summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp1165
1 files changed, 1165 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
new file mode 100644
index 0000000..cd948e2
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp
@@ -0,0 +1,1165 @@
+//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements basic block placement transformations using the CFG
+// structure and branch probability estimates.
+//
+// The pass strives to preserve the structure of the CFG (that is, retain
+// a topological ordering of basic blocks) in the absence of a *strong* signal
+// to the contrary from probabilities. However, within the CFG structure, it
+// attempts to choose an ordering which favors placing more likely sequences of
+// blocks adjacent to each other.
+//
+// The algorithm works from the inner-most loop within a function outward, and
+// at each stage walks through the basic blocks, trying to coalesce them into
+// sequential chains where allowed by the CFG (or demanded by heavy
+// probabilities). Finally, it walks the blocks in topological order, and the
+// first time it reaches a chain of basic blocks, it schedules them in the
+// function in-order.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "block-placement2"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumCondBranches, "Number of conditional branches");
+STATISTIC(NumUncondBranches, "Number of uncondittional branches");
+STATISTIC(CondBranchTakenFreq,
+ "Potential frequency of taking conditional branches");
+STATISTIC(UncondBranchTakenFreq,
+ "Potential frequency of taking unconditional branches");
+
+namespace {
+class BlockChain;
+/// \brief Type for our function-wide basic block -> block chain mapping.
+typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
+}
+
+namespace {
+/// \brief A chain of blocks which will be laid out contiguously.
+///
+/// This is the datastructure representing a chain of consecutive blocks that
+/// are profitable to layout together in order to maximize fallthrough
+/// probabilities and code locality. We also can use a block chain to represent
+/// a sequence of basic blocks which have some external (correctness)
+/// requirement for sequential layout.
+///
+/// Chains can be built around a single basic block and can be merged to grow
+/// them. They participate in a block-to-chain mapping, which is updated
+/// automatically as chains are merged together.
+class BlockChain {
+ /// \brief The sequence of blocks belonging to this chain.
+ ///
+ /// This is the sequence of blocks for a particular chain. These will be laid
+ /// out in-order within the function.
+ SmallVector<MachineBasicBlock *, 4> Blocks;
+
+ /// \brief A handle to the function-wide basic block to block chain mapping.
+ ///
+ /// This is retained in each block chain to simplify the computation of child
+ /// block chains for SCC-formation and iteration. We store the edges to child
+ /// basic blocks, and map them back to their associated chains using this
+ /// structure.
+ BlockToChainMapType &BlockToChain;
+
+public:
+ /// \brief Construct a new BlockChain.
+ ///
+ /// This builds a new block chain representing a single basic block in the
+ /// function. It also registers itself as the chain that block participates
+ /// in with the BlockToChain mapping.
+ BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
+ : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
+ assert(BB && "Cannot create a chain with a null basic block");
+ BlockToChain[BB] = this;
+ }
+
+ /// \brief Iterator over blocks within the chain.
+ typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
+
+ /// \brief Beginning of blocks within the chain.
+ iterator begin() { return Blocks.begin(); }
+
+ /// \brief End of blocks within the chain.
+ iterator end() { return Blocks.end(); }
+
+ /// \brief Merge a block chain into this one.
+ ///
+ /// This routine merges a block chain into this one. It takes care of forming
+ /// a contiguous sequence of basic blocks, updating the edge list, and
+ /// updating the block -> chain mapping. It does not free or tear down the
+ /// old chain, but the old chain's block list is no longer valid.
+ void merge(MachineBasicBlock *BB, BlockChain *Chain) {
+ assert(BB);
+ assert(!Blocks.empty());
+
+ // Fast path in case we don't have a chain already.
+ if (!Chain) {
+ assert(!BlockToChain[BB]);
+ Blocks.push_back(BB);
+ BlockToChain[BB] = this;
+ return;
+ }
+
+ assert(BB == *Chain->begin());
+ assert(Chain->begin() != Chain->end());
+
+ // Update the incoming blocks to point to this chain, and add them to the
+ // chain structure.
+ for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
+ BI != BE; ++BI) {
+ Blocks.push_back(*BI);
+ assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
+ BlockToChain[*BI] = this;
+ }
+ }
+
+#ifndef NDEBUG
+ /// \brief Dump the blocks in this chain.
+ void dump() LLVM_ATTRIBUTE_USED {
+ for (iterator I = begin(), E = end(); I != E; ++I)
+ (*I)->dump();
+ }
+#endif // NDEBUG
+
+ /// \brief Count of predecessors within the loop currently being processed.
+ ///
+ /// This count is updated at each loop we process to represent the number of
+ /// in-loop predecessors of this chain.
+ unsigned LoopPredecessors;
+};
+}
+
+namespace {
+class MachineBlockPlacement : public MachineFunctionPass {
+ /// \brief A typedef for a block filter set.
+ typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
+
+ /// \brief A handle to the branch probability pass.
+ const MachineBranchProbabilityInfo *MBPI;
+
+ /// \brief A handle to the function-wide block frequency pass.
+ const MachineBlockFrequencyInfo *MBFI;
+
+ /// \brief A handle to the loop info.
+ const MachineLoopInfo *MLI;
+
+ /// \brief A handle to the target's instruction info.
+ const TargetInstrInfo *TII;
+
+ /// \brief A handle to the target's lowering info.
+ const TargetLoweringBase *TLI;
+
+ /// \brief Allocator and owner of BlockChain structures.
+ ///
+ /// We build BlockChains lazily while processing the loop structure of
+ /// a function. To reduce malloc traffic, we allocate them using this
+ /// slab-like allocator, and destroy them after the pass completes. An
+ /// important guarantee is that this allocator produces stable pointers to
+ /// the chains.
+ SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
+
+ /// \brief Function wide BasicBlock to BlockChain mapping.
+ ///
+ /// This mapping allows efficiently moving from any given basic block to the
+ /// BlockChain it participates in, if any. We use it to, among other things,
+ /// allow implicitly defining edges between chains as the existing edges
+ /// between basic blocks.
+ DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
+
+ void markChainSuccessors(BlockChain &Chain,
+ MachineBasicBlock *LoopHeaderBB,
+ SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
+ const BlockFilterSet *BlockFilter = 0);
+ MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
+ BlockChain &Chain,
+ const BlockFilterSet *BlockFilter);
+ MachineBasicBlock *selectBestCandidateBlock(
+ BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
+ const BlockFilterSet *BlockFilter);
+ MachineBasicBlock *getFirstUnplacedBlock(
+ MachineFunction &F,
+ const BlockChain &PlacedChain,
+ MachineFunction::iterator &PrevUnplacedBlockIt,
+ const BlockFilterSet *BlockFilter);
+ void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
+ SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
+ const BlockFilterSet *BlockFilter = 0);
+ MachineBasicBlock *findBestLoopTop(MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet);
+ MachineBasicBlock *findBestLoopExit(MachineFunction &F,
+ MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet);
+ void buildLoopChains(MachineFunction &F, MachineLoop &L);
+ void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
+ const BlockFilterSet &LoopBlockSet);
+ void buildCFGChains(MachineFunction &F);
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+ MachineBlockPlacement() : MachineFunctionPass(ID) {
+ initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &F);
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addRequired<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+}
+
+char MachineBlockPlacement::ID = 0;
+char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
+INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
+ "Branch Probability Basic Block Placement", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
+ "Branch Probability Basic Block Placement", false, false)
+
+#ifndef NDEBUG
+/// \brief Helper to print the name of a MBB.
+///
+/// Only used by debug logging.
+static std::string getBlockName(MachineBasicBlock *BB) {
+ std::string Result;
+ raw_string_ostream OS(Result);
+ OS << "BB#" << BB->getNumber()
+ << " (derived from LLVM BB '" << BB->getName() << "')";
+ OS.flush();
+ return Result;
+}
+
+/// \brief Helper to print the number of a MBB.
+///
+/// Only used by debug logging.
+static std::string getBlockNum(MachineBasicBlock *BB) {
+ std::string Result;
+ raw_string_ostream OS(Result);
+ OS << "BB#" << BB->getNumber();
+ OS.flush();
+ return Result;
+}
+#endif
+
+/// \brief Mark a chain's successors as having one fewer preds.
+///
+/// When a chain is being merged into the "placed" chain, this routine will
+/// quickly walk the successors of each block in the chain and mark them as
+/// having one fewer active predecessor. It also adds any successors of this
+/// chain which reach the zero-predecessor state to the worklist passed in.
+void MachineBlockPlacement::markChainSuccessors(
+ BlockChain &Chain,
+ MachineBasicBlock *LoopHeaderBB,
+ SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
+ const BlockFilterSet *BlockFilter) {
+ // Walk all the blocks in this chain, marking their successors as having
+ // a predecessor placed.
+ for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
+ CBI != CBE; ++CBI) {
+ // Add any successors for which this is the only un-placed in-loop
+ // predecessor to the worklist as a viable candidate for CFG-neutral
+ // placement. No subsequent placement of this block will violate the CFG
+ // shape, so we get to use heuristics to choose a favorable placement.
+ for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
+ SE = (*CBI)->succ_end();
+ SI != SE; ++SI) {
+ if (BlockFilter && !BlockFilter->count(*SI))
+ continue;
+ BlockChain &SuccChain = *BlockToChain[*SI];
+ // Disregard edges within a fixed chain, or edges to the loop header.
+ if (&Chain == &SuccChain || *SI == LoopHeaderBB)
+ continue;
+
+ // This is a cross-chain edge that is within the loop, so decrement the
+ // loop predecessor count of the destination chain.
+ if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
+ BlockWorkList.push_back(*SuccChain.begin());
+ }
+ }
+}
+
+/// \brief Select the best successor for a block.
+///
+/// This looks across all successors of a particular block and attempts to
+/// select the "best" one to be the layout successor. It only considers direct
+/// successors which also pass the block filter. It will attempt to avoid
+/// breaking CFG structure, but cave and break such structures in the case of
+/// very hot successor edges.
+///
+/// \returns The best successor block found, or null if none are viable.
+MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
+ MachineBasicBlock *BB, BlockChain &Chain,
+ const BlockFilterSet *BlockFilter) {
+ const BranchProbability HotProb(4, 5); // 80%
+
+ MachineBasicBlock *BestSucc = 0;
+ // FIXME: Due to the performance of the probability and weight routines in
+ // the MBPI analysis, we manually compute probabilities using the edge
+ // weights. This is suboptimal as it means that the somewhat subtle
+ // definition of edge weight semantics is encoded here as well. We should
+ // improve the MBPI interface to efficiently support query patterns such as
+ // this.
+ uint32_t BestWeight = 0;
+ uint32_t WeightScale = 0;
+ uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
+ DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
+ for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+ SE = BB->succ_end();
+ SI != SE; ++SI) {
+ if (BlockFilter && !BlockFilter->count(*SI))
+ continue;
+ BlockChain &SuccChain = *BlockToChain[*SI];
+ if (&SuccChain == &Chain) {
+ DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n");
+ continue;
+ }
+ if (*SI != *SuccChain.begin()) {
+ DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n");
+ continue;
+ }
+
+ uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
+ BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
+
+ // Only consider successors which are either "hot", or wouldn't violate
+ // any CFG constraints.
+ if (SuccChain.LoopPredecessors != 0) {
+ if (SuccProb < HotProb) {
+ DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n");
+ continue;
+ }
+
+ // Make sure that a hot successor doesn't have a globally more important
+ // predecessor.
+ BlockFrequency CandidateEdgeFreq
+ = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
+ bool BadCFGConflict = false;
+ for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
+ PE = (*SI)->pred_end();
+ PI != PE; ++PI) {
+ if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
+ BlockToChain[*PI] == &Chain)
+ continue;
+ BlockFrequency PredEdgeFreq
+ = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
+ if (PredEdgeFreq >= CandidateEdgeFreq) {
+ BadCFGConflict = true;
+ break;
+ }
+ }
+ if (BadCFGConflict) {
+ DEBUG(dbgs() << " " << getBlockName(*SI)
+ << " -> non-cold CFG conflict\n");
+ continue;
+ }
+ }
+
+ DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb
+ << " (prob)"
+ << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
+ << "\n");
+ if (BestSucc && BestWeight >= SuccWeight)
+ continue;
+ BestSucc = *SI;
+ BestWeight = SuccWeight;
+ }
+ return BestSucc;
+}
+
+namespace {
+/// \brief Predicate struct to detect blocks already placed.
+class IsBlockPlaced {
+ const BlockChain &PlacedChain;
+ const BlockToChainMapType &BlockToChain;
+
+public:
+ IsBlockPlaced(const BlockChain &PlacedChain,
+ const BlockToChainMapType &BlockToChain)
+ : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
+
+ bool operator()(MachineBasicBlock *BB) const {
+ return BlockToChain.lookup(BB) == &PlacedChain;
+ }
+};
+}
+
+/// \brief Select the best block from a worklist.
+///
+/// This looks through the provided worklist as a list of candidate basic
+/// blocks and select the most profitable one to place. The definition of
+/// profitable only really makes sense in the context of a loop. This returns
+/// the most frequently visited block in the worklist, which in the case of
+/// a loop, is the one most desirable to be physically close to the rest of the
+/// loop body in order to improve icache behavior.
+///
+/// \returns The best block found, or null if none are viable.
+MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
+ BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
+ const BlockFilterSet *BlockFilter) {
+ // Once we need to walk the worklist looking for a candidate, cleanup the
+ // worklist of already placed entries.
+ // FIXME: If this shows up on profiles, it could be folded (at the cost of
+ // some code complexity) into the loop below.
+ WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
+ IsBlockPlaced(Chain, BlockToChain)),
+ WorkList.end());
+
+ MachineBasicBlock *BestBlock = 0;
+ BlockFrequency BestFreq;
+ for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
+ WBE = WorkList.end();
+ WBI != WBE; ++WBI) {
+ BlockChain &SuccChain = *BlockToChain[*WBI];
+ if (&SuccChain == &Chain) {
+ DEBUG(dbgs() << " " << getBlockName(*WBI)
+ << " -> Already merged!\n");
+ continue;
+ }
+ assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
+
+ BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
+ DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq
+ << " (freq)\n");
+ if (BestBlock && BestFreq >= CandidateFreq)
+ continue;
+ BestBlock = *WBI;
+ BestFreq = CandidateFreq;
+ }
+ return BestBlock;
+}
+
+/// \brief Retrieve the first unplaced basic block.
+///
+/// This routine is called when we are unable to use the CFG to walk through
+/// all of the basic blocks and form a chain due to unnatural loops in the CFG.
+/// We walk through the function's blocks in order, starting from the
+/// LastUnplacedBlockIt. We update this iterator on each call to avoid
+/// re-scanning the entire sequence on repeated calls to this routine.
+MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
+ MachineFunction &F, const BlockChain &PlacedChain,
+ MachineFunction::iterator &PrevUnplacedBlockIt,
+ const BlockFilterSet *BlockFilter) {
+ for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
+ ++I) {
+ if (BlockFilter && !BlockFilter->count(I))
+ continue;
+ if (BlockToChain[I] != &PlacedChain) {
+ PrevUnplacedBlockIt = I;
+ // Now select the head of the chain to which the unplaced block belongs
+ // as the block to place. This will force the entire chain to be placed,
+ // and satisfies the requirements of merging chains.
+ return *BlockToChain[I]->begin();
+ }
+ }
+ return 0;
+}
+
+void MachineBlockPlacement::buildChain(
+ MachineBasicBlock *BB,
+ BlockChain &Chain,
+ SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
+ const BlockFilterSet *BlockFilter) {
+ assert(BB);
+ assert(BlockToChain[BB] == &Chain);
+ MachineFunction &F = *BB->getParent();
+ MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
+
+ MachineBasicBlock *LoopHeaderBB = BB;
+ markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
+ BB = *llvm::prior(Chain.end());
+ for (;;) {
+ assert(BB);
+ assert(BlockToChain[BB] == &Chain);
+ assert(*llvm::prior(Chain.end()) == BB);
+
+ // Look for the best viable successor if there is one to place immediately
+ // after this block.
+ MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
+
+ // If an immediate successor isn't available, look for the best viable
+ // block among those we've identified as not violating the loop's CFG at
+ // this point. This won't be a fallthrough, but it will increase locality.
+ if (!BestSucc)
+ BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
+
+ if (!BestSucc) {
+ BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
+ BlockFilter);
+ if (!BestSucc)
+ break;
+
+ DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
+ "layout successor until the CFG reduces\n");
+ }
+
+ // Place this block, updating the datastructures to reflect its placement.
+ BlockChain &SuccChain = *BlockToChain[BestSucc];
+ // Zero out LoopPredecessors for the successor we're about to merge in case
+ // we selected a successor that didn't fit naturally into the CFG.
+ SuccChain.LoopPredecessors = 0;
+ DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
+ << " to " << getBlockNum(BestSucc) << "\n");
+ markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
+ Chain.merge(BestSucc, &SuccChain);
+ BB = *llvm::prior(Chain.end());
+ }
+
+ DEBUG(dbgs() << "Finished forming chain for header block "
+ << getBlockNum(*Chain.begin()) << "\n");
+}
+
+/// \brief Find the best loop top block for layout.
+///
+/// Look for a block which is strictly better than the loop header for laying
+/// out at the top of the loop. This looks for one and only one pattern:
+/// a latch block with no conditional exit. This block will cause a conditional
+/// jump around it or will be the bottom of the loop if we lay it out in place,
+/// but if it it doesn't end up at the bottom of the loop for any reason,
+/// rotation alone won't fix it. Because such a block will always result in an
+/// unconditional jump (for the backedge) rotating it in front of the loop
+/// header is always profitable.
+MachineBasicBlock *
+MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet) {
+ // Check that the header hasn't been fused with a preheader block due to
+ // crazy branches. If it has, we need to start with the header at the top to
+ // prevent pulling the preheader into the loop body.
+ BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
+ if (!LoopBlockSet.count(*HeaderChain.begin()))
+ return L.getHeader();
+
+ DEBUG(dbgs() << "Finding best loop top for: "
+ << getBlockName(L.getHeader()) << "\n");
+
+ BlockFrequency BestPredFreq;
+ MachineBasicBlock *BestPred = 0;
+ for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
+ PE = L.getHeader()->pred_end();
+ PI != PE; ++PI) {
+ MachineBasicBlock *Pred = *PI;
+ if (!LoopBlockSet.count(Pred))
+ continue;
+ DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
+ << Pred->succ_size() << " successors, "
+ << MBFI->getBlockFreq(Pred) << " freq\n");
+ if (Pred->succ_size() > 1)
+ continue;
+
+ BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
+ if (!BestPred || PredFreq > BestPredFreq ||
+ (!(PredFreq < BestPredFreq) &&
+ Pred->isLayoutSuccessor(L.getHeader()))) {
+ BestPred = Pred;
+ BestPredFreq = PredFreq;
+ }
+ }
+
+ // If no direct predecessor is fine, just use the loop header.
+ if (!BestPred)
+ return L.getHeader();
+
+ // Walk backwards through any straight line of predecessors.
+ while (BestPred->pred_size() == 1 &&
+ (*BestPred->pred_begin())->succ_size() == 1 &&
+ *BestPred->pred_begin() != L.getHeader())
+ BestPred = *BestPred->pred_begin();
+
+ DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
+ return BestPred;
+}
+
+
+/// \brief Find the best loop exiting block for layout.
+///
+/// This routine implements the logic to analyze the loop looking for the best
+/// block to layout at the top of the loop. Typically this is done to maximize
+/// fallthrough opportunities.
+MachineBasicBlock *
+MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
+ MachineLoop &L,
+ const BlockFilterSet &LoopBlockSet) {
+ // We don't want to layout the loop linearly in all cases. If the loop header
+ // is just a normal basic block in the loop, we want to look for what block
+ // within the loop is the best one to layout at the top. However, if the loop
+ // header has be pre-merged into a chain due to predecessors not having
+ // analyzable branches, *and* the predecessor it is merged with is *not* part
+ // of the loop, rotating the header into the middle of the loop will create
+ // a non-contiguous range of blocks which is Very Bad. So start with the
+ // header and only rotate if safe.
+ BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
+ if (!LoopBlockSet.count(*HeaderChain.begin()))
+ return 0;
+
+ BlockFrequency BestExitEdgeFreq;
+ unsigned BestExitLoopDepth = 0;
+ MachineBasicBlock *ExitingBB = 0;
+ // If there are exits to outer loops, loop rotation can severely limit
+ // fallthrough opportunites unless it selects such an exit. Keep a set of
+ // blocks where rotating to exit with that block will reach an outer loop.
+ SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
+
+ DEBUG(dbgs() << "Finding best loop exit for: "
+ << getBlockName(L.getHeader()) << "\n");
+ for (MachineLoop::block_iterator I = L.block_begin(),
+ E = L.block_end();
+ I != E; ++I) {
+ BlockChain &Chain = *BlockToChain[*I];
+ // Ensure that this block is at the end of a chain; otherwise it could be
+ // mid-way through an inner loop or a successor of an analyzable branch.
+ if (*I != *llvm::prior(Chain.end()))
+ continue;
+
+ // Now walk the successors. We need to establish whether this has a viable
+ // exiting successor and whether it has a viable non-exiting successor.
+ // We store the old exiting state and restore it if a viable looping
+ // successor isn't found.
+ MachineBasicBlock *OldExitingBB = ExitingBB;
+ BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
+ bool HasLoopingSucc = false;
+ // FIXME: Due to the performance of the probability and weight routines in
+ // the MBPI analysis, we use the internal weights and manually compute the
+ // probabilities to avoid quadratic behavior.
+ uint32_t WeightScale = 0;
+ uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
+ for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
+ SE = (*I)->succ_end();
+ SI != SE; ++SI) {
+ if ((*SI)->isLandingPad())
+ continue;
+ if (*SI == *I)
+ continue;
+ BlockChain &SuccChain = *BlockToChain[*SI];
+ // Don't split chains, either this chain or the successor's chain.
+ if (&Chain == &SuccChain) {
+ DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> "
+ << getBlockName(*SI) << " (chain conflict)\n");
+ continue;
+ }
+
+ uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
+ if (LoopBlockSet.count(*SI)) {
+ DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> "
+ << getBlockName(*SI) << " (" << SuccWeight << ")\n");
+ HasLoopingSucc = true;
+ continue;
+ }
+
+ unsigned SuccLoopDepth = 0;
+ if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
+ SuccLoopDepth = ExitLoop->getLoopDepth();
+ if (ExitLoop->contains(&L))
+ BlocksExitingToOuterLoop.insert(*I);
+ }
+
+ BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
+ BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
+ DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> "
+ << getBlockName(*SI) << " [L:" << SuccLoopDepth
+ << "] (" << ExitEdgeFreq << ")\n");
+ // Note that we slightly bias this toward an existing layout successor to
+ // retain incoming order in the absence of better information.
+ // FIXME: Should we bias this more strongly? It's pretty weak.
+ if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
+ ExitEdgeFreq > BestExitEdgeFreq ||
+ ((*I)->isLayoutSuccessor(*SI) &&
+ !(ExitEdgeFreq < BestExitEdgeFreq))) {
+ BestExitEdgeFreq = ExitEdgeFreq;
+ ExitingBB = *I;
+ }
+ }
+
+ // Restore the old exiting state, no viable looping successor was found.
+ if (!HasLoopingSucc) {
+ ExitingBB = OldExitingBB;
+ BestExitEdgeFreq = OldBestExitEdgeFreq;
+ continue;
+ }
+ }
+ // Without a candidate exiting block or with only a single block in the
+ // loop, just use the loop header to layout the loop.
+ if (!ExitingBB || L.getNumBlocks() == 1)
+ return 0;
+
+ // Also, if we have exit blocks which lead to outer loops but didn't select
+ // one of them as the exiting block we are rotating toward, disable loop
+ // rotation altogether.
+ if (!BlocksExitingToOuterLoop.empty() &&
+ !BlocksExitingToOuterLoop.count(ExitingBB))
+ return 0;
+
+ DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
+ return ExitingBB;
+}
+
+/// \brief Attempt to rotate an exiting block to the bottom of the loop.
+///
+/// Once we have built a chain, try to rotate it to line up the hot exit block
+/// with fallthrough out of the loop if doing so doesn't introduce unnecessary
+/// branches. For example, if the loop has fallthrough into its header and out
+/// of its bottom already, don't rotate it.
+void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
+ MachineBasicBlock *ExitingBB,
+ const BlockFilterSet &LoopBlockSet) {
+ if (!ExitingBB)
+ return;
+
+ MachineBasicBlock *Top = *LoopChain.begin();
+ bool ViableTopFallthrough = false;
+ for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
+ PE = Top->pred_end();
+ PI != PE; ++PI) {
+ BlockChain *PredChain = BlockToChain[*PI];
+ if (!LoopBlockSet.count(*PI) &&
+ (!PredChain || *PI == *llvm::prior(PredChain->end()))) {
+ ViableTopFallthrough = true;
+ break;
+ }
+ }
+
+ // If the header has viable fallthrough, check whether the current loop
+ // bottom is a viable exiting block. If so, bail out as rotating will
+ // introduce an unnecessary branch.
+ if (ViableTopFallthrough) {
+ MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end());
+ for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
+ SE = Bottom->succ_end();
+ SI != SE; ++SI) {
+ BlockChain *SuccChain = BlockToChain[*SI];
+ if (!LoopBlockSet.count(*SI) &&
+ (!SuccChain || *SI == *SuccChain->begin()))
+ return;
+ }
+ }
+
+ BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
+ ExitingBB);
+ if (ExitIt == LoopChain.end())
+ return;
+
+ std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end());
+}
+
+/// \brief Forms basic block chains from the natural loop structures.
+///
+/// These chains are designed to preserve the existing *structure* of the code
+/// as much as possible. We can then stitch the chains together in a way which
+/// both preserves the topological structure and minimizes taken conditional
+/// branches.
+void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
+ MachineLoop &L) {
+ // First recurse through any nested loops, building chains for those inner
+ // loops.
+ for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
+ buildLoopChains(F, **LI);
+
+ SmallVector<MachineBasicBlock *, 16> BlockWorkList;
+ BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
+
+ // First check to see if there is an obviously preferable top block for the
+ // loop. This will default to the header, but may end up as one of the
+ // predecessors to the header if there is one which will result in strictly
+ // fewer branches in the loop body.
+ MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
+
+ // If we selected just the header for the loop top, look for a potentially
+ // profitable exit block in the event that rotating the loop can eliminate
+ // branches by placing an exit edge at the bottom.
+ MachineBasicBlock *ExitingBB = 0;
+ if (LoopTop == L.getHeader())
+ ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
+
+ BlockChain &LoopChain = *BlockToChain[LoopTop];
+
+ // FIXME: This is a really lame way of walking the chains in the loop: we
+ // walk the blocks, and use a set to prevent visiting a particular chain
+ // twice.
+ SmallPtrSet<BlockChain *, 4> UpdatedPreds;
+ assert(LoopChain.LoopPredecessors == 0);
+ UpdatedPreds.insert(&LoopChain);
+ for (MachineLoop::block_iterator BI = L.block_begin(),
+ BE = L.block_end();
+ BI != BE; ++BI) {
+ BlockChain &Chain = *BlockToChain[*BI];
+ if (!UpdatedPreds.insert(&Chain))
+ continue;
+
+ assert(Chain.LoopPredecessors == 0);
+ for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
+ BCI != BCE; ++BCI) {
+ assert(BlockToChain[*BCI] == &Chain);
+ for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
+ PE = (*BCI)->pred_end();
+ PI != PE; ++PI) {
+ if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
+ continue;
+ ++Chain.LoopPredecessors;
+ }
+ }
+
+ if (Chain.LoopPredecessors == 0)
+ BlockWorkList.push_back(*Chain.begin());
+ }
+
+ buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
+ rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
+
+ DEBUG({
+ // Crash at the end so we get all of the debugging output first.
+ bool BadLoop = false;
+ if (LoopChain.LoopPredecessors) {
+ BadLoop = true;
+ dbgs() << "Loop chain contains a block without its preds placed!\n"
+ << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
+ << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
+ }
+ for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
+ BCI != BCE; ++BCI) {
+ dbgs() << " ... " << getBlockName(*BCI) << "\n";
+ if (!LoopBlockSet.erase(*BCI)) {
+ // We don't mark the loop as bad here because there are real situations
+ // where this can occur. For example, with an unanalyzable fallthrough
+ // from a loop block to a non-loop block or vice versa.
+ dbgs() << "Loop chain contains a block not contained by the loop!\n"
+ << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
+ << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
+ << " Bad block: " << getBlockName(*BCI) << "\n";
+ }
+ }
+
+ if (!LoopBlockSet.empty()) {
+ BadLoop = true;
+ for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
+ LBE = LoopBlockSet.end();
+ LBI != LBE; ++LBI)
+ dbgs() << "Loop contains blocks never placed into a chain!\n"
+ << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
+ << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
+ << " Bad block: " << getBlockName(*LBI) << "\n";
+ }
+ assert(!BadLoop && "Detected problems with the placement of this loop.");
+ });
+}
+
+void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
+ // Ensure that every BB in the function has an associated chain to simplify
+ // the assumptions of the remaining algorithm.
+ SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
+ for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
+ MachineBasicBlock *BB = FI;
+ BlockChain *Chain
+ = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
+ // Also, merge any blocks which we cannot reason about and must preserve
+ // the exact fallthrough behavior for.
+ for (;;) {
+ Cond.clear();
+ MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
+ if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
+ break;
+
+ MachineFunction::iterator NextFI(llvm::next(FI));
+ MachineBasicBlock *NextBB = NextFI;
+ // Ensure that the layout successor is a viable block, as we know that
+ // fallthrough is a possibility.
+ assert(NextFI != FE && "Can't fallthrough past the last block.");
+ DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
+ << getBlockName(BB) << " -> " << getBlockName(NextBB)
+ << "\n");
+ Chain->merge(NextBB, 0);
+ FI = NextFI;
+ BB = NextBB;
+ }
+ }
+
+ // Build any loop-based chains.
+ for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
+ ++LI)
+ buildLoopChains(F, **LI);
+
+ SmallVector<MachineBasicBlock *, 16> BlockWorkList;
+
+ SmallPtrSet<BlockChain *, 4> UpdatedPreds;
+ for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
+ MachineBasicBlock *BB = &*FI;
+ BlockChain &Chain = *BlockToChain[BB];
+ if (!UpdatedPreds.insert(&Chain))
+ continue;
+
+ assert(Chain.LoopPredecessors == 0);
+ for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
+ BCI != BCE; ++BCI) {
+ assert(BlockToChain[*BCI] == &Chain);
+ for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
+ PE = (*BCI)->pred_end();
+ PI != PE; ++PI) {
+ if (BlockToChain[*PI] == &Chain)
+ continue;
+ ++Chain.LoopPredecessors;
+ }
+ }
+
+ if (Chain.LoopPredecessors == 0)
+ BlockWorkList.push_back(*Chain.begin());
+ }
+
+ BlockChain &FunctionChain = *BlockToChain[&F.front()];
+ buildChain(&F.front(), FunctionChain, BlockWorkList);
+
+ typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
+ DEBUG({
+ // Crash at the end so we get all of the debugging output first.
+ bool BadFunc = false;
+ FunctionBlockSetType FunctionBlockSet;
+ for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
+ FunctionBlockSet.insert(FI);
+
+ for (BlockChain::iterator BCI = FunctionChain.begin(),
+ BCE = FunctionChain.end();
+ BCI != BCE; ++BCI)
+ if (!FunctionBlockSet.erase(*BCI)) {
+ BadFunc = true;
+ dbgs() << "Function chain contains a block not in the function!\n"
+ << " Bad block: " << getBlockName(*BCI) << "\n";
+ }
+
+ if (!FunctionBlockSet.empty()) {
+ BadFunc = true;
+ for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
+ FBE = FunctionBlockSet.end();
+ FBI != FBE; ++FBI)
+ dbgs() << "Function contains blocks never placed into a chain!\n"
+ << " Bad block: " << getBlockName(*FBI) << "\n";
+ }
+ assert(!BadFunc && "Detected problems with the block placement.");
+ });
+
+ // Splice the blocks into place.
+ MachineFunction::iterator InsertPos = F.begin();
+ for (BlockChain::iterator BI = FunctionChain.begin(),
+ BE = FunctionChain.end();
+ BI != BE; ++BI) {
+ DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
+ : " ... ")
+ << getBlockName(*BI) << "\n");
+ if (InsertPos != MachineFunction::iterator(*BI))
+ F.splice(InsertPos, *BI);
+ else
+ ++InsertPos;
+
+ // Update the terminator of the previous block.
+ if (BI == FunctionChain.begin())
+ continue;
+ MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
+
+ // FIXME: It would be awesome of updateTerminator would just return rather
+ // than assert when the branch cannot be analyzed in order to remove this
+ // boiler plate.
+ Cond.clear();
+ MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
+ if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
+ // If PrevBB has a two-way branch, try to re-order the branches
+ // such that we branch to the successor with higher weight first.
+ if (TBB && !Cond.empty() && FBB &&
+ MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
+ !TII->ReverseBranchCondition(Cond)) {
+ DEBUG(dbgs() << "Reverse order of the two branches: "
+ << getBlockName(PrevBB) << "\n");
+ DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
+ << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
+ DebugLoc dl; // FIXME: this is nowhere
+ TII->RemoveBranch(*PrevBB);
+ TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
+ }
+ PrevBB->updateTerminator();
+ }
+ }
+
+ // Fixup the last block.
+ Cond.clear();
+ MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
+ if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
+ F.back().updateTerminator();
+
+ // Walk through the backedges of the function now that we have fully laid out
+ // the basic blocks and align the destination of each backedge. We don't rely
+ // exclusively on the loop info here so that we can align backedges in
+ // unnatural CFGs and backedges that were introduced purely because of the
+ // loop rotations done during this layout pass.
+ if (F.getFunction()->getAttributes().
+ hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize))
+ return;
+ unsigned Align = TLI->getPrefLoopAlignment();
+ if (!Align)
+ return; // Don't care about loop alignment.
+ if (FunctionChain.begin() == FunctionChain.end())
+ return; // Empty chain.
+
+ const BranchProbability ColdProb(1, 5); // 20%
+ BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
+ BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
+ for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()),
+ BE = FunctionChain.end();
+ BI != BE; ++BI) {
+ // Don't align non-looping basic blocks. These are unlikely to execute
+ // enough times to matter in practice. Note that we'll still handle
+ // unnatural CFGs inside of a natural outer loop (the common case) and
+ // rotated loops.
+ MachineLoop *L = MLI->getLoopFor(*BI);
+ if (!L)
+ continue;
+
+ // If the block is cold relative to the function entry don't waste space
+ // aligning it.
+ BlockFrequency Freq = MBFI->getBlockFreq(*BI);
+ if (Freq < WeightedEntryFreq)
+ continue;
+
+ // If the block is cold relative to its loop header, don't align it
+ // regardless of what edges into the block exist.
+ MachineBasicBlock *LoopHeader = L->getHeader();
+ BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
+ if (Freq < (LoopHeaderFreq * ColdProb))
+ continue;
+
+ // Check for the existence of a non-layout predecessor which would benefit
+ // from aligning this block.
+ MachineBasicBlock *LayoutPred = *llvm::prior(BI);
+
+ // Force alignment if all the predecessors are jumps. We already checked
+ // that the block isn't cold above.
+ if (!LayoutPred->isSuccessor(*BI)) {
+ (*BI)->setAlignment(Align);
+ continue;
+ }
+
+ // Align this block if the layout predecessor's edge into this block is
+ // cold relative to the block. When this is true, other predecessors make up
+ // all of the hot entries into the block and thus alignment is likely to be
+ // important.
+ BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
+ BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
+ if (LayoutEdgeFreq <= (Freq * ColdProb))
+ (*BI)->setAlignment(Align);
+ }
+}
+
+bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
+ // Check for single-block functions and skip them.
+ if (llvm::next(F.begin()) == F.end())
+ return false;
+
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+ MLI = &getAnalysis<MachineLoopInfo>();
+ TII = F.getTarget().getInstrInfo();
+ TLI = F.getTarget().getTargetLowering();
+ assert(BlockToChain.empty());
+
+ buildCFGChains(F);
+
+ BlockToChain.clear();
+ ChainAllocator.DestroyAll();
+
+ // We always return true as we have no way to track whether the final order
+ // differs from the original order.
+ return true;
+}
+
+namespace {
+/// \brief A pass to compute block placement statistics.
+///
+/// A separate pass to compute interesting statistics for evaluating block
+/// placement. This is separate from the actual placement pass so that they can
+/// be computed in the absence of any placement transformations or when using
+/// alternative placement strategies.
+class MachineBlockPlacementStats : public MachineFunctionPass {
+ /// \brief A handle to the branch probability pass.
+ const MachineBranchProbabilityInfo *MBPI;
+
+ /// \brief A handle to the function-wide block frequency pass.
+ const MachineBlockFrequencyInfo *MBFI;
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+ MachineBlockPlacementStats() : MachineFunctionPass(ID) {
+ initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &F);
+
+ void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<MachineBranchProbabilityInfo>();
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+}
+
+char MachineBlockPlacementStats::ID = 0;
+char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
+INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
+ "Basic Block Placement Stats", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
+ "Basic Block Placement Stats", false, false)
+
+bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
+ // Check for single-block functions and skip them.
+ if (llvm::next(F.begin()) == F.end())
+ return false;
+
+ MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+
+ for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
+ Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
+ : NumUncondBranches;
+ Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
+ : UncondBranchTakenFreq;
+ for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
+ SE = I->succ_end();
+ SI != SE; ++SI) {
+ // Skip if this successor is a fallthrough.
+ if (I->isLayoutSuccessor(*SI))
+ continue;
+
+ BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
+ ++NumBranches;
+ BranchTakenFreq += EdgeFreq.getFrequency();
+ }
+ }
+
+ return false;
+}
+
OpenPOWER on IntegriCloud