summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp1268
1 files changed, 1268 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp b/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
new file mode 100644
index 0000000..76099f2
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/MachineBasicBlock.cpp
@@ -0,0 +1,1268 @@
+//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Collect the sequence of machine instructions for a basic block.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/ModuleSlotTracker.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+using namespace llvm;
+
+#define DEBUG_TYPE "codegen"
+
+MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
+ : BB(B), Number(-1), xParent(&MF) {
+ Insts.Parent = this;
+}
+
+MachineBasicBlock::~MachineBasicBlock() {
+}
+
+/// Return the MCSymbol for this basic block.
+MCSymbol *MachineBasicBlock::getSymbol() const {
+ if (!CachedMCSymbol) {
+ const MachineFunction *MF = getParent();
+ MCContext &Ctx = MF->getContext();
+ const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
+ assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
+ CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
+ Twine(MF->getFunctionNumber()) +
+ "_" + Twine(getNumber()));
+ }
+
+ return CachedMCSymbol;
+}
+
+
+raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
+ MBB.print(OS);
+ return OS;
+}
+
+/// When an MBB is added to an MF, we need to update the parent pointer of the
+/// MBB, the MBB numbering, and any instructions in the MBB to be on the right
+/// operand list for registers.
+///
+/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
+/// gets the next available unique MBB number. If it is removed from a
+/// MachineFunction, it goes back to being #-1.
+void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
+ MachineFunction &MF = *N->getParent();
+ N->Number = MF.addToMBBNumbering(N);
+
+ // Make sure the instructions have their operands in the reginfo lists.
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ for (MachineBasicBlock::instr_iterator
+ I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
+ I->AddRegOperandsToUseLists(RegInfo);
+}
+
+void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
+ N->getParent()->removeFromMBBNumbering(N->Number);
+ N->Number = -1;
+}
+
+/// When we add an instruction to a basic block list, we update its parent
+/// pointer and add its operands from reg use/def lists if appropriate.
+void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
+ assert(!N->getParent() && "machine instruction already in a basic block");
+ N->setParent(Parent);
+
+ // Add the instruction's register operands to their corresponding
+ // use/def lists.
+ MachineFunction *MF = Parent->getParent();
+ N->AddRegOperandsToUseLists(MF->getRegInfo());
+}
+
+/// When we remove an instruction from a basic block list, we update its parent
+/// pointer and remove its operands from reg use/def lists if appropriate.
+void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
+ assert(N->getParent() && "machine instruction not in a basic block");
+
+ // Remove from the use/def lists.
+ if (MachineFunction *MF = N->getParent()->getParent())
+ N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
+
+ N->setParent(nullptr);
+}
+
+/// When moving a range of instructions from one MBB list to another, we need to
+/// update the parent pointers and the use/def lists.
+void ilist_traits<MachineInstr>::
+transferNodesFromList(ilist_traits<MachineInstr> &FromList,
+ ilist_iterator<MachineInstr> First,
+ ilist_iterator<MachineInstr> Last) {
+ assert(Parent->getParent() == FromList.Parent->getParent() &&
+ "MachineInstr parent mismatch!");
+
+ // Splice within the same MBB -> no change.
+ if (Parent == FromList.Parent) return;
+
+ // If splicing between two blocks within the same function, just update the
+ // parent pointers.
+ for (; First != Last; ++First)
+ First->setParent(Parent);
+}
+
+void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
+ assert(!MI->getParent() && "MI is still in a block!");
+ Parent->getParent()->DeleteMachineInstr(MI);
+}
+
+MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
+ instr_iterator I = instr_begin(), E = instr_end();
+ while (I != E && I->isPHI())
+ ++I;
+ assert((I == E || !I->isInsideBundle()) &&
+ "First non-phi MI cannot be inside a bundle!");
+ return I;
+}
+
+MachineBasicBlock::iterator
+MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
+ iterator E = end();
+ while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
+ ++I;
+ // FIXME: This needs to change if we wish to bundle labels / dbg_values
+ // inside the bundle.
+ assert((I == E || !I->isInsideBundle()) &&
+ "First non-phi / non-label instruction is inside a bundle!");
+ return I;
+}
+
+MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
+ iterator B = begin(), E = end(), I = E;
+ while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
+ ; /*noop */
+ while (I != E && !I->isTerminator())
+ ++I;
+ return I;
+}
+
+MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
+ instr_iterator B = instr_begin(), E = instr_end(), I = E;
+ while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
+ ; /*noop */
+ while (I != E && !I->isTerminator())
+ ++I;
+ return I;
+}
+
+MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
+ // Skip over begin-of-block dbg_value instructions.
+ iterator I = begin(), E = end();
+ while (I != E && I->isDebugValue())
+ ++I;
+ return I;
+}
+
+MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
+ // Skip over end-of-block dbg_value instructions.
+ instr_iterator B = instr_begin(), I = instr_end();
+ while (I != B) {
+ --I;
+ // Return instruction that starts a bundle.
+ if (I->isDebugValue() || I->isInsideBundle())
+ continue;
+ return I;
+ }
+ // The block is all debug values.
+ return end();
+}
+
+const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
+ // A block with a landing pad successor only has one other successor.
+ if (succ_size() > 2)
+ return nullptr;
+ for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
+ if ((*I)->isEHPad())
+ return *I;
+ return nullptr;
+}
+
+bool MachineBasicBlock::hasEHPadSuccessor() const {
+ for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
+ if ((*I)->isEHPad())
+ return true;
+ return false;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void MachineBasicBlock::dump() const {
+ print(dbgs());
+}
+#endif
+
+StringRef MachineBasicBlock::getName() const {
+ if (const BasicBlock *LBB = getBasicBlock())
+ return LBB->getName();
+ else
+ return "(null)";
+}
+
+/// Return a hopefully unique identifier for this block.
+std::string MachineBasicBlock::getFullName() const {
+ std::string Name;
+ if (getParent())
+ Name = (getParent()->getName() + ":").str();
+ if (getBasicBlock())
+ Name += getBasicBlock()->getName();
+ else
+ Name += ("BB" + Twine(getNumber())).str();
+ return Name;
+}
+
+void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
+ const MachineFunction *MF = getParent();
+ if (!MF) {
+ OS << "Can't print out MachineBasicBlock because parent MachineFunction"
+ << " is null\n";
+ return;
+ }
+ const Function *F = MF->getFunction();
+ const Module *M = F ? F->getParent() : nullptr;
+ ModuleSlotTracker MST(M);
+ print(OS, MST, Indexes);
+}
+
+void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
+ SlotIndexes *Indexes) const {
+ const MachineFunction *MF = getParent();
+ if (!MF) {
+ OS << "Can't print out MachineBasicBlock because parent MachineFunction"
+ << " is null\n";
+ return;
+ }
+
+ if (Indexes)
+ OS << Indexes->getMBBStartIdx(this) << '\t';
+
+ OS << "BB#" << getNumber() << ": ";
+
+ const char *Comma = "";
+ if (const BasicBlock *LBB = getBasicBlock()) {
+ OS << Comma << "derived from LLVM BB ";
+ LBB->printAsOperand(OS, /*PrintType=*/false, MST);
+ Comma = ", ";
+ }
+ if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
+ if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
+ if (Alignment)
+ OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
+ << " bytes)";
+
+ OS << '\n';
+
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ if (!livein_empty()) {
+ if (Indexes) OS << '\t';
+ OS << " Live Ins:";
+ for (const auto &LI : make_range(livein_begin(), livein_end())) {
+ OS << ' ' << PrintReg(LI.PhysReg, TRI);
+ if (LI.LaneMask != ~0u)
+ OS << ':' << PrintLaneMask(LI.LaneMask);
+ }
+ OS << '\n';
+ }
+ // Print the preds of this block according to the CFG.
+ if (!pred_empty()) {
+ if (Indexes) OS << '\t';
+ OS << " Predecessors according to CFG:";
+ for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
+ OS << " BB#" << (*PI)->getNumber();
+ OS << '\n';
+ }
+
+ for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
+ if (Indexes) {
+ if (Indexes->hasIndex(&*I))
+ OS << Indexes->getInstructionIndex(&*I);
+ OS << '\t';
+ }
+ OS << '\t';
+ if (I->isInsideBundle())
+ OS << " * ";
+ I->print(OS, MST);
+ }
+
+ // Print the successors of this block according to the CFG.
+ if (!succ_empty()) {
+ if (Indexes) OS << '\t';
+ OS << " Successors according to CFG:";
+ for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
+ OS << " BB#" << (*SI)->getNumber();
+ if (!Probs.empty())
+ OS << '(' << *getProbabilityIterator(SI) << ')';
+ }
+ OS << '\n';
+ }
+}
+
+void MachineBasicBlock::printAsOperand(raw_ostream &OS,
+ bool /*PrintType*/) const {
+ OS << "BB#" << getNumber();
+}
+
+void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
+ LiveInVector::iterator I = std::find_if(
+ LiveIns.begin(), LiveIns.end(),
+ [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
+ if (I == LiveIns.end())
+ return;
+
+ I->LaneMask &= ~LaneMask;
+ if (I->LaneMask == 0)
+ LiveIns.erase(I);
+}
+
+bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
+ livein_iterator I = std::find_if(
+ LiveIns.begin(), LiveIns.end(),
+ [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
+ return I != livein_end() && (I->LaneMask & LaneMask) != 0;
+}
+
+void MachineBasicBlock::sortUniqueLiveIns() {
+ std::sort(LiveIns.begin(), LiveIns.end(),
+ [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
+ return LI0.PhysReg < LI1.PhysReg;
+ });
+ // Liveins are sorted by physreg now we can merge their lanemasks.
+ LiveInVector::const_iterator I = LiveIns.begin();
+ LiveInVector::const_iterator J;
+ LiveInVector::iterator Out = LiveIns.begin();
+ for (; I != LiveIns.end(); ++Out, I = J) {
+ unsigned PhysReg = I->PhysReg;
+ LaneBitmask LaneMask = I->LaneMask;
+ for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
+ LaneMask |= J->LaneMask;
+ Out->PhysReg = PhysReg;
+ Out->LaneMask = LaneMask;
+ }
+ LiveIns.erase(Out, LiveIns.end());
+}
+
+unsigned
+MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
+ assert(getParent() && "MBB must be inserted in function");
+ assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
+ assert(RC && "Register class is required");
+ assert((isEHPad() || this == &getParent()->front()) &&
+ "Only the entry block and landing pads can have physreg live ins");
+
+ bool LiveIn = isLiveIn(PhysReg);
+ iterator I = SkipPHIsAndLabels(begin()), E = end();
+ MachineRegisterInfo &MRI = getParent()->getRegInfo();
+ const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
+
+ // Look for an existing copy.
+ if (LiveIn)
+ for (;I != E && I->isCopy(); ++I)
+ if (I->getOperand(1).getReg() == PhysReg) {
+ unsigned VirtReg = I->getOperand(0).getReg();
+ if (!MRI.constrainRegClass(VirtReg, RC))
+ llvm_unreachable("Incompatible live-in register class.");
+ return VirtReg;
+ }
+
+ // No luck, create a virtual register.
+ unsigned VirtReg = MRI.createVirtualRegister(RC);
+ BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
+ .addReg(PhysReg, RegState::Kill);
+ if (!LiveIn)
+ addLiveIn(PhysReg);
+ return VirtReg;
+}
+
+void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
+ getParent()->splice(NewAfter->getIterator(), getIterator());
+}
+
+void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
+ getParent()->splice(++NewBefore->getIterator(), getIterator());
+}
+
+void MachineBasicBlock::updateTerminator() {
+ const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
+ // A block with no successors has no concerns with fall-through edges.
+ if (this->succ_empty()) return;
+
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ DebugLoc DL; // FIXME: this is nowhere
+ bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
+ (void) B;
+ assert(!B && "UpdateTerminators requires analyzable predecessors!");
+ if (Cond.empty()) {
+ if (TBB) {
+ // The block has an unconditional branch. If its successor is now
+ // its layout successor, delete the branch.
+ if (isLayoutSuccessor(TBB))
+ TII->RemoveBranch(*this);
+ } else {
+ // The block has an unconditional fallthrough. If its successor is not
+ // its layout successor, insert a branch. First we have to locate the
+ // only non-landing-pad successor, as that is the fallthrough block.
+ for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
+ if ((*SI)->isEHPad())
+ continue;
+ assert(!TBB && "Found more than one non-landing-pad successor!");
+ TBB = *SI;
+ }
+
+ // If there is no non-landing-pad successor, the block has no
+ // fall-through edges to be concerned with.
+ if (!TBB)
+ return;
+
+ // Finally update the unconditional successor to be reached via a branch
+ // if it would not be reached by fallthrough.
+ if (!isLayoutSuccessor(TBB))
+ TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
+ }
+ } else {
+ if (FBB) {
+ // The block has a non-fallthrough conditional branch. If one of its
+ // successors is its layout successor, rewrite it to a fallthrough
+ // conditional branch.
+ if (isLayoutSuccessor(TBB)) {
+ if (TII->ReverseBranchCondition(Cond))
+ return;
+ TII->RemoveBranch(*this);
+ TII->InsertBranch(*this, FBB, nullptr, Cond, DL);
+ } else if (isLayoutSuccessor(FBB)) {
+ TII->RemoveBranch(*this);
+ TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
+ }
+ } else {
+ // Walk through the successors and find the successor which is not
+ // a landing pad and is not the conditional branch destination (in TBB)
+ // as the fallthrough successor.
+ MachineBasicBlock *FallthroughBB = nullptr;
+ for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
+ if ((*SI)->isEHPad() || *SI == TBB)
+ continue;
+ assert(!FallthroughBB && "Found more than one fallthrough successor.");
+ FallthroughBB = *SI;
+ }
+ if (!FallthroughBB && canFallThrough()) {
+ // We fallthrough to the same basic block as the conditional jump
+ // targets. Remove the conditional jump, leaving unconditional
+ // fallthrough.
+ // FIXME: This does not seem like a reasonable pattern to support, but
+ // it has been seen in the wild coming out of degenerate ARM test cases.
+ TII->RemoveBranch(*this);
+
+ // Finally update the unconditional successor to be reached via a branch
+ // if it would not be reached by fallthrough.
+ if (!isLayoutSuccessor(TBB))
+ TII->InsertBranch(*this, TBB, nullptr, Cond, DL);
+ return;
+ }
+
+ // The block has a fallthrough conditional branch.
+ if (isLayoutSuccessor(TBB)) {
+ if (TII->ReverseBranchCondition(Cond)) {
+ // We can't reverse the condition, add an unconditional branch.
+ Cond.clear();
+ TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
+ return;
+ }
+ TII->RemoveBranch(*this);
+ TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL);
+ } else if (!isLayoutSuccessor(FallthroughBB)) {
+ TII->RemoveBranch(*this);
+ TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL);
+ }
+ }
+ }
+}
+
+void MachineBasicBlock::validateSuccProbs() const {
+#ifndef NDEBUG
+ int64_t Sum = 0;
+ for (auto Prob : Probs)
+ Sum += Prob.getNumerator();
+ // Due to precision issue, we assume that the sum of probabilities is one if
+ // the difference between the sum of their numerators and the denominator is
+ // no greater than the number of successors.
+ assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
+ Probs.size() &&
+ "The sum of successors's probabilities exceeds one.");
+#endif // NDEBUG
+}
+
+void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
+ BranchProbability Prob) {
+ // Probability list is either empty (if successor list isn't empty, this means
+ // disabled optimization) or has the same size as successor list.
+ if (!(Probs.empty() && !Successors.empty()))
+ Probs.push_back(Prob);
+ Successors.push_back(Succ);
+ Succ->addPredecessor(this);
+}
+
+void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
+ // We need to make sure probability list is either empty or has the same size
+ // of successor list. When this function is called, we can safely delete all
+ // probability in the list.
+ Probs.clear();
+ Successors.push_back(Succ);
+ Succ->addPredecessor(this);
+}
+
+void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
+ bool NormalizeSuccProbs) {
+ succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ);
+ removeSuccessor(I, NormalizeSuccProbs);
+}
+
+MachineBasicBlock::succ_iterator
+MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
+ assert(I != Successors.end() && "Not a current successor!");
+
+ // If probability list is empty it means we don't use it (disabled
+ // optimization).
+ if (!Probs.empty()) {
+ probability_iterator WI = getProbabilityIterator(I);
+ Probs.erase(WI);
+ if (NormalizeSuccProbs)
+ normalizeSuccProbs();
+ }
+
+ (*I)->removePredecessor(this);
+ return Successors.erase(I);
+}
+
+void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
+ MachineBasicBlock *New) {
+ if (Old == New)
+ return;
+
+ succ_iterator E = succ_end();
+ succ_iterator NewI = E;
+ succ_iterator OldI = E;
+ for (succ_iterator I = succ_begin(); I != E; ++I) {
+ if (*I == Old) {
+ OldI = I;
+ if (NewI != E)
+ break;
+ }
+ if (*I == New) {
+ NewI = I;
+ if (OldI != E)
+ break;
+ }
+ }
+ assert(OldI != E && "Old is not a successor of this block");
+
+ // If New isn't already a successor, let it take Old's place.
+ if (NewI == E) {
+ Old->removePredecessor(this);
+ New->addPredecessor(this);
+ *OldI = New;
+ return;
+ }
+
+ // New is already a successor.
+ // Update its probability instead of adding a duplicate edge.
+ if (!Probs.empty()) {
+ auto ProbIter = getProbabilityIterator(NewI);
+ if (!ProbIter->isUnknown())
+ *ProbIter += *getProbabilityIterator(OldI);
+ }
+ removeSuccessor(OldI);
+}
+
+void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
+ Predecessors.push_back(Pred);
+}
+
+void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
+ pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred);
+ assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
+ Predecessors.erase(I);
+}
+
+void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
+ if (this == FromMBB)
+ return;
+
+ while (!FromMBB->succ_empty()) {
+ MachineBasicBlock *Succ = *FromMBB->succ_begin();
+
+ // If probability list is empty it means we don't use it (disabled optimization).
+ if (!FromMBB->Probs.empty()) {
+ auto Prob = *FromMBB->Probs.begin();
+ addSuccessor(Succ, Prob);
+ } else
+ addSuccessorWithoutProb(Succ);
+
+ FromMBB->removeSuccessor(Succ);
+ }
+}
+
+void
+MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
+ if (this == FromMBB)
+ return;
+
+ while (!FromMBB->succ_empty()) {
+ MachineBasicBlock *Succ = *FromMBB->succ_begin();
+ if (!FromMBB->Probs.empty()) {
+ auto Prob = *FromMBB->Probs.begin();
+ addSuccessor(Succ, Prob);
+ } else
+ addSuccessorWithoutProb(Succ);
+ FromMBB->removeSuccessor(Succ);
+
+ // Fix up any PHI nodes in the successor.
+ for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
+ ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
+ for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.getMBB() == FromMBB)
+ MO.setMBB(this);
+ }
+ }
+ normalizeSuccProbs();
+}
+
+bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
+ return std::find(pred_begin(), pred_end(), MBB) != pred_end();
+}
+
+bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
+ return std::find(succ_begin(), succ_end(), MBB) != succ_end();
+}
+
+bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
+ MachineFunction::const_iterator I(this);
+ return std::next(I) == MachineFunction::const_iterator(MBB);
+}
+
+bool MachineBasicBlock::canFallThrough() {
+ MachineFunction::iterator Fallthrough = getIterator();
+ ++Fallthrough;
+ // If FallthroughBlock is off the end of the function, it can't fall through.
+ if (Fallthrough == getParent()->end())
+ return false;
+
+ // If FallthroughBlock isn't a successor, no fallthrough is possible.
+ if (!isSuccessor(&*Fallthrough))
+ return false;
+
+ // Analyze the branches, if any, at the end of the block.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
+ if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
+ // If we couldn't analyze the branch, examine the last instruction.
+ // If the block doesn't end in a known control barrier, assume fallthrough
+ // is possible. The isPredicated check is needed because this code can be
+ // called during IfConversion, where an instruction which is normally a
+ // Barrier is predicated and thus no longer an actual control barrier.
+ return empty() || !back().isBarrier() || TII->isPredicated(&back());
+ }
+
+ // If there is no branch, control always falls through.
+ if (!TBB) return true;
+
+ // If there is some explicit branch to the fallthrough block, it can obviously
+ // reach, even though the branch should get folded to fall through implicitly.
+ if (MachineFunction::iterator(TBB) == Fallthrough ||
+ MachineFunction::iterator(FBB) == Fallthrough)
+ return true;
+
+ // If it's an unconditional branch to some block not the fall through, it
+ // doesn't fall through.
+ if (Cond.empty()) return false;
+
+ // Otherwise, if it is conditional and has no explicit false block, it falls
+ // through.
+ return FBB == nullptr;
+}
+
+MachineBasicBlock *
+MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
+ // Splitting the critical edge to a landing pad block is non-trivial. Don't do
+ // it in this generic function.
+ if (Succ->isEHPad())
+ return nullptr;
+
+ MachineFunction *MF = getParent();
+ DebugLoc DL; // FIXME: this is nowhere
+
+ // Performance might be harmed on HW that implements branching using exec mask
+ // where both sides of the branches are always executed.
+ if (MF->getTarget().requiresStructuredCFG())
+ return nullptr;
+
+ // We may need to update this's terminator, but we can't do that if
+ // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
+ return nullptr;
+
+ // Avoid bugpoint weirdness: A block may end with a conditional branch but
+ // jumps to the same MBB is either case. We have duplicate CFG edges in that
+ // case that we can't handle. Since this never happens in properly optimized
+ // code, just skip those edges.
+ if (TBB && TBB == FBB) {
+ DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
+ << getNumber() << '\n');
+ return nullptr;
+ }
+
+ MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
+ MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
+ DEBUG(dbgs() << "Splitting critical edge:"
+ " BB#" << getNumber()
+ << " -- BB#" << NMBB->getNumber()
+ << " -- BB#" << Succ->getNumber() << '\n');
+
+ LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
+ SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
+ if (LIS)
+ LIS->insertMBBInMaps(NMBB);
+ else if (Indexes)
+ Indexes->insertMBBInMaps(NMBB);
+
+ // On some targets like Mips, branches may kill virtual registers. Make sure
+ // that LiveVariables is properly updated after updateTerminator replaces the
+ // terminators.
+ LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
+
+ // Collect a list of virtual registers killed by the terminators.
+ SmallVector<unsigned, 4> KilledRegs;
+ if (LV)
+ for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
+ I != E; ++I) {
+ MachineInstr *MI = &*I;
+ for (MachineInstr::mop_iterator OI = MI->operands_begin(),
+ OE = MI->operands_end(); OI != OE; ++OI) {
+ if (!OI->isReg() || OI->getReg() == 0 ||
+ !OI->isUse() || !OI->isKill() || OI->isUndef())
+ continue;
+ unsigned Reg = OI->getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ LV->getVarInfo(Reg).removeKill(MI)) {
+ KilledRegs.push_back(Reg);
+ DEBUG(dbgs() << "Removing terminator kill: " << *MI);
+ OI->setIsKill(false);
+ }
+ }
+ }
+
+ SmallVector<unsigned, 4> UsedRegs;
+ if (LIS) {
+ for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
+ I != E; ++I) {
+ MachineInstr *MI = &*I;
+
+ for (MachineInstr::mop_iterator OI = MI->operands_begin(),
+ OE = MI->operands_end(); OI != OE; ++OI) {
+ if (!OI->isReg() || OI->getReg() == 0)
+ continue;
+
+ unsigned Reg = OI->getReg();
+ if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
+ UsedRegs.push_back(Reg);
+ }
+ }
+ }
+
+ ReplaceUsesOfBlockWith(Succ, NMBB);
+
+ // If updateTerminator() removes instructions, we need to remove them from
+ // SlotIndexes.
+ SmallVector<MachineInstr*, 4> Terminators;
+ if (Indexes) {
+ for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
+ I != E; ++I)
+ Terminators.push_back(&*I);
+ }
+
+ updateTerminator();
+
+ if (Indexes) {
+ SmallVector<MachineInstr*, 4> NewTerminators;
+ for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
+ I != E; ++I)
+ NewTerminators.push_back(&*I);
+
+ for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
+ E = Terminators.end(); I != E; ++I) {
+ if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
+ NewTerminators.end())
+ Indexes->removeMachineInstrFromMaps(*I);
+ }
+ }
+
+ // Insert unconditional "jump Succ" instruction in NMBB if necessary.
+ NMBB->addSuccessor(Succ);
+ if (!NMBB->isLayoutSuccessor(Succ)) {
+ Cond.clear();
+ TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL);
+
+ if (Indexes) {
+ for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
+ I != E; ++I) {
+ // Some instructions may have been moved to NMBB by updateTerminator(),
+ // so we first remove any instruction that already has an index.
+ if (Indexes->hasIndex(&*I))
+ Indexes->removeMachineInstrFromMaps(&*I);
+ Indexes->insertMachineInstrInMaps(&*I);
+ }
+ }
+ }
+
+ // Fix PHI nodes in Succ so they refer to NMBB instead of this
+ for (MachineBasicBlock::instr_iterator
+ i = Succ->instr_begin(),e = Succ->instr_end();
+ i != e && i->isPHI(); ++i)
+ for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
+ if (i->getOperand(ni+1).getMBB() == this)
+ i->getOperand(ni+1).setMBB(NMBB);
+
+ // Inherit live-ins from the successor
+ for (const auto &LI : Succ->liveins())
+ NMBB->addLiveIn(LI);
+
+ // Update LiveVariables.
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+ if (LV) {
+ // Restore kills of virtual registers that were killed by the terminators.
+ while (!KilledRegs.empty()) {
+ unsigned Reg = KilledRegs.pop_back_val();
+ for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
+ if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ LV->getVarInfo(Reg).Kills.push_back(&*I);
+ DEBUG(dbgs() << "Restored terminator kill: " << *I);
+ break;
+ }
+ }
+ // Update relevant live-through information.
+ LV->addNewBlock(NMBB, this, Succ);
+ }
+
+ if (LIS) {
+ // After splitting the edge and updating SlotIndexes, live intervals may be
+ // in one of two situations, depending on whether this block was the last in
+ // the function. If the original block was the last in the function, all
+ // live intervals will end prior to the beginning of the new split block. If
+ // the original block was not at the end of the function, all live intervals
+ // will extend to the end of the new split block.
+
+ bool isLastMBB =
+ std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
+
+ SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
+ SlotIndex PrevIndex = StartIndex.getPrevSlot();
+ SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
+
+ // Find the registers used from NMBB in PHIs in Succ.
+ SmallSet<unsigned, 8> PHISrcRegs;
+ for (MachineBasicBlock::instr_iterator
+ I = Succ->instr_begin(), E = Succ->instr_end();
+ I != E && I->isPHI(); ++I) {
+ for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
+ if (I->getOperand(ni+1).getMBB() == NMBB) {
+ MachineOperand &MO = I->getOperand(ni);
+ unsigned Reg = MO.getReg();
+ PHISrcRegs.insert(Reg);
+ if (MO.isUndef())
+ continue;
+
+ LiveInterval &LI = LIS->getInterval(Reg);
+ VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
+ assert(VNI &&
+ "PHI sources should be live out of their predecessors.");
+ LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
+ }
+ }
+ }
+
+ MachineRegisterInfo *MRI = &getParent()->getRegInfo();
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
+ continue;
+
+ LiveInterval &LI = LIS->getInterval(Reg);
+ if (!LI.liveAt(PrevIndex))
+ continue;
+
+ bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
+ if (isLiveOut && isLastMBB) {
+ VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
+ assert(VNI && "LiveInterval should have VNInfo where it is live.");
+ LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
+ } else if (!isLiveOut && !isLastMBB) {
+ LI.removeSegment(StartIndex, EndIndex);
+ }
+ }
+
+ // Update all intervals for registers whose uses may have been modified by
+ // updateTerminator().
+ LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
+ }
+
+ if (MachineDominatorTree *MDT =
+ P->getAnalysisIfAvailable<MachineDominatorTree>())
+ MDT->recordSplitCriticalEdge(this, Succ, NMBB);
+
+ if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
+ if (MachineLoop *TIL = MLI->getLoopFor(this)) {
+ // If one or the other blocks were not in a loop, the new block is not
+ // either, and thus LI doesn't need to be updated.
+ if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
+ if (TIL == DestLoop) {
+ // Both in the same loop, the NMBB joins loop.
+ DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
+ } else if (TIL->contains(DestLoop)) {
+ // Edge from an outer loop to an inner loop. Add to the outer loop.
+ TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
+ } else if (DestLoop->contains(TIL)) {
+ // Edge from an inner loop to an outer loop. Add to the outer loop.
+ DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
+ } else {
+ // Edge from two loops with no containment relation. Because these
+ // are natural loops, we know that the destination block must be the
+ // header of its loop (adding a branch into a loop elsewhere would
+ // create an irreducible loop).
+ assert(DestLoop->getHeader() == Succ &&
+ "Should not create irreducible loops!");
+ if (MachineLoop *P = DestLoop->getParentLoop())
+ P->addBasicBlockToLoop(NMBB, MLI->getBase());
+ }
+ }
+ }
+
+ return NMBB;
+}
+
+/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
+/// neighboring instructions so the bundle won't be broken by removing MI.
+static void unbundleSingleMI(MachineInstr *MI) {
+ // Removing the first instruction in a bundle.
+ if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
+ MI->unbundleFromSucc();
+ // Removing the last instruction in a bundle.
+ if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
+ MI->unbundleFromPred();
+ // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
+ // are already fine.
+}
+
+MachineBasicBlock::instr_iterator
+MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
+ unbundleSingleMI(&*I);
+ return Insts.erase(I);
+}
+
+MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
+ unbundleSingleMI(MI);
+ MI->clearFlag(MachineInstr::BundledPred);
+ MI->clearFlag(MachineInstr::BundledSucc);
+ return Insts.remove(MI);
+}
+
+MachineBasicBlock::instr_iterator
+MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
+ assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
+ "Cannot insert instruction with bundle flags");
+ // Set the bundle flags when inserting inside a bundle.
+ if (I != instr_end() && I->isBundledWithPred()) {
+ MI->setFlag(MachineInstr::BundledPred);
+ MI->setFlag(MachineInstr::BundledSucc);
+ }
+ return Insts.insert(I, MI);
+}
+
+/// This method unlinks 'this' from the containing function, and returns it, but
+/// does not delete it.
+MachineBasicBlock *MachineBasicBlock::removeFromParent() {
+ assert(getParent() && "Not embedded in a function!");
+ getParent()->remove(this);
+ return this;
+}
+
+/// This method unlinks 'this' from the containing function, and deletes it.
+void MachineBasicBlock::eraseFromParent() {
+ assert(getParent() && "Not embedded in a function!");
+ getParent()->erase(this);
+}
+
+/// Given a machine basic block that branched to 'Old', change the code and CFG
+/// so that it branches to 'New' instead.
+void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
+ MachineBasicBlock *New) {
+ assert(Old != New && "Cannot replace self with self!");
+
+ MachineBasicBlock::instr_iterator I = instr_end();
+ while (I != instr_begin()) {
+ --I;
+ if (!I->isTerminator()) break;
+
+ // Scan the operands of this machine instruction, replacing any uses of Old
+ // with New.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (I->getOperand(i).isMBB() &&
+ I->getOperand(i).getMBB() == Old)
+ I->getOperand(i).setMBB(New);
+ }
+
+ // Update the successor information.
+ replaceSuccessor(Old, New);
+}
+
+/// Various pieces of code can cause excess edges in the CFG to be inserted. If
+/// we have proven that MBB can only branch to DestA and DestB, remove any other
+/// MBB successors from the CFG. DestA and DestB can be null.
+///
+/// Besides DestA and DestB, retain other edges leading to LandingPads
+/// (currently there can be only one; we don't check or require that here).
+/// Note it is possible that DestA and/or DestB are LandingPads.
+bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
+ MachineBasicBlock *DestB,
+ bool IsCond) {
+ // The values of DestA and DestB frequently come from a call to the
+ // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
+ // values from there.
+ //
+ // 1. If both DestA and DestB are null, then the block ends with no branches
+ // (it falls through to its successor).
+ // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
+ // with only an unconditional branch.
+ // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
+ // with a conditional branch that falls through to a successor (DestB).
+ // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
+ // conditional branch followed by an unconditional branch. DestA is the
+ // 'true' destination and DestB is the 'false' destination.
+
+ bool Changed = false;
+
+ MachineFunction::iterator FallThru = std::next(getIterator());
+
+ if (!DestA && !DestB) {
+ // Block falls through to successor.
+ DestA = &*FallThru;
+ DestB = &*FallThru;
+ } else if (DestA && !DestB) {
+ if (IsCond)
+ // Block ends in conditional jump that falls through to successor.
+ DestB = &*FallThru;
+ } else {
+ assert(DestA && DestB && IsCond &&
+ "CFG in a bad state. Cannot correct CFG edges");
+ }
+
+ // Remove superfluous edges. I.e., those which aren't destinations of this
+ // basic block, duplicate edges, or landing pads.
+ SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
+ MachineBasicBlock::succ_iterator SI = succ_begin();
+ while (SI != succ_end()) {
+ const MachineBasicBlock *MBB = *SI;
+ if (!SeenMBBs.insert(MBB).second ||
+ (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
+ // This is a superfluous edge, remove it.
+ SI = removeSuccessor(SI);
+ Changed = true;
+ } else {
+ ++SI;
+ }
+ }
+
+ if (Changed)
+ normalizeSuccProbs();
+ return Changed;
+}
+
+/// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
+/// instructions. Return UnknownLoc if there is none.
+DebugLoc
+MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
+ DebugLoc DL;
+ instr_iterator E = instr_end();
+ if (MBBI == E)
+ return DL;
+
+ // Skip debug declarations, we don't want a DebugLoc from them.
+ while (MBBI != E && MBBI->isDebugValue())
+ MBBI++;
+ if (MBBI != E)
+ DL = MBBI->getDebugLoc();
+ return DL;
+}
+
+/// Return probability of the edge from this block to MBB.
+BranchProbability
+MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
+ if (Probs.empty())
+ return BranchProbability(1, succ_size());
+
+ const auto &Prob = *getProbabilityIterator(Succ);
+ if (Prob.isUnknown()) {
+ // For unknown probabilities, collect the sum of all known ones, and evenly
+ // ditribute the complemental of the sum to each unknown probability.
+ unsigned KnownProbNum = 0;
+ auto Sum = BranchProbability::getZero();
+ for (auto &P : Probs) {
+ if (!P.isUnknown()) {
+ Sum += P;
+ KnownProbNum++;
+ }
+ }
+ return Sum.getCompl() / (Probs.size() - KnownProbNum);
+ } else
+ return Prob;
+}
+
+/// Set successor probability of a given iterator.
+void MachineBasicBlock::setSuccProbability(succ_iterator I,
+ BranchProbability Prob) {
+ assert(!Prob.isUnknown());
+ if (Probs.empty())
+ return;
+ *getProbabilityIterator(I) = Prob;
+}
+
+/// Return probability iterator corresonding to the I successor iterator
+MachineBasicBlock::const_probability_iterator
+MachineBasicBlock::getProbabilityIterator(
+ MachineBasicBlock::const_succ_iterator I) const {
+ assert(Probs.size() == Successors.size() && "Async probability list!");
+ const size_t index = std::distance(Successors.begin(), I);
+ assert(index < Probs.size() && "Not a current successor!");
+ return Probs.begin() + index;
+}
+
+/// Return probability iterator corresonding to the I successor iterator.
+MachineBasicBlock::probability_iterator
+MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
+ assert(Probs.size() == Successors.size() && "Async probability list!");
+ const size_t index = std::distance(Successors.begin(), I);
+ assert(index < Probs.size() && "Not a current successor!");
+ return Probs.begin() + index;
+}
+
+/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
+/// as of just before "MI".
+///
+/// Search is localised to a neighborhood of
+/// Neighborhood instructions before (searching for defs or kills) and N
+/// instructions after (searching just for defs) MI.
+MachineBasicBlock::LivenessQueryResult
+MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
+ unsigned Reg, const_iterator Before,
+ unsigned Neighborhood) const {
+ unsigned N = Neighborhood;
+
+ // Start by searching backwards from Before, looking for kills, reads or defs.
+ const_iterator I(Before);
+ // If this is the first insn in the block, don't search backwards.
+ if (I != begin()) {
+ do {
+ --I;
+
+ MachineOperandIteratorBase::PhysRegInfo Info =
+ ConstMIOperands(I).analyzePhysReg(Reg, TRI);
+
+ // Defs happen after uses so they take precedence if both are present.
+
+ // Register is dead after a dead def of the full register.
+ if (Info.DeadDef)
+ return LQR_Dead;
+ // Register is (at least partially) live after a def.
+ if (Info.Defined)
+ return LQR_Live;
+ // Register is dead after a full kill or clobber and no def.
+ if (Info.Killed || Info.Clobbered)
+ return LQR_Dead;
+ // Register must be live if we read it.
+ if (Info.Read)
+ return LQR_Live;
+ } while (I != begin() && --N > 0);
+ }
+
+ // Did we get to the start of the block?
+ if (I == begin()) {
+ // If so, the register's state is definitely defined by the live-in state.
+ for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
+ ++RAI)
+ if (isLiveIn(*RAI))
+ return LQR_Live;
+
+ return LQR_Dead;
+ }
+
+ N = Neighborhood;
+
+ // Try searching forwards from Before, looking for reads or defs.
+ I = const_iterator(Before);
+ // If this is the last insn in the block, don't search forwards.
+ if (I != end()) {
+ for (++I; I != end() && N > 0; ++I, --N) {
+ MachineOperandIteratorBase::PhysRegInfo Info =
+ ConstMIOperands(I).analyzePhysReg(Reg, TRI);
+
+ // Register is live when we read it here.
+ if (Info.Read)
+ return LQR_Live;
+ // Register is dead if we can fully overwrite or clobber it here.
+ if (Info.FullyDefined || Info.Clobbered)
+ return LQR_Dead;
+ }
+ }
+
+ // At this point we have no idea of the liveness of the register.
+ return LQR_Unknown;
+}
+
+const uint32_t *
+MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
+ // EH funclet entry does not preserve any registers.
+ return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
+}
+
+const uint32_t *
+MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
+ // If we see a return block with successors, this must be a funclet return,
+ // which does not preserve any registers. If there are no successors, we don't
+ // care what kind of return it is, putting a mask after it is a no-op.
+ return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
+}
OpenPOWER on IntegriCloud