diff options
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp | 1333 |
1 files changed, 1333 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp new file mode 100644 index 0000000..4e75d89 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp @@ -0,0 +1,1333 @@ +//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LiveInterval analysis pass which is used +// by the Linear Scan Register allocator. This pass linearizes the +// basic blocks of the function in DFS order and uses the +// LiveVariables pass to conservatively compute live intervals for +// each virtual and physical register. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "regalloc" +#include "llvm/CodeGen/LiveIntervalAnalysis.h" +#include "llvm/Value.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "LiveRangeCalc.h" +#include "VirtRegMap.h" +#include <algorithm> +#include <limits> +#include <cmath> +using namespace llvm; + +// Switch to the new experimental algorithm for computing live intervals. +static cl::opt<bool> +NewLiveIntervals("new-live-intervals", cl::Hidden, + cl::desc("Use new algorithm forcomputing live intervals")); + +char LiveIntervals::ID = 0; +char &llvm::LiveIntervalsID = LiveIntervals::ID; +INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", + "Live Interval Analysis", false, false) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_DEPENDENCY(LiveVariables) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(SlotIndexes) +INITIALIZE_PASS_END(LiveIntervals, "liveintervals", + "Live Interval Analysis", false, false) + +void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<AliasAnalysis>(); + AU.addPreserved<AliasAnalysis>(); + AU.addRequired<LiveVariables>(); + AU.addPreserved<LiveVariables>(); + AU.addPreservedID(MachineLoopInfoID); + AU.addRequiredTransitiveID(MachineDominatorsID); + AU.addPreservedID(MachineDominatorsID); + AU.addPreserved<SlotIndexes>(); + AU.addRequiredTransitive<SlotIndexes>(); + MachineFunctionPass::getAnalysisUsage(AU); +} + +LiveIntervals::LiveIntervals() : MachineFunctionPass(ID), + DomTree(0), LRCalc(0) { + initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); +} + +LiveIntervals::~LiveIntervals() { + delete LRCalc; +} + +void LiveIntervals::releaseMemory() { + // Free the live intervals themselves. + for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) + delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; + VirtRegIntervals.clear(); + RegMaskSlots.clear(); + RegMaskBits.clear(); + RegMaskBlocks.clear(); + + for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) + delete RegUnitIntervals[i]; + RegUnitIntervals.clear(); + + // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. + VNInfoAllocator.Reset(); +} + +/// runOnMachineFunction - Register allocate the whole function +/// +bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { + MF = &fn; + MRI = &MF->getRegInfo(); + TM = &fn.getTarget(); + TRI = TM->getRegisterInfo(); + TII = TM->getInstrInfo(); + AA = &getAnalysis<AliasAnalysis>(); + LV = &getAnalysis<LiveVariables>(); + Indexes = &getAnalysis<SlotIndexes>(); + DomTree = &getAnalysis<MachineDominatorTree>(); + if (!LRCalc) + LRCalc = new LiveRangeCalc(); + + // Allocate space for all virtual registers. + VirtRegIntervals.resize(MRI->getNumVirtRegs()); + + if (NewLiveIntervals) { + // This is the new way of computing live intervals. + // It is independent of LiveVariables, and it can run at any time. + computeVirtRegs(); + computeRegMasks(); + } else { + // This is the old way of computing live intervals. + // It depends on LiveVariables. + computeIntervals(); + } + computeLiveInRegUnits(); + + DEBUG(dump()); + return true; +} + +/// print - Implement the dump method. +void LiveIntervals::print(raw_ostream &OS, const Module* ) const { + OS << "********** INTERVALS **********\n"; + + // Dump the regunits. + for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) + if (LiveInterval *LI = RegUnitIntervals[i]) + OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n'; + + // Dump the virtregs. + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + if (hasInterval(Reg)) + OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n'; + } + + OS << "RegMasks:"; + for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i) + OS << ' ' << RegMaskSlots[i]; + OS << '\n'; + + printInstrs(OS); +} + +void LiveIntervals::printInstrs(raw_ostream &OS) const { + OS << "********** MACHINEINSTRS **********\n"; + MF->print(OS, Indexes); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void LiveIntervals::dumpInstrs() const { + printInstrs(dbgs()); +} +#endif + +static +bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) { + unsigned Reg = MI.getOperand(MOIdx).getReg(); + for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if (!MO.isReg()) + continue; + if (MO.getReg() == Reg && MO.isDef()) { + assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() && + MI.getOperand(MOIdx).getSubReg() && + (MO.getSubReg() || MO.isImplicit())); + return true; + } + } + return false; +} + +/// isPartialRedef - Return true if the specified def at the specific index is +/// partially re-defining the specified live interval. A common case of this is +/// a definition of the sub-register. +bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, + LiveInterval &interval) { + if (!MO.getSubReg() || MO.isEarlyClobber()) + return false; + + SlotIndex RedefIndex = MIIdx.getRegSlot(); + const LiveRange *OldLR = + interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); + MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def); + if (DefMI != 0) { + return DefMI->findRegisterDefOperandIdx(interval.reg) != -1; + } + return false; +} + +void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, + MachineBasicBlock::iterator mi, + SlotIndex MIIdx, + MachineOperand& MO, + unsigned MOIdx, + LiveInterval &interval) { + DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI)); + + // Virtual registers may be defined multiple times (due to phi + // elimination and 2-addr elimination). Much of what we do only has to be + // done once for the vreg. We use an empty interval to detect the first + // time we see a vreg. + LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg); + if (interval.empty()) { + // Get the Idx of the defining instructions. + SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); + + // Make sure the first definition is not a partial redefinition. + assert(!MO.readsReg() && "First def cannot also read virtual register " + "missing <undef> flag?"); + + VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); + assert(ValNo->id == 0 && "First value in interval is not 0?"); + + // Loop over all of the blocks that the vreg is defined in. There are + // two cases we have to handle here. The most common case is a vreg + // whose lifetime is contained within a basic block. In this case there + // will be a single kill, in MBB, which comes after the definition. + if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { + // FIXME: what about dead vars? + SlotIndex killIdx; + if (vi.Kills[0] != mi) + killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot(); + else + killIdx = defIndex.getDeadSlot(); + + // If the kill happens after the definition, we have an intra-block + // live range. + if (killIdx > defIndex) { + assert(vi.AliveBlocks.empty() && + "Shouldn't be alive across any blocks!"); + LiveRange LR(defIndex, killIdx, ValNo); + interval.addRange(LR); + DEBUG(dbgs() << " +" << LR << "\n"); + return; + } + } + + // The other case we handle is when a virtual register lives to the end + // of the defining block, potentially live across some blocks, then is + // live into some number of blocks, but gets killed. Start by adding a + // range that goes from this definition to the end of the defining block. + LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo); + DEBUG(dbgs() << " +" << NewLR); + interval.addRange(NewLR); + + bool PHIJoin = LV->isPHIJoin(interval.reg); + + if (PHIJoin) { + // A phi join register is killed at the end of the MBB and revived as a + // new valno in the killing blocks. + assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); + DEBUG(dbgs() << " phi-join"); + } else { + // Iterate over all of the blocks that the variable is completely + // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the + // live interval. + for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), + E = vi.AliveBlocks.end(); I != E; ++I) { + MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I); + LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), + ValNo); + interval.addRange(LR); + DEBUG(dbgs() << " +" << LR); + } + } + + // Finally, this virtual register is live from the start of any killing + // block to the 'use' slot of the killing instruction. + for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { + MachineInstr *Kill = vi.Kills[i]; + SlotIndex Start = getMBBStartIdx(Kill->getParent()); + SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot(); + + // Create interval with one of a NEW value number. Note that this value + // number isn't actually defined by an instruction, weird huh? :) + if (PHIJoin) { + assert(getInstructionFromIndex(Start) == 0 && + "PHI def index points at actual instruction."); + ValNo = interval.getNextValue(Start, VNInfoAllocator); + } + LiveRange LR(Start, killIdx, ValNo); + interval.addRange(LR); + DEBUG(dbgs() << " +" << LR); + } + + } else { + if (MultipleDefsBySameMI(*mi, MOIdx)) + // Multiple defs of the same virtual register by the same instruction. + // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ... + // This is likely due to elimination of REG_SEQUENCE instructions. Return + // here since there is nothing to do. + return; + + // If this is the second time we see a virtual register definition, it + // must be due to phi elimination or two addr elimination. If this is + // the result of two address elimination, then the vreg is one of the + // def-and-use register operand. + + // It may also be partial redef like this: + // 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0 + // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0 + bool PartReDef = isPartialRedef(MIIdx, MO, interval); + if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) { + // If this is a two-address definition, then we have already processed + // the live range. The only problem is that we didn't realize there + // are actually two values in the live interval. Because of this we + // need to take the LiveRegion that defines this register and split it + // into two values. + SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); + + const LiveRange *OldLR = + interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); + VNInfo *OldValNo = OldLR->valno; + SlotIndex DefIndex = OldValNo->def.getRegSlot(); + + // Delete the previous value, which should be short and continuous, + // because the 2-addr copy must be in the same MBB as the redef. + interval.removeRange(DefIndex, RedefIndex); + + // The new value number (#1) is defined by the instruction we claimed + // defined value #0. + VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator); + + // Value#0 is now defined by the 2-addr instruction. + OldValNo->def = RedefIndex; + + // Add the new live interval which replaces the range for the input copy. + LiveRange LR(DefIndex, RedefIndex, ValNo); + DEBUG(dbgs() << " replace range with " << LR); + interval.addRange(LR); + + // If this redefinition is dead, we need to add a dummy unit live + // range covering the def slot. + if (MO.isDead()) + interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(), + OldValNo)); + + DEBUG(dbgs() << " RESULT: " << interval); + } else if (LV->isPHIJoin(interval.reg)) { + // In the case of PHI elimination, each variable definition is only + // live until the end of the block. We've already taken care of the + // rest of the live range. + + SlotIndex defIndex = MIIdx.getRegSlot(); + if (MO.isEarlyClobber()) + defIndex = MIIdx.getRegSlot(true); + + VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); + + SlotIndex killIndex = getMBBEndIdx(mbb); + LiveRange LR(defIndex, killIndex, ValNo); + interval.addRange(LR); + DEBUG(dbgs() << " phi-join +" << LR); + } else { + llvm_unreachable("Multiply defined register"); + } + } + + DEBUG(dbgs() << '\n'); +} + +void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, + MachineBasicBlock::iterator MI, + SlotIndex MIIdx, + MachineOperand& MO, + unsigned MOIdx) { + if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) + handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, + getOrCreateInterval(MO.getReg())); +} + +/// computeIntervals - computes the live intervals for virtual +/// registers. for some ordering of the machine instructions [1,N] a +/// live interval is an interval [i, j) where 1 <= i <= j < N for +/// which a variable is live +void LiveIntervals::computeIntervals() { + DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n" + << "********** Function: " << MF->getName() << '\n'); + + RegMaskBlocks.resize(MF->getNumBlockIDs()); + + SmallVector<unsigned, 8> UndefUses; + for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); + MBBI != E; ++MBBI) { + MachineBasicBlock *MBB = MBBI; + RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size(); + + if (MBB->empty()) + continue; + + // Track the index of the current machine instr. + SlotIndex MIIndex = getMBBStartIdx(MBB); + DEBUG(dbgs() << "BB#" << MBB->getNumber() + << ":\t\t# derived from " << MBB->getName() << "\n"); + + // Skip over empty initial indices. + if (getInstructionFromIndex(MIIndex) == 0) + MIIndex = Indexes->getNextNonNullIndex(MIIndex); + + for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); + MI != miEnd; ++MI) { + DEBUG(dbgs() << MIIndex << "\t" << *MI); + if (MI->isDebugValue()) + continue; + assert(Indexes->getInstructionFromIndex(MIIndex) == MI && + "Lost SlotIndex synchronization"); + + // Handle defs. + for (int i = MI->getNumOperands() - 1; i >= 0; --i) { + MachineOperand &MO = MI->getOperand(i); + + // Collect register masks. + if (MO.isRegMask()) { + RegMaskSlots.push_back(MIIndex.getRegSlot()); + RegMaskBits.push_back(MO.getRegMask()); + continue; + } + + if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) + continue; + + // handle register defs - build intervals + if (MO.isDef()) + handleRegisterDef(MBB, MI, MIIndex, MO, i); + else if (MO.isUndef()) + UndefUses.push_back(MO.getReg()); + } + + // Move to the next instr slot. + MIIndex = Indexes->getNextNonNullIndex(MIIndex); + } + + // Compute the number of register mask instructions in this block. + std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()]; + RMB.second = RegMaskSlots.size() - RMB.first; + } + + // Create empty intervals for registers defined by implicit_def's (except + // for those implicit_def that define values which are liveout of their + // blocks. + for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) { + unsigned UndefReg = UndefUses[i]; + (void)getOrCreateInterval(UndefReg); + } +} + +LiveInterval* LiveIntervals::createInterval(unsigned reg) { + float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; + return new LiveInterval(reg, Weight); +} + + +/// computeVirtRegInterval - Compute the live interval of a virtual register, +/// based on defs and uses. +void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) { + assert(LRCalc && "LRCalc not initialized."); + assert(LI->empty() && "Should only compute empty intervals."); + LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); + LRCalc->createDeadDefs(LI); + LRCalc->extendToUses(LI); +} + +void LiveIntervals::computeVirtRegs() { + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + if (MRI->reg_nodbg_empty(Reg)) + continue; + LiveInterval *LI = createInterval(Reg); + VirtRegIntervals[Reg] = LI; + computeVirtRegInterval(LI); + } +} + +void LiveIntervals::computeRegMasks() { + RegMaskBlocks.resize(MF->getNumBlockIDs()); + + // Find all instructions with regmask operands. + for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); + MBBI != E; ++MBBI) { + MachineBasicBlock *MBB = MBBI; + std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()]; + RMB.first = RegMaskSlots.size(); + for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end(); + MI != ME; ++MI) + for (MIOperands MO(MI); MO.isValid(); ++MO) { + if (!MO->isRegMask()) + continue; + RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); + RegMaskBits.push_back(MO->getRegMask()); + } + // Compute the number of register mask instructions in this block. + RMB.second = RegMaskSlots.size() - RMB.first; + } +} + +//===----------------------------------------------------------------------===// +// Register Unit Liveness +//===----------------------------------------------------------------------===// +// +// Fixed interference typically comes from ABI boundaries: Function arguments +// and return values are passed in fixed registers, and so are exception +// pointers entering landing pads. Certain instructions require values to be +// present in specific registers. That is also represented through fixed +// interference. +// + +/// computeRegUnitInterval - Compute the live interval of a register unit, based +/// on the uses and defs of aliasing registers. The interval should be empty, +/// or contain only dead phi-defs from ABI blocks. +void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) { + unsigned Unit = LI->reg; + + assert(LRCalc && "LRCalc not initialized."); + LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); + + // The physregs aliasing Unit are the roots and their super-registers. + // Create all values as dead defs before extending to uses. Note that roots + // may share super-registers. That's OK because createDeadDefs() is + // idempotent. It is very rare for a register unit to have multiple roots, so + // uniquing super-registers is probably not worthwhile. + for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { + unsigned Root = *Roots; + if (!MRI->reg_empty(Root)) + LRCalc->createDeadDefs(LI, Root); + for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { + if (!MRI->reg_empty(*Supers)) + LRCalc->createDeadDefs(LI, *Supers); + } + } + + // Now extend LI to reach all uses. + // Ignore uses of reserved registers. We only track defs of those. + for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { + unsigned Root = *Roots; + if (!MRI->isReserved(Root) && !MRI->reg_empty(Root)) + LRCalc->extendToUses(LI, Root); + for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { + unsigned Reg = *Supers; + if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg)) + LRCalc->extendToUses(LI, Reg); + } + } +} + + +/// computeLiveInRegUnits - Precompute the live ranges of any register units +/// that are live-in to an ABI block somewhere. Register values can appear +/// without a corresponding def when entering the entry block or a landing pad. +/// +void LiveIntervals::computeLiveInRegUnits() { + RegUnitIntervals.resize(TRI->getNumRegUnits()); + DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); + + // Keep track of the intervals allocated. + SmallVector<LiveInterval*, 8> NewIntvs; + + // Check all basic blocks for live-ins. + for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); + MFI != MFE; ++MFI) { + const MachineBasicBlock *MBB = MFI; + + // We only care about ABI blocks: Entry + landing pads. + if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty()) + continue; + + // Create phi-defs at Begin for all live-in registers. + SlotIndex Begin = Indexes->getMBBStartIdx(MBB); + DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber()); + for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(), + LIE = MBB->livein_end(); LII != LIE; ++LII) { + for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) { + unsigned Unit = *Units; + LiveInterval *Intv = RegUnitIntervals[Unit]; + if (!Intv) { + Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF); + NewIntvs.push_back(Intv); + } + VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator()); + (void)VNI; + DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id); + } + } + DEBUG(dbgs() << '\n'); + } + DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n"); + + // Compute the 'normal' part of the intervals. + for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i) + computeRegUnitInterval(NewIntvs[i]); +} + + +/// shrinkToUses - After removing some uses of a register, shrink its live +/// range to just the remaining uses. This method does not compute reaching +/// defs for new uses, and it doesn't remove dead defs. +bool LiveIntervals::shrinkToUses(LiveInterval *li, + SmallVectorImpl<MachineInstr*> *dead) { + DEBUG(dbgs() << "Shrink: " << *li << '\n'); + assert(TargetRegisterInfo::isVirtualRegister(li->reg) + && "Can only shrink virtual registers"); + // Find all the values used, including PHI kills. + SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList; + + // Blocks that have already been added to WorkList as live-out. + SmallPtrSet<MachineBasicBlock*, 16> LiveOut; + + // Visit all instructions reading li->reg. + for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg); + MachineInstr *UseMI = I.skipInstruction();) { + if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) + continue; + SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); + LiveRangeQuery LRQ(*li, Idx); + VNInfo *VNI = LRQ.valueIn(); + if (!VNI) { + // This shouldn't happen: readsVirtualRegister returns true, but there is + // no live value. It is likely caused by a target getting <undef> flags + // wrong. + DEBUG(dbgs() << Idx << '\t' << *UseMI + << "Warning: Instr claims to read non-existent value in " + << *li << '\n'); + continue; + } + // Special case: An early-clobber tied operand reads and writes the + // register one slot early. + if (VNInfo *DefVNI = LRQ.valueDefined()) + Idx = DefVNI->def; + + WorkList.push_back(std::make_pair(Idx, VNI)); + } + + // Create a new live interval with only minimal live segments per def. + LiveInterval NewLI(li->reg, 0); + for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); + I != E; ++I) { + VNInfo *VNI = *I; + if (VNI->isUnused()) + continue; + NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI)); + } + + // Keep track of the PHIs that are in use. + SmallPtrSet<VNInfo*, 8> UsedPHIs; + + // Extend intervals to reach all uses in WorkList. + while (!WorkList.empty()) { + SlotIndex Idx = WorkList.back().first; + VNInfo *VNI = WorkList.back().second; + WorkList.pop_back(); + const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot()); + SlotIndex BlockStart = getMBBStartIdx(MBB); + + // Extend the live range for VNI to be live at Idx. + if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) { + (void)ExtVNI; + assert(ExtVNI == VNI && "Unexpected existing value number"); + // Is this a PHIDef we haven't seen before? + if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) + continue; + // The PHI is live, make sure the predecessors are live-out. + for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + if (!LiveOut.insert(*PI)) + continue; + SlotIndex Stop = getMBBEndIdx(*PI); + // A predecessor is not required to have a live-out value for a PHI. + if (VNInfo *PVNI = li->getVNInfoBefore(Stop)) + WorkList.push_back(std::make_pair(Stop, PVNI)); + } + continue; + } + + // VNI is live-in to MBB. + DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); + NewLI.addRange(LiveRange(BlockStart, Idx, VNI)); + + // Make sure VNI is live-out from the predecessors. + for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), + PE = MBB->pred_end(); PI != PE; ++PI) { + if (!LiveOut.insert(*PI)) + continue; + SlotIndex Stop = getMBBEndIdx(*PI); + assert(li->getVNInfoBefore(Stop) == VNI && + "Wrong value out of predecessor"); + WorkList.push_back(std::make_pair(Stop, VNI)); + } + } + + // Handle dead values. + bool CanSeparate = false; + for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); + I != E; ++I) { + VNInfo *VNI = *I; + if (VNI->isUnused()) + continue; + LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def); + assert(LII != NewLI.end() && "Missing live range for PHI"); + if (LII->end != VNI->def.getDeadSlot()) + continue; + if (VNI->isPHIDef()) { + // This is a dead PHI. Remove it. + VNI->markUnused(); + NewLI.removeRange(*LII); + DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); + CanSeparate = true; + } else { + // This is a dead def. Make sure the instruction knows. + MachineInstr *MI = getInstructionFromIndex(VNI->def); + assert(MI && "No instruction defining live value"); + MI->addRegisterDead(li->reg, TRI); + if (dead && MI->allDefsAreDead()) { + DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); + dead->push_back(MI); + } + } + } + + // Move the trimmed ranges back. + li->ranges.swap(NewLI.ranges); + DEBUG(dbgs() << "Shrunk: " << *li << '\n'); + return CanSeparate; +} + +void LiveIntervals::extendToIndices(LiveInterval *LI, + ArrayRef<SlotIndex> Indices) { + assert(LRCalc && "LRCalc not initialized."); + LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); + for (unsigned i = 0, e = Indices.size(); i != e; ++i) + LRCalc->extend(LI, Indices[i]); +} + +void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill, + SmallVectorImpl<SlotIndex> *EndPoints) { + LiveRangeQuery LRQ(*LI, Kill); + VNInfo *VNI = LRQ.valueOut(); + if (!VNI) + return; + + MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); + SlotIndex MBBStart, MBBEnd; + tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB); + + // If VNI isn't live out from KillMBB, the value is trivially pruned. + if (LRQ.endPoint() < MBBEnd) { + LI->removeRange(Kill, LRQ.endPoint()); + if (EndPoints) EndPoints->push_back(LRQ.endPoint()); + return; + } + + // VNI is live out of KillMBB. + LI->removeRange(Kill, MBBEnd); + if (EndPoints) EndPoints->push_back(MBBEnd); + + // Find all blocks that are reachable from KillMBB without leaving VNI's live + // range. It is possible that KillMBB itself is reachable, so start a DFS + // from each successor. + typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy; + VisitedTy Visited; + for (MachineBasicBlock::succ_iterator + SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end(); + SuccI != SuccE; ++SuccI) { + for (df_ext_iterator<MachineBasicBlock*, VisitedTy> + I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited); + I != E;) { + MachineBasicBlock *MBB = *I; + + // Check if VNI is live in to MBB. + tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); + LiveRangeQuery LRQ(*LI, MBBStart); + if (LRQ.valueIn() != VNI) { + // This block isn't part of the VNI live range. Prune the search. + I.skipChildren(); + continue; + } + + // Prune the search if VNI is killed in MBB. + if (LRQ.endPoint() < MBBEnd) { + LI->removeRange(MBBStart, LRQ.endPoint()); + if (EndPoints) EndPoints->push_back(LRQ.endPoint()); + I.skipChildren(); + continue; + } + + // VNI is live through MBB. + LI->removeRange(MBBStart, MBBEnd); + if (EndPoints) EndPoints->push_back(MBBEnd); + ++I; + } + } +} + +//===----------------------------------------------------------------------===// +// Register allocator hooks. +// + +void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { + // Keep track of regunit ranges. + SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU; + + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { + unsigned Reg = TargetRegisterInfo::index2VirtReg(i); + if (MRI->reg_nodbg_empty(Reg)) + continue; + LiveInterval *LI = &getInterval(Reg); + if (LI->empty()) + continue; + + // Find the regunit intervals for the assigned register. They may overlap + // the virtual register live range, cancelling any kills. + RU.clear(); + for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid(); + ++Units) { + LiveInterval *RUInt = &getRegUnit(*Units); + if (RUInt->empty()) + continue; + RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end))); + } + + // Every instruction that kills Reg corresponds to a live range end point. + for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; + ++RI) { + // A block index indicates an MBB edge. + if (RI->end.isBlock()) + continue; + MachineInstr *MI = getInstructionFromIndex(RI->end); + if (!MI) + continue; + + // Check if any of the reguints are live beyond the end of RI. That could + // happen when a physreg is defined as a copy of a virtreg: + // + // %EAX = COPY %vreg5 + // FOO %vreg5 <--- MI, cancel kill because %EAX is live. + // BAR %EAX<kill> + // + // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX. + bool CancelKill = false; + for (unsigned u = 0, e = RU.size(); u != e; ++u) { + LiveInterval *RInt = RU[u].first; + LiveInterval::iterator &I = RU[u].second; + if (I == RInt->end()) + continue; + I = RInt->advanceTo(I, RI->end); + if (I == RInt->end() || I->start >= RI->end) + continue; + // I is overlapping RI. + CancelKill = true; + break; + } + if (CancelKill) + MI->clearRegisterKills(Reg, NULL); + else + MI->addRegisterKilled(Reg, NULL); + } + } +} + +MachineBasicBlock* +LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { + // A local live range must be fully contained inside the block, meaning it is + // defined and killed at instructions, not at block boundaries. It is not + // live in or or out of any block. + // + // It is technically possible to have a PHI-defined live range identical to a + // single block, but we are going to return false in that case. + + SlotIndex Start = LI.beginIndex(); + if (Start.isBlock()) + return NULL; + + SlotIndex Stop = LI.endIndex(); + if (Stop.isBlock()) + return NULL; + + // getMBBFromIndex doesn't need to search the MBB table when both indexes + // belong to proper instructions. + MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); + MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); + return MBB1 == MBB2 ? MBB1 : NULL; +} + +bool +LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { + for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); + I != E; ++I) { + const VNInfo *PHI = *I; + if (PHI->isUnused() || !PHI->isPHIDef()) + continue; + const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); + // Conservatively return true instead of scanning huge predecessor lists. + if (PHIMBB->pred_size() > 100) + return true; + for (MachineBasicBlock::const_pred_iterator + PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI) + if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI))) + return true; + } + return false; +} + +float +LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { + // Limit the loop depth ridiculousness. + if (loopDepth > 200) + loopDepth = 200; + + // The loop depth is used to roughly estimate the number of times the + // instruction is executed. Something like 10^d is simple, but will quickly + // overflow a float. This expression behaves like 10^d for small d, but is + // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of + // headroom before overflow. + // By the way, powf() might be unavailable here. For consistency, + // We may take pow(double,double). + float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth); + + return (isDef + isUse) * lc; +} + +LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, + MachineInstr* startInst) { + LiveInterval& Interval = getOrCreateInterval(reg); + VNInfo* VN = Interval.getNextValue( + SlotIndex(getInstructionIndex(startInst).getRegSlot()), + getVNInfoAllocator()); + LiveRange LR( + SlotIndex(getInstructionIndex(startInst).getRegSlot()), + getMBBEndIdx(startInst->getParent()), VN); + Interval.addRange(LR); + + return LR; +} + + +//===----------------------------------------------------------------------===// +// Register mask functions +//===----------------------------------------------------------------------===// + +bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, + BitVector &UsableRegs) { + if (LI.empty()) + return false; + LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); + + // Use a smaller arrays for local live ranges. + ArrayRef<SlotIndex> Slots; + ArrayRef<const uint32_t*> Bits; + if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { + Slots = getRegMaskSlotsInBlock(MBB->getNumber()); + Bits = getRegMaskBitsInBlock(MBB->getNumber()); + } else { + Slots = getRegMaskSlots(); + Bits = getRegMaskBits(); + } + + // We are going to enumerate all the register mask slots contained in LI. + // Start with a binary search of RegMaskSlots to find a starting point. + ArrayRef<SlotIndex>::iterator SlotI = + std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); + ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); + + // No slots in range, LI begins after the last call. + if (SlotI == SlotE) + return false; + + bool Found = false; + for (;;) { + assert(*SlotI >= LiveI->start); + // Loop over all slots overlapping this segment. + while (*SlotI < LiveI->end) { + // *SlotI overlaps LI. Collect mask bits. + if (!Found) { + // This is the first overlap. Initialize UsableRegs to all ones. + UsableRegs.clear(); + UsableRegs.resize(TRI->getNumRegs(), true); + Found = true; + } + // Remove usable registers clobbered by this mask. + UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); + if (++SlotI == SlotE) + return Found; + } + // *SlotI is beyond the current LI segment. + LiveI = LI.advanceTo(LiveI, *SlotI); + if (LiveI == LiveE) + return Found; + // Advance SlotI until it overlaps. + while (*SlotI < LiveI->start) + if (++SlotI == SlotE) + return Found; + } +} + +//===----------------------------------------------------------------------===// +// IntervalUpdate class. +//===----------------------------------------------------------------------===// + +// HMEditor is a toolkit used by handleMove to trim or extend live intervals. +class LiveIntervals::HMEditor { +private: + LiveIntervals& LIS; + const MachineRegisterInfo& MRI; + const TargetRegisterInfo& TRI; + SlotIndex OldIdx; + SlotIndex NewIdx; + SmallPtrSet<LiveInterval*, 8> Updated; + bool UpdateFlags; + +public: + HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, + const TargetRegisterInfo& TRI, + SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) + : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), + UpdateFlags(UpdateFlags) {} + + // FIXME: UpdateFlags is a workaround that creates live intervals for all + // physregs, even those that aren't needed for regalloc, in order to update + // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill + // flags, and postRA passes will use a live register utility instead. + LiveInterval *getRegUnitLI(unsigned Unit) { + if (UpdateFlags) + return &LIS.getRegUnit(Unit); + return LIS.getCachedRegUnit(Unit); + } + + /// Update all live ranges touched by MI, assuming a move from OldIdx to + /// NewIdx. + void updateAllRanges(MachineInstr *MI) { + DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI); + bool hasRegMask = false; + for (MIOperands MO(MI); MO.isValid(); ++MO) { + if (MO->isRegMask()) + hasRegMask = true; + if (!MO->isReg()) + continue; + // Aggressively clear all kill flags. + // They are reinserted by VirtRegRewriter. + if (MO->isUse()) + MO->setIsKill(false); + + unsigned Reg = MO->getReg(); + if (!Reg) + continue; + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + updateRange(LIS.getInterval(Reg)); + continue; + } + + // For physregs, only update the regunits that actually have a + // precomputed live range. + for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) + if (LiveInterval *LI = getRegUnitLI(*Units)) + updateRange(*LI); + } + if (hasRegMask) + updateRegMaskSlots(); + } + +private: + /// Update a single live range, assuming an instruction has been moved from + /// OldIdx to NewIdx. + void updateRange(LiveInterval &LI) { + if (!Updated.insert(&LI)) + return; + DEBUG({ + dbgs() << " "; + if (TargetRegisterInfo::isVirtualRegister(LI.reg)) + dbgs() << PrintReg(LI.reg); + else + dbgs() << PrintRegUnit(LI.reg, &TRI); + dbgs() << ":\t" << LI << '\n'; + }); + if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) + handleMoveDown(LI); + else + handleMoveUp(LI); + DEBUG(dbgs() << " -->\t" << LI << '\n'); + LI.verify(); + } + + /// Update LI to reflect an instruction has been moved downwards from OldIdx + /// to NewIdx. + /// + /// 1. Live def at OldIdx: + /// Move def to NewIdx, assert endpoint after NewIdx. + /// + /// 2. Live def at OldIdx, killed at NewIdx: + /// Change to dead def at NewIdx. + /// (Happens when bundling def+kill together). + /// + /// 3. Dead def at OldIdx: + /// Move def to NewIdx, possibly across another live value. + /// + /// 4. Def at OldIdx AND at NewIdx: + /// Remove live range [OldIdx;NewIdx) and value defined at OldIdx. + /// (Happens when bundling multiple defs together). + /// + /// 5. Value read at OldIdx, killed before NewIdx: + /// Extend kill to NewIdx. + /// + void handleMoveDown(LiveInterval &LI) { + // First look for a kill at OldIdx. + LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex()); + LiveInterval::iterator E = LI.end(); + // Is LI even live at OldIdx? + if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) + return; + + // Handle a live-in value. + if (!SlotIndex::isSameInstr(I->start, OldIdx)) { + bool isKill = SlotIndex::isSameInstr(OldIdx, I->end); + // If the live-in value already extends to NewIdx, there is nothing to do. + if (!SlotIndex::isEarlierInstr(I->end, NewIdx)) + return; + // Aggressively remove all kill flags from the old kill point. + // Kill flags shouldn't be used while live intervals exist, they will be + // reinserted by VirtRegRewriter. + if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end)) + for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO) + if (MO->isReg() && MO->isUse()) + MO->setIsKill(false); + // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by + // overlapping ranges. Case 5 above. + I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); + // If this was a kill, there may also be a def. Otherwise we're done. + if (!isKill) + return; + ++I; + } + + // Check for a def at OldIdx. + if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start)) + return; + // We have a def at OldIdx. + VNInfo *DefVNI = I->valno; + assert(DefVNI->def == I->start && "Inconsistent def"); + DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); + // If the defined value extends beyond NewIdx, just move the def down. + // This is case 1 above. + if (SlotIndex::isEarlierInstr(NewIdx, I->end)) { + I->start = DefVNI->def; + return; + } + // The remaining possibilities are now: + // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx). + // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot(). + // In either case, it is possible that there is an existing def at NewIdx. + assert((I->end == OldIdx.getDeadSlot() || + SlotIndex::isSameInstr(I->end, NewIdx)) && + "Cannot move def below kill"); + LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot()); + if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) { + // There is an existing def at NewIdx, case 4 above. The def at OldIdx is + // coalesced into that value. + assert(NewI->valno != DefVNI && "Multiple defs of value?"); + LI.removeValNo(DefVNI); + return; + } + // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx. + // If the def at OldIdx was dead, we allow it to be moved across other LI + // values. The new range should be placed immediately before NewI, move any + // intermediate ranges up. + assert(NewI != I && "Inconsistent iterators"); + std::copy(llvm::next(I), NewI, I); + *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); + } + + /// Update LI to reflect an instruction has been moved upwards from OldIdx + /// to NewIdx. + /// + /// 1. Live def at OldIdx: + /// Hoist def to NewIdx. + /// + /// 2. Dead def at OldIdx: + /// Hoist def+end to NewIdx, possibly move across other values. + /// + /// 3. Dead def at OldIdx AND existing def at NewIdx: + /// Remove value defined at OldIdx, coalescing it with existing value. + /// + /// 4. Live def at OldIdx AND existing def at NewIdx: + /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx. + /// (Happens when bundling multiple defs together). + /// + /// 5. Value killed at OldIdx: + /// Hoist kill to NewIdx, then scan for last kill between NewIdx and + /// OldIdx. + /// + void handleMoveUp(LiveInterval &LI) { + // First look for a kill at OldIdx. + LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex()); + LiveInterval::iterator E = LI.end(); + // Is LI even live at OldIdx? + if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) + return; + + // Handle a live-in value. + if (!SlotIndex::isSameInstr(I->start, OldIdx)) { + // If the live-in value isn't killed here, there is nothing to do. + if (!SlotIndex::isSameInstr(OldIdx, I->end)) + return; + // Adjust I->end to end at NewIdx. If we are hoisting a kill above + // another use, we need to search for that use. Case 5 above. + I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); + ++I; + // If OldIdx also defines a value, there couldn't have been another use. + if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) { + // No def, search for the new kill. + // This can never be an early clobber kill since there is no def. + llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot(); + return; + } + } + + // Now deal with the def at OldIdx. + assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?"); + VNInfo *DefVNI = I->valno; + assert(DefVNI->def == I->start && "Inconsistent def"); + DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); + + // Check for an existing def at NewIdx. + LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot()); + if (SlotIndex::isSameInstr(NewI->start, NewIdx)) { + assert(NewI->valno != DefVNI && "Same value defined more than once?"); + // There is an existing def at NewIdx. + if (I->end.isDead()) { + // Case 3: Remove the dead def at OldIdx. + LI.removeValNo(DefVNI); + return; + } + // Case 4: Replace def at NewIdx with live def at OldIdx. + I->start = DefVNI->def; + LI.removeValNo(NewI->valno); + return; + } + + // There is no existing def at NewIdx. Hoist DefVNI. + if (!I->end.isDead()) { + // Leave the end point of a live def. + I->start = DefVNI->def; + return; + } + + // DefVNI is a dead def. It may have been moved across other values in LI, + // so move I up to NewI. Slide [NewI;I) down one position. + std::copy_backward(NewI, I, llvm::next(I)); + *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); + } + + void updateRegMaskSlots() { + SmallVectorImpl<SlotIndex>::iterator RI = + std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), + OldIdx); + assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && + "No RegMask at OldIdx."); + *RI = NewIdx.getRegSlot(); + assert((RI == LIS.RegMaskSlots.begin() || + SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) && + "Cannot move regmask instruction above another call"); + assert((llvm::next(RI) == LIS.RegMaskSlots.end() || + SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) && + "Cannot move regmask instruction below another call"); + } + + // Return the last use of reg between NewIdx and OldIdx. + SlotIndex findLastUseBefore(unsigned Reg) { + SlotIndex LastUse = NewIdx; + + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + for (MachineRegisterInfo::use_nodbg_iterator + UI = MRI.use_nodbg_begin(Reg), + UE = MRI.use_nodbg_end(); + UI != UE; UI.skipInstruction()) { + const MachineInstr* MI = &*UI; + SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); + if (InstSlot > LastUse && InstSlot < OldIdx) + LastUse = InstSlot; + } + } else { + MachineInstr* MI = LIS.getSlotIndexes()->getInstructionFromIndex(NewIdx); + MachineBasicBlock::iterator MII(MI); + ++MII; + MachineBasicBlock* MBB = MI->getParent(); + for (; MII != MBB->end() && LIS.getInstructionIndex(MII) < OldIdx; ++MII){ + for (MachineInstr::mop_iterator MOI = MII->operands_begin(), + MOE = MII->operands_end(); + MOI != MOE; ++MOI) { + const MachineOperand& mop = *MOI; + if (!mop.isReg() || mop.getReg() == 0 || + TargetRegisterInfo::isVirtualRegister(mop.getReg())) + continue; + + if (TRI.hasRegUnit(mop.getReg(), Reg)) + LastUse = LIS.getInstructionIndex(MII); + } + } + } + return LastUse; + } +}; + +void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) { + assert(!MI->isBundled() && "Can't handle bundled instructions yet."); + SlotIndex OldIndex = Indexes->getInstructionIndex(MI); + Indexes->removeMachineInstrFromMaps(MI); + SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); + assert(getMBBStartIdx(MI->getParent()) <= OldIndex && + OldIndex < getMBBEndIdx(MI->getParent()) && + "Cannot handle moves across basic block boundaries."); + + HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); + HME.updateAllRanges(MI); +} + +void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, + MachineInstr* BundleStart, + bool UpdateFlags) { + SlotIndex OldIndex = Indexes->getInstructionIndex(MI); + SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); + HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); + HME.updateAllRanges(MI); +} |