summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineCSE.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineCSE.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineCSE.cpp604
1 files changed, 604 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineCSE.cpp b/contrib/llvm/lib/CodeGen/MachineCSE.cpp
new file mode 100644
index 0000000..a63688e
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineCSE.cpp
@@ -0,0 +1,604 @@
+//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs global common subexpression elimination on machine
+// instructions using a scoped hash table based value numbering scheme. It
+// must be run while the machine function is still in SSA form.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "machine-cse"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/ScopedHashTable.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/RecyclingAllocator.h"
+using namespace llvm;
+
+STATISTIC(NumCoalesces, "Number of copies coalesced");
+STATISTIC(NumCSEs, "Number of common subexpression eliminated");
+STATISTIC(NumPhysCSEs,
+ "Number of physreg referencing common subexpr eliminated");
+STATISTIC(NumCrossBBCSEs,
+ "Number of cross-MBB physreg referencing CS eliminated");
+STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
+
+namespace {
+ class MachineCSE : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ AliasAnalysis *AA;
+ MachineDominatorTree *DT;
+ MachineRegisterInfo *MRI;
+ public:
+ static char ID; // Pass identification
+ MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
+ initializeMachineCSEPass(*PassRegistry::getPassRegistry());
+ }
+
+ virtual bool runOnMachineFunction(MachineFunction &MF);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ }
+
+ virtual void releaseMemory() {
+ ScopeMap.clear();
+ Exps.clear();
+ AllocatableRegs.clear();
+ ReservedRegs.clear();
+ }
+
+ private:
+ const unsigned LookAheadLimit;
+ typedef RecyclingAllocator<BumpPtrAllocator,
+ ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
+ typedef ScopedHashTable<MachineInstr*, unsigned,
+ MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
+ typedef ScopedHTType::ScopeTy ScopeType;
+ DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
+ ScopedHTType VNT;
+ SmallVector<MachineInstr*, 64> Exps;
+ unsigned CurrVN;
+ BitVector AllocatableRegs;
+ BitVector ReservedRegs;
+
+ bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
+ bool isPhysDefTriviallyDead(unsigned Reg,
+ MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator E) const ;
+ bool hasLivePhysRegDefUses(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ SmallSet<unsigned,8> &PhysRefs,
+ SmallVector<unsigned,2> &PhysDefs) const;
+ bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
+ SmallSet<unsigned,8> &PhysRefs,
+ SmallVector<unsigned,2> &PhysDefs,
+ bool &NonLocal) const;
+ bool isCSECandidate(MachineInstr *MI);
+ bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
+ MachineInstr *CSMI, MachineInstr *MI);
+ void EnterScope(MachineBasicBlock *MBB);
+ void ExitScope(MachineBasicBlock *MBB);
+ bool ProcessBlock(MachineBasicBlock *MBB);
+ void ExitScopeIfDone(MachineDomTreeNode *Node,
+ DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
+ DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
+ bool PerformCSE(MachineDomTreeNode *Node);
+ };
+} // end anonymous namespace
+
+char MachineCSE::ID = 0;
+char &llvm::MachineCSEID = MachineCSE::ID;
+INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
+ "Machine Common Subexpression Elimination", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_END(MachineCSE, "machine-cse",
+ "Machine Common Subexpression Elimination", false, false)
+
+bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
+ bool Changed = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ if (!MRI->hasOneNonDBGUse(Reg))
+ // Only coalesce single use copies. This ensure the copy will be
+ // deleted.
+ continue;
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ if (DefMI->getParent() != MBB)
+ continue;
+ if (!DefMI->isCopy())
+ continue;
+ unsigned SrcReg = DefMI->getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ continue;
+ if (DefMI->getOperand(0).getSubReg() || DefMI->getOperand(1).getSubReg())
+ continue;
+ if (!MRI->constrainRegClass(SrcReg, MRI->getRegClass(Reg)))
+ continue;
+ DEBUG(dbgs() << "Coalescing: " << *DefMI);
+ DEBUG(dbgs() << "*** to: " << *MI);
+ MO.setReg(SrcReg);
+ MRI->clearKillFlags(SrcReg);
+ DefMI->eraseFromParent();
+ ++NumCoalesces;
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+bool
+MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
+ MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator E) const {
+ unsigned LookAheadLeft = LookAheadLimit;
+ while (LookAheadLeft) {
+ // Skip over dbg_value's.
+ while (I != E && I->isDebugValue())
+ ++I;
+
+ if (I == E)
+ // Reached end of block, register is obviously dead.
+ return true;
+
+ bool SeenDef = false;
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = I->getOperand(i);
+ if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
+ SeenDef = true;
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (!TRI->regsOverlap(MO.getReg(), Reg))
+ continue;
+ if (MO.isUse())
+ // Found a use!
+ return false;
+ SeenDef = true;
+ }
+ if (SeenDef)
+ // See a def of Reg (or an alias) before encountering any use, it's
+ // trivially dead.
+ return true;
+
+ --LookAheadLeft;
+ ++I;
+ }
+ return false;
+}
+
+/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
+/// physical registers (except for dead defs of physical registers). It also
+/// returns the physical register def by reference if it's the only one and the
+/// instruction does not uses a physical register.
+bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ SmallSet<unsigned,8> &PhysRefs,
+ SmallVector<unsigned,2> &PhysDefs) const{
+ MachineBasicBlock::const_iterator I = MI; I = llvm::next(I);
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ // If the def is dead, it's ok. But the def may not marked "dead". That's
+ // common since this pass is run before livevariables. We can scan
+ // forward a few instructions and check if it is obviously dead.
+ if (MO.isDef() &&
+ (MO.isDead() || isPhysDefTriviallyDead(Reg, I, MBB->end())))
+ continue;
+ PhysRefs.insert(Reg);
+ if (MO.isDef())
+ PhysDefs.push_back(Reg);
+ for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias)
+ PhysRefs.insert(*Alias);
+ }
+
+ return !PhysRefs.empty();
+}
+
+bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
+ SmallSet<unsigned,8> &PhysRefs,
+ SmallVector<unsigned,2> &PhysDefs,
+ bool &NonLocal) const {
+ // For now conservatively returns false if the common subexpression is
+ // not in the same basic block as the given instruction. The only exception
+ // is if the common subexpression is in the sole predecessor block.
+ const MachineBasicBlock *MBB = MI->getParent();
+ const MachineBasicBlock *CSMBB = CSMI->getParent();
+
+ bool CrossMBB = false;
+ if (CSMBB != MBB) {
+ if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
+ return false;
+
+ for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
+ if (AllocatableRegs.test(PhysDefs[i]) || ReservedRegs.test(PhysDefs[i]))
+ // Avoid extending live range of physical registers if they are
+ //allocatable or reserved.
+ return false;
+ }
+ CrossMBB = true;
+ }
+ MachineBasicBlock::const_iterator I = CSMI; I = llvm::next(I);
+ MachineBasicBlock::const_iterator E = MI;
+ MachineBasicBlock::const_iterator EE = CSMBB->end();
+ unsigned LookAheadLeft = LookAheadLimit;
+ while (LookAheadLeft) {
+ // Skip over dbg_value's.
+ while (I != E && I != EE && I->isDebugValue())
+ ++I;
+
+ if (I == EE) {
+ assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
+ (void)CrossMBB;
+ CrossMBB = false;
+ NonLocal = true;
+ I = MBB->begin();
+ EE = MBB->end();
+ continue;
+ }
+
+ if (I == E)
+ return true;
+
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = I->getOperand(i);
+ // RegMasks go on instructions like calls that clobber lots of physregs.
+ // Don't attempt to CSE across such an instruction.
+ if (MO.isRegMask())
+ return false;
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(MOReg))
+ continue;
+ if (PhysRefs.count(MOReg))
+ return false;
+ }
+
+ --LookAheadLeft;
+ ++I;
+ }
+
+ return false;
+}
+
+bool MachineCSE::isCSECandidate(MachineInstr *MI) {
+ if (MI->isLabel() || MI->isPHI() || MI->isImplicitDef() ||
+ MI->isKill() || MI->isInlineAsm() || MI->isDebugValue())
+ return false;
+
+ // Ignore copies.
+ if (MI->isCopyLike())
+ return false;
+
+ // Ignore stuff that we obviously can't move.
+ if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
+ MI->hasUnmodeledSideEffects())
+ return false;
+
+ if (MI->mayLoad()) {
+ // Okay, this instruction does a load. As a refinement, we allow the target
+ // to decide whether the loaded value is actually a constant. If so, we can
+ // actually use it as a load.
+ if (!MI->isInvariantLoad(AA))
+ // FIXME: we should be able to hoist loads with no other side effects if
+ // there are no other instructions which can change memory in this loop.
+ // This is a trivial form of alias analysis.
+ return false;
+ }
+ return true;
+}
+
+/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
+/// common expression that defines Reg.
+bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
+ MachineInstr *CSMI, MachineInstr *MI) {
+ // FIXME: Heuristics that works around the lack the live range splitting.
+
+ // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
+ // an immediate predecessor. We don't want to increase register pressure and
+ // end up causing other computation to be spilled.
+ if (MI->isAsCheapAsAMove()) {
+ MachineBasicBlock *CSBB = CSMI->getParent();
+ MachineBasicBlock *BB = MI->getParent();
+ if (CSBB != BB && !CSBB->isSuccessor(BB))
+ return false;
+ }
+
+ // Heuristics #2: If the expression doesn't not use a vr and the only use
+ // of the redundant computation are copies, do not cse.
+ bool HasVRegUse = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isUse() &&
+ TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ HasVRegUse = true;
+ break;
+ }
+ }
+ if (!HasVRegUse) {
+ bool HasNonCopyUse = false;
+ for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
+ E = MRI->use_nodbg_end(); I != E; ++I) {
+ MachineInstr *Use = &*I;
+ // Ignore copies.
+ if (!Use->isCopyLike()) {
+ HasNonCopyUse = true;
+ break;
+ }
+ }
+ if (!HasNonCopyUse)
+ return false;
+ }
+
+ // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
+ // it unless the defined value is already used in the BB of the new use.
+ bool HasPHI = false;
+ SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
+ for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(CSReg),
+ E = MRI->use_nodbg_end(); I != E; ++I) {
+ MachineInstr *Use = &*I;
+ HasPHI |= Use->isPHI();
+ CSBBs.insert(Use->getParent());
+ }
+
+ if (!HasPHI)
+ return true;
+ return CSBBs.count(MI->getParent());
+}
+
+void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
+ DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
+ ScopeType *Scope = new ScopeType(VNT);
+ ScopeMap[MBB] = Scope;
+}
+
+void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
+ DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
+ DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
+ assert(SI != ScopeMap.end());
+ ScopeMap.erase(SI);
+ delete SI->second;
+}
+
+bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
+ bool Changed = false;
+
+ SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
+ MachineInstr *MI = &*I;
+ ++I;
+
+ if (!isCSECandidate(MI))
+ continue;
+
+ bool FoundCSE = VNT.count(MI);
+ if (!FoundCSE) {
+ // Look for trivial copy coalescing opportunities.
+ if (PerformTrivialCoalescing(MI, MBB)) {
+ Changed = true;
+
+ // After coalescing MI itself may become a copy.
+ if (MI->isCopyLike())
+ continue;
+ FoundCSE = VNT.count(MI);
+ }
+ }
+
+ // Commute commutable instructions.
+ bool Commuted = false;
+ if (!FoundCSE && MI->isCommutable()) {
+ MachineInstr *NewMI = TII->commuteInstruction(MI);
+ if (NewMI) {
+ Commuted = true;
+ FoundCSE = VNT.count(NewMI);
+ if (NewMI != MI) {
+ // New instruction. It doesn't need to be kept.
+ NewMI->eraseFromParent();
+ Changed = true;
+ } else if (!FoundCSE)
+ // MI was changed but it didn't help, commute it back!
+ (void)TII->commuteInstruction(MI);
+ }
+ }
+
+ // If the instruction defines physical registers and the values *may* be
+ // used, then it's not safe to replace it with a common subexpression.
+ // It's also not safe if the instruction uses physical registers.
+ bool CrossMBBPhysDef = false;
+ SmallSet<unsigned,8> PhysRefs;
+ SmallVector<unsigned, 2> PhysDefs;
+ if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs, PhysDefs)) {
+ FoundCSE = false;
+
+ // ... Unless the CS is local or is in the sole predecessor block
+ // and it also defines the physical register which is not clobbered
+ // in between and the physical register uses were not clobbered.
+ unsigned CSVN = VNT.lookup(MI);
+ MachineInstr *CSMI = Exps[CSVN];
+ if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
+ FoundCSE = true;
+ }
+
+ if (!FoundCSE) {
+ VNT.insert(MI, CurrVN++);
+ Exps.push_back(MI);
+ continue;
+ }
+
+ // Found a common subexpression, eliminate it.
+ unsigned CSVN = VNT.lookup(MI);
+ MachineInstr *CSMI = Exps[CSVN];
+ DEBUG(dbgs() << "Examining: " << *MI);
+ DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
+
+ // Check if it's profitable to perform this CSE.
+ bool DoCSE = true;
+ unsigned NumDefs = MI->getDesc().getNumDefs();
+ for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned OldReg = MO.getReg();
+ unsigned NewReg = CSMI->getOperand(i).getReg();
+ if (OldReg == NewReg)
+ continue;
+
+ assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
+ TargetRegisterInfo::isVirtualRegister(NewReg) &&
+ "Do not CSE physical register defs!");
+
+ if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
+ DoCSE = false;
+ break;
+ }
+
+ // Don't perform CSE if the result of the old instruction cannot exist
+ // within the register class of the new instruction.
+ const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
+ if (!MRI->constrainRegClass(NewReg, OldRC)) {
+ DoCSE = false;
+ break;
+ }
+
+ CSEPairs.push_back(std::make_pair(OldReg, NewReg));
+ --NumDefs;
+ }
+
+ // Actually perform the elimination.
+ if (DoCSE) {
+ for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
+ MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
+ MRI->clearKillFlags(CSEPairs[i].second);
+ }
+
+ if (CrossMBBPhysDef) {
+ // Add physical register defs now coming in from a predecessor to MBB
+ // livein list.
+ while (!PhysDefs.empty()) {
+ unsigned LiveIn = PhysDefs.pop_back_val();
+ if (!MBB->isLiveIn(LiveIn))
+ MBB->addLiveIn(LiveIn);
+ }
+ ++NumCrossBBCSEs;
+ }
+
+ MI->eraseFromParent();
+ ++NumCSEs;
+ if (!PhysRefs.empty())
+ ++NumPhysCSEs;
+ if (Commuted)
+ ++NumCommutes;
+ Changed = true;
+ } else {
+ DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
+ VNT.insert(MI, CurrVN++);
+ Exps.push_back(MI);
+ }
+ CSEPairs.clear();
+ }
+
+ return Changed;
+}
+
+/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
+/// dominator tree node if its a leaf or all of its children are done. Walk
+/// up the dominator tree to destroy ancestors which are now done.
+void
+MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
+ DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
+ DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
+ if (OpenChildren[Node])
+ return;
+
+ // Pop scope.
+ ExitScope(Node->getBlock());
+
+ // Now traverse upwards to pop ancestors whose offsprings are all done.
+ while (MachineDomTreeNode *Parent = ParentMap[Node]) {
+ unsigned Left = --OpenChildren[Parent];
+ if (Left != 0)
+ break;
+ ExitScope(Parent->getBlock());
+ Node = Parent;
+ }
+}
+
+bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
+ SmallVector<MachineDomTreeNode*, 32> Scopes;
+ SmallVector<MachineDomTreeNode*, 8> WorkList;
+ DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
+ DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
+
+ CurrVN = 0;
+
+ // Perform a DFS walk to determine the order of visit.
+ WorkList.push_back(Node);
+ do {
+ Node = WorkList.pop_back_val();
+ Scopes.push_back(Node);
+ const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
+ unsigned NumChildren = Children.size();
+ OpenChildren[Node] = NumChildren;
+ for (unsigned i = 0; i != NumChildren; ++i) {
+ MachineDomTreeNode *Child = Children[i];
+ ParentMap[Child] = Node;
+ WorkList.push_back(Child);
+ }
+ } while (!WorkList.empty());
+
+ // Now perform CSE.
+ bool Changed = false;
+ for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
+ MachineDomTreeNode *Node = Scopes[i];
+ MachineBasicBlock *MBB = Node->getBlock();
+ EnterScope(MBB);
+ Changed |= ProcessBlock(MBB);
+ // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
+ ExitScopeIfDone(Node, OpenChildren, ParentMap);
+ }
+
+ return Changed;
+}
+
+bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
+ TII = MF.getTarget().getInstrInfo();
+ TRI = MF.getTarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ AA = &getAnalysis<AliasAnalysis>();
+ DT = &getAnalysis<MachineDominatorTree>();
+ AllocatableRegs = TRI->getAllocatableSet(MF);
+ ReservedRegs = TRI->getReservedRegs(MF);
+ return PerformCSE(DT->getRootNode());
+}
OpenPOWER on IntegriCloud