diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp | 387 |
1 files changed, 387 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp b/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp new file mode 100644 index 0000000..7793e96 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/LiveRangeEdit.cpp @@ -0,0 +1,387 @@ +//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// The LiveRangeEdit class represents changes done to a virtual register when it +// is spilled or split. +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "llvm/CodeGen/LiveRangeEdit.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" + +using namespace llvm; + +STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); +STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); +STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); + +void LiveRangeEdit::Delegate::anchor() { } + +LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) { + unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); + if (VRM) { + VRM->grow(); + VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); + } + LiveInterval &LI = LIS.getOrCreateInterval(VReg); + NewRegs.push_back(&LI); + return LI; +} + +bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, + const MachineInstr *DefMI, + AliasAnalysis *aa) { + assert(DefMI && "Missing instruction"); + ScannedRemattable = true; + if (!TII.isTriviallyReMaterializable(DefMI, aa)) + return false; + Remattable.insert(VNI); + return true; +} + +void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { + for (LiveInterval::vni_iterator I = getParent().vni_begin(), + E = getParent().vni_end(); I != E; ++I) { + VNInfo *VNI = *I; + if (VNI->isUnused()) + continue; + MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def); + if (!DefMI) + continue; + checkRematerializable(VNI, DefMI, aa); + } + ScannedRemattable = true; +} + +bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { + if (!ScannedRemattable) + scanRemattable(aa); + return !Remattable.empty(); +} + +/// allUsesAvailableAt - Return true if all registers used by OrigMI at +/// OrigIdx are also available with the same value at UseIdx. +bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, + SlotIndex OrigIdx, + SlotIndex UseIdx) const { + OrigIdx = OrigIdx.getRegSlot(true); + UseIdx = UseIdx.getRegSlot(true); + for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = OrigMI->getOperand(i); + if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) + continue; + + // We can't remat physreg uses, unless it is a constant. + if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { + if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent())) + continue; + return false; + } + + LiveInterval &li = LIS.getInterval(MO.getReg()); + const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); + if (!OVNI) + continue; + + // Don't allow rematerialization immediately after the original def. + // It would be incorrect if OrigMI redefines the register. + // See PR14098. + if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) + return false; + + if (OVNI != li.getVNInfoAt(UseIdx)) + return false; + } + return true; +} + +bool LiveRangeEdit::canRematerializeAt(Remat &RM, + SlotIndex UseIdx, + bool cheapAsAMove) { + assert(ScannedRemattable && "Call anyRematerializable first"); + + // Use scanRemattable info. + if (!Remattable.count(RM.ParentVNI)) + return false; + + // No defining instruction provided. + SlotIndex DefIdx; + if (RM.OrigMI) + DefIdx = LIS.getInstructionIndex(RM.OrigMI); + else { + DefIdx = RM.ParentVNI->def; + RM.OrigMI = LIS.getInstructionFromIndex(DefIdx); + assert(RM.OrigMI && "No defining instruction for remattable value"); + } + + // If only cheap remats were requested, bail out early. + if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove()) + return false; + + // Verify that all used registers are available with the same values. + if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) + return false; + + return true; +} + +SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, + const Remat &RM, + const TargetRegisterInfo &tri, + bool Late) { + assert(RM.OrigMI && "Invalid remat"); + TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri); + Rematted.insert(RM.ParentVNI); + return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late) + .getRegSlot(); +} + +void LiveRangeEdit::eraseVirtReg(unsigned Reg) { + if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) + LIS.removeInterval(Reg); +} + +bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, + SmallVectorImpl<MachineInstr*> &Dead) { + MachineInstr *DefMI = 0, *UseMI = 0; + + // Check that there is a single def and a single use. + for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg), + E = MRI.reg_nodbg_end(); I != E; ++I) { + MachineOperand &MO = I.getOperand(); + MachineInstr *MI = MO.getParent(); + if (MO.isDef()) { + if (DefMI && DefMI != MI) + return false; + if (!MI->canFoldAsLoad()) + return false; + DefMI = MI; + } else if (!MO.isUndef()) { + if (UseMI && UseMI != MI) + return false; + // FIXME: Targets don't know how to fold subreg uses. + if (MO.getSubReg()) + return false; + UseMI = MI; + } + } + if (!DefMI || !UseMI) + return false; + + // Since we're moving the DefMI load, make sure we're not extending any live + // ranges. + if (!allUsesAvailableAt(DefMI, + LIS.getInstructionIndex(DefMI), + LIS.getInstructionIndex(UseMI))) + return false; + + // We also need to make sure it is safe to move the load. + // Assume there are stores between DefMI and UseMI. + bool SawStore = true; + if (!DefMI->isSafeToMove(&TII, 0, SawStore)) + return false; + + DEBUG(dbgs() << "Try to fold single def: " << *DefMI + << " into single use: " << *UseMI); + + SmallVector<unsigned, 8> Ops; + if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) + return false; + + MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI); + if (!FoldMI) + return false; + DEBUG(dbgs() << " folded: " << *FoldMI); + LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI); + UseMI->eraseFromParent(); + DefMI->addRegisterDead(LI->reg, 0); + Dead.push_back(DefMI); + ++NumDCEFoldedLoads; + return true; +} + +void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead, + ArrayRef<unsigned> RegsBeingSpilled) { + SetVector<LiveInterval*, + SmallVector<LiveInterval*, 8>, + SmallPtrSet<LiveInterval*, 8> > ToShrink; + + for (;;) { + // Erase all dead defs. + while (!Dead.empty()) { + MachineInstr *MI = Dead.pop_back_val(); + assert(MI->allDefsAreDead() && "Def isn't really dead"); + SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); + + // Never delete inline asm. + if (MI->isInlineAsm()) { + DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); + continue; + } + + // Use the same criteria as DeadMachineInstructionElim. + bool SawStore = false; + if (!MI->isSafeToMove(&TII, 0, SawStore)) { + DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); + continue; + } + + DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); + + // Collect virtual registers to be erased after MI is gone. + SmallVector<unsigned, 8> RegsToErase; + bool ReadsPhysRegs = false; + + // Check for live intervals that may shrink + for (MachineInstr::mop_iterator MOI = MI->operands_begin(), + MOE = MI->operands_end(); MOI != MOE; ++MOI) { + if (!MOI->isReg()) + continue; + unsigned Reg = MOI->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) { + // Check if MI reads any unreserved physregs. + if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) + ReadsPhysRegs = true; + continue; + } + LiveInterval &LI = LIS.getInterval(Reg); + + // Shrink read registers, unless it is likely to be expensive and + // unlikely to change anything. We typically don't want to shrink the + // PIC base register that has lots of uses everywhere. + // Always shrink COPY uses that probably come from live range splitting. + if (MI->readsVirtualRegister(Reg) && + (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) || + LI.killedAt(Idx))) + ToShrink.insert(&LI); + + // Remove defined value. + if (MOI->isDef()) { + if (VNInfo *VNI = LI.getVNInfoAt(Idx)) { + if (TheDelegate) + TheDelegate->LRE_WillShrinkVirtReg(LI.reg); + LI.removeValNo(VNI); + if (LI.empty()) + RegsToErase.push_back(Reg); + } + } + } + + // Currently, we don't support DCE of physreg live ranges. If MI reads + // any unreserved physregs, don't erase the instruction, but turn it into + // a KILL instead. This way, the physreg live ranges don't end up + // dangling. + // FIXME: It would be better to have something like shrinkToUses() for + // physregs. That could potentially enable more DCE and it would free up + // the physreg. It would not happen often, though. + if (ReadsPhysRegs) { + MI->setDesc(TII.get(TargetOpcode::KILL)); + // Remove all operands that aren't physregs. + for (unsigned i = MI->getNumOperands(); i; --i) { + const MachineOperand &MO = MI->getOperand(i-1); + if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) + continue; + MI->RemoveOperand(i-1); + } + DEBUG(dbgs() << "Converted physregs to:\t" << *MI); + } else { + if (TheDelegate) + TheDelegate->LRE_WillEraseInstruction(MI); + LIS.RemoveMachineInstrFromMaps(MI); + MI->eraseFromParent(); + ++NumDCEDeleted; + } + + // Erase any virtregs that are now empty and unused. There may be <undef> + // uses around. Keep the empty live range in that case. + for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { + unsigned Reg = RegsToErase[i]; + if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { + ToShrink.remove(&LIS.getInterval(Reg)); + eraseVirtReg(Reg); + } + } + } + + if (ToShrink.empty()) + break; + + // Shrink just one live interval. Then delete new dead defs. + LiveInterval *LI = ToShrink.back(); + ToShrink.pop_back(); + if (foldAsLoad(LI, Dead)) + continue; + if (TheDelegate) + TheDelegate->LRE_WillShrinkVirtReg(LI->reg); + if (!LIS.shrinkToUses(LI, &Dead)) + continue; + + // Don't create new intervals for a register being spilled. + // The new intervals would have to be spilled anyway so its not worth it. + // Also they currently aren't spilled so creating them and not spilling + // them results in incorrect code. + bool BeingSpilled = false; + for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { + if (LI->reg == RegsBeingSpilled[i]) { + BeingSpilled = true; + break; + } + } + + if (BeingSpilled) continue; + + // LI may have been separated, create new intervals. + LI->RenumberValues(LIS); + ConnectedVNInfoEqClasses ConEQ(LIS); + unsigned NumComp = ConEQ.Classify(LI); + if (NumComp <= 1) + continue; + ++NumFracRanges; + bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg; + DEBUG(dbgs() << NumComp << " components: " << *LI << '\n'); + SmallVector<LiveInterval*, 8> Dups(1, LI); + for (unsigned i = 1; i != NumComp; ++i) { + Dups.push_back(&createFrom(LI->reg)); + // If LI is an original interval that hasn't been split yet, make the new + // intervals their own originals instead of referring to LI. The original + // interval must contain all the split products, and LI doesn't. + if (IsOriginal) + VRM->setIsSplitFromReg(Dups.back()->reg, 0); + if (TheDelegate) + TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg); + } + ConEQ.Distribute(&Dups[0], MRI); + DEBUG({ + for (unsigned i = 0; i != NumComp; ++i) + dbgs() << '\t' << *Dups[i] << '\n'; + }); + } +} + +void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, + const MachineLoopInfo &Loops) { + VirtRegAuxInfo VRAI(MF, LIS, Loops); + for (iterator I = begin(), E = end(); I != E; ++I) { + LiveInterval &LI = **I; + if (MRI.recomputeRegClass(LI.reg, MF.getTarget())) + DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to " + << MRI.getRegClass(LI.reg)->getName() << '\n'); + VRAI.CalculateWeightAndHint(LI); + } +} |