summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineLICM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineLICM.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineLICM.cpp1488
1 files changed, 1488 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineLICM.cpp b/contrib/llvm/lib/CodeGen/MachineLICM.cpp
new file mode 100644
index 0000000..68d2efd
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineLICM.cpp
@@ -0,0 +1,1488 @@
+//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs loop invariant code motion on machine instructions. We
+// attempt to remove as much code from the body of a loop as possible.
+//
+// This pass does not attempt to throttle itself to limit register pressure.
+// The register allocation phases are expected to perform rematerialization
+// to recover when register pressure is high.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
+// constructs that are not exposed before lowering and instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "machine-licm"
+
+static cl::opt<bool>
+AvoidSpeculation("avoid-speculation",
+ cl::desc("MachineLICM should avoid speculation"),
+ cl::init(true), cl::Hidden);
+
+STATISTIC(NumHoisted,
+ "Number of machine instructions hoisted out of loops");
+STATISTIC(NumLowRP,
+ "Number of instructions hoisted in low reg pressure situation");
+STATISTIC(NumHighLatency,
+ "Number of high latency instructions hoisted");
+STATISTIC(NumCSEed,
+ "Number of hoisted machine instructions CSEed");
+STATISTIC(NumPostRAHoisted,
+ "Number of machine instructions hoisted out of loops post regalloc");
+
+namespace {
+ class MachineLICM : public MachineFunctionPass {
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ const TargetLoweringBase *TLI;
+ const TargetRegisterInfo *TRI;
+ const MachineFrameInfo *MFI;
+ MachineRegisterInfo *MRI;
+ const InstrItineraryData *InstrItins;
+ bool PreRegAlloc;
+
+ // Various analyses that we use...
+ AliasAnalysis *AA; // Alias analysis info.
+ MachineLoopInfo *MLI; // Current MachineLoopInfo
+ MachineDominatorTree *DT; // Machine dominator tree for the cur loop
+
+ // State that is updated as we process loops
+ bool Changed; // True if a loop is changed.
+ bool FirstInLoop; // True if it's the first LICM in the loop.
+ MachineLoop *CurLoop; // The current loop we are working on.
+ MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
+
+ // Exit blocks for CurLoop.
+ SmallVector<MachineBasicBlock*, 8> ExitBlocks;
+
+ bool isExitBlock(const MachineBasicBlock *MBB) const {
+ return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
+ ExitBlocks.end();
+ }
+
+ // Track 'estimated' register pressure.
+ SmallSet<unsigned, 32> RegSeen;
+ SmallVector<unsigned, 8> RegPressure;
+
+ // Register pressure "limit" per register class. If the pressure
+ // is higher than the limit, then it's considered high.
+ SmallVector<unsigned, 8> RegLimit;
+
+ // Register pressure on path leading from loop preheader to current BB.
+ SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
+
+ // For each opcode, keep a list of potential CSE instructions.
+ DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
+
+ enum {
+ SpeculateFalse = 0,
+ SpeculateTrue = 1,
+ SpeculateUnknown = 2
+ };
+
+ // If a MBB does not dominate loop exiting blocks then it may not safe
+ // to hoist loads from this block.
+ // Tri-state: 0 - false, 1 - true, 2 - unknown
+ unsigned SpeculationState;
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ MachineLICM() :
+ MachineFunctionPass(ID), PreRegAlloc(true) {
+ initializeMachineLICMPass(*PassRegistry::getPassRegistry());
+ }
+
+ explicit MachineLICM(bool PreRA) :
+ MachineFunctionPass(ID), PreRegAlloc(PreRA) {
+ initializeMachineLICMPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreserved<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ void releaseMemory() override {
+ RegSeen.clear();
+ RegPressure.clear();
+ RegLimit.clear();
+ BackTrace.clear();
+ for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
+ CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
+ CI->second.clear();
+ CSEMap.clear();
+ }
+
+ private:
+ /// CandidateInfo - Keep track of information about hoisting candidates.
+ struct CandidateInfo {
+ MachineInstr *MI;
+ unsigned Def;
+ int FI;
+ CandidateInfo(MachineInstr *mi, unsigned def, int fi)
+ : MI(mi), Def(def), FI(fi) {}
+ };
+
+ /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
+ /// invariants out to the preheader.
+ void HoistRegionPostRA();
+
+ /// HoistPostRA - When an instruction is found to only use loop invariant
+ /// operands that is safe to hoist, this instruction is called to do the
+ /// dirty work.
+ void HoistPostRA(MachineInstr *MI, unsigned Def);
+
+ /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
+ /// gather register def and frame object update information.
+ void ProcessMI(MachineInstr *MI,
+ BitVector &PhysRegDefs,
+ BitVector &PhysRegClobbers,
+ SmallSet<int, 32> &StoredFIs,
+ SmallVectorImpl<CandidateInfo> &Candidates);
+
+ /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
+ /// current loop.
+ void AddToLiveIns(unsigned Reg);
+
+ /// IsLICMCandidate - Returns true if the instruction may be a suitable
+ /// candidate for LICM. e.g. If the instruction is a call, then it's
+ /// obviously not safe to hoist it.
+ bool IsLICMCandidate(MachineInstr &I);
+
+ /// IsLoopInvariantInst - Returns true if the instruction is loop
+ /// invariant. I.e., all virtual register operands are defined outside of
+ /// the loop, physical registers aren't accessed (explicitly or implicitly),
+ /// and the instruction is hoistable.
+ ///
+ bool IsLoopInvariantInst(MachineInstr &I);
+
+ /// HasLoopPHIUse - Return true if the specified instruction is used by any
+ /// phi node in the current loop.
+ bool HasLoopPHIUse(const MachineInstr *MI) const;
+
+ /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
+ /// and an use in the current loop, return true if the target considered
+ /// it 'high'.
+ bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
+ unsigned Reg) const;
+
+ bool IsCheapInstruction(MachineInstr &MI) const;
+
+ /// CanCauseHighRegPressure - Visit BBs from header to current BB,
+ /// check if hoisting an instruction of the given cost matrix can cause high
+ /// register pressure.
+ bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap);
+
+ /// UpdateBackTraceRegPressure - Traverse the back trace from header to
+ /// the current block and update their register pressures to reflect the
+ /// effect of hoisting MI from the current block to the preheader.
+ void UpdateBackTraceRegPressure(const MachineInstr *MI);
+
+ /// IsProfitableToHoist - Return true if it is potentially profitable to
+ /// hoist the given loop invariant.
+ bool IsProfitableToHoist(MachineInstr &MI);
+
+ /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
+ /// If not then a load from this mbb may not be safe to hoist.
+ bool IsGuaranteedToExecute(MachineBasicBlock *BB);
+
+ void EnterScope(MachineBasicBlock *MBB);
+
+ void ExitScope(MachineBasicBlock *MBB);
+
+ /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
+ /// dominator tree node if its a leaf or all of its children are done. Walk
+ /// up the dominator tree to destroy ancestors which are now done.
+ void ExitScopeIfDone(MachineDomTreeNode *Node,
+ DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
+ DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
+
+ /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
+ /// blocks dominated by the specified header block, and that are in the
+ /// current loop) in depth first order w.r.t the DominatorTree. This allows
+ /// us to visit definitions before uses, allowing us to hoist a loop body in
+ /// one pass without iteration.
+ ///
+ void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
+ void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
+
+ /// getRegisterClassIDAndCost - For a given MI, register, and the operand
+ /// index, return the ID and cost of its representative register class by
+ /// reference.
+ void getRegisterClassIDAndCost(const MachineInstr *MI,
+ unsigned Reg, unsigned OpIdx,
+ unsigned &RCId, unsigned &RCCost) const;
+
+ /// InitRegPressure - Find all virtual register references that are liveout
+ /// of the preheader to initialize the starting "register pressure". Note
+ /// this does not count live through (livein but not used) registers.
+ void InitRegPressure(MachineBasicBlock *BB);
+
+ /// UpdateRegPressure - Update estimate of register pressure after the
+ /// specified instruction.
+ void UpdateRegPressure(const MachineInstr *MI);
+
+ /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
+ /// the load itself could be hoisted. Return the unfolded and hoistable
+ /// load, or null if the load couldn't be unfolded or if it wouldn't
+ /// be hoistable.
+ MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
+
+ /// LookForDuplicate - Find an instruction amount PrevMIs that is a
+ /// duplicate of MI. Return this instruction if it's found.
+ const MachineInstr *LookForDuplicate(const MachineInstr *MI,
+ std::vector<const MachineInstr*> &PrevMIs);
+
+ /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
+ /// the preheader that compute the same value. If it's found, do a RAU on
+ /// with the definition of the existing instruction rather than hoisting
+ /// the instruction to the preheader.
+ bool EliminateCSE(MachineInstr *MI,
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
+
+ /// MayCSE - Return true if the given instruction will be CSE'd if it's
+ /// hoisted out of the loop.
+ bool MayCSE(MachineInstr *MI);
+
+ /// Hoist - When an instruction is found to only use loop invariant operands
+ /// that is safe to hoist, this instruction is called to do the dirty work.
+ /// It returns true if the instruction is hoisted.
+ bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
+
+ /// InitCSEMap - Initialize the CSE map with instructions that are in the
+ /// current loop preheader that may become duplicates of instructions that
+ /// are hoisted out of the loop.
+ void InitCSEMap(MachineBasicBlock *BB);
+
+ /// getCurPreheader - Get the preheader for the current loop, splitting
+ /// a critical edge if needed.
+ MachineBasicBlock *getCurPreheader();
+ };
+} // end anonymous namespace
+
+char MachineLICM::ID = 0;
+char &llvm::MachineLICMID = MachineLICM::ID;
+INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
+ "Machine Loop Invariant Code Motion", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(MachineLICM, "machinelicm",
+ "Machine Loop Invariant Code Motion", false, false)
+
+/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
+/// loop that has a unique predecessor.
+static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
+ // Check whether this loop even has a unique predecessor.
+ if (!CurLoop->getLoopPredecessor())
+ return false;
+ // Ok, now check to see if any of its outer loops do.
+ for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
+ if (L->getLoopPredecessor())
+ return false;
+ // None of them did, so this is the outermost with a unique predecessor.
+ return true;
+}
+
+bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
+ if (skipOptnoneFunction(*MF.getFunction()))
+ return false;
+
+ Changed = FirstInLoop = false;
+ TM = &MF.getTarget();
+ TII = TM->getInstrInfo();
+ TLI = TM->getTargetLowering();
+ TRI = TM->getRegisterInfo();
+ MFI = MF.getFrameInfo();
+ MRI = &MF.getRegInfo();
+ InstrItins = TM->getInstrItineraryData();
+
+ PreRegAlloc = MRI->isSSA();
+
+ if (PreRegAlloc)
+ DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
+ else
+ DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
+ DEBUG(dbgs() << MF.getName() << " ********\n");
+
+ if (PreRegAlloc) {
+ // Estimate register pressure during pre-regalloc pass.
+ unsigned NumRC = TRI->getNumRegClasses();
+ RegPressure.resize(NumRC);
+ std::fill(RegPressure.begin(), RegPressure.end(), 0);
+ RegLimit.resize(NumRC);
+ for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
+ E = TRI->regclass_end(); I != E; ++I)
+ RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
+ }
+
+ // Get our Loop information...
+ MLI = &getAnalysis<MachineLoopInfo>();
+ DT = &getAnalysis<MachineDominatorTree>();
+ AA = &getAnalysis<AliasAnalysis>();
+
+ SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
+ while (!Worklist.empty()) {
+ CurLoop = Worklist.pop_back_val();
+ CurPreheader = nullptr;
+ ExitBlocks.clear();
+
+ // If this is done before regalloc, only visit outer-most preheader-sporting
+ // loops.
+ if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
+ Worklist.append(CurLoop->begin(), CurLoop->end());
+ continue;
+ }
+
+ CurLoop->getExitBlocks(ExitBlocks);
+
+ if (!PreRegAlloc)
+ HoistRegionPostRA();
+ else {
+ // CSEMap is initialized for loop header when the first instruction is
+ // being hoisted.
+ MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
+ FirstInLoop = true;
+ HoistOutOfLoop(N);
+ CSEMap.clear();
+ }
+ }
+
+ return Changed;
+}
+
+/// InstructionStoresToFI - Return true if instruction stores to the
+/// specified frame.
+static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
+ for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
+ oe = MI->memoperands_end(); o != oe; ++o) {
+ if (!(*o)->isStore() || !(*o)->getPseudoValue())
+ continue;
+ if (const FixedStackPseudoSourceValue *Value =
+ dyn_cast<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) {
+ if (Value->getFrameIndex() == FI)
+ return true;
+ }
+ }
+ return false;
+}
+
+/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
+/// gather register def and frame object update information.
+void MachineLICM::ProcessMI(MachineInstr *MI,
+ BitVector &PhysRegDefs,
+ BitVector &PhysRegClobbers,
+ SmallSet<int, 32> &StoredFIs,
+ SmallVectorImpl<CandidateInfo> &Candidates) {
+ bool RuledOut = false;
+ bool HasNonInvariantUse = false;
+ unsigned Def = 0;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isFI()) {
+ // Remember if the instruction stores to the frame index.
+ int FI = MO.getIndex();
+ if (!StoredFIs.count(FI) &&
+ MFI->isSpillSlotObjectIndex(FI) &&
+ InstructionStoresToFI(MI, FI))
+ StoredFIs.insert(FI);
+ HasNonInvariantUse = true;
+ continue;
+ }
+
+ // We can't hoist an instruction defining a physreg that is clobbered in
+ // the loop.
+ if (MO.isRegMask()) {
+ PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
+ continue;
+ }
+
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ "Not expecting virtual register!");
+
+ if (!MO.isDef()) {
+ if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
+ // If it's using a non-loop-invariant register, then it's obviously not
+ // safe to hoist.
+ HasNonInvariantUse = true;
+ continue;
+ }
+
+ if (MO.isImplicit()) {
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ PhysRegClobbers.set(*AI);
+ if (!MO.isDead())
+ // Non-dead implicit def? This cannot be hoisted.
+ RuledOut = true;
+ // No need to check if a dead implicit def is also defined by
+ // another instruction.
+ continue;
+ }
+
+ // FIXME: For now, avoid instructions with multiple defs, unless
+ // it's a dead implicit def.
+ if (Def)
+ RuledOut = true;
+ else
+ Def = Reg;
+
+ // If we have already seen another instruction that defines the same
+ // register, then this is not safe. Two defs is indicated by setting a
+ // PhysRegClobbers bit.
+ for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
+ if (PhysRegDefs.test(*AS))
+ PhysRegClobbers.set(*AS);
+ PhysRegDefs.set(*AS);
+ }
+ if (PhysRegClobbers.test(Reg))
+ // MI defined register is seen defined by another instruction in
+ // the loop, it cannot be a LICM candidate.
+ RuledOut = true;
+ }
+
+ // Only consider reloads for now and remats which do not have register
+ // operands. FIXME: Consider unfold load folding instructions.
+ if (Def && !RuledOut) {
+ int FI = INT_MIN;
+ if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
+ (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
+ Candidates.push_back(CandidateInfo(MI, Def, FI));
+ }
+}
+
+/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
+/// invariants out to the preheader.
+void MachineLICM::HoistRegionPostRA() {
+ MachineBasicBlock *Preheader = getCurPreheader();
+ if (!Preheader)
+ return;
+
+ unsigned NumRegs = TRI->getNumRegs();
+ BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
+ BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
+
+ SmallVector<CandidateInfo, 32> Candidates;
+ SmallSet<int, 32> StoredFIs;
+
+ // Walk the entire region, count number of defs for each register, and
+ // collect potential LICM candidates.
+ const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *BB = Blocks[i];
+
+ // If the header of the loop containing this basic block is a landing pad,
+ // then don't try to hoist instructions out of this loop.
+ const MachineLoop *ML = MLI->getLoopFor(BB);
+ if (ML && ML->getHeader()->isLandingPad()) continue;
+
+ // Conservatively treat live-in's as an external def.
+ // FIXME: That means a reload that're reused in successor block(s) will not
+ // be LICM'ed.
+ for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
+ E = BB->livein_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ PhysRegDefs.set(*AI);
+ }
+
+ SpeculationState = SpeculateUnknown;
+ for (MachineBasicBlock::iterator
+ MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
+ MachineInstr *MI = &*MII;
+ ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
+ }
+ }
+
+ // Gather the registers read / clobbered by the terminator.
+ BitVector TermRegs(NumRegs);
+ MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
+ if (TI != Preheader->end()) {
+ for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = TI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ TermRegs.set(*AI);
+ }
+ }
+
+ // Now evaluate whether the potential candidates qualify.
+ // 1. Check if the candidate defined register is defined by another
+ // instruction in the loop.
+ // 2. If the candidate is a load from stack slot (always true for now),
+ // check if the slot is stored anywhere in the loop.
+ // 3. Make sure candidate def should not clobber
+ // registers read by the terminator. Similarly its def should not be
+ // clobbered by the terminator.
+ for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
+ if (Candidates[i].FI != INT_MIN &&
+ StoredFIs.count(Candidates[i].FI))
+ continue;
+
+ unsigned Def = Candidates[i].Def;
+ if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
+ bool Safe = true;
+ MachineInstr *MI = Candidates[i].MI;
+ for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
+ const MachineOperand &MO = MI->getOperand(j);
+ if (!MO.isReg() || MO.isDef() || !MO.getReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (PhysRegDefs.test(Reg) ||
+ PhysRegClobbers.test(Reg)) {
+ // If it's using a non-loop-invariant register, then it's obviously
+ // not safe to hoist.
+ Safe = false;
+ break;
+ }
+ }
+ if (Safe)
+ HoistPostRA(MI, Candidates[i].Def);
+ }
+ }
+}
+
+/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
+/// loop, and make sure it is not killed by any instructions in the loop.
+void MachineLICM::AddToLiveIns(unsigned Reg) {
+ const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *BB = Blocks[i];
+ if (!BB->isLiveIn(Reg))
+ BB->addLiveIn(Reg);
+ for (MachineBasicBlock::iterator
+ MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
+ MachineInstr *MI = &*MII;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
+ if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
+ MO.setIsKill(false);
+ }
+ }
+ }
+}
+
+/// HoistPostRA - When an instruction is found to only use loop invariant
+/// operands that is safe to hoist, this instruction is called to do the
+/// dirty work.
+void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
+ MachineBasicBlock *Preheader = getCurPreheader();
+
+ // Now move the instructions to the predecessor, inserting it before any
+ // terminator instructions.
+ DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
+ << MI->getParent()->getNumber() << ": " << *MI);
+
+ // Splice the instruction to the preheader.
+ MachineBasicBlock *MBB = MI->getParent();
+ Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
+
+ // Add register to livein list to all the BBs in the current loop since a
+ // loop invariant must be kept live throughout the whole loop. This is
+ // important to ensure later passes do not scavenge the def register.
+ AddToLiveIns(Def);
+
+ ++NumPostRAHoisted;
+ Changed = true;
+}
+
+// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
+// If not then a load from this mbb may not be safe to hoist.
+bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
+ if (SpeculationState != SpeculateUnknown)
+ return SpeculationState == SpeculateFalse;
+
+ if (BB != CurLoop->getHeader()) {
+ // Check loop exiting blocks.
+ SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
+ CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
+ for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
+ if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
+ SpeculationState = SpeculateTrue;
+ return false;
+ }
+ }
+
+ SpeculationState = SpeculateFalse;
+ return true;
+}
+
+void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
+ DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
+
+ // Remember livein register pressure.
+ BackTrace.push_back(RegPressure);
+}
+
+void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
+ DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
+ BackTrace.pop_back();
+}
+
+/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
+/// dominator tree node if its a leaf or all of its children are done. Walk
+/// up the dominator tree to destroy ancestors which are now done.
+void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
+ DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
+ DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
+ if (OpenChildren[Node])
+ return;
+
+ // Pop scope.
+ ExitScope(Node->getBlock());
+
+ // Now traverse upwards to pop ancestors whose offsprings are all done.
+ while (MachineDomTreeNode *Parent = ParentMap[Node]) {
+ unsigned Left = --OpenChildren[Parent];
+ if (Left != 0)
+ break;
+ ExitScope(Parent->getBlock());
+ Node = Parent;
+ }
+}
+
+/// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
+/// blocks dominated by the specified header block, and that are in the
+/// current loop) in depth first order w.r.t the DominatorTree. This allows
+/// us to visit definitions before uses, allowing us to hoist a loop body in
+/// one pass without iteration.
+///
+void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
+ SmallVector<MachineDomTreeNode*, 32> Scopes;
+ SmallVector<MachineDomTreeNode*, 8> WorkList;
+ DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
+ DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
+
+ // Perform a DFS walk to determine the order of visit.
+ WorkList.push_back(HeaderN);
+ do {
+ MachineDomTreeNode *Node = WorkList.pop_back_val();
+ assert(Node && "Null dominator tree node?");
+ MachineBasicBlock *BB = Node->getBlock();
+
+ // If the header of the loop containing this basic block is a landing pad,
+ // then don't try to hoist instructions out of this loop.
+ const MachineLoop *ML = MLI->getLoopFor(BB);
+ if (ML && ML->getHeader()->isLandingPad())
+ continue;
+
+ // If this subregion is not in the top level loop at all, exit.
+ if (!CurLoop->contains(BB))
+ continue;
+
+ Scopes.push_back(Node);
+ const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
+ unsigned NumChildren = Children.size();
+
+ // Don't hoist things out of a large switch statement. This often causes
+ // code to be hoisted that wasn't going to be executed, and increases
+ // register pressure in a situation where it's likely to matter.
+ if (BB->succ_size() >= 25)
+ NumChildren = 0;
+
+ OpenChildren[Node] = NumChildren;
+ // Add children in reverse order as then the next popped worklist node is
+ // the first child of this node. This means we ultimately traverse the
+ // DOM tree in exactly the same order as if we'd recursed.
+ for (int i = (int)NumChildren-1; i >= 0; --i) {
+ MachineDomTreeNode *Child = Children[i];
+ ParentMap[Child] = Node;
+ WorkList.push_back(Child);
+ }
+ } while (!WorkList.empty());
+
+ if (Scopes.size() != 0) {
+ MachineBasicBlock *Preheader = getCurPreheader();
+ if (!Preheader)
+ return;
+
+ // Compute registers which are livein into the loop headers.
+ RegSeen.clear();
+ BackTrace.clear();
+ InitRegPressure(Preheader);
+ }
+
+ // Now perform LICM.
+ for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
+ MachineDomTreeNode *Node = Scopes[i];
+ MachineBasicBlock *MBB = Node->getBlock();
+
+ MachineBasicBlock *Preheader = getCurPreheader();
+ if (!Preheader)
+ continue;
+
+ EnterScope(MBB);
+
+ // Process the block
+ SpeculationState = SpeculateUnknown;
+ for (MachineBasicBlock::iterator
+ MII = MBB->begin(), E = MBB->end(); MII != E; ) {
+ MachineBasicBlock::iterator NextMII = MII; ++NextMII;
+ MachineInstr *MI = &*MII;
+ if (!Hoist(MI, Preheader))
+ UpdateRegPressure(MI);
+ MII = NextMII;
+ }
+
+ // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
+ ExitScopeIfDone(Node, OpenChildren, ParentMap);
+ }
+}
+
+static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
+ return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
+}
+
+/// getRegisterClassIDAndCost - For a given MI, register, and the operand
+/// index, return the ID and cost of its representative register class.
+void
+MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
+ unsigned Reg, unsigned OpIdx,
+ unsigned &RCId, unsigned &RCCost) const {
+ const TargetRegisterClass *RC = MRI->getRegClass(Reg);
+ MVT VT = *RC->vt_begin();
+ if (VT == MVT::Untyped) {
+ RCId = RC->getID();
+ RCCost = 1;
+ } else {
+ RCId = TLI->getRepRegClassFor(VT)->getID();
+ RCCost = TLI->getRepRegClassCostFor(VT);
+ }
+}
+
+/// InitRegPressure - Find all virtual register references that are liveout of
+/// the preheader to initialize the starting "register pressure". Note this
+/// does not count live through (livein but not used) registers.
+void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
+ std::fill(RegPressure.begin(), RegPressure.end(), 0);
+
+ // If the preheader has only a single predecessor and it ends with a
+ // fallthrough or an unconditional branch, then scan its predecessor for live
+ // defs as well. This happens whenever the preheader is created by splitting
+ // the critical edge from the loop predecessor to the loop header.
+ if (BB->pred_size() == 1) {
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
+ InitRegPressure(*BB->pred_begin());
+ }
+
+ for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
+ MII != E; ++MII) {
+ MachineInstr *MI = &*MII;
+ for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ bool isNew = RegSeen.insert(Reg);
+ unsigned RCId, RCCost;
+ getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
+ if (MO.isDef())
+ RegPressure[RCId] += RCCost;
+ else {
+ bool isKill = isOperandKill(MO, MRI);
+ if (isNew && !isKill)
+ // Haven't seen this, it must be a livein.
+ RegPressure[RCId] += RCCost;
+ else if (!isNew && isKill)
+ RegPressure[RCId] -= RCCost;
+ }
+ }
+ }
+}
+
+/// UpdateRegPressure - Update estimate of register pressure after the
+/// specified instruction.
+void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
+ if (MI->isImplicitDef())
+ return;
+
+ SmallVector<unsigned, 4> Defs;
+ for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ bool isNew = RegSeen.insert(Reg);
+ if (MO.isDef())
+ Defs.push_back(Reg);
+ else if (!isNew && isOperandKill(MO, MRI)) {
+ unsigned RCId, RCCost;
+ getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
+ if (RCCost > RegPressure[RCId])
+ RegPressure[RCId] = 0;
+ else
+ RegPressure[RCId] -= RCCost;
+ }
+ }
+
+ unsigned Idx = 0;
+ while (!Defs.empty()) {
+ unsigned Reg = Defs.pop_back_val();
+ unsigned RCId, RCCost;
+ getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
+ RegPressure[RCId] += RCCost;
+ ++Idx;
+ }
+}
+
+/// isLoadFromGOTOrConstantPool - Return true if this machine instruction
+/// loads from global offset table or constant pool.
+static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
+ assert (MI.mayLoad() && "Expected MI that loads!");
+ for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
+ E = MI.memoperands_end(); I != E; ++I) {
+ if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) {
+ if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
+ return true;
+ }
+ }
+ return false;
+}
+
+/// IsLICMCandidate - Returns true if the instruction may be a suitable
+/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
+/// not safe to hoist it.
+bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
+ // Check if it's safe to move the instruction.
+ bool DontMoveAcrossStore = true;
+ if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
+ return false;
+
+ // If it is load then check if it is guaranteed to execute by making sure that
+ // it dominates all exiting blocks. If it doesn't, then there is a path out of
+ // the loop which does not execute this load, so we can't hoist it. Loads
+ // from constant memory are not safe to speculate all the time, for example
+ // indexed load from a jump table.
+ // Stores and side effects are already checked by isSafeToMove.
+ if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
+ !IsGuaranteedToExecute(I.getParent()))
+ return false;
+
+ return true;
+}
+
+/// IsLoopInvariantInst - Returns true if the instruction is loop
+/// invariant. I.e., all virtual register operands are defined outside of the
+/// loop, physical registers aren't accessed explicitly, and there are no side
+/// effects that aren't captured by the operands or other flags.
+///
+bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
+ if (!IsLICMCandidate(I))
+ return false;
+
+ // The instruction is loop invariant if all of its operands are.
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = I.getOperand(i);
+
+ if (!MO.isReg())
+ continue;
+
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ // Don't hoist an instruction that uses or defines a physical register.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
+ return false;
+ // Otherwise it's safe to move.
+ continue;
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
+ return false;
+ } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
+ // If the reg is live into the loop, we can't hoist an instruction
+ // which would clobber it.
+ return false;
+ }
+ }
+
+ if (!MO.isUse())
+ continue;
+
+ assert(MRI->getVRegDef(Reg) &&
+ "Machine instr not mapped for this vreg?!");
+
+ // If the loop contains the definition of an operand, then the instruction
+ // isn't loop invariant.
+ if (CurLoop->contains(MRI->getVRegDef(Reg)))
+ return false;
+ }
+
+ // If we got this far, the instruction is loop invariant!
+ return true;
+}
+
+
+/// HasLoopPHIUse - Return true if the specified instruction is used by a
+/// phi node and hoisting it could cause a copy to be inserted.
+bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
+ SmallVector<const MachineInstr*, 8> Work(1, MI);
+ do {
+ MI = Work.pop_back_val();
+ for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
+ if (!MO->isReg() || !MO->isDef())
+ continue;
+ unsigned Reg = MO->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
+ // A PHI may cause a copy to be inserted.
+ if (UseMI.isPHI()) {
+ // A PHI inside the loop causes a copy because the live range of Reg is
+ // extended across the PHI.
+ if (CurLoop->contains(&UseMI))
+ return true;
+ // A PHI in an exit block can cause a copy to be inserted if the PHI
+ // has multiple predecessors in the loop with different values.
+ // For now, approximate by rejecting all exit blocks.
+ if (isExitBlock(UseMI.getParent()))
+ return true;
+ continue;
+ }
+ // Look past copies as well.
+ if (UseMI.isCopy() && CurLoop->contains(&UseMI))
+ Work.push_back(&UseMI);
+ }
+ }
+ } while (!Work.empty());
+ return false;
+}
+
+/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
+/// and an use in the current loop, return true if the target considered
+/// it 'high'.
+bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
+ unsigned DefIdx, unsigned Reg) const {
+ if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
+ return false;
+
+ for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
+ if (UseMI.isCopyLike())
+ continue;
+ if (!CurLoop->contains(UseMI.getParent()))
+ continue;
+ for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = UseMI.getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (MOReg != Reg)
+ continue;
+
+ if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i))
+ return true;
+ }
+
+ // Only look at the first in loop use.
+ break;
+ }
+
+ return false;
+}
+
+/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
+/// the operand latency between its def and a use is one or less.
+bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
+ if (MI.isAsCheapAsAMove() || MI.isCopyLike())
+ return true;
+ if (!InstrItins || InstrItins->isEmpty())
+ return false;
+
+ bool isCheap = false;
+ unsigned NumDefs = MI.getDesc().getNumDefs();
+ for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
+ MachineOperand &DefMO = MI.getOperand(i);
+ if (!DefMO.isReg() || !DefMO.isDef())
+ continue;
+ --NumDefs;
+ unsigned Reg = DefMO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+
+ if (!TII->hasLowDefLatency(InstrItins, &MI, i))
+ return false;
+ isCheap = true;
+ }
+
+ return isCheap;
+}
+
+/// CanCauseHighRegPressure - Visit BBs from header to current BB, check
+/// if hoisting an instruction of the given cost matrix can cause high
+/// register pressure.
+bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost,
+ bool CheapInstr) {
+ for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
+ CI != CE; ++CI) {
+ if (CI->second <= 0)
+ continue;
+
+ unsigned RCId = CI->first;
+ unsigned Limit = RegLimit[RCId];
+ int Cost = CI->second;
+
+ // Don't hoist cheap instructions if they would increase register pressure,
+ // even if we're under the limit.
+ if (CheapInstr)
+ return true;
+
+ for (unsigned i = BackTrace.size(); i != 0; --i) {
+ SmallVectorImpl<unsigned> &RP = BackTrace[i-1];
+ if (RP[RCId] + Cost >= Limit)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// UpdateBackTraceRegPressure - Traverse the back trace from header to the
+/// current block and update their register pressures to reflect the effect
+/// of hoisting MI from the current block to the preheader.
+void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
+ if (MI->isImplicitDef())
+ return;
+
+ // First compute the 'cost' of the instruction, i.e. its contribution
+ // to register pressure.
+ DenseMap<unsigned, int> Cost;
+ for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ unsigned RCId, RCCost;
+ getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
+ if (MO.isDef()) {
+ DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
+ if (CI != Cost.end())
+ CI->second += RCCost;
+ else
+ Cost.insert(std::make_pair(RCId, RCCost));
+ } else if (isOperandKill(MO, MRI)) {
+ DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
+ if (CI != Cost.end())
+ CI->second -= RCCost;
+ else
+ Cost.insert(std::make_pair(RCId, -RCCost));
+ }
+ }
+
+ // Update register pressure of blocks from loop header to current block.
+ for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
+ SmallVectorImpl<unsigned> &RP = BackTrace[i];
+ for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
+ CI != CE; ++CI) {
+ unsigned RCId = CI->first;
+ RP[RCId] += CI->second;
+ }
+ }
+}
+
+/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
+/// the given loop invariant.
+bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
+ if (MI.isImplicitDef())
+ return true;
+
+ // Besides removing computation from the loop, hoisting an instruction has
+ // these effects:
+ //
+ // - The value defined by the instruction becomes live across the entire
+ // loop. This increases register pressure in the loop.
+ //
+ // - If the value is used by a PHI in the loop, a copy will be required for
+ // lowering the PHI after extending the live range.
+ //
+ // - When hoisting the last use of a value in the loop, that value no longer
+ // needs to be live in the loop. This lowers register pressure in the loop.
+
+ bool CheapInstr = IsCheapInstruction(MI);
+ bool CreatesCopy = HasLoopPHIUse(&MI);
+
+ // Don't hoist a cheap instruction if it would create a copy in the loop.
+ if (CheapInstr && CreatesCopy) {
+ DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
+ return false;
+ }
+
+ // Rematerializable instructions should always be hoisted since the register
+ // allocator can just pull them down again when needed.
+ if (TII->isTriviallyReMaterializable(&MI, AA))
+ return true;
+
+ // Estimate register pressure to determine whether to LICM the instruction.
+ // In low register pressure situation, we can be more aggressive about
+ // hoisting. Also, favors hoisting long latency instructions even in
+ // moderately high pressure situation.
+ // Cheap instructions will only be hoisted if they don't increase register
+ // pressure at all.
+ // FIXME: If there are long latency loop-invariant instructions inside the
+ // loop at this point, why didn't the optimizer's LICM hoist them?
+ DenseMap<unsigned, int> Cost;
+ for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || MO.isImplicit())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ unsigned RCId, RCCost;
+ getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
+ if (MO.isDef()) {
+ if (HasHighOperandLatency(MI, i, Reg)) {
+ DEBUG(dbgs() << "Hoist High Latency: " << MI);
+ ++NumHighLatency;
+ return true;
+ }
+ Cost[RCId] += RCCost;
+ } else if (isOperandKill(MO, MRI)) {
+ // Is a virtual register use is a kill, hoisting it out of the loop
+ // may actually reduce register pressure or be register pressure
+ // neutral.
+ Cost[RCId] -= RCCost;
+ }
+ }
+
+ // Visit BBs from header to current BB, if hoisting this doesn't cause
+ // high register pressure, then it's safe to proceed.
+ if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
+ DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
+ ++NumLowRP;
+ return true;
+ }
+
+ // Don't risk increasing register pressure if it would create copies.
+ if (CreatesCopy) {
+ DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
+ return false;
+ }
+
+ // Do not "speculate" in high register pressure situation. If an
+ // instruction is not guaranteed to be executed in the loop, it's best to be
+ // conservative.
+ if (AvoidSpeculation &&
+ (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
+ DEBUG(dbgs() << "Won't speculate: " << MI);
+ return false;
+ }
+
+ // High register pressure situation, only hoist if the instruction is going
+ // to be remat'ed.
+ if (!TII->isTriviallyReMaterializable(&MI, AA) &&
+ !MI.isInvariantLoad(AA)) {
+ DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
+ return false;
+ }
+
+ return true;
+}
+
+MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
+ // Don't unfold simple loads.
+ if (MI->canFoldAsLoad())
+ return nullptr;
+
+ // If not, we may be able to unfold a load and hoist that.
+ // First test whether the instruction is loading from an amenable
+ // memory location.
+ if (!MI->isInvariantLoad(AA))
+ return nullptr;
+
+ // Next determine the register class for a temporary register.
+ unsigned LoadRegIndex;
+ unsigned NewOpc =
+ TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
+ /*UnfoldLoad=*/true,
+ /*UnfoldStore=*/false,
+ &LoadRegIndex);
+ if (NewOpc == 0) return nullptr;
+ const MCInstrDesc &MID = TII->get(NewOpc);
+ if (MID.getNumDefs() != 1) return nullptr;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
+ // Ok, we're unfolding. Create a temporary register and do the unfold.
+ unsigned Reg = MRI->createVirtualRegister(RC);
+
+ SmallVector<MachineInstr *, 2> NewMIs;
+ bool Success =
+ TII->unfoldMemoryOperand(MF, MI, Reg,
+ /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
+ NewMIs);
+ (void)Success;
+ assert(Success &&
+ "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
+ "succeeded!");
+ assert(NewMIs.size() == 2 &&
+ "Unfolded a load into multiple instructions!");
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineBasicBlock::iterator Pos = MI;
+ MBB->insert(Pos, NewMIs[0]);
+ MBB->insert(Pos, NewMIs[1]);
+ // If unfolding produced a load that wasn't loop-invariant or profitable to
+ // hoist, discard the new instructions and bail.
+ if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
+ NewMIs[0]->eraseFromParent();
+ NewMIs[1]->eraseFromParent();
+ return nullptr;
+ }
+
+ // Update register pressure for the unfolded instruction.
+ UpdateRegPressure(NewMIs[1]);
+
+ // Otherwise we successfully unfolded a load that we can hoist.
+ MI->eraseFromParent();
+ return NewMIs[0];
+}
+
+void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
+ for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
+ const MachineInstr *MI = &*I;
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
+ CI = CSEMap.find(Opcode);
+ if (CI != CSEMap.end())
+ CI->second.push_back(MI);
+ else {
+ std::vector<const MachineInstr*> CSEMIs;
+ CSEMIs.push_back(MI);
+ CSEMap.insert(std::make_pair(Opcode, CSEMIs));
+ }
+ }
+}
+
+const MachineInstr*
+MachineLICM::LookForDuplicate(const MachineInstr *MI,
+ std::vector<const MachineInstr*> &PrevMIs) {
+ for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
+ const MachineInstr *PrevMI = PrevMIs[i];
+ if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr)))
+ return PrevMI;
+ }
+ return nullptr;
+}
+
+bool MachineLICM::EliminateCSE(MachineInstr *MI,
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
+ // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
+ // the undef property onto uses.
+ if (CI == CSEMap.end() || MI->isImplicitDef())
+ return false;
+
+ if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
+ DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
+
+ // Replace virtual registers defined by MI by their counterparts defined
+ // by Dup.
+ SmallVector<unsigned, 2> Defs;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ // Physical registers may not differ here.
+ assert((!MO.isReg() || MO.getReg() == 0 ||
+ !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
+ MO.getReg() == Dup->getOperand(i).getReg()) &&
+ "Instructions with different phys regs are not identical!");
+
+ if (MO.isReg() && MO.isDef() &&
+ !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
+ Defs.push_back(i);
+ }
+
+ SmallVector<const TargetRegisterClass*, 2> OrigRCs;
+ for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
+ unsigned Idx = Defs[i];
+ unsigned Reg = MI->getOperand(Idx).getReg();
+ unsigned DupReg = Dup->getOperand(Idx).getReg();
+ OrigRCs.push_back(MRI->getRegClass(DupReg));
+
+ if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
+ // Restore old RCs if more than one defs.
+ for (unsigned j = 0; j != i; ++j)
+ MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
+ return false;
+ }
+ }
+
+ for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
+ unsigned Idx = Defs[i];
+ unsigned Reg = MI->getOperand(Idx).getReg();
+ unsigned DupReg = Dup->getOperand(Idx).getReg();
+ MRI->replaceRegWith(Reg, DupReg);
+ MRI->clearKillFlags(DupReg);
+ }
+
+ MI->eraseFromParent();
+ ++NumCSEed;
+ return true;
+ }
+ return false;
+}
+
+/// MayCSE - Return true if the given instruction will be CSE'd if it's
+/// hoisted out of the loop.
+bool MachineLICM::MayCSE(MachineInstr *MI) {
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
+ CI = CSEMap.find(Opcode);
+ // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
+ // the undef property onto uses.
+ if (CI == CSEMap.end() || MI->isImplicitDef())
+ return false;
+
+ return LookForDuplicate(MI, CI->second) != nullptr;
+}
+
+/// Hoist - When an instruction is found to use only loop invariant operands
+/// that are safe to hoist, this instruction is called to do the dirty work.
+///
+bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
+ // First check whether we should hoist this instruction.
+ if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
+ // If not, try unfolding a hoistable load.
+ MI = ExtractHoistableLoad(MI);
+ if (!MI) return false;
+ }
+
+ // Now move the instructions to the predecessor, inserting it before any
+ // terminator instructions.
+ DEBUG({
+ dbgs() << "Hoisting " << *MI;
+ if (Preheader->getBasicBlock())
+ dbgs() << " to MachineBasicBlock "
+ << Preheader->getName();
+ if (MI->getParent()->getBasicBlock())
+ dbgs() << " from MachineBasicBlock "
+ << MI->getParent()->getName();
+ dbgs() << "\n";
+ });
+
+ // If this is the first instruction being hoisted to the preheader,
+ // initialize the CSE map with potential common expressions.
+ if (FirstInLoop) {
+ InitCSEMap(Preheader);
+ FirstInLoop = false;
+ }
+
+ // Look for opportunity to CSE the hoisted instruction.
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
+ CI = CSEMap.find(Opcode);
+ if (!EliminateCSE(MI, CI)) {
+ // Otherwise, splice the instruction to the preheader.
+ Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
+
+ // Update register pressure for BBs from header to this block.
+ UpdateBackTraceRegPressure(MI);
+
+ // Clear the kill flags of any register this instruction defines,
+ // since they may need to be live throughout the entire loop
+ // rather than just live for part of it.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() && !MO.isDead())
+ MRI->clearKillFlags(MO.getReg());
+ }
+
+ // Add to the CSE map.
+ if (CI != CSEMap.end())
+ CI->second.push_back(MI);
+ else {
+ std::vector<const MachineInstr*> CSEMIs;
+ CSEMIs.push_back(MI);
+ CSEMap.insert(std::make_pair(Opcode, CSEMIs));
+ }
+ }
+
+ ++NumHoisted;
+ Changed = true;
+
+ return true;
+}
+
+MachineBasicBlock *MachineLICM::getCurPreheader() {
+ // Determine the block to which to hoist instructions. If we can't find a
+ // suitable loop predecessor, we can't do any hoisting.
+
+ // If we've tried to get a preheader and failed, don't try again.
+ if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
+ return nullptr;
+
+ if (!CurPreheader) {
+ CurPreheader = CurLoop->getLoopPreheader();
+ if (!CurPreheader) {
+ MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
+ if (!Pred) {
+ CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
+ return nullptr;
+ }
+
+ CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
+ if (!CurPreheader) {
+ CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
+ return nullptr;
+ }
+ }
+ }
+ return CurPreheader;
+}
OpenPOWER on IntegriCloud