summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp380
1 files changed, 380 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp b/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
new file mode 100644
index 0000000..b4ce9aa
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp
@@ -0,0 +1,380 @@
+//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The LiveRangeEdit class represents changes done to a virtual register when it
+// is spilled or split.
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "VirtRegMap.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveRangeEdit.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE");
+STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
+STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE");
+
+void LiveRangeEdit::Delegate::anchor() { }
+
+LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) {
+ unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
+ if (VRM) {
+ VRM->grow();
+ VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
+ }
+ LiveInterval &LI = LIS.getOrCreateInterval(VReg);
+ NewRegs.push_back(&LI);
+ return LI;
+}
+
+bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
+ const MachineInstr *DefMI,
+ AliasAnalysis *aa) {
+ assert(DefMI && "Missing instruction");
+ ScannedRemattable = true;
+ if (!TII.isTriviallyReMaterializable(DefMI, aa))
+ return false;
+ Remattable.insert(VNI);
+ return true;
+}
+
+void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
+ for (LiveInterval::vni_iterator I = getParent().vni_begin(),
+ E = getParent().vni_end(); I != E; ++I) {
+ VNInfo *VNI = *I;
+ if (VNI->isUnused())
+ continue;
+ MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
+ if (!DefMI)
+ continue;
+ checkRematerializable(VNI, DefMI, aa);
+ }
+ ScannedRemattable = true;
+}
+
+bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
+ if (!ScannedRemattable)
+ scanRemattable(aa);
+ return !Remattable.empty();
+}
+
+/// allUsesAvailableAt - Return true if all registers used by OrigMI at
+/// OrigIdx are also available with the same value at UseIdx.
+bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
+ SlotIndex OrigIdx,
+ SlotIndex UseIdx) {
+ OrigIdx = OrigIdx.getRegSlot(true);
+ UseIdx = UseIdx.getRegSlot(true);
+ for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = OrigMI->getOperand(i);
+ if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
+ continue;
+
+ // We can't remat physreg uses, unless it is a constant.
+ if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
+ if (MRI.isConstantPhysReg(MO.getReg(), VRM->getMachineFunction()))
+ continue;
+ return false;
+ }
+
+ LiveInterval &li = LIS.getInterval(MO.getReg());
+ const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
+ if (!OVNI)
+ continue;
+ if (OVNI != li.getVNInfoAt(UseIdx))
+ return false;
+ }
+ return true;
+}
+
+bool LiveRangeEdit::canRematerializeAt(Remat &RM,
+ SlotIndex UseIdx,
+ bool cheapAsAMove) {
+ assert(ScannedRemattable && "Call anyRematerializable first");
+
+ // Use scanRemattable info.
+ if (!Remattable.count(RM.ParentVNI))
+ return false;
+
+ // No defining instruction provided.
+ SlotIndex DefIdx;
+ if (RM.OrigMI)
+ DefIdx = LIS.getInstructionIndex(RM.OrigMI);
+ else {
+ DefIdx = RM.ParentVNI->def;
+ RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
+ assert(RM.OrigMI && "No defining instruction for remattable value");
+ }
+
+ // If only cheap remats were requested, bail out early.
+ if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
+ return false;
+
+ // Verify that all used registers are available with the same values.
+ if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
+ return false;
+
+ return true;
+}
+
+SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg,
+ const Remat &RM,
+ const TargetRegisterInfo &tri,
+ bool Late) {
+ assert(RM.OrigMI && "Invalid remat");
+ TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
+ Rematted.insert(RM.ParentVNI);
+ return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
+ .getRegSlot();
+}
+
+void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
+ if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
+ LIS.removeInterval(Reg);
+}
+
+bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
+ SmallVectorImpl<MachineInstr*> &Dead) {
+ MachineInstr *DefMI = 0, *UseMI = 0;
+
+ // Check that there is a single def and a single use.
+ for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
+ E = MRI.reg_nodbg_end(); I != E; ++I) {
+ MachineOperand &MO = I.getOperand();
+ MachineInstr *MI = MO.getParent();
+ if (MO.isDef()) {
+ if (DefMI && DefMI != MI)
+ return false;
+ if (!MI->canFoldAsLoad())
+ return false;
+ DefMI = MI;
+ } else if (!MO.isUndef()) {
+ if (UseMI && UseMI != MI)
+ return false;
+ // FIXME: Targets don't know how to fold subreg uses.
+ if (MO.getSubReg())
+ return false;
+ UseMI = MI;
+ }
+ }
+ if (!DefMI || !UseMI)
+ return false;
+
+ // Since we're moving the DefMI load, make sure we're not extending any live
+ // ranges.
+ if (!allUsesAvailableAt(DefMI,
+ LIS.getInstructionIndex(DefMI),
+ LIS.getInstructionIndex(UseMI)))
+ return false;
+
+ // We also need to make sure it is safe to move the load.
+ // Assume there are stores between DefMI and UseMI.
+ bool SawStore = true;
+ if (!DefMI->isSafeToMove(&TII, 0, SawStore))
+ return false;
+
+ DEBUG(dbgs() << "Try to fold single def: " << *DefMI
+ << " into single use: " << *UseMI);
+
+ SmallVector<unsigned, 8> Ops;
+ if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
+ return false;
+
+ MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
+ if (!FoldMI)
+ return false;
+ DEBUG(dbgs() << " folded: " << *FoldMI);
+ LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
+ UseMI->eraseFromParent();
+ DefMI->addRegisterDead(LI->reg, 0);
+ Dead.push_back(DefMI);
+ ++NumDCEFoldedLoads;
+ return true;
+}
+
+void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
+ ArrayRef<unsigned> RegsBeingSpilled) {
+ SetVector<LiveInterval*,
+ SmallVector<LiveInterval*, 8>,
+ SmallPtrSet<LiveInterval*, 8> > ToShrink;
+
+ for (;;) {
+ // Erase all dead defs.
+ while (!Dead.empty()) {
+ MachineInstr *MI = Dead.pop_back_val();
+ assert(MI->allDefsAreDead() && "Def isn't really dead");
+ SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
+
+ // Never delete inline asm.
+ if (MI->isInlineAsm()) {
+ DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
+ continue;
+ }
+
+ // Use the same criteria as DeadMachineInstructionElim.
+ bool SawStore = false;
+ if (!MI->isSafeToMove(&TII, 0, SawStore)) {
+ DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
+ continue;
+ }
+
+ DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
+
+ // Collect virtual registers to be erased after MI is gone.
+ SmallVector<unsigned, 8> RegsToErase;
+ bool ReadsPhysRegs = false;
+
+ // Check for live intervals that may shrink
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end(); MOI != MOE; ++MOI) {
+ if (!MOI->isReg())
+ continue;
+ unsigned Reg = MOI->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
+ // Check if MI reads any unreserved physregs.
+ if (Reg && MOI->readsReg() && !LIS.isReserved(Reg))
+ ReadsPhysRegs = true;
+ continue;
+ }
+ LiveInterval &LI = LIS.getInterval(Reg);
+
+ // Shrink read registers, unless it is likely to be expensive and
+ // unlikely to change anything. We typically don't want to shrink the
+ // PIC base register that has lots of uses everywhere.
+ // Always shrink COPY uses that probably come from live range splitting.
+ if (MI->readsVirtualRegister(Reg) &&
+ (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
+ LI.killedAt(Idx)))
+ ToShrink.insert(&LI);
+
+ // Remove defined value.
+ if (MOI->isDef()) {
+ if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
+ if (TheDelegate)
+ TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
+ LI.removeValNo(VNI);
+ if (LI.empty())
+ RegsToErase.push_back(Reg);
+ }
+ }
+ }
+
+ // Currently, we don't support DCE of physreg live ranges. If MI reads
+ // any unreserved physregs, don't erase the instruction, but turn it into
+ // a KILL instead. This way, the physreg live ranges don't end up
+ // dangling.
+ // FIXME: It would be better to have something like shrinkToUses() for
+ // physregs. That could potentially enable more DCE and it would free up
+ // the physreg. It would not happen often, though.
+ if (ReadsPhysRegs) {
+ MI->setDesc(TII.get(TargetOpcode::KILL));
+ // Remove all operands that aren't physregs.
+ for (unsigned i = MI->getNumOperands(); i; --i) {
+ const MachineOperand &MO = MI->getOperand(i-1);
+ if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
+ continue;
+ MI->RemoveOperand(i-1);
+ }
+ DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
+ } else {
+ if (TheDelegate)
+ TheDelegate->LRE_WillEraseInstruction(MI);
+ LIS.RemoveMachineInstrFromMaps(MI);
+ MI->eraseFromParent();
+ ++NumDCEDeleted;
+ }
+
+ // Erase any virtregs that are now empty and unused. There may be <undef>
+ // uses around. Keep the empty live range in that case.
+ for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
+ unsigned Reg = RegsToErase[i];
+ if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
+ ToShrink.remove(&LIS.getInterval(Reg));
+ eraseVirtReg(Reg);
+ }
+ }
+ }
+
+ if (ToShrink.empty())
+ break;
+
+ // Shrink just one live interval. Then delete new dead defs.
+ LiveInterval *LI = ToShrink.back();
+ ToShrink.pop_back();
+ if (foldAsLoad(LI, Dead))
+ continue;
+ if (TheDelegate)
+ TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
+ if (!LIS.shrinkToUses(LI, &Dead))
+ continue;
+
+ // Don't create new intervals for a register being spilled.
+ // The new intervals would have to be spilled anyway so its not worth it.
+ // Also they currently aren't spilled so creating them and not spilling
+ // them results in incorrect code.
+ bool BeingSpilled = false;
+ for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
+ if (LI->reg == RegsBeingSpilled[i]) {
+ BeingSpilled = true;
+ break;
+ }
+ }
+
+ if (BeingSpilled) continue;
+
+ // LI may have been separated, create new intervals.
+ LI->RenumberValues(LIS);
+ ConnectedVNInfoEqClasses ConEQ(LIS);
+ unsigned NumComp = ConEQ.Classify(LI);
+ if (NumComp <= 1)
+ continue;
+ ++NumFracRanges;
+ bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
+ DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
+ SmallVector<LiveInterval*, 8> Dups(1, LI);
+ for (unsigned i = 1; i != NumComp; ++i) {
+ Dups.push_back(&createFrom(LI->reg));
+ // If LI is an original interval that hasn't been split yet, make the new
+ // intervals their own originals instead of referring to LI. The original
+ // interval must contain all the split products, and LI doesn't.
+ if (IsOriginal)
+ VRM->setIsSplitFromReg(Dups.back()->reg, 0);
+ if (TheDelegate)
+ TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
+ }
+ ConEQ.Distribute(&Dups[0], MRI);
+ DEBUG({
+ for (unsigned i = 0; i != NumComp; ++i)
+ dbgs() << '\t' << *Dups[i] << '\n';
+ });
+ }
+}
+
+void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
+ const MachineLoopInfo &Loops) {
+ VirtRegAuxInfo VRAI(MF, LIS, Loops);
+ for (iterator I = begin(), E = end(); I != E; ++I) {
+ LiveInterval &LI = **I;
+ if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
+ DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
+ << MRI.getRegClass(LI.reg)->getName() << '\n');
+ VRAI.CalculateWeightAndHint(LI);
+ }
+}
OpenPOWER on IntegriCloud