diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveVariables.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/LiveVariables.cpp | 770 |
1 files changed, 770 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveVariables.cpp b/contrib/llvm/lib/CodeGen/LiveVariables.cpp new file mode 100644 index 0000000..20bad60 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/LiveVariables.cpp @@ -0,0 +1,770 @@ +//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LiveVariable analysis pass. For each machine +// instruction in the function, this pass calculates the set of registers that +// are immediately dead after the instruction (i.e., the instruction calculates +// the value, but it is never used) and the set of registers that are used by +// the instruction, but are never used after the instruction (i.e., they are +// killed). +// +// This class computes live variables using are sparse implementation based on +// the machine code SSA form. This class computes live variable information for +// each virtual and _register allocatable_ physical register in a function. It +// uses the dominance properties of SSA form to efficiently compute live +// variables for virtual registers, and assumes that physical registers are only +// live within a single basic block (allowing it to do a single local analysis +// to resolve physical register lifetimes in each basic block). If a physical +// register is not register allocatable, it is not tracked. This is useful for +// things like the stack pointer and condition codes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/STLExtras.h" +#include <algorithm> +using namespace llvm; + +char LiveVariables::ID = 0; +INITIALIZE_PASS_BEGIN(LiveVariables, "livevars", + "Live Variable Analysis", false, false) +INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim) +INITIALIZE_PASS_END(LiveVariables, "livevars", + "Live Variable Analysis", false, false) + + +void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequiredID(UnreachableMachineBlockElimID); + AU.setPreservesAll(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +MachineInstr * +LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { + for (unsigned i = 0, e = Kills.size(); i != e; ++i) + if (Kills[i]->getParent() == MBB) + return Kills[i]; + return NULL; +} + +void LiveVariables::VarInfo::dump() const { + dbgs() << " Alive in blocks: "; + for (SparseBitVector<>::iterator I = AliveBlocks.begin(), + E = AliveBlocks.end(); I != E; ++I) + dbgs() << *I << ", "; + dbgs() << "\n Killed by:"; + if (Kills.empty()) + dbgs() << " No instructions.\n"; + else { + for (unsigned i = 0, e = Kills.size(); i != e; ++i) + dbgs() << "\n #" << i << ": " << *Kills[i]; + dbgs() << "\n"; + } +} + +/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. +LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { + assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && + "getVarInfo: not a virtual register!"); + VirtRegInfo.grow(RegIdx); + return VirtRegInfo[RegIdx]; +} + +void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, + MachineBasicBlock *DefBlock, + MachineBasicBlock *MBB, + std::vector<MachineBasicBlock*> &WorkList) { + unsigned BBNum = MBB->getNumber(); + + // Check to see if this basic block is one of the killing blocks. If so, + // remove it. + for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) + if (VRInfo.Kills[i]->getParent() == MBB) { + VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry + break; + } + + if (MBB == DefBlock) return; // Terminate recursion + + if (VRInfo.AliveBlocks.test(BBNum)) + return; // We already know the block is live + + // Mark the variable known alive in this bb + VRInfo.AliveBlocks.set(BBNum); + + WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend()); +} + +void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, + MachineBasicBlock *DefBlock, + MachineBasicBlock *MBB) { + std::vector<MachineBasicBlock*> WorkList; + MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); + + while (!WorkList.empty()) { + MachineBasicBlock *Pred = WorkList.back(); + WorkList.pop_back(); + MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); + } +} + +void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, + MachineInstr *MI) { + assert(MRI->getVRegDef(reg) && "Register use before def!"); + + unsigned BBNum = MBB->getNumber(); + + VarInfo& VRInfo = getVarInfo(reg); + VRInfo.NumUses++; + + // Check to see if this basic block is already a kill block. + if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { + // Yes, this register is killed in this basic block already. Increase the + // live range by updating the kill instruction. + VRInfo.Kills.back() = MI; + return; + } + +#ifndef NDEBUG + for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) + assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); +#endif + + // This situation can occur: + // + // ,------. + // | | + // | v + // | t2 = phi ... t1 ... + // | | + // | v + // | t1 = ... + // | ... = ... t1 ... + // | | + // `------' + // + // where there is a use in a PHI node that's a predecessor to the defining + // block. We don't want to mark all predecessors as having the value "alive" + // in this case. + if (MBB == MRI->getVRegDef(reg)->getParent()) return; + + // Add a new kill entry for this basic block. If this virtual register is + // already marked as alive in this basic block, that means it is alive in at + // least one of the successor blocks, it's not a kill. + if (!VRInfo.AliveBlocks.test(BBNum)) + VRInfo.Kills.push_back(MI); + + // Update all dominating blocks to mark them as "known live". + for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), + E = MBB->pred_end(); PI != E; ++PI) + MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); +} + +void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { + VarInfo &VRInfo = getVarInfo(Reg); + + if (VRInfo.AliveBlocks.empty()) + // If vr is not alive in any block, then defaults to dead. + VRInfo.Kills.push_back(MI); +} + +/// FindLastPartialDef - Return the last partial def of the specified register. +/// Also returns the sub-registers that're defined by the instruction. +MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, + SmallSet<unsigned,4> &PartDefRegs) { + unsigned LastDefReg = 0; + unsigned LastDefDist = 0; + MachineInstr *LastDef = NULL; + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + MachineInstr *Def = PhysRegDef[SubReg]; + if (!Def) + continue; + unsigned Dist = DistanceMap[Def]; + if (Dist > LastDefDist) { + LastDefReg = SubReg; + LastDef = Def; + LastDefDist = Dist; + } + } + + if (!LastDef) + return 0; + + PartDefRegs.insert(LastDefReg); + for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { + MachineOperand &MO = LastDef->getOperand(i); + if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) + continue; + unsigned DefReg = MO.getReg(); + if (TRI->isSubRegister(Reg, DefReg)) { + PartDefRegs.insert(DefReg); + for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); + unsigned SubReg = *SubRegs; ++SubRegs) + PartDefRegs.insert(SubReg); + } + } + return LastDef; +} + +/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add +/// implicit defs to a machine instruction if there was an earlier def of its +/// super-register. +void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { + MachineInstr *LastDef = PhysRegDef[Reg]; + // If there was a previous use or a "full" def all is well. + if (!LastDef && !PhysRegUse[Reg]) { + // Otherwise, the last sub-register def implicitly defines this register. + // e.g. + // AH = + // AL = ... <imp-def EAX>, <imp-kill AH> + // = AH + // ... + // = EAX + // All of the sub-registers must have been defined before the use of Reg! + SmallSet<unsigned, 4> PartDefRegs; + MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); + // If LastPartialDef is NULL, it must be using a livein register. + if (LastPartialDef) { + LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, + true/*IsImp*/)); + PhysRegDef[Reg] = LastPartialDef; + SmallSet<unsigned, 8> Processed; + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + if (Processed.count(SubReg)) + continue; + if (PartDefRegs.count(SubReg)) + continue; + // This part of Reg was defined before the last partial def. It's killed + // here. + LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, + false/*IsDef*/, + true/*IsImp*/)); + PhysRegDef[SubReg] = LastPartialDef; + for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) + Processed.insert(*SS); + } + } + } + else if (LastDef && !PhysRegUse[Reg] && + !LastDef->findRegisterDefOperand(Reg)) + // Last def defines the super register, add an implicit def of reg. + LastDef->addOperand(MachineOperand::CreateReg(Reg, + true/*IsDef*/, true/*IsImp*/)); + + // Remember this use. + PhysRegUse[Reg] = MI; + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) + PhysRegUse[SubReg] = MI; +} + +/// FindLastRefOrPartRef - Return the last reference or partial reference of +/// the specified register. +MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { + MachineInstr *LastDef = PhysRegDef[Reg]; + MachineInstr *LastUse = PhysRegUse[Reg]; + if (!LastDef && !LastUse) + return 0; + + MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; + unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; + unsigned LastPartDefDist = 0; + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + MachineInstr *Def = PhysRegDef[SubReg]; + if (Def && Def != LastDef) { + // There was a def of this sub-register in between. This is a partial + // def, keep track of the last one. + unsigned Dist = DistanceMap[Def]; + if (Dist > LastPartDefDist) + LastPartDefDist = Dist; + } else if (MachineInstr *Use = PhysRegUse[SubReg]) { + unsigned Dist = DistanceMap[Use]; + if (Dist > LastRefOrPartRefDist) { + LastRefOrPartRefDist = Dist; + LastRefOrPartRef = Use; + } + } + } + + return LastRefOrPartRef; +} + +bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { + MachineInstr *LastDef = PhysRegDef[Reg]; + MachineInstr *LastUse = PhysRegUse[Reg]; + if (!LastDef && !LastUse) + return false; + + MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; + unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; + // The whole register is used. + // AL = + // AH = + // + // = AX + // = AL, AX<imp-use, kill> + // AX = + // + // Or whole register is defined, but not used at all. + // AX<dead> = + // ... + // AX = + // + // Or whole register is defined, but only partly used. + // AX<dead> = AL<imp-def> + // = AL<kill> + // AX = + MachineInstr *LastPartDef = 0; + unsigned LastPartDefDist = 0; + SmallSet<unsigned, 8> PartUses; + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + MachineInstr *Def = PhysRegDef[SubReg]; + if (Def && Def != LastDef) { + // There was a def of this sub-register in between. This is a partial + // def, keep track of the last one. + unsigned Dist = DistanceMap[Def]; + if (Dist > LastPartDefDist) { + LastPartDefDist = Dist; + LastPartDef = Def; + } + continue; + } + if (MachineInstr *Use = PhysRegUse[SubReg]) { + PartUses.insert(SubReg); + for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) + PartUses.insert(*SS); + unsigned Dist = DistanceMap[Use]; + if (Dist > LastRefOrPartRefDist) { + LastRefOrPartRefDist = Dist; + LastRefOrPartRef = Use; + } + } + } + + if (!PhysRegUse[Reg]) { + // Partial uses. Mark register def dead and add implicit def of + // sub-registers which are used. + // EAX<dead> = op AL<imp-def> + // That is, EAX def is dead but AL def extends pass it. + PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + if (!PartUses.count(SubReg)) + continue; + bool NeedDef = true; + if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { + MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); + if (MO) { + NeedDef = false; + assert(!MO->isDead()); + } + } + if (NeedDef) + PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, + true/*IsDef*/, true/*IsImp*/)); + MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); + if (LastSubRef) + LastSubRef->addRegisterKilled(SubReg, TRI, true); + else { + LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); + PhysRegUse[SubReg] = LastRefOrPartRef; + for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg); + unsigned SSReg = *SSRegs; ++SSRegs) + PhysRegUse[SSReg] = LastRefOrPartRef; + } + for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) + PartUses.erase(*SS); + } + } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { + if (LastPartDef) + // The last partial def kills the register. + LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, + true/*IsImp*/, true/*IsKill*/)); + else { + MachineOperand *MO = + LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); + bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; + // If the last reference is the last def, then it's not used at all. + // That is, unless we are currently processing the last reference itself. + LastRefOrPartRef->addRegisterDead(Reg, TRI, true); + if (NeedEC) { + // If we are adding a subreg def and the superreg def is marked early + // clobber, add an early clobber marker to the subreg def. + MO = LastRefOrPartRef->findRegisterDefOperand(Reg); + if (MO) + MO->setIsEarlyClobber(); + } + } + } else + LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); + return true; +} + +void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, + SmallVector<unsigned, 4> &Defs) { + // What parts of the register are previously defined? + SmallSet<unsigned, 32> Live; + if (PhysRegDef[Reg] || PhysRegUse[Reg]) { + Live.insert(Reg); + for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) + Live.insert(*SS); + } else { + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + // If a register isn't itself defined, but all parts that make up of it + // are defined, then consider it also defined. + // e.g. + // AL = + // AH = + // = AX + if (Live.count(SubReg)) + continue; + if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { + Live.insert(SubReg); + for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) + Live.insert(*SS); + } + } + } + + // Start from the largest piece, find the last time any part of the register + // is referenced. + HandlePhysRegKill(Reg, MI); + // Only some of the sub-registers are used. + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + if (!Live.count(SubReg)) + // Skip if this sub-register isn't defined. + continue; + HandlePhysRegKill(SubReg, MI); + } + + if (MI) + Defs.push_back(Reg); // Remember this def. +} + +void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, + SmallVector<unsigned, 4> &Defs) { + while (!Defs.empty()) { + unsigned Reg = Defs.back(); + Defs.pop_back(); + PhysRegDef[Reg] = MI; + PhysRegUse[Reg] = NULL; + for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + PhysRegDef[SubReg] = MI; + PhysRegUse[SubReg] = NULL; + } + } +} + +bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { + MF = &mf; + MRI = &mf.getRegInfo(); + TRI = MF->getTarget().getRegisterInfo(); + + ReservedRegisters = TRI->getReservedRegs(mf); + + unsigned NumRegs = TRI->getNumRegs(); + PhysRegDef = new MachineInstr*[NumRegs]; + PhysRegUse = new MachineInstr*[NumRegs]; + PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; + std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); + std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); + PHIJoins.clear(); + + analyzePHINodes(mf); + + // Calculate live variable information in depth first order on the CFG of the + // function. This guarantees that we will see the definition of a virtual + // register before its uses due to dominance properties of SSA (except for PHI + // nodes, which are treated as a special case). + MachineBasicBlock *Entry = MF->begin(); + SmallPtrSet<MachineBasicBlock*,16> Visited; + + for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > + DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); + DFI != E; ++DFI) { + MachineBasicBlock *MBB = *DFI; + + // Mark live-in registers as live-in. + SmallVector<unsigned, 4> Defs; + for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(), + EE = MBB->livein_end(); II != EE; ++II) { + assert(TargetRegisterInfo::isPhysicalRegister(*II) && + "Cannot have a live-in virtual register!"); + HandlePhysRegDef(*II, 0, Defs); + } + + // Loop over all of the instructions, processing them. + DistanceMap.clear(); + unsigned Dist = 0; + for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); + I != E; ++I) { + MachineInstr *MI = I; + if (MI->isDebugValue()) + continue; + DistanceMap.insert(std::make_pair(MI, Dist++)); + + // Process all of the operands of the instruction... + unsigned NumOperandsToProcess = MI->getNumOperands(); + + // Unless it is a PHI node. In this case, ONLY process the DEF, not any + // of the uses. They will be handled in other basic blocks. + if (MI->isPHI()) + NumOperandsToProcess = 1; + + // Clear kill and dead markers. LV will recompute them. + SmallVector<unsigned, 4> UseRegs; + SmallVector<unsigned, 4> DefRegs; + for (unsigned i = 0; i != NumOperandsToProcess; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || MO.getReg() == 0) + continue; + unsigned MOReg = MO.getReg(); + if (MO.isUse()) { + MO.setIsKill(false); + UseRegs.push_back(MOReg); + } else /*MO.isDef()*/ { + MO.setIsDead(false); + DefRegs.push_back(MOReg); + } + } + + // Process all uses. + for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { + unsigned MOReg = UseRegs[i]; + if (TargetRegisterInfo::isVirtualRegister(MOReg)) + HandleVirtRegUse(MOReg, MBB, MI); + else if (!ReservedRegisters[MOReg]) + HandlePhysRegUse(MOReg, MI); + } + + // Process all defs. + for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { + unsigned MOReg = DefRegs[i]; + if (TargetRegisterInfo::isVirtualRegister(MOReg)) + HandleVirtRegDef(MOReg, MI); + else if (!ReservedRegisters[MOReg]) + HandlePhysRegDef(MOReg, MI, Defs); + } + UpdatePhysRegDefs(MI, Defs); + } + + // Handle any virtual assignments from PHI nodes which might be at the + // bottom of this basic block. We check all of our successor blocks to see + // if they have PHI nodes, and if so, we simulate an assignment at the end + // of the current block. + if (!PHIVarInfo[MBB->getNumber()].empty()) { + SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; + + for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), + E = VarInfoVec.end(); I != E; ++I) + // Mark it alive only in the block we are representing. + MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), + MBB); + } + + // Finally, if the last instruction in the block is a return, make sure to + // mark it as using all of the live-out values in the function. + // Things marked both call and return are tail calls; do not do this for + // them. The tail callee need not take the same registers as input + // that it produces as output, and there are dependencies for its input + // registers elsewhere. + if (!MBB->empty() && MBB->back().getDesc().isReturn() + && !MBB->back().getDesc().isCall()) { + MachineInstr *Ret = &MBB->back(); + + for (MachineRegisterInfo::liveout_iterator + I = MF->getRegInfo().liveout_begin(), + E = MF->getRegInfo().liveout_end(); I != E; ++I) { + assert(TargetRegisterInfo::isPhysicalRegister(*I) && + "Cannot have a live-out virtual register!"); + HandlePhysRegUse(*I, Ret); + + // Add live-out registers as implicit uses. + if (!Ret->readsRegister(*I)) + Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); + } + } + + // Loop over PhysRegDef / PhysRegUse, killing any registers that are + // available at the end of the basic block. + for (unsigned i = 0; i != NumRegs; ++i) + if (PhysRegDef[i] || PhysRegUse[i]) + HandlePhysRegDef(i, 0, Defs); + + std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); + std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); + } + + // Convert and transfer the dead / killed information we have gathered into + // VirtRegInfo onto MI's. + for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) { + const unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j) + if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg)) + VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI); + else + VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI); + } + + // Check to make sure there are no unreachable blocks in the MC CFG for the + // function. If so, it is due to a bug in the instruction selector or some + // other part of the code generator if this happens. +#ifndef NDEBUG + for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) + assert(Visited.count(&*i) != 0 && "unreachable basic block found"); +#endif + + delete[] PhysRegDef; + delete[] PhysRegUse; + delete[] PHIVarInfo; + + return false; +} + +/// replaceKillInstruction - Update register kill info by replacing a kill +/// instruction with a new one. +void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, + MachineInstr *NewMI) { + VarInfo &VI = getVarInfo(Reg); + std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); +} + +/// removeVirtualRegistersKilled - Remove all killed info for the specified +/// instruction. +void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isKill()) { + MO.setIsKill(false); + unsigned Reg = MO.getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + bool removed = getVarInfo(Reg).removeKill(MI); + assert(removed && "kill not in register's VarInfo?"); + removed = true; + } + } + } +} + +/// analyzePHINodes - Gather information about the PHI nodes in here. In +/// particular, we want to map the variable information of a virtual register +/// which is used in a PHI node. We map that to the BB the vreg is coming from. +/// +void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { + for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); + I != E; ++I) + for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); + BBI != BBE && BBI->isPHI(); ++BBI) + for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) + PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] + .push_back(BBI->getOperand(i).getReg()); +} + +bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, + unsigned Reg, + MachineRegisterInfo &MRI) { + unsigned Num = MBB.getNumber(); + + // Reg is live-through. + if (AliveBlocks.test(Num)) + return true; + + // Registers defined in MBB cannot be live in. + const MachineInstr *Def = MRI.getVRegDef(Reg); + if (Def && Def->getParent() == &MBB) + return false; + + // Reg was not defined in MBB, was it killed here? + return findKill(&MBB); +} + +bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { + LiveVariables::VarInfo &VI = getVarInfo(Reg); + + // Loop over all of the successors of the basic block, checking to see if + // the value is either live in the block, or if it is killed in the block. + SmallVector<MachineBasicBlock*, 8> OpSuccBlocks; + for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), + E = MBB.succ_end(); SI != E; ++SI) { + MachineBasicBlock *SuccMBB = *SI; + + // Is it alive in this successor? + unsigned SuccIdx = SuccMBB->getNumber(); + if (VI.AliveBlocks.test(SuccIdx)) + return true; + OpSuccBlocks.push_back(SuccMBB); + } + + // Check to see if this value is live because there is a use in a successor + // that kills it. + switch (OpSuccBlocks.size()) { + case 1: { + MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; + for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) + if (VI.Kills[i]->getParent() == SuccMBB) + return true; + break; + } + case 2: { + MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; + for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) + if (VI.Kills[i]->getParent() == SuccMBB1 || + VI.Kills[i]->getParent() == SuccMBB2) + return true; + break; + } + default: + std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); + for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) + if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), + VI.Kills[i]->getParent())) + return true; + } + return false; +} + +/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All +/// variables that are live out of DomBB will be marked as passing live through +/// BB. +void LiveVariables::addNewBlock(MachineBasicBlock *BB, + MachineBasicBlock *DomBB, + MachineBasicBlock *SuccBB) { + const unsigned NumNew = BB->getNumber(); + + // All registers used by PHI nodes in SuccBB must be live through BB. + for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(), + BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI) + for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) + if (BBI->getOperand(i+1).getMBB() == BB) + getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); + + // Update info for all live variables + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + VarInfo &VI = getVarInfo(Reg); + if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) + VI.AliveBlocks.set(NumNew); + } +} |