDependences() {
+ // See if an instruction can use a value from the previous iteration.
+ // If so, we update the base and offset of the instruction and change
+ // the dependences.
+ for (SUnit &I : SUnits) {
+ unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
+ int64_t NewOffset = 0;
+ if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
+ NewOffset))
+ continue;
+
+ // Get the MI and SUnit for the instruction that defines the original base.
+ unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
+ MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
+ if (!DefMI)
+ continue;
+ SUnit *DefSU = getSUnit(DefMI);
+ if (!DefSU)
+ continue;
+ // Get the MI and SUnit for the instruction that defins the new base.
+ MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
+ if (!LastMI)
+ continue;
+ SUnit *LastSU = getSUnit(LastMI);
+ if (!LastSU)
+ continue;
+
+ if (Topo.IsReachable(&I, LastSU))
+ continue;
+
+ // Remove the dependence. The value now depends on a prior iteration.
+ SmallVector<SDep, 4> Deps;
+ for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
+ ++P)
+ if (P->getSUnit() == DefSU)
+ Deps.push_back(*P);
+ for (int i = 0, e = Deps.size(); i != e; i++) {
+ Topo.RemovePred(&I, Deps[i].getSUnit());
+ I.removePred(Deps[i]);
+ }
+ // Remove the chain dependence between the instructions.
+ Deps.clear();
+ for (auto &P : LastSU->Preds)
+ if (P.getSUnit() == &I && P.getKind() == SDep::Order)
+ Deps.push_back(P);
+ for (int i = 0, e = Deps.size(); i != e; i++) {
+ Topo.RemovePred(LastSU, Deps[i].getSUnit());
+ LastSU->removePred(Deps[i]);
+ }
+
+ // Add a dependence between the new instruction and the instruction
+ // that defines the new base.
+ SDep Dep(&I, SDep::Anti, NewBase);
+ LastSU->addPred(Dep);
+
+ // Remember the base and offset information so that we can update the
+ // instruction during code generation.
+ InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
+ }
+}
+
+namespace {
+
+// FuncUnitSorter - Comparison operator used to sort instructions by
+// the number of functional unit choices.
+struct FuncUnitSorter {
+ const InstrItineraryData *InstrItins;
+ DenseMap<unsigned, unsigned> Resources;
+
+ // Compute the number of functional unit alternatives needed
+ // at each stage, and take the minimum value. We prioritize the
+ // instructions by the least number of choices first.
+ unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
+ unsigned schedClass = Inst->getDesc().getSchedClass();
+ unsigned min = UINT_MAX;
+ for (const InstrStage *IS = InstrItins->beginStage(schedClass),
+ *IE = InstrItins->endStage(schedClass);
+ IS != IE; ++IS) {
+ unsigned funcUnits = IS->getUnits();
+ unsigned numAlternatives = countPopulation(funcUnits);
+ if (numAlternatives < min) {
+ min = numAlternatives;
+ F = funcUnits;
+ }
+ }
+ return min;
+ }
+
+ // Compute the critical resources needed by the instruction. This
+ // function records the functional units needed by instructions that
+ // must use only one functional unit. We use this as a tie breaker
+ // for computing the resource MII. The instrutions that require
+ // the same, highly used, functional unit have high priority.
+ void calcCriticalResources(MachineInstr &MI) {
+ unsigned SchedClass = MI.getDesc().getSchedClass();
+ for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
+ *IE = InstrItins->endStage(SchedClass);
+ IS != IE; ++IS) {
+ unsigned FuncUnits = IS->getUnits();
+ if (countPopulation(FuncUnits) == 1)
+ Resources[FuncUnits]++;
+ }
+ }
+
+ FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
+ /// Return true if IS1 has less priority than IS2.
+ bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
+ unsigned F1 = 0, F2 = 0;
+ unsigned MFUs1 = minFuncUnits(IS1, F1);
+ unsigned MFUs2 = minFuncUnits(IS2, F2);
+ if (MFUs1 == 1 && MFUs2 == 1)
+ return Resources.lookup(F1) < Resources.lookup(F2);
+ return MFUs1 > MFUs2;
+ }
+};
+
+} // end anonymous namespace
+
+/// Calculate the resource constrained minimum initiation interval for the
+/// specified loop. We use the DFA to model the resources needed for
+/// each instruction, and we ignore dependences. A different DFA is created
+/// for each cycle that is required. When adding a new instruction, we attempt
+/// to add it to each existing DFA, until a legal space is found. If the
+/// instruction cannot be reserved in an existing DFA, we create a new one.
+unsigned SwingSchedulerDAG::calculateResMII() {
+ SmallVector<DFAPacketizer *, 8> Resources;
+ MachineBasicBlock *MBB = Loop.getHeader();
+ Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
+
+ // Sort the instructions by the number of available choices for scheduling,
+ // least to most. Use the number of critical resources as the tie breaker.
+ FuncUnitSorter FUS =
+ FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
+ for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
+ E = MBB->getFirstTerminator();
+ I != E; ++I)
+ FUS.calcCriticalResources(*I);
+ PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
+ FuncUnitOrder(FUS);
+
+ for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
+ E = MBB->getFirstTerminator();
+ I != E; ++I)
+ FuncUnitOrder.push(&*I);
+
+ while (!FuncUnitOrder.empty()) {
+ MachineInstr *MI = FuncUnitOrder.top();
+ FuncUnitOrder.pop();
+ if (TII->isZeroCost(MI->getOpcode()))
+ continue;
+ // Attempt to reserve the instruction in an existing DFA. At least one
+ // DFA is needed for each cycle.
+ unsigned NumCycles = getSUnit(MI)->Latency;
+ unsigned ReservedCycles = 0;
+ SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
+ SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
+ for (unsigned C = 0; C < NumCycles; ++C)
+ while (RI != RE) {
+ if ((*RI++)->canReserveResources(*MI)) {
+ ++ReservedCycles;
+ break;
+ }
+ }
+ // Start reserving resources using existing DFAs.
+ for (unsigned C = 0; C < ReservedCycles; ++C) {
+ --RI;
+ (*RI)->reserveResources(*MI);
+ }
+ // Add new DFAs, if needed, to reserve resources.
+ for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
+ DFAPacketizer *NewResource =
+ TII->CreateTargetScheduleState(MF.getSubtarget());
+ assert(NewResource->canReserveResources(*MI) && "Reserve error.");
+ NewResource->reserveResources(*MI);
+ Resources.push_back(NewResource);
+ }
+ }
+ int Resmii = Resources.size();
+ // Delete the memory for each of the DFAs that were created earlier.
+ for (DFAPacketizer *RI : Resources) {
+ DFAPacketizer *D = RI;
+ delete D;
+ }
+ Resources.clear();
+ return Resmii;
+}
+
+/// Calculate the recurrence-constrainted minimum initiation interval.
+/// Iterate over each circuit. Compute the delay(c) and distance(c)
+/// for each circuit. The II needs to satisfy the inequality
+/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
+/// II that satistifies the inequality, and the RecMII is the maximum
+/// of those values.
+unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
+ unsigned RecMII = 0;
+
+ for (NodeSet &Nodes : NodeSets) {
+ if (Nodes.size() == 0)
+ continue;
+
+ unsigned Delay = Nodes.size() - 1;
+ unsigned Distance = 1;
+
+ // ii = ceil(delay / distance)
+ unsigned CurMII = (Delay + Distance - 1) / Distance;
+ Nodes.setRecMII(CurMII);
+ if (CurMII > RecMII)
+ RecMII = CurMII;
+ }
+
+ return RecMII;
+}
+
+/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
+/// but we do this to find the circuits, and then change them back.
+static void swapAntiDependences(std::vector<SUnit> &SUnits) {
+ SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ SUnit *SU = &SUnits[i];
+ for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
+ IP != EP; ++IP) {
+ if (IP->getKind() != SDep::Anti)
+ continue;
+ DepsAdded.push_back(std::make_pair(SU, *IP));
+ }
+ }
+ for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
+ E = DepsAdded.end();
+ I != E; ++I) {
+ // Remove this anti dependency and add one in the reverse direction.
+ SUnit *SU = I->first;
+ SDep &D = I->second;
+ SUnit *TargetSU = D.getSUnit();
+ unsigned Reg = D.getReg();
+ unsigned Lat = D.getLatency();
+ SU->removePred(D);
+ SDep Dep(SU, SDep::Anti, Reg);
+ Dep.setLatency(Lat);
+ TargetSU->addPred(Dep);
+ }
+}
+
+/// Create the adjacency structure of the nodes in the graph.
+void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
+ SwingSchedulerDAG *DAG) {
+ BitVector Added(SUnits.size());
+ for (int i = 0, e = SUnits.size(); i != e; ++i) {
+ Added.reset();
+ // Add any successor to the adjacency matrix and exclude duplicates.
+ for (auto &SI : SUnits[i].Succs) {
+ // Do not process a boundary node and a back-edge is processed only
+ // if it goes to a Phi.
+ if (SI.getSUnit()->isBoundaryNode() ||
+ (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
+ continue;
+ int N = SI.getSUnit()->NodeNum;
+ if (!Added.test(N)) {
+ AdjK[i].push_back(N);
+ Added.set(N);
+ }
+ }
+ // A chain edge between a store and a load is treated as a back-edge in the
+ // adjacency matrix.
+ for (auto &PI : SUnits[i].Preds) {
+ if (!SUnits[i].getInstr()->mayStore() ||
+ !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
+ continue;
+ if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
+ int N = PI.getSUnit()->NodeNum;
+ if (!Added.test(N)) {
+ AdjK[i].push_back(N);
+ Added.set(N);
+ }
+ }
+ }
+ }
+}
+
+/// Identify an elementary circuit in the dependence graph starting at the
+/// specified node.
+bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
+ bool HasBackedge) {
+ SUnit *SV = &SUnits[V];
+ bool F = false;
+ Stack.insert(SV);
+ Blocked.set(V);
+
+ for (auto W : AdjK[V]) {
+ if (NumPaths > MaxPaths)
+ break;
+ if (W < S)
+ continue;
+ if (W == S) {
+ if (!HasBackedge)
+ NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
+ F = true;
+ ++NumPaths;
+ break;
+ } else if (!Blocked.test(W)) {
+ if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
+ F = true;
+ }
+ }
+
+ if (F)
+ unblock(V);
+ else {
+ for (auto W : AdjK[V]) {
+ if (W < S)
+ continue;
+ if (B[W].count(SV) == 0)
+ B[W].insert(SV);
+ }
+ }
+ Stack.pop_back();
+ return F;
+}
+
+/// Unblock a node in the circuit finding algorithm.
+void SwingSchedulerDAG::Circuits::unblock(int U) {
+ Blocked.reset(U);
+ SmallPtrSet<SUnit *, 4> &BU = B[U];
+ while (!BU.empty()) {
+ SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
+ assert(SI != BU.end() && "Invalid B set.");
+ SUnit *W = *SI;
+ BU.erase(W);
+ if (Blocked.test(W->NodeNum))
+ unblock(W->NodeNum);
+ }
+}
+
+/// Identify all the elementary circuits in the dependence graph using
+/// Johnson's circuit algorithm.
+void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
+ // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
+ // but we do this to find the circuits, and then change them back.
+ swapAntiDependences(SUnits);
+
+ Circuits Cir(SUnits);
+ // Create the adjacency structure.
+ Cir.createAdjacencyStructure(this);
+ for (int i = 0, e = SUnits.size(); i != e; ++i) {
+ Cir.reset();
+ Cir.circuit(i, i, NodeSets);
+ }
+
+ // Change the dependences back so that we've created a DAG again.
+ swapAntiDependences(SUnits);
+}
+
+/// Return true for DAG nodes that we ignore when computing the cost functions.
+/// We ignore the back-edge recurrence in order to avoid unbounded recurison
+/// in the calculation of the ASAP, ALAP, etc functions.
+static bool ignoreDependence(const SDep &D, bool isPred) {
+ if (D.isArtificial())
+ return true;
+ return D.getKind() == SDep::Anti && isPred;
+}
+
+/// Compute several functions need to order the nodes for scheduling.
+/// ASAP - Earliest time to schedule a node.
+/// ALAP - Latest time to schedule a node.
+/// MOV - Mobility function, difference between ALAP and ASAP.
+/// D - Depth of each node.
+/// H - Height of each node.
+void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
+
+ ScheduleInfo.resize(SUnits.size());
+
+ DEBUG({
+ for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
+ E = Topo.end();
+ I != E; ++I) {
+ SUnit *SU = &SUnits[*I];
+ SU->dump(this);
+ }
+ });
+
+ int maxASAP = 0;
+ // Compute ASAP.
+ for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
+ E = Topo.end();
+ I != E; ++I) {
+ int asap = 0;
+ SUnit *SU = &SUnits[*I];
+ for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
+ EP = SU->Preds.end();
+ IP != EP; ++IP) {
+ if (ignoreDependence(*IP, true))
+ continue;
+ SUnit *pred = IP->getSUnit();
+ asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
+ getDistance(pred, SU, *IP) * MII));
+ }
+ maxASAP = std::max(maxASAP, asap);
+ ScheduleInfo[*I].ASAP = asap;
+ }
+
+ // Compute ALAP and MOV.
+ for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
+ E = Topo.rend();
+ I != E; ++I) {
+ int alap = maxASAP;
+ SUnit *SU = &SUnits[*I];
+ for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
+ ES = SU->Succs.end();
+ IS != ES; ++IS) {
+ if (ignoreDependence(*IS, true))
+ continue;
+ SUnit *succ = IS->getSUnit();
+ alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
+ getDistance(SU, succ, *IS) * MII));
+ }
+
+ ScheduleInfo[*I].ALAP = alap;
+ }
+
+ // After computing the node functions, compute the summary for each node set.
+ for (NodeSet &I : NodeSets)
+ I.computeNodeSetInfo(this);
+
+ DEBUG({
+ for (unsigned i = 0; i < SUnits.size(); i++) {
+ dbgs() << "\tNode " << i << ":\n";
+ dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
+ dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
+ dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
+ dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
+ dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
+ }
+ });
+}
+
+/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
+/// as the predecessors of the elements of NodeOrder that are not also in
+/// NodeOrder.
+static bool pred_L(SetVector<SUnit *> &NodeOrder,
+ SmallSetVector<SUnit *, 8> &Preds,
+ const NodeSet *S = nullptr) {
+ Preds.clear();
+ for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
+ I != E; ++I) {
+ for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
+ PI != PE; ++PI) {
+ if (S && S->count(PI->getSUnit()) == 0)
+ continue;
+ if (ignoreDependence(*PI, true))
+ continue;
+ if (NodeOrder.count(PI->getSUnit()) == 0)
+ Preds.insert(PI->getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
+ ES = (*I)->Succs.end();
+ IS != ES; ++IS) {
+ if (IS->getKind() != SDep::Anti)
+ continue;
+ if (S && S->count(IS->getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(IS->getSUnit()) == 0)
+ Preds.insert(IS->getSUnit());
+ }
+ }
+ return Preds.size() > 0;
+}
+
+/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
+/// as the successors of the elements of NodeOrder that are not also in
+/// NodeOrder.
+static bool succ_L(SetVector<SUnit *> &NodeOrder,
+ SmallSetVector<SUnit *, 8> &Succs,
+ const NodeSet *S = nullptr) {
+ Succs.clear();
+ for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
+ I != E; ++I) {
+ for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
+ SI != SE; ++SI) {
+ if (S && S->count(SI->getSUnit()) == 0)
+ continue;
+ if (ignoreDependence(*SI, false))
+ continue;
+ if (NodeOrder.count(SI->getSUnit()) == 0)
+ Succs.insert(SI->getSUnit());
+ }
+ for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
+ PE = (*I)->Preds.end();
+ PI != PE; ++PI) {
+ if (PI->getKind() != SDep::Anti)
+ continue;
+ if (S && S->count(PI->getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(PI->getSUnit()) == 0)
+ Succs.insert(PI->getSUnit());
+ }
+ }
+ return Succs.size() > 0;
+}
+
+/// Return true if there is a path from the specified node to any of the nodes
+/// in DestNodes. Keep track and return the nodes in any path.
+static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
+ SetVector<SUnit *> &DestNodes,
+ SetVector<SUnit *> &Exclude,
+ SmallPtrSet<SUnit *, 8> &Visited) {
+ if (Cur->isBoundaryNode())
+ return false;
+ if (Exclude.count(Cur) != 0)
+ return false;
+ if (DestNodes.count(Cur) != 0)
+ return true;
+ if (!Visited.insert(Cur).second)
+ return Path.count(Cur) != 0;
+ bool FoundPath = false;
+ for (auto &SI : Cur->Succs)
+ FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
+ for (auto &PI : Cur->Preds)
+ if (PI.getKind() == SDep::Anti)
+ FoundPath |=
+ computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
+ if (FoundPath)
+ Path.insert(Cur);
+ return FoundPath;
+}
+
+/// Return true if Set1 is a subset of Set2.
+template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
+ for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
+ if (Set2.count(*I) == 0)
+ return false;
+ return true;
+}
+
+/// Compute the live-out registers for the instructions in a node-set.
+/// The live-out registers are those that are defined in the node-set,
+/// but not used. Except for use operands of Phis.
+static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
+ NodeSet &NS) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SmallVector<RegisterMaskPair, 8> LiveOutRegs;
+ SmallSet<unsigned, 4> Uses;
+ for (SUnit *SU : NS) {
+ const MachineInstr *MI = SU->getInstr();
+ if (MI->isPHI())
+ continue;
+ for (const MachineOperand &MO : MI->operands())
+ if (MO.isReg() && MO.isUse()) {
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ Uses.insert(Reg);
+ else if (MRI.isAllocatable(Reg))
+ for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
+ Uses.insert(*Units);
+ }
+ }
+ for (SUnit *SU : NS)
+ for (const MachineOperand &MO : SU->getInstr()->operands())
+ if (MO.isReg() && MO.isDef() && !MO.isDead()) {
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ if (!Uses.count(Reg))
+ LiveOutRegs.push_back(RegisterMaskPair(Reg,
+ LaneBitmask::getNone()));
+ } else if (MRI.isAllocatable(Reg)) {
+ for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
+ if (!Uses.count(*Units))
+ LiveOutRegs.push_back(RegisterMaskPair(*Units,
+ LaneBitmask::getNone()));
+ }
+ }
+ RPTracker.addLiveRegs(LiveOutRegs);
+}
+
+/// A heuristic to filter nodes in recurrent node-sets if the register
+/// pressure of a set is too high.
+void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
+ for (auto &NS : NodeSets) {
+ // Skip small node-sets since they won't cause register pressure problems.
+ if (NS.size() <= 2)
+ continue;
+ IntervalPressure RecRegPressure;
+ RegPressureTracker RecRPTracker(RecRegPressure);
+ RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
+ computeLiveOuts(MF, RecRPTracker, NS);
+ RecRPTracker.closeBottom();
+
+ std::vector<SUnit *> SUnits(NS.begin(), NS.end());
+ std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
+ return A->NodeNum > B->NodeNum;
+ });
+
+ for (auto &SU : SUnits) {
+ // Since we're computing the register pressure for a subset of the
+ // instructions in a block, we need to set the tracker for each
+ // instruction in the node-set. The tracker is set to the instruction
+ // just after the one we're interested in.
+ MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
+ RecRPTracker.setPos(std::next(CurInstI));
+
+ RegPressureDelta RPDelta;
+ ArrayRef<PressureChange> CriticalPSets;
+ RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
+ CriticalPSets,
+ RecRegPressure.MaxSetPressure);
+ if (RPDelta.Excess.isValid()) {
+ DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
+ << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
+ << ":" << RPDelta.Excess.getUnitInc());
+ NS.setExceedPressure(SU);
+ break;
+ }
+ RecRPTracker.recede();
+ }
+ }
+}
+
+/// A heuristic to colocate node sets that have the same set of
+/// successors.
+void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
+ unsigned Colocate = 0;
+ for (int i = 0, e = NodeSets.size(); i < e; ++i) {
+ NodeSet &N1 = NodeSets[i];
+ SmallSetVector<SUnit *, 8> S1;
+ if (N1.empty() || !succ_L(N1, S1))
+ continue;
+ for (int j = i + 1; j < e; ++j) {
+ NodeSet &N2 = NodeSets[j];
+ if (N1.compareRecMII(N2) != 0)
+ continue;
+ SmallSetVector<SUnit *, 8> S2;
+ if (N2.empty() || !succ_L(N2, S2))
+ continue;
+ if (isSubset(S1, S2) && S1.size() == S2.size()) {
+ N1.setColocate(++Colocate);
+ N2.setColocate(Colocate);
+ break;
+ }
+ }
+ }
+}
+
+/// Check if the existing node-sets are profitable. If not, then ignore the
+/// recurrent node-sets, and attempt to schedule all nodes together. This is
+/// a heuristic. If the MII is large and there is a non-recurrent node with
+/// a large depth compared to the MII, then it's best to try and schedule
+/// all instruction together instead of starting with the recurrent node-sets.
+void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
+ // Look for loops with a large MII.
+ if (MII <= 20)
+ return;
+ // Check if the node-set contains only a simple add recurrence.
+ for (auto &NS : NodeSets)
+ if (NS.size() > 2)
+ return;
+ // If the depth of any instruction is significantly larger than the MII, then
+ // ignore the recurrent node-sets and treat all instructions equally.
+ for (auto &SU : SUnits)
+ if (SU.getDepth() > MII * 1.5) {
+ NodeSets.clear();
+ DEBUG(dbgs() << "Clear recurrence node-sets\n");
+ return;
+ }
+}
+
+/// Add the nodes that do not belong to a recurrence set into groups
+/// based upon connected componenets.
+void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
+ SetVector<SUnit *> NodesAdded;
+ SmallPtrSet<SUnit *, 8> Visited;
+ // Add the nodes that are on a path between the previous node sets and
+ // the current node set.
+ for (NodeSet &I : NodeSets) {
+ SmallSetVector<SUnit *, 8> N;
+ // Add the nodes from the current node set to the previous node set.
+ if (succ_L(I, N)) {
+ SetVector<SUnit *> Path;
+ for (SUnit *NI : N) {
+ Visited.clear();
+ computePath(NI, Path, NodesAdded, I, Visited);
+ }
+ if (Path.size() > 0)
+ I.insert(Path.begin(), Path.end());
+ }
+ // Add the nodes from the previous node set to the current node set.
+ N.clear();
+ if (succ_L(NodesAdded, N)) {
+ SetVector<SUnit *> Path;
+ for (SUnit *NI : N) {
+ Visited.clear();
+ computePath(NI, Path, I, NodesAdded, Visited);
+ }
+ if (Path.size() > 0)
+ I.insert(Path.begin(), Path.end());
+ }
+ NodesAdded.insert(I.begin(), I.end());
+ }
+
+ // Create a new node set with the connected nodes of any successor of a node
+ // in a recurrent set.
+ NodeSet NewSet;
+ SmallSetVector<SUnit *, 8> N;
+ if (succ_L(NodesAdded, N))
+ for (SUnit *I : N)
+ addConnectedNodes(I, NewSet, NodesAdded);
+ if (NewSet.size() > 0)
+ NodeSets.push_back(NewSet);
+
+ // Create a new node set with the connected nodes of any predecessor of a node
+ // in a recurrent set.
+ NewSet.clear();
+ if (pred_L(NodesAdded, N))
+ for (SUnit *I : N)
+ addConnectedNodes(I, NewSet, NodesAdded);
+ if (NewSet.size() > 0)
+ NodeSets.push_back(NewSet);
+
+ // Create new nodes sets with the connected nodes any any remaining node that
+ // has no predecessor.
+ for (unsigned i = 0; i < SUnits.size(); ++i) {
+ SUnit *SU = &SUnits[i];
+ if (NodesAdded.count(SU) == 0) {
+ NewSet.clear();
+ addConnectedNodes(SU, NewSet, NodesAdded);
+ if (NewSet.size() > 0)
+ NodeSets.push_back(NewSet);
+ }
+ }
+}
+
+/// Add the node to the set, and add all is its connected nodes to the set.
+void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
+ SetVector<SUnit *> &NodesAdded) {
+ NewSet.insert(SU);
+ NodesAdded.insert(SU);
+ for (auto &SI : SU->Succs) {
+ SUnit *Successor = SI.getSUnit();
+ if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
+ addConnectedNodes(Successor, NewSet, NodesAdded);
+ }
+ for (auto &PI : SU->Preds) {
+ SUnit *Predecessor = PI.getSUnit();
+ if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
+ addConnectedNodes(Predecessor, NewSet, NodesAdded);
+ }
+}
+
+/// Return true if Set1 contains elements in Set2. The elements in common
+/// are returned in a different container.
+static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
+ SmallSetVector<SUnit *, 8> &Result) {
+ Result.clear();
+ for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
+ SUnit *SU = Set1[i];
+ if (Set2.count(SU) != 0)
+ Result.insert(SU);
+ }
+ return !Result.empty();
+}
+
+/// Merge the recurrence node sets that have the same initial node.
+void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
+ for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
+ ++I) {
+ NodeSet &NI = *I;
+ for (NodeSetType::iterator J = I + 1; J != E;) {
+ NodeSet &NJ = *J;
+ if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
+ if (NJ.compareRecMII(NI) > 0)
+ NI.setRecMII(NJ.getRecMII());
+ for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
+ ++NII)
+ I->insert(*NII);
+ NodeSets.erase(J);
+ E = NodeSets.end();
+ } else {
+ ++J;
+ }
+ }
+ }
+}
+
+/// Remove nodes that have been scheduled in previous NodeSets.
+void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
+ for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
+ ++I)
+ for (NodeSetType::iterator J = I + 1; J != E;) {
+ J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
+
+ if (J->size() == 0) {
+ NodeSets.erase(J);
+ E = NodeSets.end();
+ } else {
+ ++J;
+ }
+ }
+}
+
+/// Return true if Inst1 defines a value that is used in Inst2.
+static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
+ for (auto &SI : Inst1->Succs)
+ if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
+ return true;
+ return false;
+}
+
+/// Compute an ordered list of the dependence graph nodes, which
+/// indicates the order that the nodes will be scheduled. This is a
+/// two-level algorithm. First, a partial order is created, which
+/// consists of a list of sets ordered from highest to lowest priority.
+void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
+ SmallSetVector<SUnit *, 8> R;
+ NodeOrder.clear();
+
+ for (auto &Nodes : NodeSets) {
+ DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
+ OrderKind Order;
+ SmallSetVector<SUnit *, 8> N;
+ if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
+ R.insert(N.begin(), N.end());
+ Order = BottomUp;
+ DEBUG(dbgs() << " Bottom up (preds) ");
+ } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
+ R.insert(N.begin(), N.end());
+ Order = TopDown;
+ DEBUG(dbgs() << " Top down (succs) ");
+ } else if (isIntersect(N, Nodes, R)) {
+ // If some of the successors are in the existing node-set, then use the
+ // top-down ordering.
+ Order = TopDown;
+ DEBUG(dbgs() << " Top down (intersect) ");
+ } else if (NodeSets.size() == 1) {
+ for (auto &N : Nodes)
+ if (N->Succs.size() == 0)
+ R.insert(N);
+ Order = BottomUp;
+ DEBUG(dbgs() << " Bottom up (all) ");
+ } else {
+ // Find the node with the highest ASAP.
+ SUnit *maxASAP = nullptr;
+ for (SUnit *SU : Nodes) {
+ if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
+ maxASAP = SU;
+ }
+ R.insert(maxASAP);
+ Order = BottomUp;
+ DEBUG(dbgs() << " Bottom up (default) ");
+ }
+
+ while (!R.empty()) {
+ if (Order == TopDown) {
+ // Choose the node with the maximum height. If more than one, choose
+ // the node with the lowest MOV. If still more than one, check if there
+ // is a dependence between the instructions.
+ while (!R.empty()) {
+ SUnit *maxHeight = nullptr;
+ for (SUnit *I : R) {
+ if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
+ maxHeight = I;
+ else if (getHeight(I) == getHeight(maxHeight) &&
+ getMOV(I) < getMOV(maxHeight) &&
+ !hasDataDependence(maxHeight, I))
+ maxHeight = I;
+ else if (hasDataDependence(I, maxHeight))
+ maxHeight = I;
+ }
+ NodeOrder.insert(maxHeight);
+ DEBUG(dbgs() << maxHeight->NodeNum << " ");
+ R.remove(maxHeight);
+ for (const auto &I : maxHeight->Succs) {
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(I.getSUnit()) != 0)
+ continue;
+ if (ignoreDependence(I, false))
+ continue;
+ R.insert(I.getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (const auto &I : maxHeight->Preds) {
+ if (I.getKind() != SDep::Anti)
+ continue;
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(I.getSUnit()) != 0)
+ continue;
+ R.insert(I.getSUnit());
+ }
+ }
+ Order = BottomUp;
+ DEBUG(dbgs() << "\n Switching order to bottom up ");
+ SmallSetVector<SUnit *, 8> N;
+ if (pred_L(NodeOrder, N, &Nodes))
+ R.insert(N.begin(), N.end());
+ } else {
+ // Choose the node with the maximum depth. If more than one, choose
+ // the node with the lowest MOV. If there is still more than one, check
+ // for a dependence between the instructions.
+ while (!R.empty()) {
+ SUnit *maxDepth = nullptr;
+ for (SUnit *I : R) {
+ if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
+ maxDepth = I;
+ else if (getDepth(I) == getDepth(maxDepth) &&
+ getMOV(I) < getMOV(maxDepth) &&
+ !hasDataDependence(I, maxDepth))
+ maxDepth = I;
+ else if (hasDataDependence(maxDepth, I))
+ maxDepth = I;
+ }
+ NodeOrder.insert(maxDepth);
+ DEBUG(dbgs() << maxDepth->NodeNum << " ");
+ R.remove(maxDepth);
+ if (Nodes.isExceedSU(maxDepth)) {
+ Order = TopDown;
+ R.clear();
+ R.insert(Nodes.getNode(0));
+ break;
+ }
+ for (const auto &I : maxDepth->Preds) {
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(I.getSUnit()) != 0)
+ continue;
+ if (I.getKind() == SDep::Anti)
+ continue;
+ R.insert(I.getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (const auto &I : maxDepth->Succs) {
+ if (I.getKind() != SDep::Anti)
+ continue;
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(I.getSUnit()) != 0)
+ continue;
+ R.insert(I.getSUnit());
+ }
+ }
+ Order = TopDown;
+ DEBUG(dbgs() << "\n Switching order to top down ");
+ SmallSetVector<SUnit *, 8> N;
+ if (succ_L(NodeOrder, N, &Nodes))
+ R.insert(N.begin(), N.end());
+ }
+ }
+ DEBUG(dbgs() << "\nDone with Nodeset\n");
+ }
+
+ DEBUG({
+ dbgs() << "Node order: ";
+ for (SUnit *I : NodeOrder)
+ dbgs() << " " << I->NodeNum << " ";
+ dbgs() << "\n";
+ });
+}
+
+/// Process the nodes in the computed order and create the pipelined schedule
+/// of the instructions, if possible. Return true if a schedule is found.
+bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
+
+ if (NodeOrder.size() == 0)
+ return false;
+
+ bool scheduleFound = false;
+ // Keep increasing II until a valid schedule is found.
+ for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
+ Schedule.reset();
+ Schedule.setInitiationInterval(II);
+ DEBUG(dbgs() << "Try to schedule with " << II << "\n");
+
+ SetVector<SUnit *>::iterator NI = NodeOrder.begin();
+ SetVector<SUnit *>::iterator NE = NodeOrder.end();
+ do {
+ SUnit *SU = *NI;
+
+ // Compute the schedule time for the instruction, which is based
+ // upon the scheduled time for any predecessors/successors.
+ int EarlyStart = INT_MIN;
+ int LateStart = INT_MAX;
+ // These values are set when the size of the schedule window is limited
+ // due to chain dependences.
+ int SchedEnd = INT_MAX;
+ int SchedStart = INT_MIN;
+ Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
+ II, this);
+ DEBUG({
+ dbgs() << "Inst (" << SU->NodeNum << ") ";
+ SU->getInstr()->dump();
+ dbgs() << "\n";
+ });
+ DEBUG({
+ dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
+ << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
+ });
+
+ if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
+ SchedStart > LateStart)
+ scheduleFound = false;
+ else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
+ SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
+ scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
+ } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
+ SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
+ scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
+ } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
+ SchedEnd =
+ std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
+ // When scheduling a Phi it is better to start at the late cycle and go
+ // backwards. The default order may insert the Phi too far away from
+ // its first dependence.
+ if (SU->getInstr()->isPHI())
+ scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
+ else
+ scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
+ } else {
+ int FirstCycle = Schedule.getFirstCycle();
+ scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
+ FirstCycle + getASAP(SU) + II - 1, II);
+ }
+ // Even if we find a schedule, make sure the schedule doesn't exceed the
+ // allowable number of stages. We keep trying if this happens.
+ if (scheduleFound)
+ if (SwpMaxStages > -1 &&
+ Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
+ scheduleFound = false;
+
+ DEBUG({
+ if (!scheduleFound)
+ dbgs() << "\tCan't schedule\n";
+ });
+ } while (++NI != NE && scheduleFound);
+
+ // If a schedule is found, check if it is a valid schedule too.
+ if (scheduleFound)
+ scheduleFound = Schedule.isValidSchedule(this);
+ }
+
+ DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
+
+ if (scheduleFound)
+ Schedule.finalizeSchedule(this);
+ else
+ Schedule.reset();
+
+ return scheduleFound && Schedule.getMaxStageCount() > 0;
+}
+
+/// Given a schedule for the loop, generate a new version of the loop,
+/// and replace the old version. This function generates a prolog
+/// that contains the initial iterations in the pipeline, and kernel
+/// loop, and the epilogue that contains the code for the final
+/// iterations.
+void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
+ // Create a new basic block for the kernel and add it to the CFG.
+ MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+
+ unsigned MaxStageCount = Schedule.getMaxStageCount();
+
+ // Remember the registers that are used in different stages. The index is
+ // the iteration, or stage, that the instruction is scheduled in. This is
+ // a map between register names in the orignal block and the names created
+ // in each stage of the pipelined loop.
+ ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
+ InstrMapTy InstrMap;
+
+ SmallVector<MachineBasicBlock *, 4> PrologBBs;
+ // Generate the prolog instructions that set up the pipeline.
+ generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
+ MF.insert(BB->getIterator(), KernelBB);
+
+ // Rearrange the instructions to generate the new, pipelined loop,
+ // and update register names as needed.
+ for (int Cycle = Schedule.getFirstCycle(),
+ LastCycle = Schedule.getFinalCycle();
+ Cycle <= LastCycle; ++Cycle) {
+ std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
+ // This inner loop schedules each instruction in the cycle.
+ for (SUnit *CI : CycleInstrs) {
+ if (CI->getInstr()->isPHI())
+ continue;
+ unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
+ MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
+ updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
+ KernelBB->push_back(NewMI);
+ InstrMap[NewMI] = CI->getInstr();
+ }
+ }
+
+ // Copy any terminator instructions to the new kernel, and update
+ // names as needed.
+ for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
+ E = BB->instr_end();
+ I != E; ++I) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
+ updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
+ KernelBB->push_back(NewMI);
+ InstrMap[NewMI] = &*I;
+ }
+
+ KernelBB->transferSuccessors(BB);
+ KernelBB->replaceSuccessor(BB, KernelBB);
+
+ generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
+ VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
+ generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
+ InstrMap, MaxStageCount, MaxStageCount, false);
+
+ DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
+
+ SmallVector<MachineBasicBlock *, 4> EpilogBBs;
+ // Generate the epilog instructions to complete the pipeline.
+ generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
+ PrologBBs);
+
+ // We need this step because the register allocation doesn't handle some
+ // situations well, so we insert copies to help out.
+ splitLifetimes(KernelBB, EpilogBBs, Schedule);
+
+ // Remove dead instructions due to loop induction variables.
+ removeDeadInstructions(KernelBB, EpilogBBs);
+
+ // Add branches between prolog and epilog blocks.
+ addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
+
+ // Remove the original loop since it's no longer referenced.
+ BB->clear();
+ BB->eraseFromParent();
+
+ delete[] VRMap;
+}
+
+/// Generate the pipeline prolog code.
+void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap,
+ MBBVectorTy &PrologBBs) {
+ MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
+ assert(PreheaderBB != NULL &&
+ "Need to add code to handle loops w/o preheader");
+ MachineBasicBlock *PredBB = PreheaderBB;
+ InstrMapTy InstrMap;
+
+ // Generate a basic block for each stage, not including the last stage,
+ // which will be generated in the kernel. Each basic block may contain
+ // instructions from multiple stages/iterations.
+ for (unsigned i = 0; i < LastStage; ++i) {
+ // Create and insert the prolog basic block prior to the original loop
+ // basic block. The original loop is removed later.
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+ PrologBBs.push_back(NewBB);
+ MF.insert(BB->getIterator(), NewBB);
+ NewBB->transferSuccessors(PredBB);
+ PredBB->addSuccessor(NewBB);
+ PredBB = NewBB;
+
+ // Generate instructions for each appropriate stage. Process instructions
+ // in original program order.
+ for (int StageNum = i; StageNum >= 0; --StageNum) {
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstTerminator();
+ BBI != BBE; ++BBI) {
+ if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
+ if (BBI->isPHI())
+ continue;
+ MachineInstr *NewMI =
+ cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
+ updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
+ VRMap);
+ NewBB->push_back(NewMI);
+ InstrMap[NewMI] = &*BBI;
+ }
+ }
+ }
+ rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
+ DEBUG({
+ dbgs() << "prolog:\n";
+ NewBB->dump();
+ });
+ }
+
+ PredBB->replaceSuccessor(BB, KernelBB);
+
+ // Check if we need to remove the branch from the preheader to the original
+ // loop, and replace it with a branch to the new loop.
+ unsigned numBranches = TII->removeBranch(*PreheaderBB);
+ if (numBranches) {
+ SmallVector<MachineOperand, 0> Cond;
+ TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
+ }
+}
+
+/// Generate the pipeline epilog code. The epilog code finishes the iterations
+/// that were started in either the prolog or the kernel. We create a basic
+/// block for each stage that needs to complete.
+void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
+ MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap,
+ MBBVectorTy &EpilogBBs,
+ MBBVectorTy &PrologBBs) {
+ // We need to change the branch from the kernel to the first epilog block, so
+ // this call to analyze branch uses the kernel rather than the original BB.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
+ assert(!checkBranch && "generateEpilog must be able to analyze the branch");
+ if (checkBranch)
+ return;
+
+ MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
+ if (*LoopExitI == KernelBB)
+ ++LoopExitI;
+ assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
+ MachineBasicBlock *LoopExitBB = *LoopExitI;
+
+ MachineBasicBlock *PredBB = KernelBB;
+ MachineBasicBlock *EpilogStart = LoopExitBB;
+ InstrMapTy InstrMap;
+
+ // Generate a basic block for each stage, not including the last stage,
+ // which was generated for the kernel. Each basic block may contain
+ // instructions from multiple stages/iterations.
+ int EpilogStage = LastStage + 1;
+ for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
+ EpilogBBs.push_back(NewBB);
+ MF.insert(BB->getIterator(), NewBB);
+
+ PredBB->replaceSuccessor(LoopExitBB, NewBB);
+ NewBB->addSuccessor(LoopExitBB);
+
+ if (EpilogStart == LoopExitBB)
+ EpilogStart = NewBB;
+
+ // Add instructions to the epilog depending on the current block.
+ // Process instructions in original program order.
+ for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
+ for (auto &BBI : *BB) {
+ if (BBI.isPHI())
+ continue;
+ MachineInstr *In = &BBI;
+ if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
+ MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
+ updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
+ NewBB->push_back(NewMI);
+ InstrMap[NewMI] = In;
+ }
+ }
+ }
+ generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
+ VRMap, InstrMap, LastStage, EpilogStage, i == 1);
+ generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
+ InstrMap, LastStage, EpilogStage, i == 1);
+ PredBB = NewBB;
+
+ DEBUG({
+ dbgs() << "epilog:\n";
+ NewBB->dump();
+ });
+ }
+
+ // Fix any Phi nodes in the loop exit block.
+ for (MachineInstr &MI : *LoopExitBB) {
+ if (!MI.isPHI())
+ break;
+ for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
+ MachineOperand &MO = MI.getOperand(i);
+ if (MO.getMBB() == BB)
+ MO.setMBB(PredBB);
+ }
+ }
+
+ // Create a branch to the new epilog from the kernel.
+ // Remove the original branch and add a new branch to the epilog.
+ TII->removeBranch(*KernelBB);
+ TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
+ // Add a branch to the loop exit.
+ if (EpilogBBs.size() > 0) {
+ MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
+ SmallVector<MachineOperand, 4> Cond1;
+ TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
+ }
+}
+
+/// Replace all uses of FromReg that appear outside the specified
+/// basic block with ToReg.
+static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
+ MachineBasicBlock *MBB,
+ MachineRegisterInfo &MRI,
+ LiveIntervals &LIS) {
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
+ E = MRI.use_end();
+ I != E;) {
+ MachineOperand &O = *I;
+ ++I;
+ if (O.getParent()->getParent() != MBB)
+ O.setReg(ToReg);
+ }
+ if (!LIS.hasInterval(ToReg))
+ LIS.createEmptyInterval(ToReg);
+}
+
+/// Return true if the register has a use that occurs outside the
+/// specified loop.
+static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
+ MachineRegisterInfo &MRI) {
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
+ E = MRI.use_end();
+ I != E; ++I)
+ if (I->getParent()->getParent() != BB)
+ return true;
+ return false;
+}
+
+/// Generate Phis for the specific block in the generated pipelined code.
+/// This function looks at the Phis from the original code to guide the
+/// creation of new Phis.
+void SwingSchedulerDAG::generateExistingPhis(
+ MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
+ bool IsLast) {
+ // Compute the stage number for the inital value of the Phi, which
+ // comes from the prolog. The prolog to use depends on to which kernel/
+ // epilog that we're adding the Phi.
+ unsigned PrologStage = 0;
+ unsigned PrevStage = 0;
+ bool InKernel = (LastStageNum == CurStageNum);
+ if (InKernel) {
+ PrologStage = LastStageNum - 1;
+ PrevStage = CurStageNum;
+ } else {
+ PrologStage = LastStageNum - (CurStageNum - LastStageNum);
+ PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
+ }
+
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstNonPHI();
+ BBI != BBE; ++BBI) {
+ unsigned Def = BBI->getOperand(0).getReg();
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(*BBI, BB, InitVal, LoopVal);
+
+ unsigned PhiOp1 = 0;
+ // The Phi value from the loop body typically is defined in the loop, but
+ // not always. So, we need to check if the value is defined in the loop.
+ unsigned PhiOp2 = LoopVal;
+ if (VRMap[LastStageNum].count(LoopVal))
+ PhiOp2 = VRMap[LastStageNum][LoopVal];
+
+ int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
+ int LoopValStage =
+ Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
+ unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
+ if (NumStages == 0) {
+ // We don't need to generate a Phi anymore, but we need to rename any uses
+ // of the Phi value.
+ unsigned NewReg = VRMap[PrevStage][LoopVal];
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
+ Def, NewReg);
+ if (VRMap[CurStageNum].count(LoopVal))
+ VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
+ }
+ // Adjust the number of Phis needed depending on the number of prologs left,
+ // and the distance from where the Phi is first scheduled.
+ unsigned NumPhis = NumStages;
+ if (!InKernel && (int)PrologStage < LoopValStage)
+ // The NumPhis is the maximum number of new Phis needed during the steady
+ // state. If the Phi has not been scheduled in current prolog, then we
+ // need to generate less Phis.
+ NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
+ // The number of Phis cannot exceed the number of prolog stages. Each
+ // stage can potentially define two values.
+ NumPhis = std::min(NumPhis, PrologStage + 2);
+
+ unsigned NewReg = 0;
+
+ unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
+ // In the epilog, we may need to look back one stage to get the correct
+ // Phi name because the epilog and prolog blocks execute the same stage.
+ // The correct name is from the previous block only when the Phi has
+ // been completely scheduled prior to the epilog, and Phi value is not
+ // needed in multiple stages.
+ int StageDiff = 0;
+ if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
+ NumPhis == 1)
+ StageDiff = 1;
+ // Adjust the computations below when the phi and the loop definition
+ // are scheduled in different stages.
+ if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
+ StageDiff = StageScheduled - LoopValStage;
+ for (unsigned np = 0; np < NumPhis; ++np) {
+ // If the Phi hasn't been scheduled, then use the initial Phi operand
+ // value. Otherwise, use the scheduled version of the instruction. This
+ // is a little complicated when a Phi references another Phi.
+ if (np > PrologStage || StageScheduled >= (int)LastStageNum)
+ PhiOp1 = InitVal;
+ // Check if the Phi has already been scheduled in a prolog stage.
+ else if (PrologStage >= AccessStage + StageDiff + np &&
+ VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
+ PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
+ // Check if the Phi has already been scheduled, but the loop intruction
+ // is either another Phi, or doesn't occur in the loop.
+ else if (PrologStage >= AccessStage + StageDiff + np) {
+ // If the Phi references another Phi, we need to examine the other
+ // Phi to get the correct value.
+ PhiOp1 = LoopVal;
+ MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
+ int Indirects = 1;
+ while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
+ int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
+ if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
+ PhiOp1 = getInitPhiReg(*InstOp1, BB);
+ else
+ PhiOp1 = getLoopPhiReg(*InstOp1, BB);
+ InstOp1 = MRI.getVRegDef(PhiOp1);
+ int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
+ int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
+ if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
+ VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
+ PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
+ break;
+ }
+ ++Indirects;
+ }
+ } else
+ PhiOp1 = InitVal;
+ // If this references a generated Phi in the kernel, get the Phi operand
+ // from the incoming block.
+ if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
+ if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
+
+ MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
+ bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
+ // In the epilog, a map lookup is needed to get the value from the kernel,
+ // or previous epilog block. How is does this depends on if the
+ // instruction is scheduled in the previous block.
+ if (!InKernel) {
+ int StageDiffAdj = 0;
+ if (LoopValStage != -1 && StageScheduled > LoopValStage)
+ StageDiffAdj = StageScheduled - LoopValStage;
+ // Use the loop value defined in the kernel, unless the kernel
+ // contains the last definition of the Phi.
+ if (np == 0 && PrevStage == LastStageNum &&
+ (StageScheduled != 0 || LoopValStage != 0) &&
+ VRMap[PrevStage - StageDiffAdj].count(LoopVal))
+ PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
+ // Use the value defined by the Phi. We add one because we switch
+ // from looking at the loop value to the Phi definition.
+ else if (np > 0 && PrevStage == LastStageNum &&
+ VRMap[PrevStage - np + 1].count(Def))
+ PhiOp2 = VRMap[PrevStage - np + 1][Def];
+ // Use the loop value defined in the kernel.
+ else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
+ VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
+ PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
+ // Use the value defined by the Phi, unless we're generating the first
+ // epilog and the Phi refers to a Phi in a different stage.
+ else if (VRMap[PrevStage - np].count(Def) &&
+ (!LoopDefIsPhi || PrevStage != LastStageNum))
+ PhiOp2 = VRMap[PrevStage - np][Def];
+ }
+
+ // Check if we can reuse an existing Phi. This occurs when a Phi
+ // references another Phi, and the other Phi is scheduled in an
+ // earlier stage. We can try to reuse an existing Phi up until the last
+ // stage of the current Phi.
+ if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) {
+ int LVNumStages = Schedule.getStagesForPhi(LoopVal);
+ int StageDiff = (StageScheduled - LoopValStage);
+ LVNumStages -= StageDiff;
+ if (LVNumStages > (int)np) {
+ NewReg = PhiOp2;
+ unsigned ReuseStage = CurStageNum;
+ if (Schedule.isLoopCarried(this, *PhiInst))
+ ReuseStage -= LVNumStages;
+ // Check if the Phi to reuse has been generated yet. If not, then
+ // there is nothing to reuse.
+ if (VRMap[ReuseStage].count(LoopVal)) {
+ NewReg = VRMap[ReuseStage][LoopVal];
+
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
+ &*BBI, Def, NewReg);
+ // Update the map with the new Phi name.
+ VRMap[CurStageNum - np][Def] = NewReg;
+ PhiOp2 = NewReg;
+ if (VRMap[LastStageNum - np - 1].count(LoopVal))
+ PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
+
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+ continue;
+ }
+ } else if (InKernel && StageDiff > 0 &&
+ VRMap[CurStageNum - StageDiff - np].count(LoopVal))
+ PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
+ }
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def);
+ NewReg = MRI.createVirtualRegister(RC);
+
+ MachineInstrBuilder NewPhi =
+ BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
+ TII->get(TargetOpcode::PHI), NewReg);
+ NewPhi.addReg(PhiOp1).addMBB(BB1);
+ NewPhi.addReg(PhiOp2).addMBB(BB2);
+ if (np == 0)
+ InstrMap[NewPhi] = &*BBI;
+
+ // We define the Phis after creating the new pipelined code, so
+ // we need to rename the Phi values in scheduled instructions.
+
+ unsigned PrevReg = 0;
+ if (InKernel && VRMap[PrevStage - np].count(LoopVal))
+ PrevReg = VRMap[PrevStage - np][LoopVal];
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
+ Def, NewReg, PrevReg);
+ // If the Phi has been scheduled, use the new name for rewriting.
+ if (VRMap[CurStageNum - np].count(Def)) {
+ unsigned R = VRMap[CurStageNum - np][Def];
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
+ R, NewReg);
+ }
+
+ // Check if we need to rename any uses that occurs after the loop. The
+ // register to replace depends on whether the Phi is scheduled in the
+ // epilog.
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+
+ // In the kernel, a dependent Phi uses the value from this Phi.
+ if (InKernel)
+ PhiOp2 = NewReg;
+
+ // Update the map with the new Phi name.
+ VRMap[CurStageNum - np][Def] = NewReg;
+ }
+
+ while (NumPhis++ < NumStages) {
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
+ &*BBI, Def, NewReg, 0);
+ }
+
+ // Check if we need to rename a Phi that has been eliminated due to
+ // scheduling.
+ if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
+ replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
+ }
+}
+
+/// Generate Phis for the specified block in the generated pipelined code.
+/// These are new Phis needed because the definition is scheduled after the
+/// use in the pipelened sequence.
+void SwingSchedulerDAG::generatePhis(
+ MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
+ InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
+ bool IsLast) {
+ // Compute the stage number that contains the initial Phi value, and
+ // the Phi from the previous stage.
+ unsigned PrologStage = 0;
+ unsigned PrevStage = 0;
+ unsigned StageDiff = CurStageNum - LastStageNum;
+ bool InKernel = (StageDiff == 0);
+ if (InKernel) {
+ PrologStage = LastStageNum - 1;
+ PrevStage = CurStageNum;
+ } else {
+ PrologStage = LastStageNum - StageDiff;
+ PrevStage = LastStageNum + StageDiff - 1;
+ }
+
+ for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
+ BBE = BB->instr_end();
+ BBI != BBE; ++BBI) {
+ for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = BBI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() ||
+ !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+
+ int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
+ assert(StageScheduled != -1 && "Expecting scheduled instruction.");
+ unsigned Def = MO.getReg();
+ unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
+ // An instruction scheduled in stage 0 and is used after the loop
+ // requires a phi in the epilog for the last definition from either
+ // the kernel or prolog.
+ if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
+ hasUseAfterLoop(Def, BB, MRI))
+ NumPhis = 1;
+ if (!InKernel && (unsigned)StageScheduled > PrologStage)
+ continue;
+
+ unsigned PhiOp2 = VRMap[PrevStage][Def];
+ if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
+ if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
+ PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
+ // The number of Phis can't exceed the number of prolog stages. The
+ // prolog stage number is zero based.
+ if (NumPhis > PrologStage + 1 - StageScheduled)
+ NumPhis = PrologStage + 1 - StageScheduled;
+ for (unsigned np = 0; np < NumPhis; ++np) {
+ unsigned PhiOp1 = VRMap[PrologStage][Def];
+ if (np <= PrologStage)
+ PhiOp1 = VRMap[PrologStage - np][Def];
+ if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
+ if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
+ if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
+ }
+ if (!InKernel)
+ PhiOp2 = VRMap[PrevStage - np][Def];
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def);
+ unsigned NewReg = MRI.createVirtualRegister(RC);
+
+ MachineInstrBuilder NewPhi =
+ BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
+ TII->get(TargetOpcode::PHI), NewReg);
+ NewPhi.addReg(PhiOp1).addMBB(BB1);
+ NewPhi.addReg(PhiOp2).addMBB(BB2);
+ if (np == 0)
+ InstrMap[NewPhi] = &*BBI;
+
+ // Rewrite uses and update the map. The actions depend upon whether
+ // we generating code for the kernel or epilog blocks.
+ if (InKernel) {
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
+ &*BBI, PhiOp1, NewReg);
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
+ &*BBI, PhiOp2, NewReg);
+
+ PhiOp2 = NewReg;
+ VRMap[PrevStage - np - 1][Def] = NewReg;
+ } else {
+ VRMap[CurStageNum - np][Def] = NewReg;
+ if (np == NumPhis - 1)
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
+ &*BBI, Def, NewReg);
+ }
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+ }
+ }
+ }
+}
+
+/// Remove instructions that generate values with no uses.
+/// Typically, these are induction variable operations that generate values
+/// used in the loop itself. A dead instruction has a definition with
+/// no uses, or uses that occur in the original loop only.
+void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs) {
+ // For each epilog block, check that the value defined by each instruction
+ // is used. If not, delete it.
+ for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
+ MBE = EpilogBBs.rend();
+ MBB != MBE; ++MBB)
+ for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
+ ME = (*MBB)->instr_rend();
+ MI != ME;) {
+ // From DeadMachineInstructionElem. Don't delete inline assembly.
+ if (MI->isInlineAsm()) {
+ ++MI;
+ continue;
+ }
+ bool SawStore = false;
+ // Check if it's safe to remove the instruction due to side effects.
+ // We can, and want to, remove Phis here.
+ if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
+ ++MI;
+ continue;
+ }
+ bool used = true;
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef())
+ continue;
+ unsigned reg = MOI->getReg();
+ unsigned realUses = 0;
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
+ EI = MRI.use_end();
+ UI != EI; ++UI) {
+ // Check if there are any uses that occur only in the original
+ // loop. If so, that's not a real use.
+ if (UI->getParent()->getParent() != BB) {
+ realUses++;
+ used = true;
+ break;
+ }
+ }
+ if (realUses > 0)
+ break;
+ used = false;
+ }
+ if (!used) {
+ MI++->eraseFromParent();
+ continue;
+ }
+ ++MI;
+ }
+ // In the kernel block, check if we can remove a Phi that generates a value
+ // used in an instruction removed in the epilog block.
+ for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
+ BBE = KernelBB->getFirstNonPHI();
+ BBI != BBE;) {
+ MachineInstr *MI = &*BBI;
+ ++BBI;
+ unsigned reg = MI->getOperand(0).getReg();
+ if (MRI.use_begin(reg) == MRI.use_end()) {
+ MI->eraseFromParent();
+ }
+ }
+}
+
+/// For loop carried definitions, we split the lifetime of a virtual register
+/// that has uses past the definition in the next iteration. A copy with a new
+/// virtual register is inserted before the definition, which helps with
+/// generating a better register assignment.
+///
+/// v1 = phi(a, v2) v1 = phi(a, v2)
+/// v2 = phi(b, v3) v2 = phi(b, v3)
+/// v3 = .. v4 = copy v1
+/// .. = V1 v3 = ..
+/// .. = v4
+void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs,
+ SMSchedule &Schedule) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
+ BBF = KernelBB->getFirstNonPHI();
+ BBI != BBF; ++BBI) {
+ unsigned Def = BBI->getOperand(0).getReg();
+ // Check for any Phi definition that used as an operand of another Phi
+ // in the same block.
+ for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
+ E = MRI.use_instr_end();
+ I != E; ++I) {
+ if (I->isPHI() && I->getParent() == KernelBB) {
+ // Get the loop carried definition.
+ unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
+ if (!LCDef)
+ continue;
+ MachineInstr *MI = MRI.getVRegDef(LCDef);
+ if (!MI || MI->getParent() != KernelBB || MI->isPHI())
+ continue;
+ // Search through the rest of the block looking for uses of the Phi
+ // definition. If one occurs, then split the lifetime.
+ unsigned SplitReg = 0;
+ for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
+ KernelBB->instr_end()))
+ if (BBJ.readsRegister(Def)) {
+ // We split the lifetime when we find the first use.
+ if (SplitReg == 0) {
+ SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
+ BuildMI(*KernelBB, MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), SplitReg)
+ .addReg(Def);
+ }
+ BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
+ }
+ if (!SplitReg)
+ continue;
+ // Search through each of the epilog blocks for any uses to be renamed.
+ for (auto &Epilog : EpilogBBs)
+ for (auto &I : *Epilog)
+ if (I.readsRegister(Def))
+ I.substituteRegister(Def, SplitReg, 0, *TRI);
+ break;
+ }
+ }
+ }
+}
+
+/// Remove the incoming block from the Phis in a basic block.
+static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
+ for (MachineInstr &MI : *BB) {
+ if (!MI.isPHI())
+ break;
+ for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
+ if (MI.getOperand(i + 1).getMBB() == Incoming) {
+ MI.RemoveOperand(i + 1);
+ MI.RemoveOperand(i);
+ break;
+ }
+ }
+}
+
+/// Create branches from each prolog basic block to the appropriate epilog
+/// block. These edges are needed if the loop ends before reaching the
+/// kernel.
+void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
+ MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs,
+ SMSchedule &Schedule, ValueMapTy *VRMap) {
+ assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
+ MachineInstr *IndVar = Pass.LI.LoopInductionVar;
+ MachineInstr *Cmp = Pass.LI.LoopCompare;
+ MachineBasicBlock *LastPro = KernelBB;
+ MachineBasicBlock *LastEpi = KernelBB;
+
+ // Start from the blocks connected to the kernel and work "out"
+ // to the first prolog and the last epilog blocks.
+ SmallVector<MachineInstr *, 4> PrevInsts;
+ unsigned MaxIter = PrologBBs.size() - 1;
+ unsigned LC = UINT_MAX;
+ unsigned LCMin = UINT_MAX;
+ for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
+ // Add branches to the prolog that go to the corresponding
+ // epilog, and the fall-thru prolog/kernel block.
+ MachineBasicBlock *Prolog = PrologBBs[j];
+ MachineBasicBlock *Epilog = EpilogBBs[i];
+ // We've executed one iteration, so decrement the loop count and check for
+ // the loop end.
+ SmallVector<MachineOperand, 4> Cond;
+ // Check if the LOOP0 has already been removed. If so, then there is no need
+ // to reduce the trip count.
+ if (LC != 0)
+ LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
+ MaxIter);
+
+ // Record the value of the first trip count, which is used to determine if
+ // branches and blocks can be removed for constant trip counts.
+ if (LCMin == UINT_MAX)
+ LCMin = LC;
+
+ unsigned numAdded = 0;
+ if (TargetRegisterInfo::isVirtualRegister(LC)) {
+ Prolog->addSuccessor(Epilog);
+ numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
+ } else if (j >= LCMin) {
+ Prolog->addSuccessor(Epilog);
+ Prolog->removeSuccessor(LastPro);
+ LastEpi->removeSuccessor(Epilog);
+ numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
+ removePhis(Epilog, LastEpi);
+ // Remove the blocks that are no longer referenced.
+ if (LastPro != LastEpi) {
+ LastEpi->clear();
+ LastEpi->eraseFromParent();
+ }
+ LastPro->clear();
+ LastPro->eraseFromParent();
+ } else {
+ numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
+ removePhis(Epilog, Prolog);
+ }
+ LastPro = Prolog;
+ LastEpi = Epilog;
+ for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
+ E = Prolog->instr_rend();
+ I != E && numAdded > 0; ++I, --numAdded)
+ updateInstruction(&*I, false, j, 0, Schedule, VRMap);
+ }
+}
+
+/// Return true if we can compute the amount the instruction changes
+/// during each iteration. Set Delta to the amount of the change.
+bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ unsigned BaseReg;
+ int64_t Offset;
+ if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
+ return false;
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ // Check if there is a Phi. If so, get the definition in the loop.
+ MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
+ if (BaseDef && BaseDef->isPHI()) {
+ BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
+ BaseDef = MRI.getVRegDef(BaseReg);
+ }
+ if (!BaseDef)
+ return false;
+
+ int D = 0;
+ if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
+ return false;
+
+ Delta = D;
+ return true;
+}
+
+/// Update the memory operand with a new offset when the pipeliner
+/// generates a new copy of the instruction that refers to a
+/// different memory location.
+void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
+ MachineInstr &OldMI, unsigned Num) {
+ if (Num == 0)
+ return;
+ // If the instruction has memory operands, then adjust the offset
+ // when the instruction appears in different stages.
+ unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
+ if (NumRefs == 0)
+ return;
+ MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
+ unsigned Refs = 0;
+ for (MachineMemOperand *MMO : NewMI.memoperands()) {
+ if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
+ (!MMO->getValue())) {
+ NewMemRefs[Refs++] = MMO;
+ continue;
+ }
+ unsigned Delta;
+ if (computeDelta(OldMI, Delta)) {
+ int64_t AdjOffset = Delta * Num;
+ NewMemRefs[Refs++] =
+ MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
+ } else
+ NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX);
+ }
+ NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
+}
+
+/// Clone the instruction for the new pipelined loop and update the
+/// memory operands, if needed.
+MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
+ unsigned CurStageNum,
+ unsigned InstStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
+ // Check for tied operands in inline asm instructions. This should be handled
+ // elsewhere, but I'm not sure of the best solution.
+ if (OldMI->isInlineAsm())
+ for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
+ const auto &MO = OldMI->getOperand(i);
+ if (MO.isReg() && MO.isUse())
+ break;
+ unsigned UseIdx;
+ if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
+ NewMI->tieOperands(i, UseIdx);
+ }
+ updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
+ return NewMI;
+}
+
+/// Clone the instruction for the new pipelined loop. If needed, this
+/// function updates the instruction using the values saved in the
+/// InstrChanges structure.
+MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
+ unsigned CurStageNum,
+ unsigned InstStageNum,
+ SMSchedule &Schedule) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(getSUnit(OldMI));
+ if (It != InstrChanges.end()) {
+ std::pair<unsigned, int64_t> RegAndOffset = It->second;
+ unsigned BasePos, OffsetPos;
+ if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
+ return nullptr;
+ int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
+ MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
+ if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
+ NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
+ NewMI->getOperand(OffsetPos).setImm(NewOffset);
+ }
+ updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
+ return NewMI;
+}
+
+/// Update the machine instruction with new virtual registers. This
+/// function may change the defintions and/or uses.
+void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
+ unsigned CurStageNum,
+ unsigned InstrStageNum,
+ SMSchedule &Schedule,
+ ValueMapTy *VRMap) {
+ for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = NewMI->getOperand(i);
+ if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+ unsigned reg = MO.getReg();
+ if (MO.isDef()) {
+ // Create a new virtual register for the definition.
+ const TargetRegisterClass *RC = MRI.getRegClass(reg);
+ unsigned NewReg = MRI.createVirtualRegister(RC);
+ MO.setReg(NewReg);
+ VRMap[CurStageNum][reg] = NewReg;
+ if (LastDef)
+ replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
+ } else if (MO.isUse()) {
+ MachineInstr *Def = MRI.getVRegDef(reg);
+ // Compute the stage that contains the last definition for instruction.
+ int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
+ unsigned StageNum = CurStageNum;
+ if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
+ // Compute the difference in stages between the defintion and the use.
+ unsigned StageDiff = (InstrStageNum - DefStageNum);
+ // Make an adjustment to get the last definition.
+ StageNum -= StageDiff;
+ }
+ if (VRMap[StageNum].count(reg))
+ MO.setReg(VRMap[StageNum][reg]);
+ }
+ }
+}
+
+/// Return the instruction in the loop that defines the register.
+/// If the definition is a Phi, then follow the Phi operand to
+/// the instruction in the loop.
+MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
+ SmallPtrSet<MachineInstr *, 8> Visited;
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ while (Def->isPHI()) {
+ if (!Visited.insert(Def).second)
+ break;
+ for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
+ if (Def->getOperand(i + 1).getMBB() == BB) {
+ Def = MRI.getVRegDef(Def->getOperand(i).getReg());
+ break;
+ }
+ }
+ return Def;
+}
+
+/// Return the new name for the value from the previous stage.
+unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
+ unsigned LoopVal, unsigned LoopStage,
+ ValueMapTy *VRMap,
+ MachineBasicBlock *BB) {
+ unsigned PrevVal = 0;
+ if (StageNum > PhiStage) {
+ MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
+ if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
+ // The name is defined in the previous stage.
+ PrevVal = VRMap[StageNum - 1][LoopVal];
+ else if (VRMap[StageNum].count(LoopVal))
+ // The previous name is defined in the current stage when the instruction
+ // order is swapped.
+ PrevVal = VRMap[StageNum][LoopVal];
+ else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
+ // The loop value hasn't yet been scheduled.
+ PrevVal = LoopVal;
+ else if (StageNum == PhiStage + 1)
+ // The loop value is another phi, which has not been scheduled.
+ PrevVal = getInitPhiReg(*LoopInst, BB);
+ else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
+ // The loop value is another phi, which has been scheduled.
+ PrevVal =
+ getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
+ LoopStage, VRMap, BB);
+ }
+ return PrevVal;
+}
+
+/// Rewrite the Phi values in the specified block to use the mappings
+/// from the initial operand. Once the Phi is scheduled, we switch
+/// to using the loop value instead of the Phi value, so those names
+/// do not need to be rewritten.
+void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
+ unsigned StageNum,
+ SMSchedule &Schedule,
+ ValueMapTy *VRMap,
+ InstrMapTy &InstrMap) {
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstNonPHI();
+ BBI != BBE; ++BBI) {
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(*BBI, BB, InitVal, LoopVal);
+ unsigned PhiDef = BBI->getOperand(0).getReg();
+
+ unsigned PhiStage =
+ (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
+ unsigned LoopStage =
+ (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
+ unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
+ if (NumPhis > StageNum)
+ NumPhis = StageNum;
+ for (unsigned np = 0; np <= NumPhis; ++np) {
+ unsigned NewVal =
+ getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
+ if (!NewVal)
+ NewVal = InitVal;
+ rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
+ PhiDef, NewVal);
+ }
+ }
+}
+
+/// Rewrite a previously scheduled instruction to use the register value
+/// from the new instruction. Make sure the instruction occurs in the
+/// basic block, and we don't change the uses in the new instruction.
+void SwingSchedulerDAG::rewriteScheduledInstr(
+ MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
+ unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
+ unsigned NewReg, unsigned PrevReg) {
+ bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
+ int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
+ // Rewrite uses that have been scheduled already to use the new
+ // Phi register.
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
+ EI = MRI.use_end();
+ UI != EI;) {
+ MachineOperand &UseOp = *UI;
+ MachineInstr *UseMI = UseOp.getParent();
+ ++UI;
+ if (UseMI->getParent() != BB)
+ continue;
+ if (UseMI->isPHI()) {
+ if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
+ continue;
+ if (getLoopPhiReg(*UseMI, BB) != OldReg)
+ continue;
+ }
+ InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
+ assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
+ SUnit *OrigMISU = getSUnit(OrigInstr->second);
+ int StageSched = Schedule.stageScheduled(OrigMISU);
+ int CycleSched = Schedule.cycleScheduled(OrigMISU);
+ unsigned ReplaceReg = 0;
+ // This is the stage for the scheduled instruction.
+ if (StagePhi == StageSched && Phi->isPHI()) {
+ int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
+ if (PrevReg && InProlog)
+ ReplaceReg = PrevReg;
+ else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
+ (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
+ ReplaceReg = PrevReg;
+ else
+ ReplaceReg = NewReg;
+ }
+ // The scheduled instruction occurs before the scheduled Phi, and the
+ // Phi is not loop carried.
+ if (!InProlog && StagePhi + 1 == StageSched &&
+ !Schedule.isLoopCarried(this, *Phi))
+ ReplaceReg = NewReg;
+ if (StagePhi > StageSched && Phi->isPHI())
+ ReplaceReg = NewReg;
+ if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
+ ReplaceReg = NewReg;
+ if (ReplaceReg) {
+ MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
+ UseOp.setReg(ReplaceReg);
+ }
+ }
+}
+
+/// Check if we can change the instruction to use an offset value from the
+/// previous iteration. If so, return true and set the base and offset values
+/// so that we can rewrite the load, if necessary.
+/// v1 = Phi(v0, v3)
+/// v2 = load v1, 0
+/// v3 = post_store v1, 4, x
+/// This function enables the load to be rewritten as v2 = load v3, 4.
+bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
+ unsigned &BasePos,
+ unsigned &OffsetPos,
+ unsigned &NewBase,
+ int64_t &Offset) {
+ // Get the load instruction.
+ if (TII->isPostIncrement(*MI))
+ return false;
+ unsigned BasePosLd, OffsetPosLd;
+ if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
+ return false;
+ unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
+
+ // Look for the Phi instruction.
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+ MachineInstr *Phi = MRI.getVRegDef(BaseReg);
+ if (!Phi || !Phi->isPHI())
+ return false;
+ // Get the register defined in the loop block.
+ unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
+ if (!PrevReg)
+ return false;
+
+ // Check for the post-increment load/store instruction.
+ MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
+ if (!PrevDef || PrevDef == MI)
+ return false;
+
+ if (!TII->isPostIncrement(*PrevDef))
+ return false;
+
+ unsigned BasePos1 = 0, OffsetPos1 = 0;
+ if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
+ return false;
+
+ // Make sure offset values are both positive or both negative.
+ int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
+ int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
+ if ((LoadOffset >= 0) != (StoreOffset >= 0))
+ return false;
+
+ // Set the return value once we determine that we return true.
+ BasePos = BasePosLd;
+ OffsetPos = OffsetPosLd;
+ NewBase = PrevReg;
+ Offset = StoreOffset;
+ return true;
+}
+
+/// Apply changes to the instruction if needed. The changes are need
+/// to improve the scheduling and depend up on the final schedule.
+MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
+ SMSchedule &Schedule,
+ bool UpdateDAG) {
+ SUnit *SU = getSUnit(MI);
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(SU);
+ if (It != InstrChanges.end()) {
+ std::pair<unsigned, int64_t> RegAndOffset = It->second;
+ unsigned BasePos, OffsetPos;
+ if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
+ return nullptr;
+ unsigned BaseReg = MI->getOperand(BasePos).getReg();
+ MachineInstr *LoopDef = findDefInLoop(BaseReg);
+ int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
+ int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
+ int BaseStageNum = Schedule.stageScheduled(SU);
+ int BaseCycleNum = Schedule.cycleScheduled(SU);
+ if (BaseStageNum < DefStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(MI);
+ int OffsetDiff = DefStageNum - BaseStageNum;
+ if (DefCycleNum < BaseCycleNum) {
+ NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
+ if (OffsetDiff > 0)
+ --OffsetDiff;
+ }
+ int64_t NewOffset =
+ MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
+ NewMI->getOperand(OffsetPos).setImm(NewOffset);
+ if (UpdateDAG) {
+ SU->setInstr(NewMI);
+ MISUnitMap[NewMI] = SU;
+ }
+ NewMIs.insert(NewMI);
+ return NewMI;
+ }
+ }
+ return nullptr;
+}
+
+/// Return true for an order dependence that is loop carried potentially.
+/// An order dependence is loop carried if the destination defines a value
+/// that may be used by the source in a subsequent iteration.
+bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
+ bool isSucc) {
+ if (!isOrder(Source, Dep) || Dep.isArtificial())
+ return false;
+
+ if (!SwpPruneLoopCarried)
+ return true;
+
+ MachineInstr *SI = Source->getInstr();
+ MachineInstr *DI = Dep.getSUnit()->getInstr();
+ if (!isSucc)
+ std::swap(SI, DI);
+ assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
+
+ // Assume ordered loads and stores may have a loop carried dependence.
+ if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
+ SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
+ return true;
+
+ // Only chain dependences between a load and store can be loop carried.
+ if (!DI->mayStore() || !SI->mayLoad())
+ return false;
+
+ unsigned DeltaS, DeltaD;
+ if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
+ return true;
+
+ unsigned BaseRegS, BaseRegD;
+ int64_t OffsetS, OffsetD;
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
+ !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
+ return true;
+
+ if (BaseRegS != BaseRegD)
+ return true;
+
+ uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
+ uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
+
+ // This is the main test, which checks the offset values and the loop
+ // increment value to determine if the accesses may be loop carried.
+ if (OffsetS >= OffsetD)
+ return OffsetS + AccessSizeS > DeltaS;
+ else if (OffsetS < OffsetD)
+ return OffsetD + AccessSizeD > DeltaD;
+
+ return true;
+}
+
+void SwingSchedulerDAG::postprocessDAG() {
+ for (auto &M : Mutations)
+ M->apply(this);
+}
+
+/// Try to schedule the node at the specified StartCycle and continue
+/// until the node is schedule or the EndCycle is reached. This function
+/// returns true if the node is scheduled. This routine may search either
+/// forward or backward for a place to insert the instruction based upon
+/// the relative values of StartCycle and EndCycle.
+bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
+ bool forward = true;
+ if (StartCycle > EndCycle)
+ forward = false;
+
+ // The terminating condition depends on the direction.
+ int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
+ for (int curCycle = StartCycle; curCycle != termCycle;
+ forward ? ++curCycle : --curCycle) {
+
+ // Add the already scheduled instructions at the specified cycle to the DFA.
+ Resources->clearResources();
+ for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
+ checkCycle <= LastCycle; checkCycle += II) {
+ std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
+
+ for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
+ E = cycleInstrs.end();
+ I != E; ++I) {
+ if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
+ continue;
+ assert(Resources->canReserveResources(*(*I)->getInstr()) &&
+ "These instructions have already been scheduled.");
+ Resources->reserveResources(*(*I)->getInstr());
+ }
+ }
+ if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
+ Resources->canReserveResources(*SU->getInstr())) {
+ DEBUG({
+ dbgs() << "\tinsert at cycle " << curCycle << " ";
+ SU->getInstr()->dump();
+ });
+
+ ScheduledInstrs[curCycle].push_back(SU);
+ InstrToCycle.insert(std::make_pair(SU, curCycle));
+ if (curCycle > LastCycle)
+ LastCycle = curCycle;
+ if (curCycle < FirstCycle)
+ FirstCycle = curCycle;
+ return true;
+ }
+ DEBUG({
+ dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
+ SU->getInstr()->dump();
+ });
+ }
+ return false;
+}
+
+// Return the cycle of the earliest scheduled instruction in the chain.
+int SMSchedule::earliestCycleInChain(const SDep &Dep) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SDep, 8> Worklist;
+ Worklist.push_back(Dep);
+ int EarlyCycle = INT_MAX;
+ while (!Worklist.empty()) {
+ const SDep &Cur = Worklist.pop_back_val();
+ SUnit *PrevSU = Cur.getSUnit();
+ if (Visited.count(PrevSU))
+ continue;
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
+ if (it == InstrToCycle.end())
+ continue;
+ EarlyCycle = std::min(EarlyCycle, it->second);
+ for (const auto &PI : PrevSU->Preds)
+ if (SwingSchedulerDAG::isOrder(PrevSU, PI))
+ Worklist.push_back(PI);
+ Visited.insert(PrevSU);
+ }
+ return EarlyCycle;
+}
+
+// Return the cycle of the latest scheduled instruction in the chain.
+int SMSchedule::latestCycleInChain(const SDep &Dep) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SDep, 8> Worklist;
+ Worklist.push_back(Dep);
+ int LateCycle = INT_MIN;
+ while (!Worklist.empty()) {
+ const SDep &Cur = Worklist.pop_back_val();
+ SUnit *SuccSU = Cur.getSUnit();
+ if (Visited.count(SuccSU))
+ continue;
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
+ if (it == InstrToCycle.end())
+ continue;
+ LateCycle = std::max(LateCycle, it->second);
+ for (const auto &SI : SuccSU->Succs)
+ if (SwingSchedulerDAG::isOrder(SuccSU, SI))
+ Worklist.push_back(SI);
+ Visited.insert(SuccSU);
+ }
+ return LateCycle;
+}
+
+/// If an instruction has a use that spans multiple iterations, then
+/// return true. These instructions are characterized by having a back-ege
+/// to a Phi, which contains a reference to another Phi.
+static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
+ for (auto &P : SU->Preds)
+ if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
+ for (auto &S : P.getSUnit()->Succs)
+ if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
+ return P.getSUnit();
+ return nullptr;
+}
+
+/// Compute the scheduling start slot for the instruction. The start slot
+/// depends on any predecessor or successor nodes scheduled already.
+void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
+ int *MinEnd, int *MaxStart, int II,
+ SwingSchedulerDAG *DAG) {
+ // Iterate over each instruction that has been scheduled already. The start
+ // slot computuation depends on whether the previously scheduled instruction
+ // is a predecessor or successor of the specified instruction.
+ for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
+
+ // Iterate over each instruction in the current cycle.
+ for (SUnit *I : getInstructions(cycle)) {
+ // Because we're processing a DAG for the dependences, we recognize
+ // the back-edge in recurrences by anti dependences.
+ for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
+ const SDep &Dep = SU->Preds[i];
+ if (Dep.getSUnit() == I) {
+ if (!DAG->isBackedge(SU, Dep)) {
+ int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
+ DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
+ *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
+ if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
+ int End = earliestCycleInChain(Dep) + (II - 1);
+ *MinEnd = std::min(*MinEnd, End);
+ }
+ } else {
+ int LateStart = cycle - DAG->getLatency(SU, Dep) +
+ DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
+ *MinLateStart = std::min(*MinLateStart, LateStart);
+ }
+ }
+ // For instruction that requires multiple iterations, make sure that
+ // the dependent instruction is not scheduled past the definition.
+ SUnit *BE = multipleIterations(I, DAG);
+ if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
+ !SU->isPred(I))
+ *MinLateStart = std::min(*MinLateStart, cycle);
+ }
+ for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
+ if (SU->Succs[i].getSUnit() == I) {
+ const SDep &Dep = SU->Succs[i];
+ if (!DAG->isBackedge(SU, Dep)) {
+ int LateStart = cycle - DAG->getLatency(SU, Dep) +
+ DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
+ *MinLateStart = std::min(*MinLateStart, LateStart);
+ if (DAG->isLoopCarriedOrder(SU, Dep)) {
+ int Start = latestCycleInChain(Dep) + 1 - II;
+ *MaxStart = std::max(*MaxStart, Start);
+ }
+ } else {
+ int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
+ DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
+ *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
+ }
+ }
+ }
+ }
+}
+
+/// Order the instructions within a cycle so that the definitions occur
+/// before the uses. Returns true if the instruction is added to the start
+/// of the list, or false if added to the end.
+bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
+ std::deque<SUnit *> &Insts) {
+ MachineInstr *MI = SU->getInstr();
+ bool OrderBeforeUse = false;
+ bool OrderAfterDef = false;
+ bool OrderBeforeDef = false;
+ unsigned MoveDef = 0;
+ unsigned MoveUse = 0;
+ int StageInst1 = stageScheduled(SU);
+
+ unsigned Pos = 0;
+ for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
+ ++I, ++Pos) {
+ // Relative order of Phis does not matter.
+ if (MI->isPHI() && (*I)->getInstr()->isPHI())
+ continue;
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+ unsigned Reg = MO.getReg();
+ unsigned BasePos, OffsetPos;
+ if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
+ if (MI->getOperand(BasePos).getReg() == Reg)
+ if (unsigned NewReg = SSD->getInstrBaseReg(SU))
+ Reg = NewReg;
+ bool Reads, Writes;
+ std::tie(Reads, Writes) =
+ (*I)->getInstr()->readsWritesVirtualRegister(Reg);
+ if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
+ // Add the instruction after the scheduled instruction.
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
+ if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ } else {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ if (MoveUse != 0) {
+ OrderAfterDef = true;
+ MoveDef = Pos - 1;
+ }
+ } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
+ // Add the instruction before the scheduled instruction.
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
+ isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
+ OrderBeforeDef = true;
+ MoveUse = Pos;
+ }
+ }
+ // Check for order dependences between instructions. Make sure the source
+ // is ordered before the destination.
+ for (auto &S : SU->Succs)
+ if (S.getKind() == SDep::Order) {
+ if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ }
+ } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
+ if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
+ if (S.isAssignedRegDep()) {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ } else {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ }
+ }
+ for (auto &P : SU->Preds)
+ if (P.getKind() == SDep::Order) {
+ if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
+ if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
+ if (P.isAssignedRegDep()) {
+ OrderBeforeUse = true;
+ MoveUse = Pos;
+ }
+ } else {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ }
+ }
+
+ // A circular dependence.
+ if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
+ OrderBeforeUse = false;
+
+ // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
+ // to a loop-carried dependence.
+ if (OrderBeforeDef)
+ OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
+
+ // The uncommon case when the instruction order needs to be updated because
+ // there is both a use and def.
+ if (OrderBeforeUse && OrderAfterDef) {
+ SUnit *UseSU = Insts.at(MoveUse);
+ SUnit *DefSU = Insts.at(MoveDef);
+ if (MoveUse > MoveDef) {
+ Insts.erase(Insts.begin() + MoveUse);
+ Insts.erase(Insts.begin() + MoveDef);
+ } else {
+ Insts.erase(Insts.begin() + MoveDef);
+ Insts.erase(Insts.begin() + MoveUse);
+ }
+ if (orderDependence(SSD, UseSU, Insts)) {
+ Insts.push_front(SU);
+ orderDependence(SSD, DefSU, Insts);
+ return true;
+ }
+ Insts.pop_back();
+ Insts.push_back(SU);
+ Insts.push_back(UseSU);
+ orderDependence(SSD, DefSU, Insts);
+ return false;
+ }
+ // Put the new instruction first if there is a use in the list. Otherwise,
+ // put it at the end of the list.
+ if (OrderBeforeUse)
+ Insts.push_front(SU);
+ else
+ Insts.push_back(SU);
+ return OrderBeforeUse;
+}
+
+/// Return true if the scheduled Phi has a loop carried operand.
+bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
+ if (!Phi.isPHI())
+ return false;
+ assert(Phi.isPHI() && "Expecing a Phi.");
+ SUnit *DefSU = SSD->getSUnit(&Phi);
+ unsigned DefCycle = cycleScheduled(DefSU);
+ int DefStage = stageScheduled(DefSU);
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
+ SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
+ if (!UseSU)
+ return true;
+ if (UseSU->getInstr()->isPHI())
+ return true;
+ unsigned LoopCycle = cycleScheduled(UseSU);
+ int LoopStage = stageScheduled(UseSU);
+ return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
+}
+
+/// Return true if the instruction is a definition that is loop carried
+/// and defines the use on the next iteration.
+/// v1 = phi(v2, v3)
+/// (Def) v3 = op v1
+/// (MO) = v1
+/// If MO appears before Def, then then v1 and v3 may get assigned to the same
+/// register.
+bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
+ MachineInstr *Def, MachineOperand &MO) {
+ if (!MO.isReg())
+ return false;
+ if (Def->isPHI())
+ return false;
+ MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
+ if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
+ return false;
+ if (!isLoopCarried(SSD, *Phi))
+ return false;
+ unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
+ for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
+ MachineOperand &DMO = Def->getOperand(i);
+ if (!DMO.isReg() || !DMO.isDef())
+ continue;
+ if (DMO.getReg() == LoopReg)
+ return true;
+ }
+ return false;
+}
+
+// Check if the generated schedule is valid. This function checks if
+// an instruction that uses a physical register is scheduled in a
+// different stage than the definition. The pipeliner does not handle
+// physical register values that may cross a basic block boundary.
+bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
+ for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
+ SUnit &SU = SSD->SUnits[i];
+ if (!SU.hasPhysRegDefs)
+ continue;
+ int StageDef = stageScheduled(&SU);
+ assert(StageDef != -1 && "Instruction should have been scheduled.");
+ for (auto &SI : SU.Succs)
+ if (SI.isAssignedRegDep())
+ if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
+ if (stageScheduled(SI.getSUnit()) != StageDef)
+ return false;
+ }
+ return true;
+}
+
+/// After the schedule has been formed, call this function to combine
+/// the instructions from the different stages/cycles. That is, this
+/// function creates a schedule that represents a single iteration.
+void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
+ // Move all instructions to the first stage from later stages.
+ for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
+ for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
+ ++stage) {
+ std::deque<SUnit *> &cycleInstrs =
+ ScheduledInstrs[cycle + (stage * InitiationInterval)];
+ for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
+ E = cycleInstrs.rend();
+ I != E; ++I)
+ ScheduledInstrs[cycle].push_front(*I);
+ }
+ }
+ // Iterate over the definitions in each instruction, and compute the
+ // stage difference for each use. Keep the maximum value.
+ for (auto &I : InstrToCycle) {
+ int DefStage = stageScheduled(I.first);
+ MachineInstr *MI = I.first->getInstr();
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+
+ unsigned Reg = Op.getReg();
+ unsigned MaxDiff = 0;
+ bool PhiIsSwapped = false;
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
+ EI = MRI.use_end();
+ UI != EI; ++UI) {
+ MachineOperand &UseOp = *UI;
+ MachineInstr *UseMI = UseOp.getParent();
+ SUnit *SUnitUse = SSD->getSUnit(UseMI);
+ int UseStage = stageScheduled(SUnitUse);
+ unsigned Diff = 0;
+ if (UseStage != -1 && UseStage >= DefStage)
+ Diff = UseStage - DefStage;
+ if (MI->isPHI()) {
+ if (isLoopCarried(SSD, *MI))
+ ++Diff;
+ else
+ PhiIsSwapped = true;
+ }
+ MaxDiff = std::max(Diff, MaxDiff);
+ }
+ RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
+ }
+ }
+
+ // Erase all the elements in the later stages. Only one iteration should
+ // remain in the scheduled list, and it contains all the instructions.
+ for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
+ ScheduledInstrs.erase(cycle);
+
+ // Change the registers in instruction as specified in the InstrChanges
+ // map. We need to use the new registers to create the correct order.
+ for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
+ SUnit *SU = &SSD->SUnits[i];
+ SSD->applyInstrChange(SU->getInstr(), *this, true);
+ }
+
+ // Reorder the instructions in each cycle to fix and improve the
+ // generated code.
+ for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
+ std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
+ std::deque<SUnit *> newOrderZC;
+ // Put the zero-cost, pseudo instructions at the start of the cycle.
+ for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
+ SUnit *SU = cycleInstrs[i];
+ if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
+ orderDependence(SSD, SU, newOrderZC);
+ }
+ std::deque<SUnit *> newOrderI;
+ // Then, add the regular instructions back.
+ for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
+ SUnit *SU = cycleInstrs[i];
+ if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
+ orderDependence(SSD, SU, newOrderI);
+ }
+ // Replace the old order with the new order.
+ cycleInstrs.swap(newOrderZC);
+ cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
+ }
+
+ DEBUG(dump(););
+}
+
+/// Print the schedule information to the given output.
+void SMSchedule::print(raw_ostream &os) const {
+ // Iterate over each cycle.
+ for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
+ // Iterate over each instruction in the cycle.
+ const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
+ for (SUnit *CI : cycleInstrs->second) {
+ os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
+ os << "(" << CI->NodeNum << ") ";
+ CI->getInstr()->print(os);
+ os << "\n";
+ }
+ }
+}
+
+/// Utility function used for debugging to print the schedule.
+void SMSchedule::dump() const { print(dbgs()); }
OpenPOWER on IntegriCloud