summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineLICM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineLICM.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineLICM.cpp837
1 files changed, 837 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineLICM.cpp b/contrib/llvm/lib/CodeGen/MachineLICM.cpp
new file mode 100644
index 0000000..4c054f5
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineLICM.cpp
@@ -0,0 +1,837 @@
+//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs loop invariant code motion on machine instructions. We
+// attempt to remove as much code from the body of a loop as possible.
+//
+// This pass does not attempt to throttle itself to limit register pressure.
+// The register allocation phases are expected to perform rematerialization
+// to recover when register pressure is high.
+//
+// This pass is not intended to be a replacement or a complete alternative
+// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
+// constructs that are not exposed before lowering and instruction selection.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "machine-licm"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
+STATISTIC(NumCSEed, "Number of hoisted machine instructions CSEed");
+STATISTIC(NumPostRAHoisted,
+ "Number of machine instructions hoisted out of loops post regalloc");
+
+namespace {
+ class MachineLICM : public MachineFunctionPass {
+ bool PreRegAlloc;
+
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const MachineFrameInfo *MFI;
+ MachineRegisterInfo *RegInfo;
+
+ // Various analyses that we use...
+ AliasAnalysis *AA; // Alias analysis info.
+ MachineLoopInfo *MLI; // Current MachineLoopInfo
+ MachineDominatorTree *DT; // Machine dominator tree for the cur loop
+
+ // State that is updated as we process loops
+ bool Changed; // True if a loop is changed.
+ bool FirstInLoop; // True if it's the first LICM in the loop.
+ MachineLoop *CurLoop; // The current loop we are working on.
+ MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
+
+ BitVector AllocatableSet;
+
+ // For each opcode, keep a list of potentail CSE instructions.
+ DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ MachineLICM() :
+ MachineFunctionPass(&ID), PreRegAlloc(true) {}
+
+ explicit MachineLICM(bool PreRA) :
+ MachineFunctionPass(&ID), PreRegAlloc(PreRA) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ const char *getPassName() const { return "Machine Instruction LICM"; }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<MachineLoopInfo>();
+ AU.addPreserved<MachineDominatorTree>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ virtual void releaseMemory() {
+ CSEMap.clear();
+ }
+
+ private:
+ /// CandidateInfo - Keep track of information about hoisting candidates.
+ struct CandidateInfo {
+ MachineInstr *MI;
+ unsigned Def;
+ int FI;
+ CandidateInfo(MachineInstr *mi, unsigned def, int fi)
+ : MI(mi), Def(def), FI(fi) {}
+ };
+
+ /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
+ /// invariants out to the preheader.
+ void HoistRegionPostRA();
+
+ /// HoistPostRA - When an instruction is found to only use loop invariant
+ /// operands that is safe to hoist, this instruction is called to do the
+ /// dirty work.
+ void HoistPostRA(MachineInstr *MI, unsigned Def);
+
+ /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
+ /// gather register def and frame object update information.
+ void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
+ SmallSet<int, 32> &StoredFIs,
+ SmallVector<CandidateInfo, 32> &Candidates);
+
+ /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
+ /// current loop.
+ void AddToLiveIns(unsigned Reg);
+
+ /// IsLICMCandidate - Returns true if the instruction may be a suitable
+ /// candidate for LICM. e.g. If the instruction is a call, then it's
+ /// obviously not safe to hoist it.
+ bool IsLICMCandidate(MachineInstr &I);
+
+ /// IsLoopInvariantInst - Returns true if the instruction is loop
+ /// invariant. I.e., all virtual register operands are defined outside of
+ /// the loop, physical registers aren't accessed (explicitly or implicitly),
+ /// and the instruction is hoistable.
+ ///
+ bool IsLoopInvariantInst(MachineInstr &I);
+
+ /// IsProfitableToHoist - Return true if it is potentially profitable to
+ /// hoist the given loop invariant.
+ bool IsProfitableToHoist(MachineInstr &MI);
+
+ /// HoistRegion - Walk the specified region of the CFG (defined by all
+ /// blocks dominated by the specified block, and that are in the current
+ /// loop) in depth first order w.r.t the DominatorTree. This allows us to
+ /// visit definitions before uses, allowing us to hoist a loop body in one
+ /// pass without iteration.
+ ///
+ void HoistRegion(MachineDomTreeNode *N);
+
+ /// isLoadFromConstantMemory - Return true if the given instruction is a
+ /// load from constant memory.
+ bool isLoadFromConstantMemory(MachineInstr *MI);
+
+ /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
+ /// the load itself could be hoisted. Return the unfolded and hoistable
+ /// load, or null if the load couldn't be unfolded or if it wouldn't
+ /// be hoistable.
+ MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
+
+ /// LookForDuplicate - Find an instruction amount PrevMIs that is a
+ /// duplicate of MI. Return this instruction if it's found.
+ const MachineInstr *LookForDuplicate(const MachineInstr *MI,
+ std::vector<const MachineInstr*> &PrevMIs);
+
+ /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
+ /// the preheader that compute the same value. If it's found, do a RAU on
+ /// with the definition of the existing instruction rather than hoisting
+ /// the instruction to the preheader.
+ bool EliminateCSE(MachineInstr *MI,
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
+
+ /// Hoist - When an instruction is found to only use loop invariant operands
+ /// that is safe to hoist, this instruction is called to do the dirty work.
+ ///
+ void Hoist(MachineInstr *MI);
+
+ /// InitCSEMap - Initialize the CSE map with instructions that are in the
+ /// current loop preheader that may become duplicates of instructions that
+ /// are hoisted out of the loop.
+ void InitCSEMap(MachineBasicBlock *BB);
+
+ /// getCurPreheader - Get the preheader for the current loop, splitting
+ /// a critical edge if needed.
+ MachineBasicBlock *getCurPreheader();
+ };
+} // end anonymous namespace
+
+char MachineLICM::ID = 0;
+static RegisterPass<MachineLICM>
+X("machinelicm", "Machine Loop Invariant Code Motion");
+
+FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
+ return new MachineLICM(PreRegAlloc);
+}
+
+/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
+/// loop that has a unique predecessor.
+static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
+ // Check whether this loop even has a unique predecessor.
+ if (!CurLoop->getLoopPredecessor())
+ return false;
+ // Ok, now check to see if any of its outer loops do.
+ for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
+ if (L->getLoopPredecessor())
+ return false;
+ // None of them did, so this is the outermost with a unique predecessor.
+ return true;
+}
+
+bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
+ if (PreRegAlloc)
+ DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n");
+ else
+ DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n");
+
+ Changed = FirstInLoop = false;
+ TM = &MF.getTarget();
+ TII = TM->getInstrInfo();
+ TRI = TM->getRegisterInfo();
+ MFI = MF.getFrameInfo();
+ RegInfo = &MF.getRegInfo();
+ AllocatableSet = TRI->getAllocatableSet(MF);
+
+ // Get our Loop information...
+ MLI = &getAnalysis<MachineLoopInfo>();
+ DT = &getAnalysis<MachineDominatorTree>();
+ AA = &getAnalysis<AliasAnalysis>();
+
+ SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
+ while (!Worklist.empty()) {
+ CurLoop = Worklist.pop_back_val();
+ CurPreheader = 0;
+
+ // If this is done before regalloc, only visit outer-most preheader-sporting
+ // loops.
+ if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
+ Worklist.append(CurLoop->begin(), CurLoop->end());
+ continue;
+ }
+
+ if (!PreRegAlloc)
+ HoistRegionPostRA();
+ else {
+ // CSEMap is initialized for loop header when the first instruction is
+ // being hoisted.
+ MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
+ FirstInLoop = true;
+ HoistRegion(N);
+ CSEMap.clear();
+ }
+ }
+
+ return Changed;
+}
+
+/// InstructionStoresToFI - Return true if instruction stores to the
+/// specified frame.
+static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
+ for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
+ oe = MI->memoperands_end(); o != oe; ++o) {
+ if (!(*o)->isStore() || !(*o)->getValue())
+ continue;
+ if (const FixedStackPseudoSourceValue *Value =
+ dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
+ if (Value->getFrameIndex() == FI)
+ return true;
+ }
+ }
+ return false;
+}
+
+/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
+/// gather register def and frame object update information.
+void MachineLICM::ProcessMI(MachineInstr *MI,
+ unsigned *PhysRegDefs,
+ SmallSet<int, 32> &StoredFIs,
+ SmallVector<CandidateInfo, 32> &Candidates) {
+ bool RuledOut = false;
+ bool HasNonInvariantUse = false;
+ unsigned Def = 0;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isFI()) {
+ // Remember if the instruction stores to the frame index.
+ int FI = MO.getIndex();
+ if (!StoredFIs.count(FI) &&
+ MFI->isSpillSlotObjectIndex(FI) &&
+ InstructionStoresToFI(MI, FI))
+ StoredFIs.insert(FI);
+ HasNonInvariantUse = true;
+ continue;
+ }
+
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ "Not expecting virtual register!");
+
+ if (!MO.isDef()) {
+ if (Reg && PhysRegDefs[Reg])
+ // If it's using a non-loop-invariant register, then it's obviously not
+ // safe to hoist.
+ HasNonInvariantUse = true;
+ continue;
+ }
+
+ if (MO.isImplicit()) {
+ ++PhysRegDefs[Reg];
+ for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+ ++PhysRegDefs[*AS];
+ if (!MO.isDead())
+ // Non-dead implicit def? This cannot be hoisted.
+ RuledOut = true;
+ // No need to check if a dead implicit def is also defined by
+ // another instruction.
+ continue;
+ }
+
+ // FIXME: For now, avoid instructions with multiple defs, unless
+ // it's a dead implicit def.
+ if (Def)
+ RuledOut = true;
+ else
+ Def = Reg;
+
+ // If we have already seen another instruction that defines the same
+ // register, then this is not safe.
+ if (++PhysRegDefs[Reg] > 1)
+ // MI defined register is seen defined by another instruction in
+ // the loop, it cannot be a LICM candidate.
+ RuledOut = true;
+ for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+ if (++PhysRegDefs[*AS] > 1)
+ RuledOut = true;
+ }
+
+ // Only consider reloads for now and remats which do not have register
+ // operands. FIXME: Consider unfold load folding instructions.
+ if (Def && !RuledOut) {
+ int FI = INT_MIN;
+ if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
+ (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
+ Candidates.push_back(CandidateInfo(MI, Def, FI));
+ }
+}
+
+/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
+/// invariants out to the preheader.
+void MachineLICM::HoistRegionPostRA() {
+ unsigned NumRegs = TRI->getNumRegs();
+ unsigned *PhysRegDefs = new unsigned[NumRegs];
+ std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
+
+ SmallVector<CandidateInfo, 32> Candidates;
+ SmallSet<int, 32> StoredFIs;
+
+ // Walk the entire region, count number of defs for each register, and
+ // collect potential LICM candidates.
+ const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *BB = Blocks[i];
+ // Conservatively treat live-in's as an external def.
+ // FIXME: That means a reload that're reused in successor block(s) will not
+ // be LICM'ed.
+ for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
+ E = BB->livein_end(); I != E; ++I) {
+ unsigned Reg = *I;
+ ++PhysRegDefs[Reg];
+ for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
+ ++PhysRegDefs[*AS];
+ }
+
+ for (MachineBasicBlock::iterator
+ MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
+ MachineInstr *MI = &*MII;
+ ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
+ }
+ }
+
+ // Now evaluate whether the potential candidates qualify.
+ // 1. Check if the candidate defined register is defined by another
+ // instruction in the loop.
+ // 2. If the candidate is a load from stack slot (always true for now),
+ // check if the slot is stored anywhere in the loop.
+ for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
+ if (Candidates[i].FI != INT_MIN &&
+ StoredFIs.count(Candidates[i].FI))
+ continue;
+
+ if (PhysRegDefs[Candidates[i].Def] == 1) {
+ bool Safe = true;
+ MachineInstr *MI = Candidates[i].MI;
+ for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
+ const MachineOperand &MO = MI->getOperand(j);
+ if (!MO.isReg() || MO.isDef() || !MO.getReg())
+ continue;
+ if (PhysRegDefs[MO.getReg()]) {
+ // If it's using a non-loop-invariant register, then it's obviously
+ // not safe to hoist.
+ Safe = false;
+ break;
+ }
+ }
+ if (Safe)
+ HoistPostRA(MI, Candidates[i].Def);
+ }
+ }
+
+ delete[] PhysRegDefs;
+}
+
+/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
+/// loop, and make sure it is not killed by any instructions in the loop.
+void MachineLICM::AddToLiveIns(unsigned Reg) {
+ const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *BB = Blocks[i];
+ if (!BB->isLiveIn(Reg))
+ BB->addLiveIn(Reg);
+ for (MachineBasicBlock::iterator
+ MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
+ MachineInstr *MI = &*MII;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
+ if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
+ MO.setIsKill(false);
+ }
+ }
+ }
+}
+
+/// HoistPostRA - When an instruction is found to only use loop invariant
+/// operands that is safe to hoist, this instruction is called to do the
+/// dirty work.
+void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
+ MachineBasicBlock *Preheader = getCurPreheader();
+ if (!Preheader) return;
+
+ // Now move the instructions to the predecessor, inserting it before any
+ // terminator instructions.
+ DEBUG({
+ dbgs() << "Hoisting " << *MI;
+ if (Preheader->getBasicBlock())
+ dbgs() << " to MachineBasicBlock "
+ << Preheader->getName();
+ if (MI->getParent()->getBasicBlock())
+ dbgs() << " from MachineBasicBlock "
+ << MI->getParent()->getName();
+ dbgs() << "\n";
+ });
+
+ // Splice the instruction to the preheader.
+ MachineBasicBlock *MBB = MI->getParent();
+ Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
+
+ // Add register to livein list to all the BBs in the current loop since a
+ // loop invariant must be kept live throughout the whole loop. This is
+ // important to ensure later passes do not scavenge the def register.
+ AddToLiveIns(Def);
+
+ ++NumPostRAHoisted;
+ Changed = true;
+}
+
+/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
+/// dominated by the specified block, and that are in the current loop) in depth
+/// first order w.r.t the DominatorTree. This allows us to visit definitions
+/// before uses, allowing us to hoist a loop body in one pass without iteration.
+///
+void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
+ assert(N != 0 && "Null dominator tree node?");
+ MachineBasicBlock *BB = N->getBlock();
+
+ // If this subregion is not in the top level loop at all, exit.
+ if (!CurLoop->contains(BB)) return;
+
+ for (MachineBasicBlock::iterator
+ MII = BB->begin(), E = BB->end(); MII != E; ) {
+ MachineBasicBlock::iterator NextMII = MII; ++NextMII;
+ Hoist(&*MII);
+ MII = NextMII;
+ }
+
+ const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
+ for (unsigned I = 0, E = Children.size(); I != E; ++I)
+ HoistRegion(Children[I]);
+}
+
+/// IsLICMCandidate - Returns true if the instruction may be a suitable
+/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
+/// not safe to hoist it.
+bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
+ // Check if it's safe to move the instruction.
+ bool DontMoveAcrossStore = true;
+ if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
+ return false;
+
+ return true;
+}
+
+/// IsLoopInvariantInst - Returns true if the instruction is loop
+/// invariant. I.e., all virtual register operands are defined outside of the
+/// loop, physical registers aren't accessed explicitly, and there are no side
+/// effects that aren't captured by the operands or other flags.
+///
+bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
+ if (!IsLICMCandidate(I))
+ return false;
+
+ // The instruction is loop invariant if all of its operands are.
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = I.getOperand(i);
+
+ if (!MO.isReg())
+ continue;
+
+ unsigned Reg = MO.getReg();
+ if (Reg == 0) continue;
+
+ // Don't hoist an instruction that uses or defines a physical register.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ if (MO.isUse()) {
+ // If the physreg has no defs anywhere, it's just an ambient register
+ // and we can freely move its uses. Alternatively, if it's allocatable,
+ // it could get allocated to something with a def during allocation.
+ if (!RegInfo->def_empty(Reg))
+ return false;
+ if (AllocatableSet.test(Reg))
+ return false;
+ // Check for a def among the register's aliases too.
+ for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+ unsigned AliasReg = *Alias;
+ if (!RegInfo->def_empty(AliasReg))
+ return false;
+ if (AllocatableSet.test(AliasReg))
+ return false;
+ }
+ // Otherwise it's safe to move.
+ continue;
+ } else if (!MO.isDead()) {
+ // A def that isn't dead. We can't move it.
+ return false;
+ } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
+ // If the reg is live into the loop, we can't hoist an instruction
+ // which would clobber it.
+ return false;
+ }
+ }
+
+ if (!MO.isUse())
+ continue;
+
+ assert(RegInfo->getVRegDef(Reg) &&
+ "Machine instr not mapped for this vreg?!");
+
+ // If the loop contains the definition of an operand, then the instruction
+ // isn't loop invariant.
+ if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
+ return false;
+ }
+
+ // If we got this far, the instruction is loop invariant!
+ return true;
+}
+
+
+/// HasPHIUses - Return true if the specified register has any PHI use.
+static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
+ for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
+ UE = RegInfo->use_end(); UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ if (UseMI->isPHI())
+ return true;
+ }
+ return false;
+}
+
+/// isLoadFromConstantMemory - Return true if the given instruction is a
+/// load from constant memory. Machine LICM will hoist these even if they are
+/// not re-materializable.
+bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
+ if (!MI->getDesc().mayLoad()) return false;
+ if (!MI->hasOneMemOperand()) return false;
+ MachineMemOperand *MMO = *MI->memoperands_begin();
+ if (MMO->isVolatile()) return false;
+ if (!MMO->getValue()) return false;
+ const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
+ if (PSV) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ return PSV->isConstant(MF.getFrameInfo());
+ } else {
+ return AA->pointsToConstantMemory(MMO->getValue());
+ }
+}
+
+/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
+/// the given loop invariant.
+bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
+ // FIXME: For now, only hoist re-materilizable instructions. LICM will
+ // increase register pressure. We want to make sure it doesn't increase
+ // spilling.
+ // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
+ // these tend to help performance in low register pressure situation. The
+ // trade off is it may cause spill in high pressure situation. It will end up
+ // adding a store in the loop preheader. But the reload is no more expensive.
+ // The side benefit is these loads are frequently CSE'ed.
+ if (!TII->isTriviallyReMaterializable(&MI, AA)) {
+ if (!isLoadFromConstantMemory(&MI))
+ return false;
+ }
+
+ // If result(s) of this instruction is used by PHIs, then don't hoist it.
+ // The presence of joins makes it difficult for current register allocator
+ // implementation to perform remat.
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ if (HasPHIUses(MO.getReg(), RegInfo))
+ return false;
+ }
+
+ return true;
+}
+
+MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
+ // If not, we may be able to unfold a load and hoist that.
+ // First test whether the instruction is loading from an amenable
+ // memory location.
+ if (!isLoadFromConstantMemory(MI))
+ return 0;
+
+ // Next determine the register class for a temporary register.
+ unsigned LoadRegIndex;
+ unsigned NewOpc =
+ TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
+ /*UnfoldLoad=*/true,
+ /*UnfoldStore=*/false,
+ &LoadRegIndex);
+ if (NewOpc == 0) return 0;
+ const TargetInstrDesc &TID = TII->get(NewOpc);
+ if (TID.getNumDefs() != 1) return 0;
+ const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
+ // Ok, we're unfolding. Create a temporary register and do the unfold.
+ unsigned Reg = RegInfo->createVirtualRegister(RC);
+
+ MachineFunction &MF = *MI->getParent()->getParent();
+ SmallVector<MachineInstr *, 2> NewMIs;
+ bool Success =
+ TII->unfoldMemoryOperand(MF, MI, Reg,
+ /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
+ NewMIs);
+ (void)Success;
+ assert(Success &&
+ "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
+ "succeeded!");
+ assert(NewMIs.size() == 2 &&
+ "Unfolded a load into multiple instructions!");
+ MachineBasicBlock *MBB = MI->getParent();
+ MBB->insert(MI, NewMIs[0]);
+ MBB->insert(MI, NewMIs[1]);
+ // If unfolding produced a load that wasn't loop-invariant or profitable to
+ // hoist, discard the new instructions and bail.
+ if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
+ NewMIs[0]->eraseFromParent();
+ NewMIs[1]->eraseFromParent();
+ return 0;
+ }
+ // Otherwise we successfully unfolded a load that we can hoist.
+ MI->eraseFromParent();
+ return NewMIs[0];
+}
+
+void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
+ for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
+ const MachineInstr *MI = &*I;
+ // FIXME: For now, only hoist re-materilizable instructions. LICM will
+ // increase register pressure. We want to make sure it doesn't increase
+ // spilling.
+ if (TII->isTriviallyReMaterializable(MI, AA)) {
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
+ CI = CSEMap.find(Opcode);
+ if (CI != CSEMap.end())
+ CI->second.push_back(MI);
+ else {
+ std::vector<const MachineInstr*> CSEMIs;
+ CSEMIs.push_back(MI);
+ CSEMap.insert(std::make_pair(Opcode, CSEMIs));
+ }
+ }
+ }
+}
+
+const MachineInstr*
+MachineLICM::LookForDuplicate(const MachineInstr *MI,
+ std::vector<const MachineInstr*> &PrevMIs) {
+ for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
+ const MachineInstr *PrevMI = PrevMIs[i];
+ if (TII->produceSameValue(MI, PrevMI))
+ return PrevMI;
+ }
+ return 0;
+}
+
+bool MachineLICM::EliminateCSE(MachineInstr *MI,
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
+ // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
+ // the undef property onto uses.
+ if (CI == CSEMap.end() || MI->isImplicitDef())
+ return false;
+
+ if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
+ DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
+
+ // Replace virtual registers defined by MI by their counterparts defined
+ // by Dup.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+
+ // Physical registers may not differ here.
+ assert((!MO.isReg() || MO.getReg() == 0 ||
+ !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
+ MO.getReg() == Dup->getOperand(i).getReg()) &&
+ "Instructions with different phys regs are not identical!");
+
+ if (MO.isReg() && MO.isDef() &&
+ !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
+ RegInfo->clearKillFlags(Dup->getOperand(i).getReg());
+ }
+ }
+ MI->eraseFromParent();
+ ++NumCSEed;
+ return true;
+ }
+ return false;
+}
+
+/// Hoist - When an instruction is found to use only loop invariant operands
+/// that are safe to hoist, this instruction is called to do the dirty work.
+///
+void MachineLICM::Hoist(MachineInstr *MI) {
+ MachineBasicBlock *Preheader = getCurPreheader();
+ if (!Preheader) return;
+
+ // First check whether we should hoist this instruction.
+ if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
+ // If not, try unfolding a hoistable load.
+ MI = ExtractHoistableLoad(MI);
+ if (!MI) return;
+ }
+
+ // Now move the instructions to the predecessor, inserting it before any
+ // terminator instructions.
+ DEBUG({
+ dbgs() << "Hoisting " << *MI;
+ if (Preheader->getBasicBlock())
+ dbgs() << " to MachineBasicBlock "
+ << Preheader->getName();
+ if (MI->getParent()->getBasicBlock())
+ dbgs() << " from MachineBasicBlock "
+ << MI->getParent()->getName();
+ dbgs() << "\n";
+ });
+
+ // If this is the first instruction being hoisted to the preheader,
+ // initialize the CSE map with potential common expressions.
+ if (FirstInLoop) {
+ InitCSEMap(Preheader);
+ FirstInLoop = false;
+ }
+
+ // Look for opportunity to CSE the hoisted instruction.
+ unsigned Opcode = MI->getOpcode();
+ DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
+ CI = CSEMap.find(Opcode);
+ if (!EliminateCSE(MI, CI)) {
+ // Otherwise, splice the instruction to the preheader.
+ Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
+
+ // Clear the kill flags of any register this instruction defines,
+ // since they may need to be live throughout the entire loop
+ // rather than just live for part of it.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() && !MO.isDead())
+ RegInfo->clearKillFlags(MO.getReg());
+ }
+
+ // Add to the CSE map.
+ if (CI != CSEMap.end())
+ CI->second.push_back(MI);
+ else {
+ std::vector<const MachineInstr*> CSEMIs;
+ CSEMIs.push_back(MI);
+ CSEMap.insert(std::make_pair(Opcode, CSEMIs));
+ }
+ }
+
+ ++NumHoisted;
+ Changed = true;
+}
+
+MachineBasicBlock *MachineLICM::getCurPreheader() {
+ // Determine the block to which to hoist instructions. If we can't find a
+ // suitable loop predecessor, we can't do any hoisting.
+
+ // If we've tried to get a preheader and failed, don't try again.
+ if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
+ return 0;
+
+ if (!CurPreheader) {
+ CurPreheader = CurLoop->getLoopPreheader();
+ if (!CurPreheader) {
+ MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
+ if (!Pred) {
+ CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
+ return 0;
+ }
+
+ CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
+ if (!CurPreheader) {
+ CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
+ return 0;
+ }
+ }
+ }
+ return CurPreheader;
+}
OpenPOWER on IntegriCloud