diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineInstr.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/MachineInstr.cpp | 1913 |
1 files changed, 1913 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineInstr.cpp b/contrib/llvm/lib/CodeGen/MachineInstr.cpp new file mode 100644 index 0000000..e553a04 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/MachineInstr.cpp @@ -0,0 +1,1913 @@ +//===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Methods common to all machine instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/Constants.h" +#include "llvm/Function.h" +#include "llvm/InlineAsm.h" +#include "llvm/LLVMContext.h" +#include "llvm/Metadata.h" +#include "llvm/Module.h" +#include "llvm/Type.h" +#include "llvm/Value.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/DebugInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LeakDetector.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/Hashing.h" +using namespace llvm; + +//===----------------------------------------------------------------------===// +// MachineOperand Implementation +//===----------------------------------------------------------------------===// + +/// AddRegOperandToRegInfo - Add this register operand to the specified +/// MachineRegisterInfo. If it is null, then the next/prev fields should be +/// explicitly nulled out. +void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) { + assert(isReg() && "Can only add reg operand to use lists"); + + // If the reginfo pointer is null, just explicitly null out or next/prev + // pointers, to ensure they are not garbage. + if (RegInfo == 0) { + Contents.Reg.Prev = 0; + Contents.Reg.Next = 0; + return; + } + + // Otherwise, add this operand to the head of the registers use/def list. + MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg()); + + // For SSA values, we prefer to keep the definition at the start of the list. + // we do this by skipping over the definition if it is at the head of the + // list. + if (*Head && (*Head)->isDef()) + Head = &(*Head)->Contents.Reg.Next; + + Contents.Reg.Next = *Head; + if (Contents.Reg.Next) { + assert(getReg() == Contents.Reg.Next->getReg() && + "Different regs on the same list!"); + Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next; + } + + Contents.Reg.Prev = Head; + *Head = this; +} + +/// RemoveRegOperandFromRegInfo - Remove this register operand from the +/// MachineRegisterInfo it is linked with. +void MachineOperand::RemoveRegOperandFromRegInfo() { + assert(isOnRegUseList() && "Reg operand is not on a use list"); + // Unlink this from the doubly linked list of operands. + MachineOperand *NextOp = Contents.Reg.Next; + *Contents.Reg.Prev = NextOp; + if (NextOp) { + assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!"); + NextOp->Contents.Reg.Prev = Contents.Reg.Prev; + } + Contents.Reg.Prev = 0; + Contents.Reg.Next = 0; +} + +void MachineOperand::setReg(unsigned Reg) { + if (getReg() == Reg) return; // No change. + + // Otherwise, we have to change the register. If this operand is embedded + // into a machine function, we need to update the old and new register's + // use/def lists. + if (MachineInstr *MI = getParent()) + if (MachineBasicBlock *MBB = MI->getParent()) + if (MachineFunction *MF = MBB->getParent()) { + RemoveRegOperandFromRegInfo(); + SmallContents.RegNo = Reg; + AddRegOperandToRegInfo(&MF->getRegInfo()); + return; + } + + // Otherwise, just change the register, no problem. :) + SmallContents.RegNo = Reg; +} + +void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx, + const TargetRegisterInfo &TRI) { + assert(TargetRegisterInfo::isVirtualRegister(Reg)); + if (SubIdx && getSubReg()) + SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg()); + setReg(Reg); + if (SubIdx) + setSubReg(SubIdx); +} + +void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) { + assert(TargetRegisterInfo::isPhysicalRegister(Reg)); + if (getSubReg()) { + Reg = TRI.getSubReg(Reg, getSubReg()); + // Note that getSubReg() may return 0 if the sub-register doesn't exist. + // That won't happen in legal code. + setSubReg(0); + } + setReg(Reg); +} + +/// ChangeToImmediate - Replace this operand with a new immediate operand of +/// the specified value. If an operand is known to be an immediate already, +/// the setImm method should be used. +void MachineOperand::ChangeToImmediate(int64_t ImmVal) { + // If this operand is currently a register operand, and if this is in a + // function, deregister the operand from the register's use/def list. + if (isReg() && getParent() && getParent()->getParent() && + getParent()->getParent()->getParent()) + RemoveRegOperandFromRegInfo(); + + OpKind = MO_Immediate; + Contents.ImmVal = ImmVal; +} + +/// ChangeToRegister - Replace this operand with a new register operand of +/// the specified value. If an operand is known to be an register already, +/// the setReg method should be used. +void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp, + bool isKill, bool isDead, bool isUndef, + bool isDebug) { + // If this operand is already a register operand, use setReg to update the + // register's use/def lists. + if (isReg()) { + assert(!isEarlyClobber()); + setReg(Reg); + } else { + // Otherwise, change this to a register and set the reg#. + OpKind = MO_Register; + SmallContents.RegNo = Reg; + + // If this operand is embedded in a function, add the operand to the + // register's use/def list. + if (MachineInstr *MI = getParent()) + if (MachineBasicBlock *MBB = MI->getParent()) + if (MachineFunction *MF = MBB->getParent()) + AddRegOperandToRegInfo(&MF->getRegInfo()); + } + + IsDef = isDef; + IsImp = isImp; + IsKill = isKill; + IsDead = isDead; + IsUndef = isUndef; + IsInternalRead = false; + IsEarlyClobber = false; + IsDebug = isDebug; + SubReg = 0; +} + +/// isIdenticalTo - Return true if this operand is identical to the specified +/// operand. +bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const { + if (getType() != Other.getType() || + getTargetFlags() != Other.getTargetFlags()) + return false; + + switch (getType()) { + case MachineOperand::MO_Register: + return getReg() == Other.getReg() && isDef() == Other.isDef() && + getSubReg() == Other.getSubReg(); + case MachineOperand::MO_Immediate: + return getImm() == Other.getImm(); + case MachineOperand::MO_CImmediate: + return getCImm() == Other.getCImm(); + case MachineOperand::MO_FPImmediate: + return getFPImm() == Other.getFPImm(); + case MachineOperand::MO_MachineBasicBlock: + return getMBB() == Other.getMBB(); + case MachineOperand::MO_FrameIndex: + return getIndex() == Other.getIndex(); + case MachineOperand::MO_ConstantPoolIndex: + return getIndex() == Other.getIndex() && getOffset() == Other.getOffset(); + case MachineOperand::MO_JumpTableIndex: + return getIndex() == Other.getIndex(); + case MachineOperand::MO_GlobalAddress: + return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset(); + case MachineOperand::MO_ExternalSymbol: + return !strcmp(getSymbolName(), Other.getSymbolName()) && + getOffset() == Other.getOffset(); + case MachineOperand::MO_BlockAddress: + return getBlockAddress() == Other.getBlockAddress(); + case MO_RegisterMask: + return getRegMask() == Other.getRegMask(); + case MachineOperand::MO_MCSymbol: + return getMCSymbol() == Other.getMCSymbol(); + case MachineOperand::MO_Metadata: + return getMetadata() == Other.getMetadata(); + } + llvm_unreachable("Invalid machine operand type"); +} + +/// print - Print the specified machine operand. +/// +void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const { + // If the instruction is embedded into a basic block, we can find the + // target info for the instruction. + if (!TM) + if (const MachineInstr *MI = getParent()) + if (const MachineBasicBlock *MBB = MI->getParent()) + if (const MachineFunction *MF = MBB->getParent()) + TM = &MF->getTarget(); + const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; + + switch (getType()) { + case MachineOperand::MO_Register: + OS << PrintReg(getReg(), TRI, getSubReg()); + + if (isDef() || isKill() || isDead() || isImplicit() || isUndef() || + isInternalRead() || isEarlyClobber()) { + OS << '<'; + bool NeedComma = false; + if (isDef()) { + if (NeedComma) OS << ','; + if (isEarlyClobber()) + OS << "earlyclobber,"; + if (isImplicit()) + OS << "imp-"; + OS << "def"; + NeedComma = true; + } else if (isImplicit()) { + OS << "imp-use"; + NeedComma = true; + } + + if (isKill() || isDead() || isUndef() || isInternalRead()) { + if (NeedComma) OS << ','; + NeedComma = false; + if (isKill()) { + OS << "kill"; + NeedComma = true; + } + if (isDead()) { + OS << "dead"; + NeedComma = true; + } + if (isUndef()) { + if (NeedComma) OS << ','; + OS << "undef"; + NeedComma = true; + } + if (isInternalRead()) { + if (NeedComma) OS << ','; + OS << "internal"; + NeedComma = true; + } + } + OS << '>'; + } + break; + case MachineOperand::MO_Immediate: + OS << getImm(); + break; + case MachineOperand::MO_CImmediate: + getCImm()->getValue().print(OS, false); + break; + case MachineOperand::MO_FPImmediate: + if (getFPImm()->getType()->isFloatTy()) + OS << getFPImm()->getValueAPF().convertToFloat(); + else + OS << getFPImm()->getValueAPF().convertToDouble(); + break; + case MachineOperand::MO_MachineBasicBlock: + OS << "<BB#" << getMBB()->getNumber() << ">"; + break; + case MachineOperand::MO_FrameIndex: + OS << "<fi#" << getIndex() << '>'; + break; + case MachineOperand::MO_ConstantPoolIndex: + OS << "<cp#" << getIndex(); + if (getOffset()) OS << "+" << getOffset(); + OS << '>'; + break; + case MachineOperand::MO_JumpTableIndex: + OS << "<jt#" << getIndex() << '>'; + break; + case MachineOperand::MO_GlobalAddress: + OS << "<ga:"; + WriteAsOperand(OS, getGlobal(), /*PrintType=*/false); + if (getOffset()) OS << "+" << getOffset(); + OS << '>'; + break; + case MachineOperand::MO_ExternalSymbol: + OS << "<es:" << getSymbolName(); + if (getOffset()) OS << "+" << getOffset(); + OS << '>'; + break; + case MachineOperand::MO_BlockAddress: + OS << '<'; + WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false); + OS << '>'; + break; + case MachineOperand::MO_RegisterMask: + OS << "<regmask>"; + break; + case MachineOperand::MO_Metadata: + OS << '<'; + WriteAsOperand(OS, getMetadata(), /*PrintType=*/false); + OS << '>'; + break; + case MachineOperand::MO_MCSymbol: + OS << "<MCSym=" << *getMCSymbol() << '>'; + break; + } + + if (unsigned TF = getTargetFlags()) + OS << "[TF=" << TF << ']'; +} + +//===----------------------------------------------------------------------===// +// MachineMemOperand Implementation +//===----------------------------------------------------------------------===// + +/// getAddrSpace - Return the LLVM IR address space number that this pointer +/// points into. +unsigned MachinePointerInfo::getAddrSpace() const { + if (V == 0) return 0; + return cast<PointerType>(V->getType())->getAddressSpace(); +} + +/// getConstantPool - Return a MachinePointerInfo record that refers to the +/// constant pool. +MachinePointerInfo MachinePointerInfo::getConstantPool() { + return MachinePointerInfo(PseudoSourceValue::getConstantPool()); +} + +/// getFixedStack - Return a MachinePointerInfo record that refers to the +/// the specified FrameIndex. +MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) { + return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset); +} + +MachinePointerInfo MachinePointerInfo::getJumpTable() { + return MachinePointerInfo(PseudoSourceValue::getJumpTable()); +} + +MachinePointerInfo MachinePointerInfo::getGOT() { + return MachinePointerInfo(PseudoSourceValue::getGOT()); +} + +MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) { + return MachinePointerInfo(PseudoSourceValue::getStack(), Offset); +} + +MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f, + uint64_t s, unsigned int a, + const MDNode *TBAAInfo, + const MDNode *Ranges) + : PtrInfo(ptrinfo), Size(s), + Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)), + TBAAInfo(TBAAInfo), Ranges(Ranges) { + assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) && + "invalid pointer value"); + assert(getBaseAlignment() == a && "Alignment is not a power of 2!"); + assert((isLoad() || isStore()) && "Not a load/store!"); +} + +/// Profile - Gather unique data for the object. +/// +void MachineMemOperand::Profile(FoldingSetNodeID &ID) const { + ID.AddInteger(getOffset()); + ID.AddInteger(Size); + ID.AddPointer(getValue()); + ID.AddInteger(Flags); +} + +void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) { + // The Value and Offset may differ due to CSE. But the flags and size + // should be the same. + assert(MMO->getFlags() == getFlags() && "Flags mismatch!"); + assert(MMO->getSize() == getSize() && "Size mismatch!"); + + if (MMO->getBaseAlignment() >= getBaseAlignment()) { + // Update the alignment value. + Flags = (Flags & ((1 << MOMaxBits) - 1)) | + ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits); + // Also update the base and offset, because the new alignment may + // not be applicable with the old ones. + PtrInfo = MMO->PtrInfo; + } +} + +/// getAlignment - Return the minimum known alignment in bytes of the +/// actual memory reference. +uint64_t MachineMemOperand::getAlignment() const { + return MinAlign(getBaseAlignment(), getOffset()); +} + +raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) { + assert((MMO.isLoad() || MMO.isStore()) && + "SV has to be a load, store or both."); + + if (MMO.isVolatile()) + OS << "Volatile "; + + if (MMO.isLoad()) + OS << "LD"; + if (MMO.isStore()) + OS << "ST"; + OS << MMO.getSize(); + + // Print the address information. + OS << "["; + if (!MMO.getValue()) + OS << "<unknown>"; + else + WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false); + + // If the alignment of the memory reference itself differs from the alignment + // of the base pointer, print the base alignment explicitly, next to the base + // pointer. + if (MMO.getBaseAlignment() != MMO.getAlignment()) + OS << "(align=" << MMO.getBaseAlignment() << ")"; + + if (MMO.getOffset() != 0) + OS << "+" << MMO.getOffset(); + OS << "]"; + + // Print the alignment of the reference. + if (MMO.getBaseAlignment() != MMO.getAlignment() || + MMO.getBaseAlignment() != MMO.getSize()) + OS << "(align=" << MMO.getAlignment() << ")"; + + // Print TBAA info. + if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) { + OS << "(tbaa="; + if (TBAAInfo->getNumOperands() > 0) + WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false); + else + OS << "<unknown>"; + OS << ")"; + } + + // Print nontemporal info. + if (MMO.isNonTemporal()) + OS << "(nontemporal)"; + + return OS; +} + +//===----------------------------------------------------------------------===// +// MachineInstr Implementation +//===----------------------------------------------------------------------===// + +/// MachineInstr ctor - This constructor creates a dummy MachineInstr with +/// MCID NULL and no operands. +MachineInstr::MachineInstr() + : MCID(0), Flags(0), AsmPrinterFlags(0), + NumMemRefs(0), MemRefs(0), + Parent(0) { + // Make sure that we get added to a machine basicblock + LeakDetector::addGarbageObject(this); +} + +void MachineInstr::addImplicitDefUseOperands() { + if (MCID->ImplicitDefs) + for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs) + addOperand(MachineOperand::CreateReg(*ImpDefs, true, true)); + if (MCID->ImplicitUses) + for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses) + addOperand(MachineOperand::CreateReg(*ImpUses, false, true)); +} + +/// MachineInstr ctor - This constructor creates a MachineInstr and adds the +/// implicit operands. It reserves space for the number of operands specified by +/// the MCInstrDesc. +MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp) + : MCID(&tid), Flags(0), AsmPrinterFlags(0), + NumMemRefs(0), MemRefs(0), Parent(0) { + unsigned NumImplicitOps = 0; + if (!NoImp) + NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); + Operands.reserve(NumImplicitOps + MCID->getNumOperands()); + if (!NoImp) + addImplicitDefUseOperands(); + // Make sure that we get added to a machine basicblock + LeakDetector::addGarbageObject(this); +} + +/// MachineInstr ctor - As above, but with a DebugLoc. +MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl, + bool NoImp) + : MCID(&tid), Flags(0), AsmPrinterFlags(0), + NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { + unsigned NumImplicitOps = 0; + if (!NoImp) + NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); + Operands.reserve(NumImplicitOps + MCID->getNumOperands()); + if (!NoImp) + addImplicitDefUseOperands(); + // Make sure that we get added to a machine basicblock + LeakDetector::addGarbageObject(this); +} + +/// MachineInstr ctor - Work exactly the same as the ctor two above, except +/// that the MachineInstr is created and added to the end of the specified +/// basic block. +MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid) + : MCID(&tid), Flags(0), AsmPrinterFlags(0), + NumMemRefs(0), MemRefs(0), Parent(0) { + assert(MBB && "Cannot use inserting ctor with null basic block!"); + unsigned NumImplicitOps = + MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); + Operands.reserve(NumImplicitOps + MCID->getNumOperands()); + addImplicitDefUseOperands(); + // Make sure that we get added to a machine basicblock + LeakDetector::addGarbageObject(this); + MBB->push_back(this); // Add instruction to end of basic block! +} + +/// MachineInstr ctor - As above, but with a DebugLoc. +/// +MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl, + const MCInstrDesc &tid) + : MCID(&tid), Flags(0), AsmPrinterFlags(0), + NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) { + assert(MBB && "Cannot use inserting ctor with null basic block!"); + unsigned NumImplicitOps = + MCID->getNumImplicitDefs() + MCID->getNumImplicitUses(); + Operands.reserve(NumImplicitOps + MCID->getNumOperands()); + addImplicitDefUseOperands(); + // Make sure that we get added to a machine basicblock + LeakDetector::addGarbageObject(this); + MBB->push_back(this); // Add instruction to end of basic block! +} + +/// MachineInstr ctor - Copies MachineInstr arg exactly +/// +MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) + : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0), + NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs), + Parent(0), debugLoc(MI.getDebugLoc()) { + Operands.reserve(MI.getNumOperands()); + + // Add operands + for (unsigned i = 0; i != MI.getNumOperands(); ++i) + addOperand(MI.getOperand(i)); + + // Copy all the flags. + Flags = MI.Flags; + + // Set parent to null. + Parent = 0; + + LeakDetector::addGarbageObject(this); +} + +MachineInstr::~MachineInstr() { + LeakDetector::removeGarbageObject(this); +#ifndef NDEBUG + for (unsigned i = 0, e = Operands.size(); i != e; ++i) { + assert(Operands[i].ParentMI == this && "ParentMI mismatch!"); + assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) && + "Reg operand def/use list corrupted"); + } +#endif +} + +/// getRegInfo - If this instruction is embedded into a MachineFunction, +/// return the MachineRegisterInfo object for the current function, otherwise +/// return null. +MachineRegisterInfo *MachineInstr::getRegInfo() { + if (MachineBasicBlock *MBB = getParent()) + return &MBB->getParent()->getRegInfo(); + return 0; +} + +/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in +/// this instruction from their respective use lists. This requires that the +/// operands already be on their use lists. +void MachineInstr::RemoveRegOperandsFromUseLists() { + for (unsigned i = 0, e = Operands.size(); i != e; ++i) { + if (Operands[i].isReg()) + Operands[i].RemoveRegOperandFromRegInfo(); + } +} + +/// AddRegOperandsToUseLists - Add all of the register operands in +/// this instruction from their respective use lists. This requires that the +/// operands not be on their use lists yet. +void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) { + for (unsigned i = 0, e = Operands.size(); i != e; ++i) { + if (Operands[i].isReg()) + Operands[i].AddRegOperandToRegInfo(&RegInfo); + } +} + + +/// addOperand - Add the specified operand to the instruction. If it is an +/// implicit operand, it is added to the end of the operand list. If it is +/// an explicit operand it is added at the end of the explicit operand list +/// (before the first implicit operand). +void MachineInstr::addOperand(const MachineOperand &Op) { + assert(MCID && "Cannot add operands before providing an instr descriptor"); + bool isImpReg = Op.isReg() && Op.isImplicit(); + MachineRegisterInfo *RegInfo = getRegInfo(); + + // If the Operands backing store is reallocated, all register operands must + // be removed and re-added to RegInfo. It is storing pointers to operands. + bool Reallocate = RegInfo && + !Operands.empty() && Operands.size() == Operands.capacity(); + + // Find the insert location for the new operand. Implicit registers go at + // the end, everything goes before the implicit regs. + unsigned OpNo = Operands.size(); + + // Remove all the implicit operands from RegInfo if they need to be shifted. + // FIXME: Allow mixed explicit and implicit operands on inline asm. + // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as + // implicit-defs, but they must not be moved around. See the FIXME in + // InstrEmitter.cpp. + if (!isImpReg && !isInlineAsm()) { + while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { + --OpNo; + if (RegInfo) + Operands[OpNo].RemoveRegOperandFromRegInfo(); + } + } + + // OpNo now points as the desired insertion point. Unless this is a variadic + // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). + assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) && + "Trying to add an operand to a machine instr that is already done!"); + + // All operands from OpNo have been removed from RegInfo. If the Operands + // backing store needs to be reallocated, we also need to remove any other + // register operands. + if (Reallocate) + for (unsigned i = 0; i != OpNo; ++i) + if (Operands[i].isReg()) + Operands[i].RemoveRegOperandFromRegInfo(); + + // Insert the new operand at OpNo. + Operands.insert(Operands.begin() + OpNo, Op); + Operands[OpNo].ParentMI = this; + + // The Operands backing store has now been reallocated, so we can re-add the + // operands before OpNo. + if (Reallocate) + for (unsigned i = 0; i != OpNo; ++i) + if (Operands[i].isReg()) + Operands[i].AddRegOperandToRegInfo(RegInfo); + + // When adding a register operand, tell RegInfo about it. + if (Operands[OpNo].isReg()) { + // Add the new operand to RegInfo, even when RegInfo is NULL. + // This will initialize the linked list pointers. + Operands[OpNo].AddRegOperandToRegInfo(RegInfo); + // If the register operand is flagged as early, mark the operand as such. + if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) + Operands[OpNo].setIsEarlyClobber(true); + } + + // Re-add all the implicit ops. + if (RegInfo) { + for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) { + assert(Operands[i].isReg() && "Should only be an implicit reg!"); + Operands[i].AddRegOperandToRegInfo(RegInfo); + } + } +} + +/// RemoveOperand - Erase an operand from an instruction, leaving it with one +/// fewer operand than it started with. +/// +void MachineInstr::RemoveOperand(unsigned OpNo) { + assert(OpNo < Operands.size() && "Invalid operand number"); + + // Special case removing the last one. + if (OpNo == Operands.size()-1) { + // If needed, remove from the reg def/use list. + if (Operands.back().isReg() && Operands.back().isOnRegUseList()) + Operands.back().RemoveRegOperandFromRegInfo(); + + Operands.pop_back(); + return; + } + + // Otherwise, we are removing an interior operand. If we have reginfo to + // update, remove all operands that will be shifted down from their reg lists, + // move everything down, then re-add them. + MachineRegisterInfo *RegInfo = getRegInfo(); + if (RegInfo) { + for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { + if (Operands[i].isReg()) + Operands[i].RemoveRegOperandFromRegInfo(); + } + } + + Operands.erase(Operands.begin()+OpNo); + + if (RegInfo) { + for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) { + if (Operands[i].isReg()) + Operands[i].AddRegOperandToRegInfo(RegInfo); + } + } +} + +/// addMemOperand - Add a MachineMemOperand to the machine instruction. +/// This function should be used only occasionally. The setMemRefs function +/// is the primary method for setting up a MachineInstr's MemRefs list. +void MachineInstr::addMemOperand(MachineFunction &MF, + MachineMemOperand *MO) { + mmo_iterator OldMemRefs = MemRefs; + uint16_t OldNumMemRefs = NumMemRefs; + + uint16_t NewNum = NumMemRefs + 1; + mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum); + + std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs); + NewMemRefs[NewNum - 1] = MO; + + MemRefs = NewMemRefs; + NumMemRefs = NewNum; +} + +bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const { + const MachineBasicBlock *MBB = getParent(); + MachineBasicBlock::const_instr_iterator MII = *this; ++MII; + while (MII != MBB->end() && MII->isInsideBundle()) { + if (MII->getDesc().getFlags() & Mask) { + if (Type == AnyInBundle) + return true; + } else { + if (Type == AllInBundle) + return false; + } + ++MII; + } + + return Type == AllInBundle; +} + +bool MachineInstr::isIdenticalTo(const MachineInstr *Other, + MICheckType Check) const { + // If opcodes or number of operands are not the same then the two + // instructions are obviously not identical. + if (Other->getOpcode() != getOpcode() || + Other->getNumOperands() != getNumOperands()) + return false; + + if (isBundle()) { + // Both instructions are bundles, compare MIs inside the bundle. + MachineBasicBlock::const_instr_iterator I1 = *this; + MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end(); + MachineBasicBlock::const_instr_iterator I2 = *Other; + MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end(); + while (++I1 != E1 && I1->isInsideBundle()) { + ++I2; + if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check)) + return false; + } + } + + // Check operands to make sure they match. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + const MachineOperand &OMO = Other->getOperand(i); + if (!MO.isReg()) { + if (!MO.isIdenticalTo(OMO)) + return false; + continue; + } + + // Clients may or may not want to ignore defs when testing for equality. + // For example, machine CSE pass only cares about finding common + // subexpressions, so it's safe to ignore virtual register defs. + if (MO.isDef()) { + if (Check == IgnoreDefs) + continue; + else if (Check == IgnoreVRegDefs) { + if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || + TargetRegisterInfo::isPhysicalRegister(OMO.getReg())) + if (MO.getReg() != OMO.getReg()) + return false; + } else { + if (!MO.isIdenticalTo(OMO)) + return false; + if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) + return false; + } + } else { + if (!MO.isIdenticalTo(OMO)) + return false; + if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) + return false; + } + } + // If DebugLoc does not match then two dbg.values are not identical. + if (isDebugValue()) + if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown() + && getDebugLoc() != Other->getDebugLoc()) + return false; + return true; +} + +/// removeFromParent - This method unlinks 'this' from the containing basic +/// block, and returns it, but does not delete it. +MachineInstr *MachineInstr::removeFromParent() { + assert(getParent() && "Not embedded in a basic block!"); + + // If it's a bundle then remove the MIs inside the bundle as well. + if (isBundle()) { + MachineBasicBlock *MBB = getParent(); + MachineBasicBlock::instr_iterator MII = *this; ++MII; + MachineBasicBlock::instr_iterator E = MBB->instr_end(); + while (MII != E && MII->isInsideBundle()) { + MachineInstr *MI = &*MII; + ++MII; + MBB->remove(MI); + } + } + getParent()->remove(this); + return this; +} + + +/// eraseFromParent - This method unlinks 'this' from the containing basic +/// block, and deletes it. +void MachineInstr::eraseFromParent() { + assert(getParent() && "Not embedded in a basic block!"); + // If it's a bundle then remove the MIs inside the bundle as well. + if (isBundle()) { + MachineBasicBlock *MBB = getParent(); + MachineBasicBlock::instr_iterator MII = *this; ++MII; + MachineBasicBlock::instr_iterator E = MBB->instr_end(); + while (MII != E && MII->isInsideBundle()) { + MachineInstr *MI = &*MII; + ++MII; + MBB->erase(MI); + } + } + getParent()->erase(this); +} + + +/// getNumExplicitOperands - Returns the number of non-implicit operands. +/// +unsigned MachineInstr::getNumExplicitOperands() const { + unsigned NumOperands = MCID->getNumOperands(); + if (!MCID->isVariadic()) + return NumOperands; + + for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isImplicit()) + NumOperands++; + } + return NumOperands; +} + +/// isBundled - Return true if this instruction part of a bundle. This is true +/// if either itself or its following instruction is marked "InsideBundle". +bool MachineInstr::isBundled() const { + if (isInsideBundle()) + return true; + MachineBasicBlock::const_instr_iterator nextMI = this; + ++nextMI; + return nextMI != Parent->instr_end() && nextMI->isInsideBundle(); +} + +bool MachineInstr::isStackAligningInlineAsm() const { + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_IsAlignStack) + return true; + } + return false; +} + +int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, + unsigned *GroupNo) const { + assert(isInlineAsm() && "Expected an inline asm instruction"); + assert(OpIdx < getNumOperands() && "OpIdx out of range"); + + // Ignore queries about the initial operands. + if (OpIdx < InlineAsm::MIOp_FirstOperand) + return -1; + + unsigned Group = 0; + unsigned NumOps; + for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; + i += NumOps) { + const MachineOperand &FlagMO = getOperand(i); + // If we reach the implicit register operands, stop looking. + if (!FlagMO.isImm()) + return -1; + NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); + if (i + NumOps > OpIdx) { + if (GroupNo) + *GroupNo = Group; + return i; + } + ++Group; + } + return -1; +} + +const TargetRegisterClass* +MachineInstr::getRegClassConstraint(unsigned OpIdx, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI) const { + // Most opcodes have fixed constraints in their MCInstrDesc. + if (!isInlineAsm()) + return TII->getRegClass(getDesc(), OpIdx, TRI); + + if (!getOperand(OpIdx).isReg()) + return NULL; + + // For tied uses on inline asm, get the constraint from the def. + unsigned DefIdx; + if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) + OpIdx = DefIdx; + + // Inline asm stores register class constraints in the flag word. + int FlagIdx = findInlineAsmFlagIdx(OpIdx); + if (FlagIdx < 0) + return NULL; + + unsigned Flag = getOperand(FlagIdx).getImm(); + unsigned RCID; + if (InlineAsm::hasRegClassConstraint(Flag, RCID)) + return TRI->getRegClass(RCID); + + // Assume that all registers in a memory operand are pointers. + if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) + return TRI->getPointerRegClass(); + + return NULL; +} + +/// getBundleSize - Return the number of instructions inside the MI bundle. +unsigned MachineInstr::getBundleSize() const { + assert(isBundle() && "Expecting a bundle"); + + MachineBasicBlock::const_instr_iterator I = *this; + unsigned Size = 0; + while ((++I)->isInsideBundle()) { + ++Size; + } + assert(Size > 1 && "Malformed bundle"); + + return Size; +} + +/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of +/// the specific register or -1 if it is not found. It further tightens +/// the search criteria to a use that kills the register if isKill is true. +int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill, + const TargetRegisterInfo *TRI) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isUse()) + continue; + unsigned MOReg = MO.getReg(); + if (!MOReg) + continue; + if (MOReg == Reg || + (TRI && + TargetRegisterInfo::isPhysicalRegister(MOReg) && + TargetRegisterInfo::isPhysicalRegister(Reg) && + TRI->isSubRegister(MOReg, Reg))) + if (!isKill || MO.isKill()) + return i; + } + return -1; +} + +/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) +/// indicating if this instruction reads or writes Reg. This also considers +/// partial defines. +std::pair<bool,bool> +MachineInstr::readsWritesVirtualRegister(unsigned Reg, + SmallVectorImpl<unsigned> *Ops) const { + bool PartDef = false; // Partial redefine. + bool FullDef = false; // Full define. + bool Use = false; + + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg() || MO.getReg() != Reg) + continue; + if (Ops) + Ops->push_back(i); + if (MO.isUse()) + Use |= !MO.isUndef(); + else if (MO.getSubReg() && !MO.isUndef()) + // A partial <def,undef> doesn't count as reading the register. + PartDef = true; + else + FullDef = true; + } + // A partial redefine uses Reg unless there is also a full define. + return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); +} + +/// findRegisterDefOperandIdx() - Returns the operand index that is a def of +/// the specified register or -1 if it is not found. If isDead is true, defs +/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it +/// also checks if there is a def of a super-register. +int +MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap, + const TargetRegisterInfo *TRI) const { + bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg); + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + // Accept regmask operands when Overlap is set. + // Ignore them when looking for a specific def operand (Overlap == false). + if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) + return i; + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned MOReg = MO.getReg(); + bool Found = (MOReg == Reg); + if (!Found && TRI && isPhys && + TargetRegisterInfo::isPhysicalRegister(MOReg)) { + if (Overlap) + Found = TRI->regsOverlap(MOReg, Reg); + else + Found = TRI->isSubRegister(MOReg, Reg); + } + if (Found && (!isDead || MO.isDead())) + return i; + } + return -1; +} + +/// findFirstPredOperandIdx() - Find the index of the first operand in the +/// operand list that is used to represent the predicate. It returns -1 if +/// none is found. +int MachineInstr::findFirstPredOperandIdx() const { + // Don't call MCID.findFirstPredOperandIdx() because this variant + // is sometimes called on an instruction that's not yet complete, and + // so the number of operands is less than the MCID indicates. In + // particular, the PTX target does this. + const MCInstrDesc &MCID = getDesc(); + if (MCID.isPredicable()) { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (MCID.OpInfo[i].isPredicate()) + return i; + } + + return -1; +} + +/// isRegTiedToUseOperand - Given the index of a register def operand, +/// check if the register def is tied to a source operand, due to either +/// two-address elimination or inline assembly constraints. Returns the +/// first tied use operand index by reference is UseOpIdx is not null. +bool MachineInstr:: +isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const { + if (isInlineAsm()) { + assert(DefOpIdx > InlineAsm::MIOp_FirstOperand); + const MachineOperand &MO = getOperand(DefOpIdx); + if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) + return false; + // Determine the actual operand index that corresponds to this index. + unsigned DefNo = 0; + int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo); + if (FlagIdx < 0) + return false; + + // Which part of the group is DefOpIdx? + unsigned DefPart = DefOpIdx - (FlagIdx + 1); + + for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); + i != e; ++i) { + const MachineOperand &FMO = getOperand(i); + if (!FMO.isImm()) + continue; + if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse()) + continue; + unsigned Idx; + if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) && + Idx == DefNo) { + if (UseOpIdx) + *UseOpIdx = (unsigned)i + 1 + DefPart; + return true; + } + } + return false; + } + + assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!"); + const MCInstrDesc &MCID = getDesc(); + for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (MO.isReg() && MO.isUse() && + MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) { + if (UseOpIdx) + *UseOpIdx = (unsigned)i; + return true; + } + } + return false; +} + +/// isRegTiedToDefOperand - Return true if the operand of the specified index +/// is a register use and it is tied to an def operand. It also returns the def +/// operand index by reference. +bool MachineInstr:: +isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const { + if (isInlineAsm()) { + const MachineOperand &MO = getOperand(UseOpIdx); + if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0) + return false; + + // Find the flag operand corresponding to UseOpIdx + int FlagIdx = findInlineAsmFlagIdx(UseOpIdx); + if (FlagIdx < 0) + return false; + + const MachineOperand &UFMO = getOperand(FlagIdx); + unsigned DefNo; + if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) { + if (!DefOpIdx) + return true; + + unsigned DefIdx = InlineAsm::MIOp_FirstOperand; + // Remember to adjust the index. First operand is asm string, second is + // the HasSideEffects and AlignStack bits, then there is a flag for each. + while (DefNo) { + const MachineOperand &FMO = getOperand(DefIdx); + assert(FMO.isImm()); + // Skip over this def. + DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1; + --DefNo; + } + *DefOpIdx = DefIdx + UseOpIdx - FlagIdx; + return true; + } + return false; + } + + const MCInstrDesc &MCID = getDesc(); + if (UseOpIdx >= MCID.getNumOperands()) + return false; + const MachineOperand &MO = getOperand(UseOpIdx); + if (!MO.isReg() || !MO.isUse()) + return false; + int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO); + if (DefIdx == -1) + return false; + if (DefOpIdx) + *DefOpIdx = (unsigned)DefIdx; + return true; +} + +/// clearKillInfo - Clears kill flags on all operands. +/// +void MachineInstr::clearKillInfo() { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (MO.isReg() && MO.isUse()) + MO.setIsKill(false); + } +} + +/// copyKillDeadInfo - Copies kill / dead operand properties from MI. +/// +void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || (!MO.isKill() && !MO.isDead())) + continue; + for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) { + MachineOperand &MOp = getOperand(j); + if (!MOp.isIdenticalTo(MO)) + continue; + if (MO.isKill()) + MOp.setIsKill(); + else + MOp.setIsDead(); + break; + } + } +} + +/// copyPredicates - Copies predicate operand(s) from MI. +void MachineInstr::copyPredicates(const MachineInstr *MI) { + assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles"); + + const MCInstrDesc &MCID = MI->getDesc(); + if (!MCID.isPredicable()) + return; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + if (MCID.OpInfo[i].isPredicate()) { + // Predicated operands must be last operands. + addOperand(MI->getOperand(i)); + } + } +} + +void MachineInstr::substituteRegister(unsigned FromReg, + unsigned ToReg, + unsigned SubIdx, + const TargetRegisterInfo &RegInfo) { + if (TargetRegisterInfo::isPhysicalRegister(ToReg)) { + if (SubIdx) + ToReg = RegInfo.getSubReg(ToReg, SubIdx); + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || MO.getReg() != FromReg) + continue; + MO.substPhysReg(ToReg, RegInfo); + } + } else { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || MO.getReg() != FromReg) + continue; + MO.substVirtReg(ToReg, SubIdx, RegInfo); + } + } +} + +/// isSafeToMove - Return true if it is safe to move this instruction. If +/// SawStore is set to true, it means that there is a store (or call) between +/// the instruction's location and its intended destination. +bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII, + AliasAnalysis *AA, + bool &SawStore) const { + // Ignore stuff that we obviously can't move. + if (mayStore() || isCall()) { + SawStore = true; + return false; + } + + if (isLabel() || isDebugValue() || + isTerminator() || hasUnmodeledSideEffects()) + return false; + + // See if this instruction does a load. If so, we have to guarantee that the + // loaded value doesn't change between the load and the its intended + // destination. The check for isInvariantLoad gives the targe the chance to + // classify the load as always returning a constant, e.g. a constant pool + // load. + if (mayLoad() && !isInvariantLoad(AA)) + // Otherwise, this is a real load. If there is a store between the load and + // end of block, or if the load is volatile, we can't move it. + return !SawStore && !hasVolatileMemoryRef(); + + return true; +} + +/// isSafeToReMat - Return true if it's safe to rematerialize the specified +/// instruction which defined the specified register instead of copying it. +bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII, + AliasAnalysis *AA, + unsigned DstReg) const { + bool SawStore = false; + if (!TII->isTriviallyReMaterializable(this, AA) || + !isSafeToMove(TII, AA, SawStore)) + return false; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg()) + continue; + // FIXME: For now, do not remat any instruction with register operands. + // Later on, we can loosen the restriction is the register operands have + // not been modified between the def and use. Note, this is different from + // MachineSink because the code is no longer in two-address form (at least + // partially). + if (MO.isUse()) + return false; + else if (!MO.isDead() && MO.getReg() != DstReg) + return false; + } + return true; +} + +/// hasVolatileMemoryRef - Return true if this instruction may have a +/// volatile memory reference, or if the information describing the +/// memory reference is not available. Return false if it is known to +/// have no volatile memory references. +bool MachineInstr::hasVolatileMemoryRef() const { + // An instruction known never to access memory won't have a volatile access. + if (!mayStore() && + !mayLoad() && + !isCall() && + !hasUnmodeledSideEffects()) + return false; + + // Otherwise, if the instruction has no memory reference information, + // conservatively assume it wasn't preserved. + if (memoperands_empty()) + return true; + + // Check the memory reference information for volatile references. + for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I) + if ((*I)->isVolatile()) + return true; + + return false; +} + +/// isInvariantLoad - Return true if this instruction is loading from a +/// location whose value is invariant across the function. For example, +/// loading a value from the constant pool or from the argument area +/// of a function if it does not change. This should only return true of +/// *all* loads the instruction does are invariant (if it does multiple loads). +bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const { + // If the instruction doesn't load at all, it isn't an invariant load. + if (!mayLoad()) + return false; + + // If the instruction has lost its memoperands, conservatively assume that + // it may not be an invariant load. + if (memoperands_empty()) + return false; + + const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo(); + + for (mmo_iterator I = memoperands_begin(), + E = memoperands_end(); I != E; ++I) { + if ((*I)->isVolatile()) return false; + if ((*I)->isStore()) return false; + if ((*I)->isInvariant()) return true; + + if (const Value *V = (*I)->getValue()) { + // A load from a constant PseudoSourceValue is invariant. + if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) + if (PSV->isConstant(MFI)) + continue; + // If we have an AliasAnalysis, ask it whether the memory is constant. + if (AA && AA->pointsToConstantMemory( + AliasAnalysis::Location(V, (*I)->getSize(), + (*I)->getTBAAInfo()))) + continue; + } + + // Otherwise assume conservatively. + return false; + } + + // Everything checks out. + return true; +} + +/// isConstantValuePHI - If the specified instruction is a PHI that always +/// merges together the same virtual register, return the register, otherwise +/// return 0. +unsigned MachineInstr::isConstantValuePHI() const { + if (!isPHI()) + return 0; + assert(getNumOperands() >= 3 && + "It's illegal to have a PHI without source operands"); + + unsigned Reg = getOperand(1).getReg(); + for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) + if (getOperand(i).getReg() != Reg) + return 0; + return Reg; +} + +bool MachineInstr::hasUnmodeledSideEffects() const { + if (hasProperty(MCID::UnmodeledSideEffects)) + return true; + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_HasSideEffects) + return true; + } + + return false; +} + +/// allDefsAreDead - Return true if all the defs of this instruction are dead. +/// +bool MachineInstr::allDefsAreDead() const { + for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg() || MO.isUse()) + continue; + if (!MO.isDead()) + return false; + } + return true; +} + +/// copyImplicitOps - Copy implicit register operands from specified +/// instruction to this instruction. +void MachineInstr::copyImplicitOps(const MachineInstr *MI) { + for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands(); + i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isImplicit()) + addOperand(MO); + } +} + +void MachineInstr::dump() const { + dbgs() << " " << *this; +} + +static void printDebugLoc(DebugLoc DL, const MachineFunction *MF, + raw_ostream &CommentOS) { + const LLVMContext &Ctx = MF->getFunction()->getContext(); + if (!DL.isUnknown()) { // Print source line info. + DIScope Scope(DL.getScope(Ctx)); + // Omit the directory, because it's likely to be long and uninteresting. + if (Scope.Verify()) + CommentOS << Scope.getFilename(); + else + CommentOS << "<unknown>"; + CommentOS << ':' << DL.getLine(); + if (DL.getCol() != 0) + CommentOS << ':' << DL.getCol(); + DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx)); + if (!InlinedAtDL.isUnknown()) { + CommentOS << " @[ "; + printDebugLoc(InlinedAtDL, MF, CommentOS); + CommentOS << " ]"; + } + } +} + +void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const { + // We can be a bit tidier if we know the TargetMachine and/or MachineFunction. + const MachineFunction *MF = 0; + const MachineRegisterInfo *MRI = 0; + if (const MachineBasicBlock *MBB = getParent()) { + MF = MBB->getParent(); + if (!TM && MF) + TM = &MF->getTarget(); + if (MF) + MRI = &MF->getRegInfo(); + } + + // Save a list of virtual registers. + SmallVector<unsigned, 8> VirtRegs; + + // Print explicitly defined operands on the left of an assignment syntax. + unsigned StartOp = 0, e = getNumOperands(); + for (; StartOp < e && getOperand(StartOp).isReg() && + getOperand(StartOp).isDef() && + !getOperand(StartOp).isImplicit(); + ++StartOp) { + if (StartOp != 0) OS << ", "; + getOperand(StartOp).print(OS, TM); + unsigned Reg = getOperand(StartOp).getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) + VirtRegs.push_back(Reg); + } + + if (StartOp != 0) + OS << " = "; + + // Print the opcode name. + if (TM && TM->getInstrInfo()) + OS << TM->getInstrInfo()->getName(getOpcode()); + else + OS << "UNKNOWN"; + + // Print the rest of the operands. + bool OmittedAnyCallClobbers = false; + bool FirstOp = true; + unsigned AsmDescOp = ~0u; + unsigned AsmOpCount = 0; + + if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { + // Print asm string. + OS << " "; + getOperand(InlineAsm::MIOp_AsmString).print(OS, TM); + + // Print HasSideEffects, IsAlignStack + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_HasSideEffects) + OS << " [sideeffect]"; + if (ExtraInfo & InlineAsm::Extra_IsAlignStack) + OS << " [alignstack]"; + + StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; + FirstOp = false; + } + + + for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + + if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) + VirtRegs.push_back(MO.getReg()); + + // Omit call-clobbered registers which aren't used anywhere. This makes + // call instructions much less noisy on targets where calls clobber lots + // of registers. Don't rely on MO.isDead() because we may be called before + // LiveVariables is run, or we may be looking at a non-allocatable reg. + if (MF && isCall() && + MO.isReg() && MO.isImplicit() && MO.isDef()) { + unsigned Reg = MO.getReg(); + if (TargetRegisterInfo::isPhysicalRegister(Reg)) { + const MachineRegisterInfo &MRI = MF->getRegInfo(); + if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) { + bool HasAliasLive = false; + for (const uint16_t *Alias = TM->getRegisterInfo()->getAliasSet(Reg); + unsigned AliasReg = *Alias; ++Alias) + if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) { + HasAliasLive = true; + break; + } + if (!HasAliasLive) { + OmittedAnyCallClobbers = true; + continue; + } + } + } + } + + if (FirstOp) FirstOp = false; else OS << ","; + OS << " "; + if (i < getDesc().NumOperands) { + const MCOperandInfo &MCOI = getDesc().OpInfo[i]; + if (MCOI.isPredicate()) + OS << "pred:"; + if (MCOI.isOptionalDef()) + OS << "opt:"; + } + if (isDebugValue() && MO.isMetadata()) { + // Pretty print DBG_VALUE instructions. + const MDNode *MD = MO.getMetadata(); + if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2))) + OS << "!\"" << MDS->getString() << '\"'; + else + MO.print(OS, TM); + } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) { + OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm()); + } else if (i == AsmDescOp && MO.isImm()) { + // Pretty print the inline asm operand descriptor. + OS << '$' << AsmOpCount++; + unsigned Flag = MO.getImm(); + switch (InlineAsm::getKind(Flag)) { + case InlineAsm::Kind_RegUse: OS << ":[reguse"; break; + case InlineAsm::Kind_RegDef: OS << ":[regdef"; break; + case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break; + case InlineAsm::Kind_Clobber: OS << ":[clobber"; break; + case InlineAsm::Kind_Imm: OS << ":[imm"; break; + case InlineAsm::Kind_Mem: OS << ":[mem"; break; + default: OS << ":[??" << InlineAsm::getKind(Flag); break; + } + + unsigned RCID = 0; + if (InlineAsm::hasRegClassConstraint(Flag, RCID)) { + if (TM) + OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName(); + else + OS << ":RC" << RCID; + } + + unsigned TiedTo = 0; + if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) + OS << " tiedto:$" << TiedTo; + + OS << ']'; + + // Compute the index of the next operand descriptor. + AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); + } else + MO.print(OS, TM); + } + + // Briefly indicate whether any call clobbers were omitted. + if (OmittedAnyCallClobbers) { + if (!FirstOp) OS << ","; + OS << " ..."; + } + + bool HaveSemi = false; + if (Flags) { + if (!HaveSemi) OS << ";"; HaveSemi = true; + OS << " flags: "; + + if (Flags & FrameSetup) + OS << "FrameSetup"; + } + + if (!memoperands_empty()) { + if (!HaveSemi) OS << ";"; HaveSemi = true; + + OS << " mem:"; + for (mmo_iterator i = memoperands_begin(), e = memoperands_end(); + i != e; ++i) { + OS << **i; + if (llvm::next(i) != e) + OS << " "; + } + } + + // Print the regclass of any virtual registers encountered. + if (MRI && !VirtRegs.empty()) { + if (!HaveSemi) OS << ";"; HaveSemi = true; + for (unsigned i = 0; i != VirtRegs.size(); ++i) { + const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]); + OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]); + for (unsigned j = i+1; j != VirtRegs.size();) { + if (MRI->getRegClass(VirtRegs[j]) != RC) { + ++j; + continue; + } + if (VirtRegs[i] != VirtRegs[j]) + OS << "," << PrintReg(VirtRegs[j]); + VirtRegs.erase(VirtRegs.begin()+j); + } + } + } + + // Print debug location information. + if (isDebugValue() && getOperand(e - 1).isMetadata()) { + if (!HaveSemi) OS << ";"; HaveSemi = true; + DIVariable DV(getOperand(e - 1).getMetadata()); + OS << " line no:" << DV.getLineNumber(); + if (MDNode *InlinedAt = DV.getInlinedAt()) { + DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt); + if (!InlinedAtDL.isUnknown()) { + OS << " inlined @[ "; + printDebugLoc(InlinedAtDL, MF, OS); + OS << " ]"; + } + } + } else if (!debugLoc.isUnknown() && MF) { + if (!HaveSemi) OS << ";"; HaveSemi = true; + OS << " dbg:"; + printDebugLoc(debugLoc, MF, OS); + } + + OS << '\n'; +} + +bool MachineInstr::addRegisterKilled(unsigned IncomingReg, + const TargetRegisterInfo *RegInfo, + bool AddIfNotFound) { + bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); + bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); + bool Found = false; + SmallVector<unsigned,4> DeadOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isUse() || MO.isUndef()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + + if (Reg == IncomingReg) { + if (!Found) { + if (MO.isKill()) + // The register is already marked kill. + return true; + if (isPhysReg && isRegTiedToDefOperand(i)) + // Two-address uses of physregs must not be marked kill. + return true; + MO.setIsKill(); + Found = true; + } + } else if (hasAliases && MO.isKill() && + TargetRegisterInfo::isPhysicalRegister(Reg)) { + // A super-register kill already exists. + if (RegInfo->isSuperRegister(IncomingReg, Reg)) + return true; + if (RegInfo->isSubRegister(IncomingReg, Reg)) + DeadOps.push_back(i); + } + } + + // Trim unneeded kill operands. + while (!DeadOps.empty()) { + unsigned OpIdx = DeadOps.back(); + if (getOperand(OpIdx).isImplicit()) + RemoveOperand(OpIdx); + else + getOperand(OpIdx).setIsKill(false); + DeadOps.pop_back(); + } + + // If not found, this means an alias of one of the operands is killed. Add a + // new implicit operand if required. + if (!Found && AddIfNotFound) { + addOperand(MachineOperand::CreateReg(IncomingReg, + false /*IsDef*/, + true /*IsImp*/, + true /*IsKill*/)); + return true; + } + return Found; +} + +void MachineInstr::clearRegisterKills(unsigned Reg, + const TargetRegisterInfo *RegInfo) { + if (!TargetRegisterInfo::isPhysicalRegister(Reg)) + RegInfo = 0; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isUse() || !MO.isKill()) + continue; + unsigned OpReg = MO.getReg(); + if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg))) + MO.setIsKill(false); + } +} + +bool MachineInstr::addRegisterDead(unsigned IncomingReg, + const TargetRegisterInfo *RegInfo, + bool AddIfNotFound) { + bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg); + bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg); + bool Found = false; + SmallVector<unsigned,4> DeadOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + + if (Reg == IncomingReg) { + MO.setIsDead(); + Found = true; + } else if (hasAliases && MO.isDead() && + TargetRegisterInfo::isPhysicalRegister(Reg)) { + // There exists a super-register that's marked dead. + if (RegInfo->isSuperRegister(IncomingReg, Reg)) + return true; + if (RegInfo->getSubRegisters(IncomingReg) && + RegInfo->getSuperRegisters(Reg) && + RegInfo->isSubRegister(IncomingReg, Reg)) + DeadOps.push_back(i); + } + } + + // Trim unneeded dead operands. + while (!DeadOps.empty()) { + unsigned OpIdx = DeadOps.back(); + if (getOperand(OpIdx).isImplicit()) + RemoveOperand(OpIdx); + else + getOperand(OpIdx).setIsDead(false); + DeadOps.pop_back(); + } + + // If not found, this means an alias of one of the operands is dead. Add a + // new implicit operand if required. + if (Found || !AddIfNotFound) + return Found; + + addOperand(MachineOperand::CreateReg(IncomingReg, + true /*IsDef*/, + true /*IsImp*/, + false /*IsKill*/, + true /*IsDead*/)); + return true; +} + +void MachineInstr::addRegisterDefined(unsigned IncomingReg, + const TargetRegisterInfo *RegInfo) { + if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) { + MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo); + if (MO) + return; + } else { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() && + MO.getSubReg() == 0) + return; + } + } + addOperand(MachineOperand::CreateReg(IncomingReg, + true /*IsDef*/, + true /*IsImp*/)); +} + +void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, + const TargetRegisterInfo &TRI) { + bool HasRegMask = false; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (MO.isRegMask()) { + HasRegMask = true; + continue; + } + if (!MO.isReg() || !MO.isDef()) continue; + unsigned Reg = MO.getReg(); + if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue; + bool Dead = true; + for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); + I != E; ++I) + if (TRI.regsOverlap(*I, Reg)) { + Dead = false; + break; + } + // If there are no uses, including partial uses, the def is dead. + if (Dead) MO.setIsDead(); + } + + // This is a call with a register mask operand. + // Mask clobbers are always dead, so add defs for the non-dead defines. + if (HasRegMask) + for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); + I != E; ++I) + addRegisterDefined(*I, &TRI); +} + +unsigned +MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { + // Build up a buffer of hash code components. + // + // FIXME: This is a total hack. We should have a hash_value overload for + // MachineOperand, but currently that doesn't work because there are many + // different ideas of "equality" and thus different sets of information that + // contribute to the hash code. This one happens to want to take a specific + // subset. And it's still not clear that this routine uses the *correct* + // subset of information when computing the hash code. The goal is to use the + // same inputs for the hash code here that MachineInstr::isIdenticalTo uses to + // test for equality when passed the 'IgnoreVRegDefs' filter flag. It would + // be very useful to factor the selection of relevant inputs out of the two + // functions and into a common routine, but it's not clear how that can be + // done. + SmallVector<size_t, 8> HashComponents; + HashComponents.reserve(MI->getNumOperands() + 1); + HashComponents.push_back(MI->getOpcode()); + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + switch (MO.getType()) { + default: break; + case MachineOperand::MO_Register: + if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) + continue; // Skip virtual register defs. + HashComponents.push_back(hash_combine(MO.getType(), MO.getReg())); + break; + case MachineOperand::MO_Immediate: + HashComponents.push_back(hash_combine(MO.getType(), MO.getImm())); + break; + case MachineOperand::MO_FrameIndex: + case MachineOperand::MO_ConstantPoolIndex: + case MachineOperand::MO_JumpTableIndex: + HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex())); + break; + case MachineOperand::MO_MachineBasicBlock: + HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB())); + break; + case MachineOperand::MO_GlobalAddress: + HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal())); + break; + case MachineOperand::MO_BlockAddress: + HashComponents.push_back(hash_combine(MO.getType(), + MO.getBlockAddress())); + break; + case MachineOperand::MO_MCSymbol: + HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol())); + break; + } + } + return hash_combine_range(HashComponents.begin(), HashComponents.end()); +} + +void MachineInstr::emitError(StringRef Msg) const { + // Find the source location cookie. + unsigned LocCookie = 0; + const MDNode *LocMD = 0; + for (unsigned i = getNumOperands(); i != 0; --i) { + if (getOperand(i-1).isMetadata() && + (LocMD = getOperand(i-1).getMetadata()) && + LocMD->getNumOperands() != 0) { + if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) { + LocCookie = CI->getZExtValue(); + break; + } + } + } + + if (const MachineBasicBlock *MBB = getParent()) + if (const MachineFunction *MF = MBB->getParent()) + return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); + report_fatal_error(Msg); +} |