summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp468
1 files changed, 468 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp b/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
new file mode 100644
index 0000000..c408615
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/LiveRangeCalc.cpp
@@ -0,0 +1,468 @@
+//===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implementation of the LiveRangeCalc class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LiveRangeCalc.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+void LiveRangeCalc::resetLiveOutMap() {
+ unsigned NumBlocks = MF->getNumBlockIDs();
+ Seen.clear();
+ Seen.resize(NumBlocks);
+ Map.resize(NumBlocks);
+}
+
+void LiveRangeCalc::reset(const MachineFunction *mf,
+ SlotIndexes *SI,
+ MachineDominatorTree *MDT,
+ VNInfo::Allocator *VNIA) {
+ MF = mf;
+ MRI = &MF->getRegInfo();
+ Indexes = SI;
+ DomTree = MDT;
+ Alloc = VNIA;
+ resetLiveOutMap();
+ LiveIn.clear();
+}
+
+
+static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
+ LiveRange &LR, const MachineOperand &MO) {
+ const MachineInstr *MI = MO.getParent();
+ SlotIndex DefIdx =
+ Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
+
+ // Create the def in LR. This may find an existing def.
+ LR.createDeadDef(DefIdx, Alloc);
+}
+
+void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
+ assert(MRI && Indexes && "call reset() first");
+
+ // Step 1: Create minimal live segments for every definition of Reg.
+ // Visit all def operands. If the same instruction has multiple defs of Reg,
+ // createDeadDef() will deduplicate.
+ const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
+ unsigned Reg = LI.reg;
+ for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
+ if (!MO.isDef() && !MO.readsReg())
+ continue;
+
+ unsigned SubReg = MO.getSubReg();
+ if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
+ LaneBitmask Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
+ : MRI->getMaxLaneMaskForVReg(Reg);
+
+ // If this is the first time we see a subregister def, initialize
+ // subranges by creating a copy of the main range.
+ if (!LI.hasSubRanges() && !LI.empty()) {
+ LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
+ LI.createSubRangeFrom(*Alloc, ClassMask, LI);
+ }
+
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ // A Mask for subregs common to the existing subrange and current def.
+ LaneBitmask Common = S.LaneMask & Mask;
+ if (Common == 0)
+ continue;
+ // A Mask for subregs covered by the subrange but not the current def.
+ LaneBitmask LRest = S.LaneMask & ~Mask;
+ LiveInterval::SubRange *CommonRange;
+ if (LRest != 0) {
+ // Split current subrange into Common and LRest ranges.
+ S.LaneMask = LRest;
+ CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
+ } else {
+ assert(Common == S.LaneMask);
+ CommonRange = &S;
+ }
+ if (MO.isDef())
+ createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
+ Mask &= ~Common;
+ }
+ // Create a new SubRange for subregs we did not cover yet.
+ if (Mask != 0) {
+ LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
+ if (MO.isDef())
+ createDeadDef(*Indexes, *Alloc, *NewRange, MO);
+ }
+ }
+
+ // Create the def in the main liverange. We do not have to do this if
+ // subranges are tracked as we recreate the main range later in this case.
+ if (MO.isDef() && !LI.hasSubRanges())
+ createDeadDef(*Indexes, *Alloc, LI, MO);
+ }
+
+ // We may have created empty live ranges for partially undefined uses, we
+ // can't keep them because we won't find defs in them later.
+ LI.removeEmptySubRanges();
+
+ // Step 2: Extend live segments to all uses, constructing SSA form as
+ // necessary.
+ if (LI.hasSubRanges()) {
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ resetLiveOutMap();
+ extendToUses(S, Reg, S.LaneMask);
+ }
+ LI.clear();
+ LI.constructMainRangeFromSubranges(*Indexes, *Alloc);
+ } else {
+ resetLiveOutMap();
+ extendToUses(LI, Reg, ~0u);
+ }
+}
+
+
+void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
+ assert(MRI && Indexes && "call reset() first");
+
+ // Visit all def operands. If the same instruction has multiple defs of Reg,
+ // LR.createDeadDef() will deduplicate.
+ for (MachineOperand &MO : MRI->def_operands(Reg))
+ createDeadDef(*Indexes, *Alloc, LR, MO);
+}
+
+
+void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg,
+ LaneBitmask Mask) {
+ // Visit all operands that read Reg. This may include partial defs.
+ const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
+ for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
+ // Clear all kill flags. They will be reinserted after register allocation
+ // by LiveIntervalAnalysis::addKillFlags().
+ if (MO.isUse())
+ MO.setIsKill(false);
+ else {
+ // We only care about uses, but on the main range (mask ~0u) this includes
+ // the "virtual" reads happening for subregister defs.
+ if (Mask != ~0u)
+ continue;
+ }
+
+ if (!MO.readsReg())
+ continue;
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0) {
+ LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
+ // Ignore uses not covering the current subrange.
+ if ((SubRegMask & Mask) == 0)
+ continue;
+ }
+
+ // Determine the actual place of the use.
+ const MachineInstr *MI = MO.getParent();
+ unsigned OpNo = (&MO - &MI->getOperand(0));
+ SlotIndex UseIdx;
+ if (MI->isPHI()) {
+ assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
+ // The actual place where a phi operand is used is the end of the pred
+ // MBB. PHI operands are paired: (Reg, PredMBB).
+ UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
+ } else {
+ // Check for early-clobber redefs.
+ bool isEarlyClobber = false;
+ unsigned DefIdx;
+ if (MO.isDef())
+ isEarlyClobber = MO.isEarlyClobber();
+ else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
+ // FIXME: This would be a lot easier if tied early-clobber uses also
+ // had an early-clobber flag.
+ isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
+ }
+ UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
+ }
+
+ // MI is reading Reg. We may have visited MI before if it happens to be
+ // reading Reg multiple times. That is OK, extend() is idempotent.
+ extend(LR, UseIdx, Reg);
+ }
+}
+
+
+void LiveRangeCalc::updateFromLiveIns() {
+ LiveRangeUpdater Updater;
+ for (const LiveInBlock &I : LiveIn) {
+ if (!I.DomNode)
+ continue;
+ MachineBasicBlock *MBB = I.DomNode->getBlock();
+ assert(I.Value && "No live-in value found");
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(MBB);
+
+ if (I.Kill.isValid())
+ // Value is killed inside this block.
+ End = I.Kill;
+ else {
+ // The value is live-through, update LiveOut as well.
+ // Defer the Domtree lookup until it is needed.
+ assert(Seen.test(MBB->getNumber()));
+ Map[MBB] = LiveOutPair(I.Value, nullptr);
+ }
+ Updater.setDest(&I.LR);
+ Updater.add(Start, End, I.Value);
+ }
+ LiveIn.clear();
+}
+
+
+void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
+ assert(Use.isValid() && "Invalid SlotIndex");
+ assert(Indexes && "Missing SlotIndexes");
+ assert(DomTree && "Missing dominator tree");
+
+ MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
+ assert(UseMBB && "No MBB at Use");
+
+ // Is there a def in the same MBB we can extend?
+ if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use))
+ return;
+
+ // Find the single reaching def, or determine if Use is jointly dominated by
+ // multiple values, and we may need to create even more phi-defs to preserve
+ // VNInfo SSA form. Perform a search for all predecessor blocks where we
+ // know the dominating VNInfo.
+ if (findReachingDefs(LR, *UseMBB, Use, PhysReg))
+ return;
+
+ // When there were multiple different values, we may need new PHIs.
+ calculateValues();
+}
+
+
+// This function is called by a client after using the low-level API to add
+// live-out and live-in blocks. The unique value optimization is not
+// available, SplitEditor::transferValues handles that case directly anyway.
+void LiveRangeCalc::calculateValues() {
+ assert(Indexes && "Missing SlotIndexes");
+ assert(DomTree && "Missing dominator tree");
+ updateSSA();
+ updateFromLiveIns();
+}
+
+
+bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
+ SlotIndex Use, unsigned PhysReg) {
+ unsigned UseMBBNum = UseMBB.getNumber();
+
+ // Block numbers where LR should be live-in.
+ SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
+
+ // Remember if we have seen more than one value.
+ bool UniqueVNI = true;
+ VNInfo *TheVNI = nullptr;
+
+ // Using Seen as a visited set, perform a BFS for all reaching defs.
+ for (unsigned i = 0; i != WorkList.size(); ++i) {
+ MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
+
+#ifndef NDEBUG
+ if (MBB->pred_empty()) {
+ MBB->getParent()->verify();
+ errs() << "Use of " << PrintReg(PhysReg)
+ << " does not have a corresponding definition on every path:\n";
+ const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
+ if (MI != nullptr)
+ errs() << Use << " " << *MI;
+ llvm_unreachable("Use not jointly dominated by defs.");
+ }
+
+ if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
+ !MBB->isLiveIn(PhysReg)) {
+ MBB->getParent()->verify();
+ errs() << "The register " << PrintReg(PhysReg)
+ << " needs to be live in to BB#" << MBB->getNumber()
+ << ", but is missing from the live-in list.\n";
+ llvm_unreachable("Invalid global physical register");
+ }
+#endif
+
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ MachineBasicBlock *Pred = *PI;
+
+ // Is this a known live-out block?
+ if (Seen.test(Pred->getNumber())) {
+ if (VNInfo *VNI = Map[Pred].first) {
+ if (TheVNI && TheVNI != VNI)
+ UniqueVNI = false;
+ TheVNI = VNI;
+ }
+ continue;
+ }
+
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(Pred);
+
+ // First time we see Pred. Try to determine the live-out value, but set
+ // it as null if Pred is live-through with an unknown value.
+ VNInfo *VNI = LR.extendInBlock(Start, End);
+ setLiveOutValue(Pred, VNI);
+ if (VNI) {
+ if (TheVNI && TheVNI != VNI)
+ UniqueVNI = false;
+ TheVNI = VNI;
+ continue;
+ }
+
+ // No, we need a live-in value for Pred as well
+ if (Pred != &UseMBB)
+ WorkList.push_back(Pred->getNumber());
+ else
+ // Loopback to UseMBB, so value is really live through.
+ Use = SlotIndex();
+ }
+ }
+
+ LiveIn.clear();
+
+ // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
+ // neither require it. Skip the sorting overhead for small updates.
+ if (WorkList.size() > 4)
+ array_pod_sort(WorkList.begin(), WorkList.end());
+
+ // If a unique reaching def was found, blit in the live ranges immediately.
+ if (UniqueVNI) {
+ LiveRangeUpdater Updater(&LR);
+ for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
+ E = WorkList.end(); I != E; ++I) {
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(*I);
+ // Trim the live range in UseMBB.
+ if (*I == UseMBBNum && Use.isValid())
+ End = Use;
+ else
+ Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
+ Updater.add(Start, End, TheVNI);
+ }
+ return true;
+ }
+
+ // Multiple values were found, so transfer the work list to the LiveIn array
+ // where UpdateSSA will use it as a work list.
+ LiveIn.reserve(WorkList.size());
+ for (SmallVectorImpl<unsigned>::const_iterator
+ I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
+ MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
+ addLiveInBlock(LR, DomTree->getNode(MBB));
+ if (MBB == &UseMBB)
+ LiveIn.back().Kill = Use;
+ }
+
+ return false;
+}
+
+
+// This is essentially the same iterative algorithm that SSAUpdater uses,
+// except we already have a dominator tree, so we don't have to recompute it.
+void LiveRangeCalc::updateSSA() {
+ assert(Indexes && "Missing SlotIndexes");
+ assert(DomTree && "Missing dominator tree");
+
+ // Interate until convergence.
+ unsigned Changes;
+ do {
+ Changes = 0;
+ // Propagate live-out values down the dominator tree, inserting phi-defs
+ // when necessary.
+ for (LiveInBlock &I : LiveIn) {
+ MachineDomTreeNode *Node = I.DomNode;
+ // Skip block if the live-in value has already been determined.
+ if (!Node)
+ continue;
+ MachineBasicBlock *MBB = Node->getBlock();
+ MachineDomTreeNode *IDom = Node->getIDom();
+ LiveOutPair IDomValue;
+
+ // We need a live-in value to a block with no immediate dominator?
+ // This is probably an unreachable block that has survived somehow.
+ bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
+
+ // IDom dominates all of our predecessors, but it may not be their
+ // immediate dominator. Check if any of them have live-out values that are
+ // properly dominated by IDom. If so, we need a phi-def here.
+ if (!needPHI) {
+ IDomValue = Map[IDom->getBlock()];
+
+ // Cache the DomTree node that defined the value.
+ if (IDomValue.first && !IDomValue.second)
+ Map[IDom->getBlock()].second = IDomValue.second =
+ DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
+
+ for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ LiveOutPair &Value = Map[*PI];
+ if (!Value.first || Value.first == IDomValue.first)
+ continue;
+
+ // Cache the DomTree node that defined the value.
+ if (!Value.second)
+ Value.second =
+ DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
+
+ // This predecessor is carrying something other than IDomValue.
+ // It could be because IDomValue hasn't propagated yet, or it could be
+ // because MBB is in the dominance frontier of that value.
+ if (DomTree->dominates(IDom, Value.second)) {
+ needPHI = true;
+ break;
+ }
+ }
+ }
+
+ // The value may be live-through even if Kill is set, as can happen when
+ // we are called from extendRange. In that case LiveOutSeen is true, and
+ // LiveOut indicates a foreign or missing value.
+ LiveOutPair &LOP = Map[MBB];
+
+ // Create a phi-def if required.
+ if (needPHI) {
+ ++Changes;
+ assert(Alloc && "Need VNInfo allocator to create PHI-defs");
+ SlotIndex Start, End;
+ std::tie(Start, End) = Indexes->getMBBRange(MBB);
+ LiveRange &LR = I.LR;
+ VNInfo *VNI = LR.getNextValue(Start, *Alloc);
+ I.Value = VNI;
+ // This block is done, we know the final value.
+ I.DomNode = nullptr;
+
+ // Add liveness since updateFromLiveIns now skips this node.
+ if (I.Kill.isValid())
+ LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
+ else {
+ LR.addSegment(LiveInterval::Segment(Start, End, VNI));
+ LOP = LiveOutPair(VNI, Node);
+ }
+ } else if (IDomValue.first) {
+ // No phi-def here. Remember incoming value.
+ I.Value = IDomValue.first;
+
+ // If the IDomValue is killed in the block, don't propagate through.
+ if (I.Kill.isValid())
+ continue;
+
+ // Propagate IDomValue if it isn't killed:
+ // MBB is live-out and doesn't define its own value.
+ if (LOP.first == IDomValue.first)
+ continue;
+ ++Changes;
+ LOP = IDomValue;
+ }
+ }
+ } while (Changes);
+}
OpenPOWER on IntegriCloud