summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp1414
1 files changed, 1414 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
new file mode 100644
index 0000000..c00b010
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -0,0 +1,1414 @@
+//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveInterval analysis pass which is used
+// by the Linear Scan Register allocator. This pass linearizes the
+// basic blocks of the function in DFS order and uses the
+// LiveVariables pass to conservatively compute live intervals for
+// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "LiveRangeCalc.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/BlockFrequency.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <algorithm>
+#include <cmath>
+#include <limits>
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+char LiveIntervals::ID = 0;
+char &llvm::LiveIntervalsID = LiveIntervals::ID;
+INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(LiveVariables)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+
+#ifndef NDEBUG
+static cl::opt<bool> EnablePrecomputePhysRegs(
+ "precompute-phys-liveness", cl::Hidden,
+ cl::desc("Eagerly compute live intervals for all physreg units."));
+#else
+static bool EnablePrecomputePhysRegs = false;
+#endif // NDEBUG
+
+static cl::opt<bool> EnableSubRegLiveness(
+ "enable-subreg-liveness", cl::Hidden, cl::init(true),
+ cl::desc("Enable subregister liveness tracking."));
+
+namespace llvm {
+cl::opt<bool> UseSegmentSetForPhysRegs(
+ "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
+ cl::desc(
+ "Use segment set for the computation of the live ranges of physregs."));
+}
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ // LiveVariables isn't really required by this analysis, it is only required
+ // here to make sure it is live during TwoAddressInstructionPass and
+ // PHIElimination. This is temporary.
+ AU.addRequired<LiveVariables>();
+ AU.addPreserved<LiveVariables>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addRequiredTransitiveID(MachineDominatorsID);
+ AU.addPreservedID(MachineDominatorsID);
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequiredTransitive<SlotIndexes>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
+ DomTree(nullptr), LRCalc(nullptr) {
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+}
+
+LiveIntervals::~LiveIntervals() {
+ delete LRCalc;
+}
+
+void LiveIntervals::releaseMemory() {
+ // Free the live intervals themselves.
+ for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
+ delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
+ VirtRegIntervals.clear();
+ RegMaskSlots.clear();
+ RegMaskBits.clear();
+ RegMaskBlocks.clear();
+
+ for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
+ delete RegUnitRanges[i];
+ RegUnitRanges.clear();
+
+ // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
+ VNInfoAllocator.Reset();
+}
+
+/// runOnMachineFunction - calculates LiveIntervals
+///
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+ MF = &fn;
+ MRI = &MF->getRegInfo();
+ TRI = MF->getSubtarget().getRegisterInfo();
+ TII = MF->getSubtarget().getInstrInfo();
+ AA = &getAnalysis<AliasAnalysis>();
+ Indexes = &getAnalysis<SlotIndexes>();
+ DomTree = &getAnalysis<MachineDominatorTree>();
+
+ if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
+ MRI->enableSubRegLiveness(true);
+
+ if (!LRCalc)
+ LRCalc = new LiveRangeCalc();
+
+ // Allocate space for all virtual registers.
+ VirtRegIntervals.resize(MRI->getNumVirtRegs());
+
+ computeVirtRegs();
+ computeRegMasks();
+ computeLiveInRegUnits();
+
+ if (EnablePrecomputePhysRegs) {
+ // For stress testing, precompute live ranges of all physical register
+ // units, including reserved registers.
+ for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
+ getRegUnit(i);
+ }
+ DEBUG(dump());
+ return true;
+}
+
+/// print - Implement the dump method.
+void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
+ OS << "********** INTERVALS **********\n";
+
+ // Dump the regunits.
+ for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
+ if (LiveRange *LR = RegUnitRanges[i])
+ OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
+
+ // Dump the virtregs.
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (hasInterval(Reg))
+ OS << getInterval(Reg) << '\n';
+ }
+
+ OS << "RegMasks:";
+ for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
+ OS << ' ' << RegMaskSlots[i];
+ OS << '\n';
+
+ printInstrs(OS);
+}
+
+void LiveIntervals::printInstrs(raw_ostream &OS) const {
+ OS << "********** MACHINEINSTRS **********\n";
+ MF->print(OS, Indexes);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void LiveIntervals::dumpInstrs() const {
+ printInstrs(dbgs());
+}
+#endif
+
+LiveInterval* LiveIntervals::createInterval(unsigned reg) {
+ float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
+ llvm::huge_valf : 0.0F;
+ return new LiveInterval(reg, Weight);
+}
+
+
+/// computeVirtRegInterval - Compute the live interval of a virtual register,
+/// based on defs and uses.
+void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
+ assert(LRCalc && "LRCalc not initialized.");
+ assert(LI.empty() && "Should only compute empty intervals.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+ LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
+ computeDeadValues(LI, nullptr);
+}
+
+void LiveIntervals::computeVirtRegs() {
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ createAndComputeVirtRegInterval(Reg);
+ }
+}
+
+void LiveIntervals::computeRegMasks() {
+ RegMaskBlocks.resize(MF->getNumBlockIDs());
+
+ // Find all instructions with regmask operands.
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
+ RMB.first = RegMaskSlots.size();
+ for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
+ MI != ME; ++MI)
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isRegMask())
+ continue;
+ RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
+ RegMaskBits.push_back(MO.getRegMask());
+ }
+ // Compute the number of register mask instructions in this block.
+ RMB.second = RegMaskSlots.size() - RMB.first;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Register Unit Liveness
+//===----------------------------------------------------------------------===//
+//
+// Fixed interference typically comes from ABI boundaries: Function arguments
+// and return values are passed in fixed registers, and so are exception
+// pointers entering landing pads. Certain instructions require values to be
+// present in specific registers. That is also represented through fixed
+// interference.
+//
+
+/// computeRegUnitInterval - Compute the live range of a register unit, based
+/// on the uses and defs of aliasing registers. The range should be empty,
+/// or contain only dead phi-defs from ABI blocks.
+void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
+ assert(LRCalc && "LRCalc not initialized.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+
+ // The physregs aliasing Unit are the roots and their super-registers.
+ // Create all values as dead defs before extending to uses. Note that roots
+ // may share super-registers. That's OK because createDeadDefs() is
+ // idempotent. It is very rare for a register unit to have multiple roots, so
+ // uniquing super-registers is probably not worthwhile.
+ for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
+ for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
+ Supers.isValid(); ++Supers) {
+ if (!MRI->reg_empty(*Supers))
+ LRCalc->createDeadDefs(LR, *Supers);
+ }
+ }
+
+ // Now extend LR to reach all uses.
+ // Ignore uses of reserved registers. We only track defs of those.
+ for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
+ for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
+ Supers.isValid(); ++Supers) {
+ unsigned Reg = *Supers;
+ if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
+ LRCalc->extendToUses(LR, Reg);
+ }
+ }
+
+ // Flush the segment set to the segment vector.
+ if (UseSegmentSetForPhysRegs)
+ LR.flushSegmentSet();
+}
+
+
+/// computeLiveInRegUnits - Precompute the live ranges of any register units
+/// that are live-in to an ABI block somewhere. Register values can appear
+/// without a corresponding def when entering the entry block or a landing pad.
+///
+void LiveIntervals::computeLiveInRegUnits() {
+ RegUnitRanges.resize(TRI->getNumRegUnits());
+ DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
+
+ // Keep track of the live range sets allocated.
+ SmallVector<unsigned, 8> NewRanges;
+
+ // Check all basic blocks for live-ins.
+ for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
+ MFI != MFE; ++MFI) {
+ const MachineBasicBlock *MBB = MFI;
+
+ // We only care about ABI blocks: Entry + landing pads.
+ if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
+ continue;
+
+ // Create phi-defs at Begin for all live-in registers.
+ SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
+ DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
+ for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
+ LIE = MBB->livein_end(); LII != LIE; ++LII) {
+ for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
+ unsigned Unit = *Units;
+ LiveRange *LR = RegUnitRanges[Unit];
+ if (!LR) {
+ // Use segment set to speed-up initial computation of the live range.
+ LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
+ NewRanges.push_back(Unit);
+ }
+ VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
+ (void)VNI;
+ DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
+ }
+ }
+ DEBUG(dbgs() << '\n');
+ }
+ DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
+
+ // Compute the 'normal' part of the ranges.
+ for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
+ unsigned Unit = NewRanges[i];
+ computeRegUnitRange(*RegUnitRanges[Unit], Unit);
+ }
+}
+
+
+static void createSegmentsForValues(LiveRange &LR,
+ iterator_range<LiveInterval::vni_iterator> VNIs) {
+ for (auto VNI : VNIs) {
+ if (VNI->isUnused())
+ continue;
+ SlotIndex Def = VNI->def;
+ LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
+ }
+}
+
+typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
+
+static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
+ ShrinkToUsesWorkList &WorkList,
+ const LiveRange &OldRange) {
+ // Keep track of the PHIs that are in use.
+ SmallPtrSet<VNInfo*, 8> UsedPHIs;
+ // Blocks that have already been added to WorkList as live-out.
+ SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
+
+ // Extend intervals to reach all uses in WorkList.
+ while (!WorkList.empty()) {
+ SlotIndex Idx = WorkList.back().first;
+ VNInfo *VNI = WorkList.back().second;
+ WorkList.pop_back();
+ const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
+ SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
+
+ // Extend the live range for VNI to be live at Idx.
+ if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
+ assert(ExtVNI == VNI && "Unexpected existing value number");
+ (void)ExtVNI;
+ // Is this a PHIDef we haven't seen before?
+ if (!VNI->isPHIDef() || VNI->def != BlockStart ||
+ !UsedPHIs.insert(VNI).second)
+ continue;
+ // The PHI is live, make sure the predecessors are live-out.
+ for (auto &Pred : MBB->predecessors()) {
+ if (!LiveOut.insert(Pred).second)
+ continue;
+ SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
+ // A predecessor is not required to have a live-out value for a PHI.
+ if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
+ WorkList.push_back(std::make_pair(Stop, PVNI));
+ }
+ continue;
+ }
+
+ // VNI is live-in to MBB.
+ DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
+ LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
+
+ // Make sure VNI is live-out from the predecessors.
+ for (auto &Pred : MBB->predecessors()) {
+ if (!LiveOut.insert(Pred).second)
+ continue;
+ SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
+ assert(OldRange.getVNInfoBefore(Stop) == VNI &&
+ "Wrong value out of predecessor");
+ WorkList.push_back(std::make_pair(Stop, VNI));
+ }
+ }
+}
+
+/// shrinkToUses - After removing some uses of a register, shrink its live
+/// range to just the remaining uses. This method does not compute reaching
+/// defs for new uses, and it doesn't remove dead defs.
+bool LiveIntervals::shrinkToUses(LiveInterval *li,
+ SmallVectorImpl<MachineInstr*> *dead) {
+ DEBUG(dbgs() << "Shrink: " << *li << '\n');
+ assert(TargetRegisterInfo::isVirtualRegister(li->reg)
+ && "Can only shrink virtual registers");
+
+ // Shrink subregister live ranges.
+ for (LiveInterval::SubRange &S : li->subranges()) {
+ shrinkToUses(S, li->reg);
+ }
+
+ // Find all the values used, including PHI kills.
+ ShrinkToUsesWorkList WorkList;
+
+ // Visit all instructions reading li->reg.
+ for (MachineRegisterInfo::reg_instr_iterator
+ I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
+ I != E; ) {
+ MachineInstr *UseMI = &*(I++);
+ if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
+ continue;
+ SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
+ LiveQueryResult LRQ = li->Query(Idx);
+ VNInfo *VNI = LRQ.valueIn();
+ if (!VNI) {
+ // This shouldn't happen: readsVirtualRegister returns true, but there is
+ // no live value. It is likely caused by a target getting <undef> flags
+ // wrong.
+ DEBUG(dbgs() << Idx << '\t' << *UseMI
+ << "Warning: Instr claims to read non-existent value in "
+ << *li << '\n');
+ continue;
+ }
+ // Special case: An early-clobber tied operand reads and writes the
+ // register one slot early.
+ if (VNInfo *DefVNI = LRQ.valueDefined())
+ Idx = DefVNI->def;
+
+ WorkList.push_back(std::make_pair(Idx, VNI));
+ }
+
+ // Create new live ranges with only minimal live segments per def.
+ LiveRange NewLR;
+ createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
+ extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
+
+ // Move the trimmed segments back.
+ li->segments.swap(NewLR.segments);
+
+ // Handle dead values.
+ bool CanSeparate = computeDeadValues(*li, dead);
+ DEBUG(dbgs() << "Shrunk: " << *li << '\n');
+ return CanSeparate;
+}
+
+bool LiveIntervals::computeDeadValues(LiveInterval &LI,
+ SmallVectorImpl<MachineInstr*> *dead) {
+ bool PHIRemoved = false;
+ for (auto VNI : LI.valnos) {
+ if (VNI->isUnused())
+ continue;
+ SlotIndex Def = VNI->def;
+ LiveRange::iterator I = LI.FindSegmentContaining(Def);
+ assert(I != LI.end() && "Missing segment for VNI");
+
+ // Is the register live before? Otherwise we may have to add a read-undef
+ // flag for subregister defs.
+ if (MRI->shouldTrackSubRegLiveness(LI.reg)) {
+ if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
+ MachineInstr *MI = getInstructionFromIndex(Def);
+ MI->addRegisterDefReadUndef(LI.reg);
+ }
+ }
+
+ if (I->end != Def.getDeadSlot())
+ continue;
+ if (VNI->isPHIDef()) {
+ // This is a dead PHI. Remove it.
+ VNI->markUnused();
+ LI.removeSegment(I);
+ DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
+ PHIRemoved = true;
+ } else {
+ // This is a dead def. Make sure the instruction knows.
+ MachineInstr *MI = getInstructionFromIndex(Def);
+ assert(MI && "No instruction defining live value");
+ MI->addRegisterDead(LI.reg, TRI);
+ if (dead && MI->allDefsAreDead()) {
+ DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
+ dead->push_back(MI);
+ }
+ }
+ }
+ return PHIRemoved;
+}
+
+void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
+{
+ DEBUG(dbgs() << "Shrink: " << SR << '\n');
+ assert(TargetRegisterInfo::isVirtualRegister(Reg)
+ && "Can only shrink virtual registers");
+ // Find all the values used, including PHI kills.
+ ShrinkToUsesWorkList WorkList;
+
+ // Visit all instructions reading Reg.
+ SlotIndex LastIdx;
+ for (MachineOperand &MO : MRI->reg_operands(Reg)) {
+ MachineInstr *UseMI = MO.getParent();
+ if (UseMI->isDebugValue())
+ continue;
+ // Maybe the operand is for a subregister we don't care about.
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0) {
+ unsigned SubRegMask = TRI->getSubRegIndexLaneMask(SubReg);
+ if ((SubRegMask & SR.LaneMask) == 0)
+ continue;
+ }
+ // We only need to visit each instruction once.
+ SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
+ if (Idx == LastIdx)
+ continue;
+ LastIdx = Idx;
+
+ LiveQueryResult LRQ = SR.Query(Idx);
+ VNInfo *VNI = LRQ.valueIn();
+ // For Subranges it is possible that only undef values are left in that
+ // part of the subregister, so there is no real liverange at the use
+ if (!VNI)
+ continue;
+
+ // Special case: An early-clobber tied operand reads and writes the
+ // register one slot early.
+ if (VNInfo *DefVNI = LRQ.valueDefined())
+ Idx = DefVNI->def;
+
+ WorkList.push_back(std::make_pair(Idx, VNI));
+ }
+
+ // Create a new live ranges with only minimal live segments per def.
+ LiveRange NewLR;
+ createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
+ extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
+
+ // Move the trimmed ranges back.
+ SR.segments.swap(NewLR.segments);
+
+ // Remove dead PHI value numbers
+ for (auto VNI : SR.valnos) {
+ if (VNI->isUnused())
+ continue;
+ const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
+ assert(Segment != nullptr && "Missing segment for VNI");
+ if (Segment->end != VNI->def.getDeadSlot())
+ continue;
+ if (VNI->isPHIDef()) {
+ // This is a dead PHI. Remove it.
+ VNI->markUnused();
+ SR.removeSegment(*Segment);
+ DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
+ }
+ }
+
+ DEBUG(dbgs() << "Shrunk: " << SR << '\n');
+}
+
+void LiveIntervals::extendToIndices(LiveRange &LR,
+ ArrayRef<SlotIndex> Indices) {
+ assert(LRCalc && "LRCalc not initialized.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i)
+ LRCalc->extend(LR, Indices[i]);
+}
+
+void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
+ SmallVectorImpl<SlotIndex> *EndPoints) {
+ LiveQueryResult LRQ = LR.Query(Kill);
+ VNInfo *VNI = LRQ.valueOutOrDead();
+ if (!VNI)
+ return;
+
+ MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
+ SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
+
+ // If VNI isn't live out from KillMBB, the value is trivially pruned.
+ if (LRQ.endPoint() < MBBEnd) {
+ LR.removeSegment(Kill, LRQ.endPoint());
+ if (EndPoints) EndPoints->push_back(LRQ.endPoint());
+ return;
+ }
+
+ // VNI is live out of KillMBB.
+ LR.removeSegment(Kill, MBBEnd);
+ if (EndPoints) EndPoints->push_back(MBBEnd);
+
+ // Find all blocks that are reachable from KillMBB without leaving VNI's live
+ // range. It is possible that KillMBB itself is reachable, so start a DFS
+ // from each successor.
+ typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
+ VisitedTy Visited;
+ for (MachineBasicBlock::succ_iterator
+ SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
+ SuccI != SuccE; ++SuccI) {
+ for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
+ I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
+ I != E;) {
+ MachineBasicBlock *MBB = *I;
+
+ // Check if VNI is live in to MBB.
+ SlotIndex MBBStart, MBBEnd;
+ std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
+ LiveQueryResult LRQ = LR.Query(MBBStart);
+ if (LRQ.valueIn() != VNI) {
+ // This block isn't part of the VNI segment. Prune the search.
+ I.skipChildren();
+ continue;
+ }
+
+ // Prune the search if VNI is killed in MBB.
+ if (LRQ.endPoint() < MBBEnd) {
+ LR.removeSegment(MBBStart, LRQ.endPoint());
+ if (EndPoints) EndPoints->push_back(LRQ.endPoint());
+ I.skipChildren();
+ continue;
+ }
+
+ // VNI is live through MBB.
+ LR.removeSegment(MBBStart, MBBEnd);
+ if (EndPoints) EndPoints->push_back(MBBEnd);
+ ++I;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Register allocator hooks.
+//
+
+void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
+ // Keep track of regunit ranges.
+ SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
+ // Keep track of subregister ranges.
+ SmallVector<std::pair<const LiveInterval::SubRange*,
+ LiveRange::const_iterator>, 4> SRs;
+
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ const LiveInterval &LI = getInterval(Reg);
+ if (LI.empty())
+ continue;
+
+ // Find the regunit intervals for the assigned register. They may overlap
+ // the virtual register live range, cancelling any kills.
+ RU.clear();
+ for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
+ ++Units) {
+ const LiveRange &RURange = getRegUnit(*Units);
+ if (RURange.empty())
+ continue;
+ RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
+ }
+
+ if (MRI->subRegLivenessEnabled()) {
+ SRs.clear();
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
+ }
+ }
+
+ // Every instruction that kills Reg corresponds to a segment range end
+ // point.
+ for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
+ ++RI) {
+ // A block index indicates an MBB edge.
+ if (RI->end.isBlock())
+ continue;
+ MachineInstr *MI = getInstructionFromIndex(RI->end);
+ if (!MI)
+ continue;
+
+ // Check if any of the regunits are live beyond the end of RI. That could
+ // happen when a physreg is defined as a copy of a virtreg:
+ //
+ // %EAX = COPY %vreg5
+ // FOO %vreg5 <--- MI, cancel kill because %EAX is live.
+ // BAR %EAX<kill>
+ //
+ // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
+ for (auto &RUP : RU) {
+ const LiveRange &RURange = *RUP.first;
+ LiveRange::const_iterator &I = RUP.second;
+ if (I == RURange.end())
+ continue;
+ I = RURange.advanceTo(I, RI->end);
+ if (I == RURange.end() || I->start >= RI->end)
+ continue;
+ // I is overlapping RI.
+ goto CancelKill;
+ }
+
+ if (MRI->subRegLivenessEnabled()) {
+ // When reading a partial undefined value we must not add a kill flag.
+ // The regalloc might have used the undef lane for something else.
+ // Example:
+ // %vreg1 = ... ; R32: %vreg1
+ // %vreg2:high16 = ... ; R64: %vreg2
+ // = read %vreg2<kill> ; R64: %vreg2
+ // = read %vreg1 ; R32: %vreg1
+ // The <kill> flag is correct for %vreg2, but the register allocator may
+ // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
+ // are actually never written by %vreg2. After assignment the <kill>
+ // flag at the read instruction is invalid.
+ unsigned DefinedLanesMask;
+ if (!SRs.empty()) {
+ // Compute a mask of lanes that are defined.
+ DefinedLanesMask = 0;
+ for (auto &SRP : SRs) {
+ const LiveInterval::SubRange &SR = *SRP.first;
+ LiveRange::const_iterator &I = SRP.second;
+ if (I == SR.end())
+ continue;
+ I = SR.advanceTo(I, RI->end);
+ if (I == SR.end() || I->start >= RI->end)
+ continue;
+ // I is overlapping RI
+ DefinedLanesMask |= SR.LaneMask;
+ }
+ } else
+ DefinedLanesMask = ~0u;
+
+ bool IsFullWrite = false;
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+ if (MO.isUse()) {
+ // Reading any undefined lanes?
+ unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
+ if ((UseMask & ~DefinedLanesMask) != 0)
+ goto CancelKill;
+ } else if (MO.getSubReg() == 0) {
+ // Writing to the full register?
+ assert(MO.isDef());
+ IsFullWrite = true;
+ }
+ }
+
+ // If an instruction writes to a subregister, a new segment starts in
+ // the LiveInterval. But as this is only overriding part of the register
+ // adding kill-flags is not correct here after registers have been
+ // assigned.
+ if (!IsFullWrite) {
+ // Next segment has to be adjacent in the subregister write case.
+ LiveRange::const_iterator N = std::next(RI);
+ if (N != LI.end() && N->start == RI->end)
+ goto CancelKill;
+ }
+ }
+
+ MI->addRegisterKilled(Reg, nullptr);
+ continue;
+CancelKill:
+ MI->clearRegisterKills(Reg, nullptr);
+ }
+ }
+}
+
+MachineBasicBlock*
+LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
+ // A local live range must be fully contained inside the block, meaning it is
+ // defined and killed at instructions, not at block boundaries. It is not
+ // live in or or out of any block.
+ //
+ // It is technically possible to have a PHI-defined live range identical to a
+ // single block, but we are going to return false in that case.
+
+ SlotIndex Start = LI.beginIndex();
+ if (Start.isBlock())
+ return nullptr;
+
+ SlotIndex Stop = LI.endIndex();
+ if (Stop.isBlock())
+ return nullptr;
+
+ // getMBBFromIndex doesn't need to search the MBB table when both indexes
+ // belong to proper instructions.
+ MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
+ MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
+ return MBB1 == MBB2 ? MBB1 : nullptr;
+}
+
+bool
+LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
+ for (const VNInfo *PHI : LI.valnos) {
+ if (PHI->isUnused() || !PHI->isPHIDef())
+ continue;
+ const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
+ // Conservatively return true instead of scanning huge predecessor lists.
+ if (PHIMBB->pred_size() > 100)
+ return true;
+ for (MachineBasicBlock::const_pred_iterator
+ PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
+ if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
+ return true;
+ }
+ return false;
+}
+
+float
+LiveIntervals::getSpillWeight(bool isDef, bool isUse,
+ const MachineBlockFrequencyInfo *MBFI,
+ const MachineInstr *MI) {
+ BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
+ const float Scale = 1.0f / MBFI->getEntryFreq();
+ return (isDef + isUse) * (Freq.getFrequency() * Scale);
+}
+
+LiveRange::Segment
+LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
+ LiveInterval& Interval = createEmptyInterval(reg);
+ VNInfo* VN = Interval.getNextValue(
+ SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+ getVNInfoAllocator());
+ LiveRange::Segment S(
+ SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+ getMBBEndIdx(startInst->getParent()), VN);
+ Interval.addSegment(S);
+
+ return S;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Register mask functions
+//===----------------------------------------------------------------------===//
+
+bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
+ BitVector &UsableRegs) {
+ if (LI.empty())
+ return false;
+ LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
+
+ // Use a smaller arrays for local live ranges.
+ ArrayRef<SlotIndex> Slots;
+ ArrayRef<const uint32_t*> Bits;
+ if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
+ Slots = getRegMaskSlotsInBlock(MBB->getNumber());
+ Bits = getRegMaskBitsInBlock(MBB->getNumber());
+ } else {
+ Slots = getRegMaskSlots();
+ Bits = getRegMaskBits();
+ }
+
+ // We are going to enumerate all the register mask slots contained in LI.
+ // Start with a binary search of RegMaskSlots to find a starting point.
+ ArrayRef<SlotIndex>::iterator SlotI =
+ std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
+ ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
+
+ // No slots in range, LI begins after the last call.
+ if (SlotI == SlotE)
+ return false;
+
+ bool Found = false;
+ for (;;) {
+ assert(*SlotI >= LiveI->start);
+ // Loop over all slots overlapping this segment.
+ while (*SlotI < LiveI->end) {
+ // *SlotI overlaps LI. Collect mask bits.
+ if (!Found) {
+ // This is the first overlap. Initialize UsableRegs to all ones.
+ UsableRegs.clear();
+ UsableRegs.resize(TRI->getNumRegs(), true);
+ Found = true;
+ }
+ // Remove usable registers clobbered by this mask.
+ UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
+ if (++SlotI == SlotE)
+ return Found;
+ }
+ // *SlotI is beyond the current LI segment.
+ LiveI = LI.advanceTo(LiveI, *SlotI);
+ if (LiveI == LiveE)
+ return Found;
+ // Advance SlotI until it overlaps.
+ while (*SlotI < LiveI->start)
+ if (++SlotI == SlotE)
+ return Found;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// IntervalUpdate class.
+//===----------------------------------------------------------------------===//
+
+// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
+class LiveIntervals::HMEditor {
+private:
+ LiveIntervals& LIS;
+ const MachineRegisterInfo& MRI;
+ const TargetRegisterInfo& TRI;
+ SlotIndex OldIdx;
+ SlotIndex NewIdx;
+ SmallPtrSet<LiveRange*, 8> Updated;
+ bool UpdateFlags;
+
+public:
+ HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
+ const TargetRegisterInfo& TRI,
+ SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
+ : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
+ UpdateFlags(UpdateFlags) {}
+
+ // FIXME: UpdateFlags is a workaround that creates live intervals for all
+ // physregs, even those that aren't needed for regalloc, in order to update
+ // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
+ // flags, and postRA passes will use a live register utility instead.
+ LiveRange *getRegUnitLI(unsigned Unit) {
+ if (UpdateFlags)
+ return &LIS.getRegUnit(Unit);
+ return LIS.getCachedRegUnit(Unit);
+ }
+
+ /// Update all live ranges touched by MI, assuming a move from OldIdx to
+ /// NewIdx.
+ void updateAllRanges(MachineInstr *MI) {
+ DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
+ bool hasRegMask = false;
+ for (MachineOperand &MO : MI->operands()) {
+ if (MO.isRegMask())
+ hasRegMask = true;
+ if (!MO.isReg())
+ continue;
+ // Aggressively clear all kill flags.
+ // They are reinserted by VirtRegRewriter.
+ if (MO.isUse())
+ MO.setIsKill(false);
+
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ LiveInterval &LI = LIS.getInterval(Reg);
+ if (LI.hasSubRanges()) {
+ unsigned SubReg = MO.getSubReg();
+ unsigned LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if ((S.LaneMask & LaneMask) == 0)
+ continue;
+ updateRange(S, Reg, S.LaneMask);
+ }
+ }
+ updateRange(LI, Reg, 0);
+ continue;
+ }
+
+ // For physregs, only update the regunits that actually have a
+ // precomputed live range.
+ for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
+ if (LiveRange *LR = getRegUnitLI(*Units))
+ updateRange(*LR, *Units, 0);
+ }
+ if (hasRegMask)
+ updateRegMaskSlots();
+ }
+
+private:
+ /// Update a single live range, assuming an instruction has been moved from
+ /// OldIdx to NewIdx.
+ void updateRange(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
+ if (!Updated.insert(&LR).second)
+ return;
+ DEBUG({
+ dbgs() << " ";
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ dbgs() << PrintReg(Reg);
+ if (LaneMask != 0)
+ dbgs() << format(" L%04X", LaneMask);
+ } else {
+ dbgs() << PrintRegUnit(Reg, &TRI);
+ }
+ dbgs() << ":\t" << LR << '\n';
+ });
+ if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
+ handleMoveDown(LR);
+ else
+ handleMoveUp(LR, Reg, LaneMask);
+ DEBUG(dbgs() << " -->\t" << LR << '\n');
+ LR.verify();
+ }
+
+ /// Update LR to reflect an instruction has been moved downwards from OldIdx
+ /// to NewIdx.
+ ///
+ /// 1. Live def at OldIdx:
+ /// Move def to NewIdx, assert endpoint after NewIdx.
+ ///
+ /// 2. Live def at OldIdx, killed at NewIdx:
+ /// Change to dead def at NewIdx.
+ /// (Happens when bundling def+kill together).
+ ///
+ /// 3. Dead def at OldIdx:
+ /// Move def to NewIdx, possibly across another live value.
+ ///
+ /// 4. Def at OldIdx AND at NewIdx:
+ /// Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
+ /// (Happens when bundling multiple defs together).
+ ///
+ /// 5. Value read at OldIdx, killed before NewIdx:
+ /// Extend kill to NewIdx.
+ ///
+ void handleMoveDown(LiveRange &LR) {
+ // First look for a kill at OldIdx.
+ LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
+ LiveRange::iterator E = LR.end();
+ // Is LR even live at OldIdx?
+ if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
+ return;
+
+ // Handle a live-in value.
+ if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
+ bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
+ // If the live-in value already extends to NewIdx, there is nothing to do.
+ if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
+ return;
+ // Aggressively remove all kill flags from the old kill point.
+ // Kill flags shouldn't be used while live intervals exist, they will be
+ // reinserted by VirtRegRewriter.
+ if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
+ for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
+ if (MO->isReg() && MO->isUse())
+ MO->setIsKill(false);
+ // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
+ // overlapping ranges. Case 5 above.
+ I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
+ // If this was a kill, there may also be a def. Otherwise we're done.
+ if (!isKill)
+ return;
+ ++I;
+ }
+
+ // Check for a def at OldIdx.
+ if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
+ return;
+ // We have a def at OldIdx.
+ VNInfo *DefVNI = I->valno;
+ assert(DefVNI->def == I->start && "Inconsistent def");
+ DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
+ // If the defined value extends beyond NewIdx, just move the def down.
+ // This is case 1 above.
+ if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
+ I->start = DefVNI->def;
+ return;
+ }
+ // The remaining possibilities are now:
+ // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
+ // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
+ // In either case, it is possible that there is an existing def at NewIdx.
+ assert((I->end == OldIdx.getDeadSlot() ||
+ SlotIndex::isSameInstr(I->end, NewIdx)) &&
+ "Cannot move def below kill");
+ LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
+ if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
+ // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
+ // coalesced into that value.
+ assert(NewI->valno != DefVNI && "Multiple defs of value?");
+ LR.removeValNo(DefVNI);
+ return;
+ }
+ // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
+ // If the def at OldIdx was dead, we allow it to be moved across other LR
+ // values. The new range should be placed immediately before NewI, move any
+ // intermediate ranges up.
+ assert(NewI != I && "Inconsistent iterators");
+ std::copy(std::next(I), NewI, I);
+ *std::prev(NewI)
+ = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
+ }
+
+ /// Update LR to reflect an instruction has been moved upwards from OldIdx
+ /// to NewIdx.
+ ///
+ /// 1. Live def at OldIdx:
+ /// Hoist def to NewIdx.
+ ///
+ /// 2. Dead def at OldIdx:
+ /// Hoist def+end to NewIdx, possibly move across other values.
+ ///
+ /// 3. Dead def at OldIdx AND existing def at NewIdx:
+ /// Remove value defined at OldIdx, coalescing it with existing value.
+ ///
+ /// 4. Live def at OldIdx AND existing def at NewIdx:
+ /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
+ /// (Happens when bundling multiple defs together).
+ ///
+ /// 5. Value killed at OldIdx:
+ /// Hoist kill to NewIdx, then scan for last kill between NewIdx and
+ /// OldIdx.
+ ///
+ void handleMoveUp(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
+ // First look for a kill at OldIdx.
+ LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
+ LiveRange::iterator E = LR.end();
+ // Is LR even live at OldIdx?
+ if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
+ return;
+
+ // Handle a live-in value.
+ if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
+ // If the live-in value isn't killed here, there is nothing to do.
+ if (!SlotIndex::isSameInstr(OldIdx, I->end))
+ return;
+ // Adjust I->end to end at NewIdx. If we are hoisting a kill above
+ // another use, we need to search for that use. Case 5 above.
+ I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
+ ++I;
+ // If OldIdx also defines a value, there couldn't have been another use.
+ if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
+ // No def, search for the new kill.
+ // This can never be an early clobber kill since there is no def.
+ std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
+ return;
+ }
+ }
+
+ // Now deal with the def at OldIdx.
+ assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
+ VNInfo *DefVNI = I->valno;
+ assert(DefVNI->def == I->start && "Inconsistent def");
+ DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
+
+ // Check for an existing def at NewIdx.
+ LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
+ if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
+ assert(NewI->valno != DefVNI && "Same value defined more than once?");
+ // There is an existing def at NewIdx.
+ if (I->end.isDead()) {
+ // Case 3: Remove the dead def at OldIdx.
+ LR.removeValNo(DefVNI);
+ return;
+ }
+ // Case 4: Replace def at NewIdx with live def at OldIdx.
+ I->start = DefVNI->def;
+ LR.removeValNo(NewI->valno);
+ return;
+ }
+
+ // There is no existing def at NewIdx. Hoist DefVNI.
+ if (!I->end.isDead()) {
+ // Leave the end point of a live def.
+ I->start = DefVNI->def;
+ return;
+ }
+
+ // DefVNI is a dead def. It may have been moved across other values in LR,
+ // so move I up to NewI. Slide [NewI;I) down one position.
+ std::copy_backward(NewI, I, std::next(I));
+ *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
+ }
+
+ void updateRegMaskSlots() {
+ SmallVectorImpl<SlotIndex>::iterator RI =
+ std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
+ OldIdx);
+ assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
+ "No RegMask at OldIdx.");
+ *RI = NewIdx.getRegSlot();
+ assert((RI == LIS.RegMaskSlots.begin() ||
+ SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
+ "Cannot move regmask instruction above another call");
+ assert((std::next(RI) == LIS.RegMaskSlots.end() ||
+ SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
+ "Cannot move regmask instruction below another call");
+ }
+
+ // Return the last use of reg between NewIdx and OldIdx.
+ SlotIndex findLastUseBefore(unsigned Reg, unsigned LaneMask) {
+
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ SlotIndex LastUse = NewIdx;
+ for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
+ unsigned SubReg = MO.getSubReg();
+ if (SubReg != 0 && LaneMask != 0
+ && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
+ continue;
+
+ const MachineInstr *MI = MO.getParent();
+ SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
+ if (InstSlot > LastUse && InstSlot < OldIdx)
+ LastUse = InstSlot;
+ }
+ return LastUse;
+ }
+
+ // This is a regunit interval, so scanning the use list could be very
+ // expensive. Scan upwards from OldIdx instead.
+ assert(NewIdx < OldIdx && "Expected upwards move");
+ SlotIndexes *Indexes = LIS.getSlotIndexes();
+ MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
+
+ // OldIdx may not correspond to an instruction any longer, so set MII to
+ // point to the next instruction after OldIdx, or MBB->end().
+ MachineBasicBlock::iterator MII = MBB->end();
+ if (MachineInstr *MI = Indexes->getInstructionFromIndex(
+ Indexes->getNextNonNullIndex(OldIdx)))
+ if (MI->getParent() == MBB)
+ MII = MI;
+
+ MachineBasicBlock::iterator Begin = MBB->begin();
+ while (MII != Begin) {
+ if ((--MII)->isDebugValue())
+ continue;
+ SlotIndex Idx = Indexes->getInstructionIndex(MII);
+
+ // Stop searching when NewIdx is reached.
+ if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
+ return NewIdx;
+
+ // Check if MII uses Reg.
+ for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
+ if (MO->isReg() &&
+ TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
+ TRI.hasRegUnit(MO->getReg(), Reg))
+ return Idx;
+ }
+ // Didn't reach NewIdx. It must be the first instruction in the block.
+ return NewIdx;
+ }
+};
+
+void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
+ assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
+ SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+ Indexes->removeMachineInstrFromMaps(MI);
+ SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
+ assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
+ OldIndex < getMBBEndIdx(MI->getParent()) &&
+ "Cannot handle moves across basic block boundaries.");
+
+ HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
+ HME.updateAllRanges(MI);
+}
+
+void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
+ MachineInstr* BundleStart,
+ bool UpdateFlags) {
+ SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+ SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
+ HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
+ HME.updateAllRanges(MI);
+}
+
+void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
+ const MachineBasicBlock::iterator End,
+ const SlotIndex endIdx,
+ LiveRange &LR, const unsigned Reg,
+ const unsigned LaneMask) {
+ LiveInterval::iterator LII = LR.find(endIdx);
+ SlotIndex lastUseIdx;
+ if (LII != LR.end() && LII->start < endIdx)
+ lastUseIdx = LII->end;
+ else
+ --LII;
+
+ for (MachineBasicBlock::iterator I = End; I != Begin;) {
+ --I;
+ MachineInstr *MI = I;
+ if (MI->isDebugValue())
+ continue;
+
+ SlotIndex instrIdx = getInstructionIndex(MI);
+ bool isStartValid = getInstructionFromIndex(LII->start);
+ bool isEndValid = getInstructionFromIndex(LII->end);
+
+ // FIXME: This doesn't currently handle early-clobber or multiple removed
+ // defs inside of the region to repair.
+ for (MachineInstr::mop_iterator OI = MI->operands_begin(),
+ OE = MI->operands_end(); OI != OE; ++OI) {
+ const MachineOperand &MO = *OI;
+ if (!MO.isReg() || MO.getReg() != Reg)
+ continue;
+
+ unsigned SubReg = MO.getSubReg();
+ unsigned Mask = TRI->getSubRegIndexLaneMask(SubReg);
+ if ((Mask & LaneMask) == 0)
+ continue;
+
+ if (MO.isDef()) {
+ if (!isStartValid) {
+ if (LII->end.isDead()) {
+ SlotIndex prevStart;
+ if (LII != LR.begin())
+ prevStart = std::prev(LII)->start;
+
+ // FIXME: This could be more efficient if there was a
+ // removeSegment method that returned an iterator.
+ LR.removeSegment(*LII, true);
+ if (prevStart.isValid())
+ LII = LR.find(prevStart);
+ else
+ LII = LR.begin();
+ } else {
+ LII->start = instrIdx.getRegSlot();
+ LII->valno->def = instrIdx.getRegSlot();
+ if (MO.getSubReg() && !MO.isUndef())
+ lastUseIdx = instrIdx.getRegSlot();
+ else
+ lastUseIdx = SlotIndex();
+ continue;
+ }
+ }
+
+ if (!lastUseIdx.isValid()) {
+ VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
+ LiveRange::Segment S(instrIdx.getRegSlot(),
+ instrIdx.getDeadSlot(), VNI);
+ LII = LR.addSegment(S);
+ } else if (LII->start != instrIdx.getRegSlot()) {
+ VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
+ LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
+ LII = LR.addSegment(S);
+ }
+
+ if (MO.getSubReg() && !MO.isUndef())
+ lastUseIdx = instrIdx.getRegSlot();
+ else
+ lastUseIdx = SlotIndex();
+ } else if (MO.isUse()) {
+ // FIXME: This should probably be handled outside of this branch,
+ // either as part of the def case (for defs inside of the region) or
+ // after the loop over the region.
+ if (!isEndValid && !LII->end.isBlock())
+ LII->end = instrIdx.getRegSlot();
+ if (!lastUseIdx.isValid())
+ lastUseIdx = instrIdx.getRegSlot();
+ }
+ }
+ }
+}
+
+void
+LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator Begin,
+ MachineBasicBlock::iterator End,
+ ArrayRef<unsigned> OrigRegs) {
+ // Find anchor points, which are at the beginning/end of blocks or at
+ // instructions that already have indexes.
+ while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
+ --Begin;
+ while (End != MBB->end() && !Indexes->hasIndex(End))
+ ++End;
+
+ SlotIndex endIdx;
+ if (End == MBB->end())
+ endIdx = getMBBEndIdx(MBB).getPrevSlot();
+ else
+ endIdx = getInstructionIndex(End);
+
+ Indexes->repairIndexesInRange(MBB, Begin, End);
+
+ for (MachineBasicBlock::iterator I = End; I != Begin;) {
+ --I;
+ MachineInstr *MI = I;
+ if (MI->isDebugValue())
+ continue;
+ for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end(); MOI != MOE; ++MOI) {
+ if (MOI->isReg() &&
+ TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
+ !hasInterval(MOI->getReg())) {
+ createAndComputeVirtRegInterval(MOI->getReg());
+ }
+ }
+ }
+
+ for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
+ unsigned Reg = OrigRegs[i];
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ LiveInterval &LI = getInterval(Reg);
+ // FIXME: Should we support undefs that gain defs?
+ if (!LI.hasAtLeastOneValue())
+ continue;
+
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
+ }
+ repairOldRegInRange(Begin, End, endIdx, LI, Reg);
+ }
+}
+
+void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
+ for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
+ if (LiveRange *LR = getCachedRegUnit(*Units))
+ if (VNInfo *VNI = LR->getVNInfoAt(Pos))
+ LR->removeValNo(VNI);
+ }
+}
+
+void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
+ VNInfo *VNI = LI.getVNInfoAt(Pos);
+ if (VNI == nullptr)
+ return;
+ LI.removeValNo(VNI);
+
+ // Also remove the value in subranges.
+ for (LiveInterval::SubRange &S : LI.subranges()) {
+ if (VNInfo *SVNI = S.getVNInfoAt(Pos))
+ S.removeValNo(SVNI);
+ }
+ LI.removeEmptySubRanges();
+}
OpenPOWER on IntegriCloud