summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineInstr.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineInstr.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineInstr.cpp1913
1 files changed, 1913 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineInstr.cpp b/contrib/llvm/lib/CodeGen/MachineInstr.cpp
new file mode 100644
index 0000000..e553a04
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineInstr.cpp
@@ -0,0 +1,1913 @@
+//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Methods common to all machine instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
+#include "llvm/Module.h"
+#include "llvm/Type.h"
+#include "llvm/Value.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LeakDetector.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/Hashing.h"
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// MachineOperand Implementation
+//===----------------------------------------------------------------------===//
+
+/// AddRegOperandToRegInfo - Add this register operand to the specified
+/// MachineRegisterInfo. If it is null, then the next/prev fields should be
+/// explicitly nulled out.
+void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
+ assert(isReg() && "Can only add reg operand to use lists");
+
+ // If the reginfo pointer is null, just explicitly null out or next/prev
+ // pointers, to ensure they are not garbage.
+ if (RegInfo == 0) {
+ Contents.Reg.Prev = 0;
+ Contents.Reg.Next = 0;
+ return;
+ }
+
+ // Otherwise, add this operand to the head of the registers use/def list.
+ MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
+
+ // For SSA values, we prefer to keep the definition at the start of the list.
+ // we do this by skipping over the definition if it is at the head of the
+ // list.
+ if (*Head && (*Head)->isDef())
+ Head = &(*Head)->Contents.Reg.Next;
+
+ Contents.Reg.Next = *Head;
+ if (Contents.Reg.Next) {
+ assert(getReg() == Contents.Reg.Next->getReg() &&
+ "Different regs on the same list!");
+ Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
+ }
+
+ Contents.Reg.Prev = Head;
+ *Head = this;
+}
+
+/// RemoveRegOperandFromRegInfo - Remove this register operand from the
+/// MachineRegisterInfo it is linked with.
+void MachineOperand::RemoveRegOperandFromRegInfo() {
+ assert(isOnRegUseList() && "Reg operand is not on a use list");
+ // Unlink this from the doubly linked list of operands.
+ MachineOperand *NextOp = Contents.Reg.Next;
+ *Contents.Reg.Prev = NextOp;
+ if (NextOp) {
+ assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
+ NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
+ }
+ Contents.Reg.Prev = 0;
+ Contents.Reg.Next = 0;
+}
+
+void MachineOperand::setReg(unsigned Reg) {
+ if (getReg() == Reg) return; // No change.
+
+ // Otherwise, we have to change the register. If this operand is embedded
+ // into a machine function, we need to update the old and new register's
+ // use/def lists.
+ if (MachineInstr *MI = getParent())
+ if (MachineBasicBlock *MBB = MI->getParent())
+ if (MachineFunction *MF = MBB->getParent()) {
+ RemoveRegOperandFromRegInfo();
+ SmallContents.RegNo = Reg;
+ AddRegOperandToRegInfo(&MF->getRegInfo());
+ return;
+ }
+
+ // Otherwise, just change the register, no problem. :)
+ SmallContents.RegNo = Reg;
+}
+
+void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
+ const TargetRegisterInfo &TRI) {
+ assert(TargetRegisterInfo::isVirtualRegister(Reg));
+ if (SubIdx && getSubReg())
+ SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
+ setReg(Reg);
+ if (SubIdx)
+ setSubReg(SubIdx);
+}
+
+void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg));
+ if (getSubReg()) {
+ Reg = TRI.getSubReg(Reg, getSubReg());
+ // Note that getSubReg() may return 0 if the sub-register doesn't exist.
+ // That won't happen in legal code.
+ setSubReg(0);
+ }
+ setReg(Reg);
+}
+
+/// ChangeToImmediate - Replace this operand with a new immediate operand of
+/// the specified value. If an operand is known to be an immediate already,
+/// the setImm method should be used.
+void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
+ // If this operand is currently a register operand, and if this is in a
+ // function, deregister the operand from the register's use/def list.
+ if (isReg() && getParent() && getParent()->getParent() &&
+ getParent()->getParent()->getParent())
+ RemoveRegOperandFromRegInfo();
+
+ OpKind = MO_Immediate;
+ Contents.ImmVal = ImmVal;
+}
+
+/// ChangeToRegister - Replace this operand with a new register operand of
+/// the specified value. If an operand is known to be an register already,
+/// the setReg method should be used.
+void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
+ bool isKill, bool isDead, bool isUndef,
+ bool isDebug) {
+ // If this operand is already a register operand, use setReg to update the
+ // register's use/def lists.
+ if (isReg()) {
+ assert(!isEarlyClobber());
+ setReg(Reg);
+ } else {
+ // Otherwise, change this to a register and set the reg#.
+ OpKind = MO_Register;
+ SmallContents.RegNo = Reg;
+
+ // If this operand is embedded in a function, add the operand to the
+ // register's use/def list.
+ if (MachineInstr *MI = getParent())
+ if (MachineBasicBlock *MBB = MI->getParent())
+ if (MachineFunction *MF = MBB->getParent())
+ AddRegOperandToRegInfo(&MF->getRegInfo());
+ }
+
+ IsDef = isDef;
+ IsImp = isImp;
+ IsKill = isKill;
+ IsDead = isDead;
+ IsUndef = isUndef;
+ IsInternalRead = false;
+ IsEarlyClobber = false;
+ IsDebug = isDebug;
+ SubReg = 0;
+}
+
+/// isIdenticalTo - Return true if this operand is identical to the specified
+/// operand.
+bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
+ if (getType() != Other.getType() ||
+ getTargetFlags() != Other.getTargetFlags())
+ return false;
+
+ switch (getType()) {
+ case MachineOperand::MO_Register:
+ return getReg() == Other.getReg() && isDef() == Other.isDef() &&
+ getSubReg() == Other.getSubReg();
+ case MachineOperand::MO_Immediate:
+ return getImm() == Other.getImm();
+ case MachineOperand::MO_CImmediate:
+ return getCImm() == Other.getCImm();
+ case MachineOperand::MO_FPImmediate:
+ return getFPImm() == Other.getFPImm();
+ case MachineOperand::MO_MachineBasicBlock:
+ return getMBB() == Other.getMBB();
+ case MachineOperand::MO_FrameIndex:
+ return getIndex() == Other.getIndex();
+ case MachineOperand::MO_ConstantPoolIndex:
+ return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
+ case MachineOperand::MO_JumpTableIndex:
+ return getIndex() == Other.getIndex();
+ case MachineOperand::MO_GlobalAddress:
+ return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
+ case MachineOperand::MO_ExternalSymbol:
+ return !strcmp(getSymbolName(), Other.getSymbolName()) &&
+ getOffset() == Other.getOffset();
+ case MachineOperand::MO_BlockAddress:
+ return getBlockAddress() == Other.getBlockAddress();
+ case MO_RegisterMask:
+ return getRegMask() == Other.getRegMask();
+ case MachineOperand::MO_MCSymbol:
+ return getMCSymbol() == Other.getMCSymbol();
+ case MachineOperand::MO_Metadata:
+ return getMetadata() == Other.getMetadata();
+ }
+ llvm_unreachable("Invalid machine operand type");
+}
+
+/// print - Print the specified machine operand.
+///
+void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
+ // If the instruction is embedded into a basic block, we can find the
+ // target info for the instruction.
+ if (!TM)
+ if (const MachineInstr *MI = getParent())
+ if (const MachineBasicBlock *MBB = MI->getParent())
+ if (const MachineFunction *MF = MBB->getParent())
+ TM = &MF->getTarget();
+ const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
+
+ switch (getType()) {
+ case MachineOperand::MO_Register:
+ OS << PrintReg(getReg(), TRI, getSubReg());
+
+ if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
+ isInternalRead() || isEarlyClobber()) {
+ OS << '<';
+ bool NeedComma = false;
+ if (isDef()) {
+ if (NeedComma) OS << ',';
+ if (isEarlyClobber())
+ OS << "earlyclobber,";
+ if (isImplicit())
+ OS << "imp-";
+ OS << "def";
+ NeedComma = true;
+ } else if (isImplicit()) {
+ OS << "imp-use";
+ NeedComma = true;
+ }
+
+ if (isKill() || isDead() || isUndef() || isInternalRead()) {
+ if (NeedComma) OS << ',';
+ NeedComma = false;
+ if (isKill()) {
+ OS << "kill";
+ NeedComma = true;
+ }
+ if (isDead()) {
+ OS << "dead";
+ NeedComma = true;
+ }
+ if (isUndef()) {
+ if (NeedComma) OS << ',';
+ OS << "undef";
+ NeedComma = true;
+ }
+ if (isInternalRead()) {
+ if (NeedComma) OS << ',';
+ OS << "internal";
+ NeedComma = true;
+ }
+ }
+ OS << '>';
+ }
+ break;
+ case MachineOperand::MO_Immediate:
+ OS << getImm();
+ break;
+ case MachineOperand::MO_CImmediate:
+ getCImm()->getValue().print(OS, false);
+ break;
+ case MachineOperand::MO_FPImmediate:
+ if (getFPImm()->getType()->isFloatTy())
+ OS << getFPImm()->getValueAPF().convertToFloat();
+ else
+ OS << getFPImm()->getValueAPF().convertToDouble();
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ OS << "<BB#" << getMBB()->getNumber() << ">";
+ break;
+ case MachineOperand::MO_FrameIndex:
+ OS << "<fi#" << getIndex() << '>';
+ break;
+ case MachineOperand::MO_ConstantPoolIndex:
+ OS << "<cp#" << getIndex();
+ if (getOffset()) OS << "+" << getOffset();
+ OS << '>';
+ break;
+ case MachineOperand::MO_JumpTableIndex:
+ OS << "<jt#" << getIndex() << '>';
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ OS << "<ga:";
+ WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
+ if (getOffset()) OS << "+" << getOffset();
+ OS << '>';
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ OS << "<es:" << getSymbolName();
+ if (getOffset()) OS << "+" << getOffset();
+ OS << '>';
+ break;
+ case MachineOperand::MO_BlockAddress:
+ OS << '<';
+ WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
+ OS << '>';
+ break;
+ case MachineOperand::MO_RegisterMask:
+ OS << "<regmask>";
+ break;
+ case MachineOperand::MO_Metadata:
+ OS << '<';
+ WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
+ OS << '>';
+ break;
+ case MachineOperand::MO_MCSymbol:
+ OS << "<MCSym=" << *getMCSymbol() << '>';
+ break;
+ }
+
+ if (unsigned TF = getTargetFlags())
+ OS << "[TF=" << TF << ']';
+}
+
+//===----------------------------------------------------------------------===//
+// MachineMemOperand Implementation
+//===----------------------------------------------------------------------===//
+
+/// getAddrSpace - Return the LLVM IR address space number that this pointer
+/// points into.
+unsigned MachinePointerInfo::getAddrSpace() const {
+ if (V == 0) return 0;
+ return cast<PointerType>(V->getType())->getAddressSpace();
+}
+
+/// getConstantPool - Return a MachinePointerInfo record that refers to the
+/// constant pool.
+MachinePointerInfo MachinePointerInfo::getConstantPool() {
+ return MachinePointerInfo(PseudoSourceValue::getConstantPool());
+}
+
+/// getFixedStack - Return a MachinePointerInfo record that refers to the
+/// the specified FrameIndex.
+MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
+ return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
+}
+
+MachinePointerInfo MachinePointerInfo::getJumpTable() {
+ return MachinePointerInfo(PseudoSourceValue::getJumpTable());
+}
+
+MachinePointerInfo MachinePointerInfo::getGOT() {
+ return MachinePointerInfo(PseudoSourceValue::getGOT());
+}
+
+MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
+ return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
+}
+
+MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
+ uint64_t s, unsigned int a,
+ const MDNode *TBAAInfo,
+ const MDNode *Ranges)
+ : PtrInfo(ptrinfo), Size(s),
+ Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
+ TBAAInfo(TBAAInfo), Ranges(Ranges) {
+ assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
+ "invalid pointer value");
+ assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
+ assert((isLoad() || isStore()) && "Not a load/store!");
+}
+
+/// Profile - Gather unique data for the object.
+///
+void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
+ ID.AddInteger(getOffset());
+ ID.AddInteger(Size);
+ ID.AddPointer(getValue());
+ ID.AddInteger(Flags);
+}
+
+void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
+ // The Value and Offset may differ due to CSE. But the flags and size
+ // should be the same.
+ assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
+ assert(MMO->getSize() == getSize() && "Size mismatch!");
+
+ if (MMO->getBaseAlignment() >= getBaseAlignment()) {
+ // Update the alignment value.
+ Flags = (Flags & ((1 << MOMaxBits) - 1)) |
+ ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
+ // Also update the base and offset, because the new alignment may
+ // not be applicable with the old ones.
+ PtrInfo = MMO->PtrInfo;
+ }
+}
+
+/// getAlignment - Return the minimum known alignment in bytes of the
+/// actual memory reference.
+uint64_t MachineMemOperand::getAlignment() const {
+ return MinAlign(getBaseAlignment(), getOffset());
+}
+
+raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
+ assert((MMO.isLoad() || MMO.isStore()) &&
+ "SV has to be a load, store or both.");
+
+ if (MMO.isVolatile())
+ OS << "Volatile ";
+
+ if (MMO.isLoad())
+ OS << "LD";
+ if (MMO.isStore())
+ OS << "ST";
+ OS << MMO.getSize();
+
+ // Print the address information.
+ OS << "[";
+ if (!MMO.getValue())
+ OS << "<unknown>";
+ else
+ WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
+
+ // If the alignment of the memory reference itself differs from the alignment
+ // of the base pointer, print the base alignment explicitly, next to the base
+ // pointer.
+ if (MMO.getBaseAlignment() != MMO.getAlignment())
+ OS << "(align=" << MMO.getBaseAlignment() << ")";
+
+ if (MMO.getOffset() != 0)
+ OS << "+" << MMO.getOffset();
+ OS << "]";
+
+ // Print the alignment of the reference.
+ if (MMO.getBaseAlignment() != MMO.getAlignment() ||
+ MMO.getBaseAlignment() != MMO.getSize())
+ OS << "(align=" << MMO.getAlignment() << ")";
+
+ // Print TBAA info.
+ if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
+ OS << "(tbaa=";
+ if (TBAAInfo->getNumOperands() > 0)
+ WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
+ else
+ OS << "<unknown>";
+ OS << ")";
+ }
+
+ // Print nontemporal info.
+ if (MMO.isNonTemporal())
+ OS << "(nontemporal)";
+
+ return OS;
+}
+
+//===----------------------------------------------------------------------===//
+// MachineInstr Implementation
+//===----------------------------------------------------------------------===//
+
+/// MachineInstr ctor - This constructor creates a dummy MachineInstr with
+/// MCID NULL and no operands.
+MachineInstr::MachineInstr()
+ : MCID(0), Flags(0), AsmPrinterFlags(0),
+ NumMemRefs(0), MemRefs(0),
+ Parent(0) {
+ // Make sure that we get added to a machine basicblock
+ LeakDetector::addGarbageObject(this);
+}
+
+void MachineInstr::addImplicitDefUseOperands() {
+ if (MCID->ImplicitDefs)
+ for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
+ addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
+ if (MCID->ImplicitUses)
+ for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
+ addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
+}
+
+/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
+/// implicit operands. It reserves space for the number of operands specified by
+/// the MCInstrDesc.
+MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
+ : MCID(&tid), Flags(0), AsmPrinterFlags(0),
+ NumMemRefs(0), MemRefs(0), Parent(0) {
+ unsigned NumImplicitOps = 0;
+ if (!NoImp)
+ NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
+ Operands.reserve(NumImplicitOps + MCID->getNumOperands());
+ if (!NoImp)
+ addImplicitDefUseOperands();
+ // Make sure that we get added to a machine basicblock
+ LeakDetector::addGarbageObject(this);
+}
+
+/// MachineInstr ctor - As above, but with a DebugLoc.
+MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
+ bool NoImp)
+ : MCID(&tid), Flags(0), AsmPrinterFlags(0),
+ NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
+ unsigned NumImplicitOps = 0;
+ if (!NoImp)
+ NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
+ Operands.reserve(NumImplicitOps + MCID->getNumOperands());
+ if (!NoImp)
+ addImplicitDefUseOperands();
+ // Make sure that we get added to a machine basicblock
+ LeakDetector::addGarbageObject(this);
+}
+
+/// MachineInstr ctor - Work exactly the same as the ctor two above, except
+/// that the MachineInstr is created and added to the end of the specified
+/// basic block.
+MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
+ : MCID(&tid), Flags(0), AsmPrinterFlags(0),
+ NumMemRefs(0), MemRefs(0), Parent(0) {
+ assert(MBB && "Cannot use inserting ctor with null basic block!");
+ unsigned NumImplicitOps =
+ MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
+ Operands.reserve(NumImplicitOps + MCID->getNumOperands());
+ addImplicitDefUseOperands();
+ // Make sure that we get added to a machine basicblock
+ LeakDetector::addGarbageObject(this);
+ MBB->push_back(this); // Add instruction to end of basic block!
+}
+
+/// MachineInstr ctor - As above, but with a DebugLoc.
+///
+MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
+ const MCInstrDesc &tid)
+ : MCID(&tid), Flags(0), AsmPrinterFlags(0),
+ NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
+ assert(MBB && "Cannot use inserting ctor with null basic block!");
+ unsigned NumImplicitOps =
+ MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
+ Operands.reserve(NumImplicitOps + MCID->getNumOperands());
+ addImplicitDefUseOperands();
+ // Make sure that we get added to a machine basicblock
+ LeakDetector::addGarbageObject(this);
+ MBB->push_back(this); // Add instruction to end of basic block!
+}
+
+/// MachineInstr ctor - Copies MachineInstr arg exactly
+///
+MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
+ : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
+ NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
+ Parent(0), debugLoc(MI.getDebugLoc()) {
+ Operands.reserve(MI.getNumOperands());
+
+ // Add operands
+ for (unsigned i = 0; i != MI.getNumOperands(); ++i)
+ addOperand(MI.getOperand(i));
+
+ // Copy all the flags.
+ Flags = MI.Flags;
+
+ // Set parent to null.
+ Parent = 0;
+
+ LeakDetector::addGarbageObject(this);
+}
+
+MachineInstr::~MachineInstr() {
+ LeakDetector::removeGarbageObject(this);
+#ifndef NDEBUG
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
+ assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
+ assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
+ "Reg operand def/use list corrupted");
+ }
+#endif
+}
+
+/// getRegInfo - If this instruction is embedded into a MachineFunction,
+/// return the MachineRegisterInfo object for the current function, otherwise
+/// return null.
+MachineRegisterInfo *MachineInstr::getRegInfo() {
+ if (MachineBasicBlock *MBB = getParent())
+ return &MBB->getParent()->getRegInfo();
+ return 0;
+}
+
+/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
+/// this instruction from their respective use lists. This requires that the
+/// operands already be on their use lists.
+void MachineInstr::RemoveRegOperandsFromUseLists() {
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
+ if (Operands[i].isReg())
+ Operands[i].RemoveRegOperandFromRegInfo();
+ }
+}
+
+/// AddRegOperandsToUseLists - Add all of the register operands in
+/// this instruction from their respective use lists. This requires that the
+/// operands not be on their use lists yet.
+void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
+ if (Operands[i].isReg())
+ Operands[i].AddRegOperandToRegInfo(&RegInfo);
+ }
+}
+
+
+/// addOperand - Add the specified operand to the instruction. If it is an
+/// implicit operand, it is added to the end of the operand list. If it is
+/// an explicit operand it is added at the end of the explicit operand list
+/// (before the first implicit operand).
+void MachineInstr::addOperand(const MachineOperand &Op) {
+ assert(MCID && "Cannot add operands before providing an instr descriptor");
+ bool isImpReg = Op.isReg() && Op.isImplicit();
+ MachineRegisterInfo *RegInfo = getRegInfo();
+
+ // If the Operands backing store is reallocated, all register operands must
+ // be removed and re-added to RegInfo. It is storing pointers to operands.
+ bool Reallocate = RegInfo &&
+ !Operands.empty() && Operands.size() == Operands.capacity();
+
+ // Find the insert location for the new operand. Implicit registers go at
+ // the end, everything goes before the implicit regs.
+ unsigned OpNo = Operands.size();
+
+ // Remove all the implicit operands from RegInfo if they need to be shifted.
+ // FIXME: Allow mixed explicit and implicit operands on inline asm.
+ // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
+ // implicit-defs, but they must not be moved around. See the FIXME in
+ // InstrEmitter.cpp.
+ if (!isImpReg && !isInlineAsm()) {
+ while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
+ --OpNo;
+ if (RegInfo)
+ Operands[OpNo].RemoveRegOperandFromRegInfo();
+ }
+ }
+
+ // OpNo now points as the desired insertion point. Unless this is a variadic
+ // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
+ assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
+ "Trying to add an operand to a machine instr that is already done!");
+
+ // All operands from OpNo have been removed from RegInfo. If the Operands
+ // backing store needs to be reallocated, we also need to remove any other
+ // register operands.
+ if (Reallocate)
+ for (unsigned i = 0; i != OpNo; ++i)
+ if (Operands[i].isReg())
+ Operands[i].RemoveRegOperandFromRegInfo();
+
+ // Insert the new operand at OpNo.
+ Operands.insert(Operands.begin() + OpNo, Op);
+ Operands[OpNo].ParentMI = this;
+
+ // The Operands backing store has now been reallocated, so we can re-add the
+ // operands before OpNo.
+ if (Reallocate)
+ for (unsigned i = 0; i != OpNo; ++i)
+ if (Operands[i].isReg())
+ Operands[i].AddRegOperandToRegInfo(RegInfo);
+
+ // When adding a register operand, tell RegInfo about it.
+ if (Operands[OpNo].isReg()) {
+ // Add the new operand to RegInfo, even when RegInfo is NULL.
+ // This will initialize the linked list pointers.
+ Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
+ // If the register operand is flagged as early, mark the operand as such.
+ if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
+ Operands[OpNo].setIsEarlyClobber(true);
+ }
+
+ // Re-add all the implicit ops.
+ if (RegInfo) {
+ for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
+ assert(Operands[i].isReg() && "Should only be an implicit reg!");
+ Operands[i].AddRegOperandToRegInfo(RegInfo);
+ }
+ }
+}
+
+/// RemoveOperand - Erase an operand from an instruction, leaving it with one
+/// fewer operand than it started with.
+///
+void MachineInstr::RemoveOperand(unsigned OpNo) {
+ assert(OpNo < Operands.size() && "Invalid operand number");
+
+ // Special case removing the last one.
+ if (OpNo == Operands.size()-1) {
+ // If needed, remove from the reg def/use list.
+ if (Operands.back().isReg() && Operands.back().isOnRegUseList())
+ Operands.back().RemoveRegOperandFromRegInfo();
+
+ Operands.pop_back();
+ return;
+ }
+
+ // Otherwise, we are removing an interior operand. If we have reginfo to
+ // update, remove all operands that will be shifted down from their reg lists,
+ // move everything down, then re-add them.
+ MachineRegisterInfo *RegInfo = getRegInfo();
+ if (RegInfo) {
+ for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
+ if (Operands[i].isReg())
+ Operands[i].RemoveRegOperandFromRegInfo();
+ }
+ }
+
+ Operands.erase(Operands.begin()+OpNo);
+
+ if (RegInfo) {
+ for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
+ if (Operands[i].isReg())
+ Operands[i].AddRegOperandToRegInfo(RegInfo);
+ }
+ }
+}
+
+/// addMemOperand - Add a MachineMemOperand to the machine instruction.
+/// This function should be used only occasionally. The setMemRefs function
+/// is the primary method for setting up a MachineInstr's MemRefs list.
+void MachineInstr::addMemOperand(MachineFunction &MF,
+ MachineMemOperand *MO) {
+ mmo_iterator OldMemRefs = MemRefs;
+ uint16_t OldNumMemRefs = NumMemRefs;
+
+ uint16_t NewNum = NumMemRefs + 1;
+ mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
+
+ std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
+ NewMemRefs[NewNum - 1] = MO;
+
+ MemRefs = NewMemRefs;
+ NumMemRefs = NewNum;
+}
+
+bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
+ const MachineBasicBlock *MBB = getParent();
+ MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
+ while (MII != MBB->end() && MII->isInsideBundle()) {
+ if (MII->getDesc().getFlags() & Mask) {
+ if (Type == AnyInBundle)
+ return true;
+ } else {
+ if (Type == AllInBundle)
+ return false;
+ }
+ ++MII;
+ }
+
+ return Type == AllInBundle;
+}
+
+bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
+ MICheckType Check) const {
+ // If opcodes or number of operands are not the same then the two
+ // instructions are obviously not identical.
+ if (Other->getOpcode() != getOpcode() ||
+ Other->getNumOperands() != getNumOperands())
+ return false;
+
+ if (isBundle()) {
+ // Both instructions are bundles, compare MIs inside the bundle.
+ MachineBasicBlock::const_instr_iterator I1 = *this;
+ MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
+ MachineBasicBlock::const_instr_iterator I2 = *Other;
+ MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
+ while (++I1 != E1 && I1->isInsideBundle()) {
+ ++I2;
+ if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
+ return false;
+ }
+ }
+
+ // Check operands to make sure they match.
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ const MachineOperand &OMO = Other->getOperand(i);
+ if (!MO.isReg()) {
+ if (!MO.isIdenticalTo(OMO))
+ return false;
+ continue;
+ }
+
+ // Clients may or may not want to ignore defs when testing for equality.
+ // For example, machine CSE pass only cares about finding common
+ // subexpressions, so it's safe to ignore virtual register defs.
+ if (MO.isDef()) {
+ if (Check == IgnoreDefs)
+ continue;
+ else if (Check == IgnoreVRegDefs) {
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
+ TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
+ if (MO.getReg() != OMO.getReg())
+ return false;
+ } else {
+ if (!MO.isIdenticalTo(OMO))
+ return false;
+ if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
+ return false;
+ }
+ } else {
+ if (!MO.isIdenticalTo(OMO))
+ return false;
+ if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
+ return false;
+ }
+ }
+ // If DebugLoc does not match then two dbg.values are not identical.
+ if (isDebugValue())
+ if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
+ && getDebugLoc() != Other->getDebugLoc())
+ return false;
+ return true;
+}
+
+/// removeFromParent - This method unlinks 'this' from the containing basic
+/// block, and returns it, but does not delete it.
+MachineInstr *MachineInstr::removeFromParent() {
+ assert(getParent() && "Not embedded in a basic block!");
+
+ // If it's a bundle then remove the MIs inside the bundle as well.
+ if (isBundle()) {
+ MachineBasicBlock *MBB = getParent();
+ MachineBasicBlock::instr_iterator MII = *this; ++MII;
+ MachineBasicBlock::instr_iterator E = MBB->instr_end();
+ while (MII != E && MII->isInsideBundle()) {
+ MachineInstr *MI = &*MII;
+ ++MII;
+ MBB->remove(MI);
+ }
+ }
+ getParent()->remove(this);
+ return this;
+}
+
+
+/// eraseFromParent - This method unlinks 'this' from the containing basic
+/// block, and deletes it.
+void MachineInstr::eraseFromParent() {
+ assert(getParent() && "Not embedded in a basic block!");
+ // If it's a bundle then remove the MIs inside the bundle as well.
+ if (isBundle()) {
+ MachineBasicBlock *MBB = getParent();
+ MachineBasicBlock::instr_iterator MII = *this; ++MII;
+ MachineBasicBlock::instr_iterator E = MBB->instr_end();
+ while (MII != E && MII->isInsideBundle()) {
+ MachineInstr *MI = &*MII;
+ ++MII;
+ MBB->erase(MI);
+ }
+ }
+ getParent()->erase(this);
+}
+
+
+/// getNumExplicitOperands - Returns the number of non-implicit operands.
+///
+unsigned MachineInstr::getNumExplicitOperands() const {
+ unsigned NumOperands = MCID->getNumOperands();
+ if (!MCID->isVariadic())
+ return NumOperands;
+
+ for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || !MO.isImplicit())
+ NumOperands++;
+ }
+ return NumOperands;
+}
+
+/// isBundled - Return true if this instruction part of a bundle. This is true
+/// if either itself or its following instruction is marked "InsideBundle".
+bool MachineInstr::isBundled() const {
+ if (isInsideBundle())
+ return true;
+ MachineBasicBlock::const_instr_iterator nextMI = this;
+ ++nextMI;
+ return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
+}
+
+bool MachineInstr::isStackAligningInlineAsm() const {
+ if (isInlineAsm()) {
+ unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+ if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
+ return true;
+ }
+ return false;
+}
+
+int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
+ unsigned *GroupNo) const {
+ assert(isInlineAsm() && "Expected an inline asm instruction");
+ assert(OpIdx < getNumOperands() && "OpIdx out of range");
+
+ // Ignore queries about the initial operands.
+ if (OpIdx < InlineAsm::MIOp_FirstOperand)
+ return -1;
+
+ unsigned Group = 0;
+ unsigned NumOps;
+ for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
+ i += NumOps) {
+ const MachineOperand &FlagMO = getOperand(i);
+ // If we reach the implicit register operands, stop looking.
+ if (!FlagMO.isImm())
+ return -1;
+ NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
+ if (i + NumOps > OpIdx) {
+ if (GroupNo)
+ *GroupNo = Group;
+ return i;
+ }
+ ++Group;
+ }
+ return -1;
+}
+
+const TargetRegisterClass*
+MachineInstr::getRegClassConstraint(unsigned OpIdx,
+ const TargetInstrInfo *TII,
+ const TargetRegisterInfo *TRI) const {
+ // Most opcodes have fixed constraints in their MCInstrDesc.
+ if (!isInlineAsm())
+ return TII->getRegClass(getDesc(), OpIdx, TRI);
+
+ if (!getOperand(OpIdx).isReg())
+ return NULL;
+
+ // For tied uses on inline asm, get the constraint from the def.
+ unsigned DefIdx;
+ if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
+ OpIdx = DefIdx;
+
+ // Inline asm stores register class constraints in the flag word.
+ int FlagIdx = findInlineAsmFlagIdx(OpIdx);
+ if (FlagIdx < 0)
+ return NULL;
+
+ unsigned Flag = getOperand(FlagIdx).getImm();
+ unsigned RCID;
+ if (InlineAsm::hasRegClassConstraint(Flag, RCID))
+ return TRI->getRegClass(RCID);
+
+ // Assume that all registers in a memory operand are pointers.
+ if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
+ return TRI->getPointerRegClass();
+
+ return NULL;
+}
+
+/// getBundleSize - Return the number of instructions inside the MI bundle.
+unsigned MachineInstr::getBundleSize() const {
+ assert(isBundle() && "Expecting a bundle");
+
+ MachineBasicBlock::const_instr_iterator I = *this;
+ unsigned Size = 0;
+ while ((++I)->isInsideBundle()) {
+ ++Size;
+ }
+ assert(Size > 1 && "Malformed bundle");
+
+ return Size;
+}
+
+/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
+/// the specific register or -1 if it is not found. It further tightens
+/// the search criteria to a use that kills the register if isKill is true.
+int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
+ const TargetRegisterInfo *TRI) const {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (!MOReg)
+ continue;
+ if (MOReg == Reg ||
+ (TRI &&
+ TargetRegisterInfo::isPhysicalRegister(MOReg) &&
+ TargetRegisterInfo::isPhysicalRegister(Reg) &&
+ TRI->isSubRegister(MOReg, Reg)))
+ if (!isKill || MO.isKill())
+ return i;
+ }
+ return -1;
+}
+
+/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
+/// indicating if this instruction reads or writes Reg. This also considers
+/// partial defines.
+std::pair<bool,bool>
+MachineInstr::readsWritesVirtualRegister(unsigned Reg,
+ SmallVectorImpl<unsigned> *Ops) const {
+ bool PartDef = false; // Partial redefine.
+ bool FullDef = false; // Full define.
+ bool Use = false;
+
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+ if (Ops)
+ Ops->push_back(i);
+ if (MO.isUse())
+ Use |= !MO.isUndef();
+ else if (MO.getSubReg() && !MO.isUndef())
+ // A partial <def,undef> doesn't count as reading the register.
+ PartDef = true;
+ else
+ FullDef = true;
+ }
+ // A partial redefine uses Reg unless there is also a full define.
+ return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
+}
+
+/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
+/// the specified register or -1 if it is not found. If isDead is true, defs
+/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
+/// also checks if there is a def of a super-register.
+int
+MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
+ const TargetRegisterInfo *TRI) const {
+ bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ // Accept regmask operands when Overlap is set.
+ // Ignore them when looking for a specific def operand (Overlap == false).
+ if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
+ return i;
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned MOReg = MO.getReg();
+ bool Found = (MOReg == Reg);
+ if (!Found && TRI && isPhys &&
+ TargetRegisterInfo::isPhysicalRegister(MOReg)) {
+ if (Overlap)
+ Found = TRI->regsOverlap(MOReg, Reg);
+ else
+ Found = TRI->isSubRegister(MOReg, Reg);
+ }
+ if (Found && (!isDead || MO.isDead()))
+ return i;
+ }
+ return -1;
+}
+
+/// findFirstPredOperandIdx() - Find the index of the first operand in the
+/// operand list that is used to represent the predicate. It returns -1 if
+/// none is found.
+int MachineInstr::findFirstPredOperandIdx() const {
+ // Don't call MCID.findFirstPredOperandIdx() because this variant
+ // is sometimes called on an instruction that's not yet complete, and
+ // so the number of operands is less than the MCID indicates. In
+ // particular, the PTX target does this.
+ const MCInstrDesc &MCID = getDesc();
+ if (MCID.isPredicable()) {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (MCID.OpInfo[i].isPredicate())
+ return i;
+ }
+
+ return -1;
+}
+
+/// isRegTiedToUseOperand - Given the index of a register def operand,
+/// check if the register def is tied to a source operand, due to either
+/// two-address elimination or inline assembly constraints. Returns the
+/// first tied use operand index by reference is UseOpIdx is not null.
+bool MachineInstr::
+isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
+ if (isInlineAsm()) {
+ assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
+ const MachineOperand &MO = getOperand(DefOpIdx);
+ if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
+ return false;
+ // Determine the actual operand index that corresponds to this index.
+ unsigned DefNo = 0;
+ int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
+ if (FlagIdx < 0)
+ return false;
+
+ // Which part of the group is DefOpIdx?
+ unsigned DefPart = DefOpIdx - (FlagIdx + 1);
+
+ for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
+ i != e; ++i) {
+ const MachineOperand &FMO = getOperand(i);
+ if (!FMO.isImm())
+ continue;
+ if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
+ continue;
+ unsigned Idx;
+ if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
+ Idx == DefNo) {
+ if (UseOpIdx)
+ *UseOpIdx = (unsigned)i + 1 + DefPart;
+ return true;
+ }
+ }
+ return false;
+ }
+
+ assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
+ const MCInstrDesc &MCID = getDesc();
+ for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (MO.isReg() && MO.isUse() &&
+ MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
+ if (UseOpIdx)
+ *UseOpIdx = (unsigned)i;
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isRegTiedToDefOperand - Return true if the operand of the specified index
+/// is a register use and it is tied to an def operand. It also returns the def
+/// operand index by reference.
+bool MachineInstr::
+isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
+ if (isInlineAsm()) {
+ const MachineOperand &MO = getOperand(UseOpIdx);
+ if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
+ return false;
+
+ // Find the flag operand corresponding to UseOpIdx
+ int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
+ if (FlagIdx < 0)
+ return false;
+
+ const MachineOperand &UFMO = getOperand(FlagIdx);
+ unsigned DefNo;
+ if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
+ if (!DefOpIdx)
+ return true;
+
+ unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
+ // Remember to adjust the index. First operand is asm string, second is
+ // the HasSideEffects and AlignStack bits, then there is a flag for each.
+ while (DefNo) {
+ const MachineOperand &FMO = getOperand(DefIdx);
+ assert(FMO.isImm());
+ // Skip over this def.
+ DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
+ --DefNo;
+ }
+ *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
+ return true;
+ }
+ return false;
+ }
+
+ const MCInstrDesc &MCID = getDesc();
+ if (UseOpIdx >= MCID.getNumOperands())
+ return false;
+ const MachineOperand &MO = getOperand(UseOpIdx);
+ if (!MO.isReg() || !MO.isUse())
+ return false;
+ int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
+ if (DefIdx == -1)
+ return false;
+ if (DefOpIdx)
+ *DefOpIdx = (unsigned)DefIdx;
+ return true;
+}
+
+/// clearKillInfo - Clears kill flags on all operands.
+///
+void MachineInstr::clearKillInfo() {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (MO.isReg() && MO.isUse())
+ MO.setIsKill(false);
+ }
+}
+
+/// copyKillDeadInfo - Copies kill / dead operand properties from MI.
+///
+void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
+ continue;
+ for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
+ MachineOperand &MOp = getOperand(j);
+ if (!MOp.isIdenticalTo(MO))
+ continue;
+ if (MO.isKill())
+ MOp.setIsKill();
+ else
+ MOp.setIsDead();
+ break;
+ }
+ }
+}
+
+/// copyPredicates - Copies predicate operand(s) from MI.
+void MachineInstr::copyPredicates(const MachineInstr *MI) {
+ assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (!MCID.isPredicable())
+ return;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ if (MCID.OpInfo[i].isPredicate()) {
+ // Predicated operands must be last operands.
+ addOperand(MI->getOperand(i));
+ }
+ }
+}
+
+void MachineInstr::substituteRegister(unsigned FromReg,
+ unsigned ToReg,
+ unsigned SubIdx,
+ const TargetRegisterInfo &RegInfo) {
+ if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
+ if (SubIdx)
+ ToReg = RegInfo.getSubReg(ToReg, SubIdx);
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || MO.getReg() != FromReg)
+ continue;
+ MO.substPhysReg(ToReg, RegInfo);
+ }
+ } else {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || MO.getReg() != FromReg)
+ continue;
+ MO.substVirtReg(ToReg, SubIdx, RegInfo);
+ }
+ }
+}
+
+/// isSafeToMove - Return true if it is safe to move this instruction. If
+/// SawStore is set to true, it means that there is a store (or call) between
+/// the instruction's location and its intended destination.
+bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
+ AliasAnalysis *AA,
+ bool &SawStore) const {
+ // Ignore stuff that we obviously can't move.
+ if (mayStore() || isCall()) {
+ SawStore = true;
+ return false;
+ }
+
+ if (isLabel() || isDebugValue() ||
+ isTerminator() || hasUnmodeledSideEffects())
+ return false;
+
+ // See if this instruction does a load. If so, we have to guarantee that the
+ // loaded value doesn't change between the load and the its intended
+ // destination. The check for isInvariantLoad gives the targe the chance to
+ // classify the load as always returning a constant, e.g. a constant pool
+ // load.
+ if (mayLoad() && !isInvariantLoad(AA))
+ // Otherwise, this is a real load. If there is a store between the load and
+ // end of block, or if the load is volatile, we can't move it.
+ return !SawStore && !hasVolatileMemoryRef();
+
+ return true;
+}
+
+/// isSafeToReMat - Return true if it's safe to rematerialize the specified
+/// instruction which defined the specified register instead of copying it.
+bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
+ AliasAnalysis *AA,
+ unsigned DstReg) const {
+ bool SawStore = false;
+ if (!TII->isTriviallyReMaterializable(this, AA) ||
+ !isSafeToMove(TII, AA, SawStore))
+ return false;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (!MO.isReg())
+ continue;
+ // FIXME: For now, do not remat any instruction with register operands.
+ // Later on, we can loosen the restriction is the register operands have
+ // not been modified between the def and use. Note, this is different from
+ // MachineSink because the code is no longer in two-address form (at least
+ // partially).
+ if (MO.isUse())
+ return false;
+ else if (!MO.isDead() && MO.getReg() != DstReg)
+ return false;
+ }
+ return true;
+}
+
+/// hasVolatileMemoryRef - Return true if this instruction may have a
+/// volatile memory reference, or if the information describing the
+/// memory reference is not available. Return false if it is known to
+/// have no volatile memory references.
+bool MachineInstr::hasVolatileMemoryRef() const {
+ // An instruction known never to access memory won't have a volatile access.
+ if (!mayStore() &&
+ !mayLoad() &&
+ !isCall() &&
+ !hasUnmodeledSideEffects())
+ return false;
+
+ // Otherwise, if the instruction has no memory reference information,
+ // conservatively assume it wasn't preserved.
+ if (memoperands_empty())
+ return true;
+
+ // Check the memory reference information for volatile references.
+ for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
+ if ((*I)->isVolatile())
+ return true;
+
+ return false;
+}
+
+/// isInvariantLoad - Return true if this instruction is loading from a
+/// location whose value is invariant across the function. For example,
+/// loading a value from the constant pool or from the argument area
+/// of a function if it does not change. This should only return true of
+/// *all* loads the instruction does are invariant (if it does multiple loads).
+bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
+ // If the instruction doesn't load at all, it isn't an invariant load.
+ if (!mayLoad())
+ return false;
+
+ // If the instruction has lost its memoperands, conservatively assume that
+ // it may not be an invariant load.
+ if (memoperands_empty())
+ return false;
+
+ const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
+
+ for (mmo_iterator I = memoperands_begin(),
+ E = memoperands_end(); I != E; ++I) {
+ if ((*I)->isVolatile()) return false;
+ if ((*I)->isStore()) return false;
+ if ((*I)->isInvariant()) return true;
+
+ if (const Value *V = (*I)->getValue()) {
+ // A load from a constant PseudoSourceValue is invariant.
+ if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
+ if (PSV->isConstant(MFI))
+ continue;
+ // If we have an AliasAnalysis, ask it whether the memory is constant.
+ if (AA && AA->pointsToConstantMemory(
+ AliasAnalysis::Location(V, (*I)->getSize(),
+ (*I)->getTBAAInfo())))
+ continue;
+ }
+
+ // Otherwise assume conservatively.
+ return false;
+ }
+
+ // Everything checks out.
+ return true;
+}
+
+/// isConstantValuePHI - If the specified instruction is a PHI that always
+/// merges together the same virtual register, return the register, otherwise
+/// return 0.
+unsigned MachineInstr::isConstantValuePHI() const {
+ if (!isPHI())
+ return 0;
+ assert(getNumOperands() >= 3 &&
+ "It's illegal to have a PHI without source operands");
+
+ unsigned Reg = getOperand(1).getReg();
+ for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
+ if (getOperand(i).getReg() != Reg)
+ return 0;
+ return Reg;
+}
+
+bool MachineInstr::hasUnmodeledSideEffects() const {
+ if (hasProperty(MCID::UnmodeledSideEffects))
+ return true;
+ if (isInlineAsm()) {
+ unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+ if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
+ return true;
+ }
+
+ return false;
+}
+
+/// allDefsAreDead - Return true if all the defs of this instruction are dead.
+///
+bool MachineInstr::allDefsAreDead() const {
+ for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || MO.isUse())
+ continue;
+ if (!MO.isDead())
+ return false;
+ }
+ return true;
+}
+
+/// copyImplicitOps - Copy implicit register operands from specified
+/// instruction to this instruction.
+void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
+ for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
+ i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isImplicit())
+ addOperand(MO);
+ }
+}
+
+void MachineInstr::dump() const {
+ dbgs() << " " << *this;
+}
+
+static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
+ raw_ostream &CommentOS) {
+ const LLVMContext &Ctx = MF->getFunction()->getContext();
+ if (!DL.isUnknown()) { // Print source line info.
+ DIScope Scope(DL.getScope(Ctx));
+ // Omit the directory, because it's likely to be long and uninteresting.
+ if (Scope.Verify())
+ CommentOS << Scope.getFilename();
+ else
+ CommentOS << "<unknown>";
+ CommentOS << ':' << DL.getLine();
+ if (DL.getCol() != 0)
+ CommentOS << ':' << DL.getCol();
+ DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
+ if (!InlinedAtDL.isUnknown()) {
+ CommentOS << " @[ ";
+ printDebugLoc(InlinedAtDL, MF, CommentOS);
+ CommentOS << " ]";
+ }
+ }
+}
+
+void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
+ // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
+ const MachineFunction *MF = 0;
+ const MachineRegisterInfo *MRI = 0;
+ if (const MachineBasicBlock *MBB = getParent()) {
+ MF = MBB->getParent();
+ if (!TM && MF)
+ TM = &MF->getTarget();
+ if (MF)
+ MRI = &MF->getRegInfo();
+ }
+
+ // Save a list of virtual registers.
+ SmallVector<unsigned, 8> VirtRegs;
+
+ // Print explicitly defined operands on the left of an assignment syntax.
+ unsigned StartOp = 0, e = getNumOperands();
+ for (; StartOp < e && getOperand(StartOp).isReg() &&
+ getOperand(StartOp).isDef() &&
+ !getOperand(StartOp).isImplicit();
+ ++StartOp) {
+ if (StartOp != 0) OS << ", ";
+ getOperand(StartOp).print(OS, TM);
+ unsigned Reg = getOperand(StartOp).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ VirtRegs.push_back(Reg);
+ }
+
+ if (StartOp != 0)
+ OS << " = ";
+
+ // Print the opcode name.
+ if (TM && TM->getInstrInfo())
+ OS << TM->getInstrInfo()->getName(getOpcode());
+ else
+ OS << "UNKNOWN";
+
+ // Print the rest of the operands.
+ bool OmittedAnyCallClobbers = false;
+ bool FirstOp = true;
+ unsigned AsmDescOp = ~0u;
+ unsigned AsmOpCount = 0;
+
+ if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
+ // Print asm string.
+ OS << " ";
+ getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
+
+ // Print HasSideEffects, IsAlignStack
+ unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
+ if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
+ OS << " [sideeffect]";
+ if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
+ OS << " [alignstack]";
+
+ StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
+ FirstOp = false;
+ }
+
+
+ for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+
+ if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ VirtRegs.push_back(MO.getReg());
+
+ // Omit call-clobbered registers which aren't used anywhere. This makes
+ // call instructions much less noisy on targets where calls clobber lots
+ // of registers. Don't rely on MO.isDead() because we may be called before
+ // LiveVariables is run, or we may be looking at a non-allocatable reg.
+ if (MF && isCall() &&
+ MO.isReg() && MO.isImplicit() && MO.isDef()) {
+ unsigned Reg = MO.getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ const MachineRegisterInfo &MRI = MF->getRegInfo();
+ if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
+ bool HasAliasLive = false;
+ for (const uint16_t *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
+ unsigned AliasReg = *Alias; ++Alias)
+ if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
+ HasAliasLive = true;
+ break;
+ }
+ if (!HasAliasLive) {
+ OmittedAnyCallClobbers = true;
+ continue;
+ }
+ }
+ }
+ }
+
+ if (FirstOp) FirstOp = false; else OS << ",";
+ OS << " ";
+ if (i < getDesc().NumOperands) {
+ const MCOperandInfo &MCOI = getDesc().OpInfo[i];
+ if (MCOI.isPredicate())
+ OS << "pred:";
+ if (MCOI.isOptionalDef())
+ OS << "opt:";
+ }
+ if (isDebugValue() && MO.isMetadata()) {
+ // Pretty print DBG_VALUE instructions.
+ const MDNode *MD = MO.getMetadata();
+ if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
+ OS << "!\"" << MDS->getString() << '\"';
+ else
+ MO.print(OS, TM);
+ } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
+ OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
+ } else if (i == AsmDescOp && MO.isImm()) {
+ // Pretty print the inline asm operand descriptor.
+ OS << '$' << AsmOpCount++;
+ unsigned Flag = MO.getImm();
+ switch (InlineAsm::getKind(Flag)) {
+ case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
+ case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
+ case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
+ case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
+ case InlineAsm::Kind_Imm: OS << ":[imm"; break;
+ case InlineAsm::Kind_Mem: OS << ":[mem"; break;
+ default: OS << ":[??" << InlineAsm::getKind(Flag); break;
+ }
+
+ unsigned RCID = 0;
+ if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
+ if (TM)
+ OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
+ else
+ OS << ":RC" << RCID;
+ }
+
+ unsigned TiedTo = 0;
+ if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
+ OS << " tiedto:$" << TiedTo;
+
+ OS << ']';
+
+ // Compute the index of the next operand descriptor.
+ AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
+ } else
+ MO.print(OS, TM);
+ }
+
+ // Briefly indicate whether any call clobbers were omitted.
+ if (OmittedAnyCallClobbers) {
+ if (!FirstOp) OS << ",";
+ OS << " ...";
+ }
+
+ bool HaveSemi = false;
+ if (Flags) {
+ if (!HaveSemi) OS << ";"; HaveSemi = true;
+ OS << " flags: ";
+
+ if (Flags & FrameSetup)
+ OS << "FrameSetup";
+ }
+
+ if (!memoperands_empty()) {
+ if (!HaveSemi) OS << ";"; HaveSemi = true;
+
+ OS << " mem:";
+ for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
+ i != e; ++i) {
+ OS << **i;
+ if (llvm::next(i) != e)
+ OS << " ";
+ }
+ }
+
+ // Print the regclass of any virtual registers encountered.
+ if (MRI && !VirtRegs.empty()) {
+ if (!HaveSemi) OS << ";"; HaveSemi = true;
+ for (unsigned i = 0; i != VirtRegs.size(); ++i) {
+ const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
+ OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
+ for (unsigned j = i+1; j != VirtRegs.size();) {
+ if (MRI->getRegClass(VirtRegs[j]) != RC) {
+ ++j;
+ continue;
+ }
+ if (VirtRegs[i] != VirtRegs[j])
+ OS << "," << PrintReg(VirtRegs[j]);
+ VirtRegs.erase(VirtRegs.begin()+j);
+ }
+ }
+ }
+
+ // Print debug location information.
+ if (isDebugValue() && getOperand(e - 1).isMetadata()) {
+ if (!HaveSemi) OS << ";"; HaveSemi = true;
+ DIVariable DV(getOperand(e - 1).getMetadata());
+ OS << " line no:" << DV.getLineNumber();
+ if (MDNode *InlinedAt = DV.getInlinedAt()) {
+ DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
+ if (!InlinedAtDL.isUnknown()) {
+ OS << " inlined @[ ";
+ printDebugLoc(InlinedAtDL, MF, OS);
+ OS << " ]";
+ }
+ }
+ } else if (!debugLoc.isUnknown() && MF) {
+ if (!HaveSemi) OS << ";"; HaveSemi = true;
+ OS << " dbg:";
+ printDebugLoc(debugLoc, MF, OS);
+ }
+
+ OS << '\n';
+}
+
+bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
+ const TargetRegisterInfo *RegInfo,
+ bool AddIfNotFound) {
+ bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
+ bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
+ bool Found = false;
+ SmallVector<unsigned,4> DeadOps;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || MO.isUndef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+
+ if (Reg == IncomingReg) {
+ if (!Found) {
+ if (MO.isKill())
+ // The register is already marked kill.
+ return true;
+ if (isPhysReg && isRegTiedToDefOperand(i))
+ // Two-address uses of physregs must not be marked kill.
+ return true;
+ MO.setIsKill();
+ Found = true;
+ }
+ } else if (hasAliases && MO.isKill() &&
+ TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ // A super-register kill already exists.
+ if (RegInfo->isSuperRegister(IncomingReg, Reg))
+ return true;
+ if (RegInfo->isSubRegister(IncomingReg, Reg))
+ DeadOps.push_back(i);
+ }
+ }
+
+ // Trim unneeded kill operands.
+ while (!DeadOps.empty()) {
+ unsigned OpIdx = DeadOps.back();
+ if (getOperand(OpIdx).isImplicit())
+ RemoveOperand(OpIdx);
+ else
+ getOperand(OpIdx).setIsKill(false);
+ DeadOps.pop_back();
+ }
+
+ // If not found, this means an alias of one of the operands is killed. Add a
+ // new implicit operand if required.
+ if (!Found && AddIfNotFound) {
+ addOperand(MachineOperand::CreateReg(IncomingReg,
+ false /*IsDef*/,
+ true /*IsImp*/,
+ true /*IsKill*/));
+ return true;
+ }
+ return Found;
+}
+
+void MachineInstr::clearRegisterKills(unsigned Reg,
+ const TargetRegisterInfo *RegInfo) {
+ if (!TargetRegisterInfo::isPhysicalRegister(Reg))
+ RegInfo = 0;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || !MO.isUse() || !MO.isKill())
+ continue;
+ unsigned OpReg = MO.getReg();
+ if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
+ MO.setIsKill(false);
+ }
+}
+
+bool MachineInstr::addRegisterDead(unsigned IncomingReg,
+ const TargetRegisterInfo *RegInfo,
+ bool AddIfNotFound) {
+ bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
+ bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
+ bool Found = false;
+ SmallVector<unsigned,4> DeadOps;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+
+ if (Reg == IncomingReg) {
+ MO.setIsDead();
+ Found = true;
+ } else if (hasAliases && MO.isDead() &&
+ TargetRegisterInfo::isPhysicalRegister(Reg)) {
+ // There exists a super-register that's marked dead.
+ if (RegInfo->isSuperRegister(IncomingReg, Reg))
+ return true;
+ if (RegInfo->getSubRegisters(IncomingReg) &&
+ RegInfo->getSuperRegisters(Reg) &&
+ RegInfo->isSubRegister(IncomingReg, Reg))
+ DeadOps.push_back(i);
+ }
+ }
+
+ // Trim unneeded dead operands.
+ while (!DeadOps.empty()) {
+ unsigned OpIdx = DeadOps.back();
+ if (getOperand(OpIdx).isImplicit())
+ RemoveOperand(OpIdx);
+ else
+ getOperand(OpIdx).setIsDead(false);
+ DeadOps.pop_back();
+ }
+
+ // If not found, this means an alias of one of the operands is dead. Add a
+ // new implicit operand if required.
+ if (Found || !AddIfNotFound)
+ return Found;
+
+ addOperand(MachineOperand::CreateReg(IncomingReg,
+ true /*IsDef*/,
+ true /*IsImp*/,
+ false /*IsKill*/,
+ true /*IsDead*/));
+ return true;
+}
+
+void MachineInstr::addRegisterDefined(unsigned IncomingReg,
+ const TargetRegisterInfo *RegInfo) {
+ if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
+ MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
+ if (MO)
+ return;
+ } else {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = getOperand(i);
+ if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
+ MO.getSubReg() == 0)
+ return;
+ }
+ }
+ addOperand(MachineOperand::CreateReg(IncomingReg,
+ true /*IsDef*/,
+ true /*IsImp*/));
+}
+
+void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
+ const TargetRegisterInfo &TRI) {
+ bool HasRegMask = false;
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = getOperand(i);
+ if (MO.isRegMask()) {
+ HasRegMask = true;
+ continue;
+ }
+ if (!MO.isReg() || !MO.isDef()) continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
+ bool Dead = true;
+ for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
+ I != E; ++I)
+ if (TRI.regsOverlap(*I, Reg)) {
+ Dead = false;
+ break;
+ }
+ // If there are no uses, including partial uses, the def is dead.
+ if (Dead) MO.setIsDead();
+ }
+
+ // This is a call with a register mask operand.
+ // Mask clobbers are always dead, so add defs for the non-dead defines.
+ if (HasRegMask)
+ for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
+ I != E; ++I)
+ addRegisterDefined(*I, &TRI);
+}
+
+unsigned
+MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
+ // Build up a buffer of hash code components.
+ //
+ // FIXME: This is a total hack. We should have a hash_value overload for
+ // MachineOperand, but currently that doesn't work because there are many
+ // different ideas of "equality" and thus different sets of information that
+ // contribute to the hash code. This one happens to want to take a specific
+ // subset. And it's still not clear that this routine uses the *correct*
+ // subset of information when computing the hash code. The goal is to use the
+ // same inputs for the hash code here that MachineInstr::isIdenticalTo uses to
+ // test for equality when passed the 'IgnoreVRegDefs' filter flag. It would
+ // be very useful to factor the selection of relevant inputs out of the two
+ // functions and into a common routine, but it's not clear how that can be
+ // done.
+ SmallVector<size_t, 8> HashComponents;
+ HashComponents.reserve(MI->getNumOperands() + 1);
+ HashComponents.push_back(MI->getOpcode());
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ switch (MO.getType()) {
+ default: break;
+ case MachineOperand::MO_Register:
+ if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue; // Skip virtual register defs.
+ HashComponents.push_back(hash_combine(MO.getType(), MO.getReg()));
+ break;
+ case MachineOperand::MO_Immediate:
+ HashComponents.push_back(hash_combine(MO.getType(), MO.getImm()));
+ break;
+ case MachineOperand::MO_FrameIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_JumpTableIndex:
+ HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex()));
+ break;
+ case MachineOperand::MO_MachineBasicBlock:
+ HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB()));
+ break;
+ case MachineOperand::MO_GlobalAddress:
+ HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal()));
+ break;
+ case MachineOperand::MO_BlockAddress:
+ HashComponents.push_back(hash_combine(MO.getType(),
+ MO.getBlockAddress()));
+ break;
+ case MachineOperand::MO_MCSymbol:
+ HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol()));
+ break;
+ }
+ }
+ return hash_combine_range(HashComponents.begin(), HashComponents.end());
+}
+
+void MachineInstr::emitError(StringRef Msg) const {
+ // Find the source location cookie.
+ unsigned LocCookie = 0;
+ const MDNode *LocMD = 0;
+ for (unsigned i = getNumOperands(); i != 0; --i) {
+ if (getOperand(i-1).isMetadata() &&
+ (LocMD = getOperand(i-1).getMetadata()) &&
+ LocMD->getNumOperands() != 0) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
+ LocCookie = CI->getZExtValue();
+ break;
+ }
+ }
+ }
+
+ if (const MachineBasicBlock *MBB = getParent())
+ if (const MachineFunction *MF = MBB->getParent())
+ return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
+ report_fatal_error(Msg);
+}
OpenPOWER on IntegriCloud