summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp1333
1 files changed, 1333 insertions, 0 deletions
diff --git a/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
new file mode 100644
index 0000000..4e75d89
--- /dev/null
+++ b/contrib/llvm/lib/CodeGen/LiveIntervalAnalysis.cpp
@@ -0,0 +1,1333 @@
+//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveInterval analysis pass which is used
+// by the Linear Scan Register allocator. This pass linearizes the
+// basic blocks of the function in DFS order and uses the
+// LiveVariables pass to conservatively compute live intervals for
+// each virtual and physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/Value.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "LiveRangeCalc.h"
+#include "VirtRegMap.h"
+#include <algorithm>
+#include <limits>
+#include <cmath>
+using namespace llvm;
+
+// Switch to the new experimental algorithm for computing live intervals.
+static cl::opt<bool>
+NewLiveIntervals("new-live-intervals", cl::Hidden,
+ cl::desc("Use new algorithm forcomputing live intervals"));
+
+char LiveIntervals::ID = 0;
+char &llvm::LiveIntervalsID = LiveIntervals::ID;
+INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(LiveVariables)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
+INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
+ "Live Interval Analysis", false, false)
+
+void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ AU.addPreserved<AliasAnalysis>();
+ AU.addRequired<LiveVariables>();
+ AU.addPreserved<LiveVariables>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addRequiredTransitiveID(MachineDominatorsID);
+ AU.addPreservedID(MachineDominatorsID);
+ AU.addPreserved<SlotIndexes>();
+ AU.addRequiredTransitive<SlotIndexes>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
+ DomTree(0), LRCalc(0) {
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+}
+
+LiveIntervals::~LiveIntervals() {
+ delete LRCalc;
+}
+
+void LiveIntervals::releaseMemory() {
+ // Free the live intervals themselves.
+ for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
+ delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
+ VirtRegIntervals.clear();
+ RegMaskSlots.clear();
+ RegMaskBits.clear();
+ RegMaskBlocks.clear();
+
+ for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
+ delete RegUnitIntervals[i];
+ RegUnitIntervals.clear();
+
+ // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
+ VNInfoAllocator.Reset();
+}
+
+/// runOnMachineFunction - Register allocate the whole function
+///
+bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
+ MF = &fn;
+ MRI = &MF->getRegInfo();
+ TM = &fn.getTarget();
+ TRI = TM->getRegisterInfo();
+ TII = TM->getInstrInfo();
+ AA = &getAnalysis<AliasAnalysis>();
+ LV = &getAnalysis<LiveVariables>();
+ Indexes = &getAnalysis<SlotIndexes>();
+ DomTree = &getAnalysis<MachineDominatorTree>();
+ if (!LRCalc)
+ LRCalc = new LiveRangeCalc();
+
+ // Allocate space for all virtual registers.
+ VirtRegIntervals.resize(MRI->getNumVirtRegs());
+
+ if (NewLiveIntervals) {
+ // This is the new way of computing live intervals.
+ // It is independent of LiveVariables, and it can run at any time.
+ computeVirtRegs();
+ computeRegMasks();
+ } else {
+ // This is the old way of computing live intervals.
+ // It depends on LiveVariables.
+ computeIntervals();
+ }
+ computeLiveInRegUnits();
+
+ DEBUG(dump());
+ return true;
+}
+
+/// print - Implement the dump method.
+void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
+ OS << "********** INTERVALS **********\n";
+
+ // Dump the regunits.
+ for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
+ if (LiveInterval *LI = RegUnitIntervals[i])
+ OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
+
+ // Dump the virtregs.
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (hasInterval(Reg))
+ OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
+ }
+
+ OS << "RegMasks:";
+ for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
+ OS << ' ' << RegMaskSlots[i];
+ OS << '\n';
+
+ printInstrs(OS);
+}
+
+void LiveIntervals::printInstrs(raw_ostream &OS) const {
+ OS << "********** MACHINEINSTRS **********\n";
+ MF->print(OS, Indexes);
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void LiveIntervals::dumpInstrs() const {
+ printInstrs(dbgs());
+}
+#endif
+
+static
+bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
+ unsigned Reg = MI.getOperand(MOIdx).getReg();
+ for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
+ const MachineOperand &MO = MI.getOperand(i);
+ if (!MO.isReg())
+ continue;
+ if (MO.getReg() == Reg && MO.isDef()) {
+ assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
+ MI.getOperand(MOIdx).getSubReg() &&
+ (MO.getSubReg() || MO.isImplicit()));
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isPartialRedef - Return true if the specified def at the specific index is
+/// partially re-defining the specified live interval. A common case of this is
+/// a definition of the sub-register.
+bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
+ LiveInterval &interval) {
+ if (!MO.getSubReg() || MO.isEarlyClobber())
+ return false;
+
+ SlotIndex RedefIndex = MIIdx.getRegSlot();
+ const LiveRange *OldLR =
+ interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
+ MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
+ if (DefMI != 0) {
+ return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
+ }
+ return false;
+}
+
+void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
+ MachineBasicBlock::iterator mi,
+ SlotIndex MIIdx,
+ MachineOperand& MO,
+ unsigned MOIdx,
+ LiveInterval &interval) {
+ DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));
+
+ // Virtual registers may be defined multiple times (due to phi
+ // elimination and 2-addr elimination). Much of what we do only has to be
+ // done once for the vreg. We use an empty interval to detect the first
+ // time we see a vreg.
+ LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg);
+ if (interval.empty()) {
+ // Get the Idx of the defining instructions.
+ SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
+
+ // Make sure the first definition is not a partial redefinition.
+ assert(!MO.readsReg() && "First def cannot also read virtual register "
+ "missing <undef> flag?");
+
+ VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
+ assert(ValNo->id == 0 && "First value in interval is not 0?");
+
+ // Loop over all of the blocks that the vreg is defined in. There are
+ // two cases we have to handle here. The most common case is a vreg
+ // whose lifetime is contained within a basic block. In this case there
+ // will be a single kill, in MBB, which comes after the definition.
+ if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
+ // FIXME: what about dead vars?
+ SlotIndex killIdx;
+ if (vi.Kills[0] != mi)
+ killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
+ else
+ killIdx = defIndex.getDeadSlot();
+
+ // If the kill happens after the definition, we have an intra-block
+ // live range.
+ if (killIdx > defIndex) {
+ assert(vi.AliveBlocks.empty() &&
+ "Shouldn't be alive across any blocks!");
+ LiveRange LR(defIndex, killIdx, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR << "\n");
+ return;
+ }
+ }
+
+ // The other case we handle is when a virtual register lives to the end
+ // of the defining block, potentially live across some blocks, then is
+ // live into some number of blocks, but gets killed. Start by adding a
+ // range that goes from this definition to the end of the defining block.
+ LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
+ DEBUG(dbgs() << " +" << NewLR);
+ interval.addRange(NewLR);
+
+ bool PHIJoin = LV->isPHIJoin(interval.reg);
+
+ if (PHIJoin) {
+ // A phi join register is killed at the end of the MBB and revived as a
+ // new valno in the killing blocks.
+ assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
+ DEBUG(dbgs() << " phi-join");
+ } else {
+ // Iterate over all of the blocks that the variable is completely
+ // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
+ // live interval.
+ for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
+ E = vi.AliveBlocks.end(); I != E; ++I) {
+ MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I);
+ LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock),
+ ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR);
+ }
+ }
+
+ // Finally, this virtual register is live from the start of any killing
+ // block to the 'use' slot of the killing instruction.
+ for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
+ MachineInstr *Kill = vi.Kills[i];
+ SlotIndex Start = getMBBStartIdx(Kill->getParent());
+ SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
+
+ // Create interval with one of a NEW value number. Note that this value
+ // number isn't actually defined by an instruction, weird huh? :)
+ if (PHIJoin) {
+ assert(getInstructionFromIndex(Start) == 0 &&
+ "PHI def index points at actual instruction.");
+ ValNo = interval.getNextValue(Start, VNInfoAllocator);
+ }
+ LiveRange LR(Start, killIdx, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " +" << LR);
+ }
+
+ } else {
+ if (MultipleDefsBySameMI(*mi, MOIdx))
+ // Multiple defs of the same virtual register by the same instruction.
+ // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
+ // This is likely due to elimination of REG_SEQUENCE instructions. Return
+ // here since there is nothing to do.
+ return;
+
+ // If this is the second time we see a virtual register definition, it
+ // must be due to phi elimination or two addr elimination. If this is
+ // the result of two address elimination, then the vreg is one of the
+ // def-and-use register operand.
+
+ // It may also be partial redef like this:
+ // 80 %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
+ // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
+ bool PartReDef = isPartialRedef(MIIdx, MO, interval);
+ if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
+ // If this is a two-address definition, then we have already processed
+ // the live range. The only problem is that we didn't realize there
+ // are actually two values in the live interval. Because of this we
+ // need to take the LiveRegion that defines this register and split it
+ // into two values.
+ SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
+
+ const LiveRange *OldLR =
+ interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
+ VNInfo *OldValNo = OldLR->valno;
+ SlotIndex DefIndex = OldValNo->def.getRegSlot();
+
+ // Delete the previous value, which should be short and continuous,
+ // because the 2-addr copy must be in the same MBB as the redef.
+ interval.removeRange(DefIndex, RedefIndex);
+
+ // The new value number (#1) is defined by the instruction we claimed
+ // defined value #0.
+ VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
+
+ // Value#0 is now defined by the 2-addr instruction.
+ OldValNo->def = RedefIndex;
+
+ // Add the new live interval which replaces the range for the input copy.
+ LiveRange LR(DefIndex, RedefIndex, ValNo);
+ DEBUG(dbgs() << " replace range with " << LR);
+ interval.addRange(LR);
+
+ // If this redefinition is dead, we need to add a dummy unit live
+ // range covering the def slot.
+ if (MO.isDead())
+ interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
+ OldValNo));
+
+ DEBUG(dbgs() << " RESULT: " << interval);
+ } else if (LV->isPHIJoin(interval.reg)) {
+ // In the case of PHI elimination, each variable definition is only
+ // live until the end of the block. We've already taken care of the
+ // rest of the live range.
+
+ SlotIndex defIndex = MIIdx.getRegSlot();
+ if (MO.isEarlyClobber())
+ defIndex = MIIdx.getRegSlot(true);
+
+ VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
+
+ SlotIndex killIndex = getMBBEndIdx(mbb);
+ LiveRange LR(defIndex, killIndex, ValNo);
+ interval.addRange(LR);
+ DEBUG(dbgs() << " phi-join +" << LR);
+ } else {
+ llvm_unreachable("Multiply defined register");
+ }
+ }
+
+ DEBUG(dbgs() << '\n');
+}
+
+void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
+ MachineBasicBlock::iterator MI,
+ SlotIndex MIIdx,
+ MachineOperand& MO,
+ unsigned MOIdx) {
+ if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
+ getOrCreateInterval(MO.getReg()));
+}
+
+/// computeIntervals - computes the live intervals for virtual
+/// registers. for some ordering of the machine instructions [1,N] a
+/// live interval is an interval [i, j) where 1 <= i <= j < N for
+/// which a variable is live
+void LiveIntervals::computeIntervals() {
+ DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
+ << "********** Function: " << MF->getName() << '\n');
+
+ RegMaskBlocks.resize(MF->getNumBlockIDs());
+
+ SmallVector<unsigned, 8> UndefUses;
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
+
+ if (MBB->empty())
+ continue;
+
+ // Track the index of the current machine instr.
+ SlotIndex MIIndex = getMBBStartIdx(MBB);
+ DEBUG(dbgs() << "BB#" << MBB->getNumber()
+ << ":\t\t# derived from " << MBB->getName() << "\n");
+
+ // Skip over empty initial indices.
+ if (getInstructionFromIndex(MIIndex) == 0)
+ MIIndex = Indexes->getNextNonNullIndex(MIIndex);
+
+ for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
+ MI != miEnd; ++MI) {
+ DEBUG(dbgs() << MIIndex << "\t" << *MI);
+ if (MI->isDebugValue())
+ continue;
+ assert(Indexes->getInstructionFromIndex(MIIndex) == MI &&
+ "Lost SlotIndex synchronization");
+
+ // Handle defs.
+ for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
+ MachineOperand &MO = MI->getOperand(i);
+
+ // Collect register masks.
+ if (MO.isRegMask()) {
+ RegMaskSlots.push_back(MIIndex.getRegSlot());
+ RegMaskBits.push_back(MO.getRegMask());
+ continue;
+ }
+
+ if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ continue;
+
+ // handle register defs - build intervals
+ if (MO.isDef())
+ handleRegisterDef(MBB, MI, MIIndex, MO, i);
+ else if (MO.isUndef())
+ UndefUses.push_back(MO.getReg());
+ }
+
+ // Move to the next instr slot.
+ MIIndex = Indexes->getNextNonNullIndex(MIIndex);
+ }
+
+ // Compute the number of register mask instructions in this block.
+ std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
+ RMB.second = RegMaskSlots.size() - RMB.first;
+ }
+
+ // Create empty intervals for registers defined by implicit_def's (except
+ // for those implicit_def that define values which are liveout of their
+ // blocks.
+ for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
+ unsigned UndefReg = UndefUses[i];
+ (void)getOrCreateInterval(UndefReg);
+ }
+}
+
+LiveInterval* LiveIntervals::createInterval(unsigned reg) {
+ float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
+ return new LiveInterval(reg, Weight);
+}
+
+
+/// computeVirtRegInterval - Compute the live interval of a virtual register,
+/// based on defs and uses.
+void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
+ assert(LRCalc && "LRCalc not initialized.");
+ assert(LI->empty() && "Should only compute empty intervals.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+ LRCalc->createDeadDefs(LI);
+ LRCalc->extendToUses(LI);
+}
+
+void LiveIntervals::computeVirtRegs() {
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ LiveInterval *LI = createInterval(Reg);
+ VirtRegIntervals[Reg] = LI;
+ computeVirtRegInterval(LI);
+ }
+}
+
+void LiveIntervals::computeRegMasks() {
+ RegMaskBlocks.resize(MF->getNumBlockIDs());
+
+ // Find all instructions with regmask operands.
+ for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
+ MBBI != E; ++MBBI) {
+ MachineBasicBlock *MBB = MBBI;
+ std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
+ RMB.first = RegMaskSlots.size();
+ for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
+ MI != ME; ++MI)
+ for (MIOperands MO(MI); MO.isValid(); ++MO) {
+ if (!MO->isRegMask())
+ continue;
+ RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
+ RegMaskBits.push_back(MO->getRegMask());
+ }
+ // Compute the number of register mask instructions in this block.
+ RMB.second = RegMaskSlots.size() - RMB.first;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Register Unit Liveness
+//===----------------------------------------------------------------------===//
+//
+// Fixed interference typically comes from ABI boundaries: Function arguments
+// and return values are passed in fixed registers, and so are exception
+// pointers entering landing pads. Certain instructions require values to be
+// present in specific registers. That is also represented through fixed
+// interference.
+//
+
+/// computeRegUnitInterval - Compute the live interval of a register unit, based
+/// on the uses and defs of aliasing registers. The interval should be empty,
+/// or contain only dead phi-defs from ABI blocks.
+void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
+ unsigned Unit = LI->reg;
+
+ assert(LRCalc && "LRCalc not initialized.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+
+ // The physregs aliasing Unit are the roots and their super-registers.
+ // Create all values as dead defs before extending to uses. Note that roots
+ // may share super-registers. That's OK because createDeadDefs() is
+ // idempotent. It is very rare for a register unit to have multiple roots, so
+ // uniquing super-registers is probably not worthwhile.
+ for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
+ unsigned Root = *Roots;
+ if (!MRI->reg_empty(Root))
+ LRCalc->createDeadDefs(LI, Root);
+ for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
+ if (!MRI->reg_empty(*Supers))
+ LRCalc->createDeadDefs(LI, *Supers);
+ }
+ }
+
+ // Now extend LI to reach all uses.
+ // Ignore uses of reserved registers. We only track defs of those.
+ for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
+ unsigned Root = *Roots;
+ if (!MRI->isReserved(Root) && !MRI->reg_empty(Root))
+ LRCalc->extendToUses(LI, Root);
+ for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
+ unsigned Reg = *Supers;
+ if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
+ LRCalc->extendToUses(LI, Reg);
+ }
+ }
+}
+
+
+/// computeLiveInRegUnits - Precompute the live ranges of any register units
+/// that are live-in to an ABI block somewhere. Register values can appear
+/// without a corresponding def when entering the entry block or a landing pad.
+///
+void LiveIntervals::computeLiveInRegUnits() {
+ RegUnitIntervals.resize(TRI->getNumRegUnits());
+ DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
+
+ // Keep track of the intervals allocated.
+ SmallVector<LiveInterval*, 8> NewIntvs;
+
+ // Check all basic blocks for live-ins.
+ for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
+ MFI != MFE; ++MFI) {
+ const MachineBasicBlock *MBB = MFI;
+
+ // We only care about ABI blocks: Entry + landing pads.
+ if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
+ continue;
+
+ // Create phi-defs at Begin for all live-in registers.
+ SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
+ DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
+ for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
+ LIE = MBB->livein_end(); LII != LIE; ++LII) {
+ for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
+ unsigned Unit = *Units;
+ LiveInterval *Intv = RegUnitIntervals[Unit];
+ if (!Intv) {
+ Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
+ NewIntvs.push_back(Intv);
+ }
+ VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
+ (void)VNI;
+ DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
+ }
+ }
+ DEBUG(dbgs() << '\n');
+ }
+ DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
+
+ // Compute the 'normal' part of the intervals.
+ for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
+ computeRegUnitInterval(NewIntvs[i]);
+}
+
+
+/// shrinkToUses - After removing some uses of a register, shrink its live
+/// range to just the remaining uses. This method does not compute reaching
+/// defs for new uses, and it doesn't remove dead defs.
+bool LiveIntervals::shrinkToUses(LiveInterval *li,
+ SmallVectorImpl<MachineInstr*> *dead) {
+ DEBUG(dbgs() << "Shrink: " << *li << '\n');
+ assert(TargetRegisterInfo::isVirtualRegister(li->reg)
+ && "Can only shrink virtual registers");
+ // Find all the values used, including PHI kills.
+ SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
+
+ // Blocks that have already been added to WorkList as live-out.
+ SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
+
+ // Visit all instructions reading li->reg.
+ for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
+ MachineInstr *UseMI = I.skipInstruction();) {
+ if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
+ continue;
+ SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
+ LiveRangeQuery LRQ(*li, Idx);
+ VNInfo *VNI = LRQ.valueIn();
+ if (!VNI) {
+ // This shouldn't happen: readsVirtualRegister returns true, but there is
+ // no live value. It is likely caused by a target getting <undef> flags
+ // wrong.
+ DEBUG(dbgs() << Idx << '\t' << *UseMI
+ << "Warning: Instr claims to read non-existent value in "
+ << *li << '\n');
+ continue;
+ }
+ // Special case: An early-clobber tied operand reads and writes the
+ // register one slot early.
+ if (VNInfo *DefVNI = LRQ.valueDefined())
+ Idx = DefVNI->def;
+
+ WorkList.push_back(std::make_pair(Idx, VNI));
+ }
+
+ // Create a new live interval with only minimal live segments per def.
+ LiveInterval NewLI(li->reg, 0);
+ for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
+ I != E; ++I) {
+ VNInfo *VNI = *I;
+ if (VNI->isUnused())
+ continue;
+ NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
+ }
+
+ // Keep track of the PHIs that are in use.
+ SmallPtrSet<VNInfo*, 8> UsedPHIs;
+
+ // Extend intervals to reach all uses in WorkList.
+ while (!WorkList.empty()) {
+ SlotIndex Idx = WorkList.back().first;
+ VNInfo *VNI = WorkList.back().second;
+ WorkList.pop_back();
+ const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
+ SlotIndex BlockStart = getMBBStartIdx(MBB);
+
+ // Extend the live range for VNI to be live at Idx.
+ if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
+ (void)ExtVNI;
+ assert(ExtVNI == VNI && "Unexpected existing value number");
+ // Is this a PHIDef we haven't seen before?
+ if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
+ continue;
+ // The PHI is live, make sure the predecessors are live-out.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ if (!LiveOut.insert(*PI))
+ continue;
+ SlotIndex Stop = getMBBEndIdx(*PI);
+ // A predecessor is not required to have a live-out value for a PHI.
+ if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
+ WorkList.push_back(std::make_pair(Stop, PVNI));
+ }
+ continue;
+ }
+
+ // VNI is live-in to MBB.
+ DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
+ NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
+
+ // Make sure VNI is live-out from the predecessors.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ PE = MBB->pred_end(); PI != PE; ++PI) {
+ if (!LiveOut.insert(*PI))
+ continue;
+ SlotIndex Stop = getMBBEndIdx(*PI);
+ assert(li->getVNInfoBefore(Stop) == VNI &&
+ "Wrong value out of predecessor");
+ WorkList.push_back(std::make_pair(Stop, VNI));
+ }
+ }
+
+ // Handle dead values.
+ bool CanSeparate = false;
+ for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
+ I != E; ++I) {
+ VNInfo *VNI = *I;
+ if (VNI->isUnused())
+ continue;
+ LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
+ assert(LII != NewLI.end() && "Missing live range for PHI");
+ if (LII->end != VNI->def.getDeadSlot())
+ continue;
+ if (VNI->isPHIDef()) {
+ // This is a dead PHI. Remove it.
+ VNI->markUnused();
+ NewLI.removeRange(*LII);
+ DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
+ CanSeparate = true;
+ } else {
+ // This is a dead def. Make sure the instruction knows.
+ MachineInstr *MI = getInstructionFromIndex(VNI->def);
+ assert(MI && "No instruction defining live value");
+ MI->addRegisterDead(li->reg, TRI);
+ if (dead && MI->allDefsAreDead()) {
+ DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
+ dead->push_back(MI);
+ }
+ }
+ }
+
+ // Move the trimmed ranges back.
+ li->ranges.swap(NewLI.ranges);
+ DEBUG(dbgs() << "Shrunk: " << *li << '\n');
+ return CanSeparate;
+}
+
+void LiveIntervals::extendToIndices(LiveInterval *LI,
+ ArrayRef<SlotIndex> Indices) {
+ assert(LRCalc && "LRCalc not initialized.");
+ LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
+ for (unsigned i = 0, e = Indices.size(); i != e; ++i)
+ LRCalc->extend(LI, Indices[i]);
+}
+
+void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
+ SmallVectorImpl<SlotIndex> *EndPoints) {
+ LiveRangeQuery LRQ(*LI, Kill);
+ VNInfo *VNI = LRQ.valueOut();
+ if (!VNI)
+ return;
+
+ MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
+ SlotIndex MBBStart, MBBEnd;
+ tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
+
+ // If VNI isn't live out from KillMBB, the value is trivially pruned.
+ if (LRQ.endPoint() < MBBEnd) {
+ LI->removeRange(Kill, LRQ.endPoint());
+ if (EndPoints) EndPoints->push_back(LRQ.endPoint());
+ return;
+ }
+
+ // VNI is live out of KillMBB.
+ LI->removeRange(Kill, MBBEnd);
+ if (EndPoints) EndPoints->push_back(MBBEnd);
+
+ // Find all blocks that are reachable from KillMBB without leaving VNI's live
+ // range. It is possible that KillMBB itself is reachable, so start a DFS
+ // from each successor.
+ typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
+ VisitedTy Visited;
+ for (MachineBasicBlock::succ_iterator
+ SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
+ SuccI != SuccE; ++SuccI) {
+ for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
+ I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
+ I != E;) {
+ MachineBasicBlock *MBB = *I;
+
+ // Check if VNI is live in to MBB.
+ tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
+ LiveRangeQuery LRQ(*LI, MBBStart);
+ if (LRQ.valueIn() != VNI) {
+ // This block isn't part of the VNI live range. Prune the search.
+ I.skipChildren();
+ continue;
+ }
+
+ // Prune the search if VNI is killed in MBB.
+ if (LRQ.endPoint() < MBBEnd) {
+ LI->removeRange(MBBStart, LRQ.endPoint());
+ if (EndPoints) EndPoints->push_back(LRQ.endPoint());
+ I.skipChildren();
+ continue;
+ }
+
+ // VNI is live through MBB.
+ LI->removeRange(MBBStart, MBBEnd);
+ if (EndPoints) EndPoints->push_back(MBBEnd);
+ ++I;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Register allocator hooks.
+//
+
+void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
+ // Keep track of regunit ranges.
+ SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
+
+ for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+ LiveInterval *LI = &getInterval(Reg);
+ if (LI->empty())
+ continue;
+
+ // Find the regunit intervals for the assigned register. They may overlap
+ // the virtual register live range, cancelling any kills.
+ RU.clear();
+ for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
+ ++Units) {
+ LiveInterval *RUInt = &getRegUnit(*Units);
+ if (RUInt->empty())
+ continue;
+ RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
+ }
+
+ // Every instruction that kills Reg corresponds to a live range end point.
+ for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
+ ++RI) {
+ // A block index indicates an MBB edge.
+ if (RI->end.isBlock())
+ continue;
+ MachineInstr *MI = getInstructionFromIndex(RI->end);
+ if (!MI)
+ continue;
+
+ // Check if any of the reguints are live beyond the end of RI. That could
+ // happen when a physreg is defined as a copy of a virtreg:
+ //
+ // %EAX = COPY %vreg5
+ // FOO %vreg5 <--- MI, cancel kill because %EAX is live.
+ // BAR %EAX<kill>
+ //
+ // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
+ bool CancelKill = false;
+ for (unsigned u = 0, e = RU.size(); u != e; ++u) {
+ LiveInterval *RInt = RU[u].first;
+ LiveInterval::iterator &I = RU[u].second;
+ if (I == RInt->end())
+ continue;
+ I = RInt->advanceTo(I, RI->end);
+ if (I == RInt->end() || I->start >= RI->end)
+ continue;
+ // I is overlapping RI.
+ CancelKill = true;
+ break;
+ }
+ if (CancelKill)
+ MI->clearRegisterKills(Reg, NULL);
+ else
+ MI->addRegisterKilled(Reg, NULL);
+ }
+ }
+}
+
+MachineBasicBlock*
+LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
+ // A local live range must be fully contained inside the block, meaning it is
+ // defined and killed at instructions, not at block boundaries. It is not
+ // live in or or out of any block.
+ //
+ // It is technically possible to have a PHI-defined live range identical to a
+ // single block, but we are going to return false in that case.
+
+ SlotIndex Start = LI.beginIndex();
+ if (Start.isBlock())
+ return NULL;
+
+ SlotIndex Stop = LI.endIndex();
+ if (Stop.isBlock())
+ return NULL;
+
+ // getMBBFromIndex doesn't need to search the MBB table when both indexes
+ // belong to proper instructions.
+ MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
+ MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
+ return MBB1 == MBB2 ? MBB1 : NULL;
+}
+
+bool
+LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
+ for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
+ I != E; ++I) {
+ const VNInfo *PHI = *I;
+ if (PHI->isUnused() || !PHI->isPHIDef())
+ continue;
+ const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
+ // Conservatively return true instead of scanning huge predecessor lists.
+ if (PHIMBB->pred_size() > 100)
+ return true;
+ for (MachineBasicBlock::const_pred_iterator
+ PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
+ if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
+ return true;
+ }
+ return false;
+}
+
+float
+LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
+ // Limit the loop depth ridiculousness.
+ if (loopDepth > 200)
+ loopDepth = 200;
+
+ // The loop depth is used to roughly estimate the number of times the
+ // instruction is executed. Something like 10^d is simple, but will quickly
+ // overflow a float. This expression behaves like 10^d for small d, but is
+ // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
+ // headroom before overflow.
+ // By the way, powf() might be unavailable here. For consistency,
+ // We may take pow(double,double).
+ float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
+
+ return (isDef + isUse) * lc;
+}
+
+LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
+ MachineInstr* startInst) {
+ LiveInterval& Interval = getOrCreateInterval(reg);
+ VNInfo* VN = Interval.getNextValue(
+ SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+ getVNInfoAllocator());
+ LiveRange LR(
+ SlotIndex(getInstructionIndex(startInst).getRegSlot()),
+ getMBBEndIdx(startInst->getParent()), VN);
+ Interval.addRange(LR);
+
+ return LR;
+}
+
+
+//===----------------------------------------------------------------------===//
+// Register mask functions
+//===----------------------------------------------------------------------===//
+
+bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
+ BitVector &UsableRegs) {
+ if (LI.empty())
+ return false;
+ LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
+
+ // Use a smaller arrays for local live ranges.
+ ArrayRef<SlotIndex> Slots;
+ ArrayRef<const uint32_t*> Bits;
+ if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
+ Slots = getRegMaskSlotsInBlock(MBB->getNumber());
+ Bits = getRegMaskBitsInBlock(MBB->getNumber());
+ } else {
+ Slots = getRegMaskSlots();
+ Bits = getRegMaskBits();
+ }
+
+ // We are going to enumerate all the register mask slots contained in LI.
+ // Start with a binary search of RegMaskSlots to find a starting point.
+ ArrayRef<SlotIndex>::iterator SlotI =
+ std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
+ ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
+
+ // No slots in range, LI begins after the last call.
+ if (SlotI == SlotE)
+ return false;
+
+ bool Found = false;
+ for (;;) {
+ assert(*SlotI >= LiveI->start);
+ // Loop over all slots overlapping this segment.
+ while (*SlotI < LiveI->end) {
+ // *SlotI overlaps LI. Collect mask bits.
+ if (!Found) {
+ // This is the first overlap. Initialize UsableRegs to all ones.
+ UsableRegs.clear();
+ UsableRegs.resize(TRI->getNumRegs(), true);
+ Found = true;
+ }
+ // Remove usable registers clobbered by this mask.
+ UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
+ if (++SlotI == SlotE)
+ return Found;
+ }
+ // *SlotI is beyond the current LI segment.
+ LiveI = LI.advanceTo(LiveI, *SlotI);
+ if (LiveI == LiveE)
+ return Found;
+ // Advance SlotI until it overlaps.
+ while (*SlotI < LiveI->start)
+ if (++SlotI == SlotE)
+ return Found;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// IntervalUpdate class.
+//===----------------------------------------------------------------------===//
+
+// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
+class LiveIntervals::HMEditor {
+private:
+ LiveIntervals& LIS;
+ const MachineRegisterInfo& MRI;
+ const TargetRegisterInfo& TRI;
+ SlotIndex OldIdx;
+ SlotIndex NewIdx;
+ SmallPtrSet<LiveInterval*, 8> Updated;
+ bool UpdateFlags;
+
+public:
+ HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
+ const TargetRegisterInfo& TRI,
+ SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
+ : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
+ UpdateFlags(UpdateFlags) {}
+
+ // FIXME: UpdateFlags is a workaround that creates live intervals for all
+ // physregs, even those that aren't needed for regalloc, in order to update
+ // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
+ // flags, and postRA passes will use a live register utility instead.
+ LiveInterval *getRegUnitLI(unsigned Unit) {
+ if (UpdateFlags)
+ return &LIS.getRegUnit(Unit);
+ return LIS.getCachedRegUnit(Unit);
+ }
+
+ /// Update all live ranges touched by MI, assuming a move from OldIdx to
+ /// NewIdx.
+ void updateAllRanges(MachineInstr *MI) {
+ DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
+ bool hasRegMask = false;
+ for (MIOperands MO(MI); MO.isValid(); ++MO) {
+ if (MO->isRegMask())
+ hasRegMask = true;
+ if (!MO->isReg())
+ continue;
+ // Aggressively clear all kill flags.
+ // They are reinserted by VirtRegRewriter.
+ if (MO->isUse())
+ MO->setIsKill(false);
+
+ unsigned Reg = MO->getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ updateRange(LIS.getInterval(Reg));
+ continue;
+ }
+
+ // For physregs, only update the regunits that actually have a
+ // precomputed live range.
+ for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
+ if (LiveInterval *LI = getRegUnitLI(*Units))
+ updateRange(*LI);
+ }
+ if (hasRegMask)
+ updateRegMaskSlots();
+ }
+
+private:
+ /// Update a single live range, assuming an instruction has been moved from
+ /// OldIdx to NewIdx.
+ void updateRange(LiveInterval &LI) {
+ if (!Updated.insert(&LI))
+ return;
+ DEBUG({
+ dbgs() << " ";
+ if (TargetRegisterInfo::isVirtualRegister(LI.reg))
+ dbgs() << PrintReg(LI.reg);
+ else
+ dbgs() << PrintRegUnit(LI.reg, &TRI);
+ dbgs() << ":\t" << LI << '\n';
+ });
+ if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
+ handleMoveDown(LI);
+ else
+ handleMoveUp(LI);
+ DEBUG(dbgs() << " -->\t" << LI << '\n');
+ LI.verify();
+ }
+
+ /// Update LI to reflect an instruction has been moved downwards from OldIdx
+ /// to NewIdx.
+ ///
+ /// 1. Live def at OldIdx:
+ /// Move def to NewIdx, assert endpoint after NewIdx.
+ ///
+ /// 2. Live def at OldIdx, killed at NewIdx:
+ /// Change to dead def at NewIdx.
+ /// (Happens when bundling def+kill together).
+ ///
+ /// 3. Dead def at OldIdx:
+ /// Move def to NewIdx, possibly across another live value.
+ ///
+ /// 4. Def at OldIdx AND at NewIdx:
+ /// Remove live range [OldIdx;NewIdx) and value defined at OldIdx.
+ /// (Happens when bundling multiple defs together).
+ ///
+ /// 5. Value read at OldIdx, killed before NewIdx:
+ /// Extend kill to NewIdx.
+ ///
+ void handleMoveDown(LiveInterval &LI) {
+ // First look for a kill at OldIdx.
+ LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
+ LiveInterval::iterator E = LI.end();
+ // Is LI even live at OldIdx?
+ if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
+ return;
+
+ // Handle a live-in value.
+ if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
+ bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
+ // If the live-in value already extends to NewIdx, there is nothing to do.
+ if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
+ return;
+ // Aggressively remove all kill flags from the old kill point.
+ // Kill flags shouldn't be used while live intervals exist, they will be
+ // reinserted by VirtRegRewriter.
+ if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
+ for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
+ if (MO->isReg() && MO->isUse())
+ MO->setIsKill(false);
+ // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by
+ // overlapping ranges. Case 5 above.
+ I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
+ // If this was a kill, there may also be a def. Otherwise we're done.
+ if (!isKill)
+ return;
+ ++I;
+ }
+
+ // Check for a def at OldIdx.
+ if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
+ return;
+ // We have a def at OldIdx.
+ VNInfo *DefVNI = I->valno;
+ assert(DefVNI->def == I->start && "Inconsistent def");
+ DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
+ // If the defined value extends beyond NewIdx, just move the def down.
+ // This is case 1 above.
+ if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
+ I->start = DefVNI->def;
+ return;
+ }
+ // The remaining possibilities are now:
+ // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
+ // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
+ // In either case, it is possible that there is an existing def at NewIdx.
+ assert((I->end == OldIdx.getDeadSlot() ||
+ SlotIndex::isSameInstr(I->end, NewIdx)) &&
+ "Cannot move def below kill");
+ LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot());
+ if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
+ // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
+ // coalesced into that value.
+ assert(NewI->valno != DefVNI && "Multiple defs of value?");
+ LI.removeValNo(DefVNI);
+ return;
+ }
+ // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
+ // If the def at OldIdx was dead, we allow it to be moved across other LI
+ // values. The new range should be placed immediately before NewI, move any
+ // intermediate ranges up.
+ assert(NewI != I && "Inconsistent iterators");
+ std::copy(llvm::next(I), NewI, I);
+ *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
+ }
+
+ /// Update LI to reflect an instruction has been moved upwards from OldIdx
+ /// to NewIdx.
+ ///
+ /// 1. Live def at OldIdx:
+ /// Hoist def to NewIdx.
+ ///
+ /// 2. Dead def at OldIdx:
+ /// Hoist def+end to NewIdx, possibly move across other values.
+ ///
+ /// 3. Dead def at OldIdx AND existing def at NewIdx:
+ /// Remove value defined at OldIdx, coalescing it with existing value.
+ ///
+ /// 4. Live def at OldIdx AND existing def at NewIdx:
+ /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
+ /// (Happens when bundling multiple defs together).
+ ///
+ /// 5. Value killed at OldIdx:
+ /// Hoist kill to NewIdx, then scan for last kill between NewIdx and
+ /// OldIdx.
+ ///
+ void handleMoveUp(LiveInterval &LI) {
+ // First look for a kill at OldIdx.
+ LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
+ LiveInterval::iterator E = LI.end();
+ // Is LI even live at OldIdx?
+ if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
+ return;
+
+ // Handle a live-in value.
+ if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
+ // If the live-in value isn't killed here, there is nothing to do.
+ if (!SlotIndex::isSameInstr(OldIdx, I->end))
+ return;
+ // Adjust I->end to end at NewIdx. If we are hoisting a kill above
+ // another use, we need to search for that use. Case 5 above.
+ I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
+ ++I;
+ // If OldIdx also defines a value, there couldn't have been another use.
+ if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
+ // No def, search for the new kill.
+ // This can never be an early clobber kill since there is no def.
+ llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot();
+ return;
+ }
+ }
+
+ // Now deal with the def at OldIdx.
+ assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
+ VNInfo *DefVNI = I->valno;
+ assert(DefVNI->def == I->start && "Inconsistent def");
+ DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
+
+ // Check for an existing def at NewIdx.
+ LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot());
+ if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
+ assert(NewI->valno != DefVNI && "Same value defined more than once?");
+ // There is an existing def at NewIdx.
+ if (I->end.isDead()) {
+ // Case 3: Remove the dead def at OldIdx.
+ LI.removeValNo(DefVNI);
+ return;
+ }
+ // Case 4: Replace def at NewIdx with live def at OldIdx.
+ I->start = DefVNI->def;
+ LI.removeValNo(NewI->valno);
+ return;
+ }
+
+ // There is no existing def at NewIdx. Hoist DefVNI.
+ if (!I->end.isDead()) {
+ // Leave the end point of a live def.
+ I->start = DefVNI->def;
+ return;
+ }
+
+ // DefVNI is a dead def. It may have been moved across other values in LI,
+ // so move I up to NewI. Slide [NewI;I) down one position.
+ std::copy_backward(NewI, I, llvm::next(I));
+ *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
+ }
+
+ void updateRegMaskSlots() {
+ SmallVectorImpl<SlotIndex>::iterator RI =
+ std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
+ OldIdx);
+ assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
+ "No RegMask at OldIdx.");
+ *RI = NewIdx.getRegSlot();
+ assert((RI == LIS.RegMaskSlots.begin() ||
+ SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
+ "Cannot move regmask instruction above another call");
+ assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
+ SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
+ "Cannot move regmask instruction below another call");
+ }
+
+ // Return the last use of reg between NewIdx and OldIdx.
+ SlotIndex findLastUseBefore(unsigned Reg) {
+ SlotIndex LastUse = NewIdx;
+
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ for (MachineRegisterInfo::use_nodbg_iterator
+ UI = MRI.use_nodbg_begin(Reg),
+ UE = MRI.use_nodbg_end();
+ UI != UE; UI.skipInstruction()) {
+ const MachineInstr* MI = &*UI;
+ SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
+ if (InstSlot > LastUse && InstSlot < OldIdx)
+ LastUse = InstSlot;
+ }
+ } else {
+ MachineInstr* MI = LIS.getSlotIndexes()->getInstructionFromIndex(NewIdx);
+ MachineBasicBlock::iterator MII(MI);
+ ++MII;
+ MachineBasicBlock* MBB = MI->getParent();
+ for (; MII != MBB->end() && LIS.getInstructionIndex(MII) < OldIdx; ++MII){
+ for (MachineInstr::mop_iterator MOI = MII->operands_begin(),
+ MOE = MII->operands_end();
+ MOI != MOE; ++MOI) {
+ const MachineOperand& mop = *MOI;
+ if (!mop.isReg() || mop.getReg() == 0 ||
+ TargetRegisterInfo::isVirtualRegister(mop.getReg()))
+ continue;
+
+ if (TRI.hasRegUnit(mop.getReg(), Reg))
+ LastUse = LIS.getInstructionIndex(MII);
+ }
+ }
+ }
+ return LastUse;
+ }
+};
+
+void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
+ assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
+ SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+ Indexes->removeMachineInstrFromMaps(MI);
+ SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
+ assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
+ OldIndex < getMBBEndIdx(MI->getParent()) &&
+ "Cannot handle moves across basic block boundaries.");
+
+ HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
+ HME.updateAllRanges(MI);
+}
+
+void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
+ MachineInstr* BundleStart,
+ bool UpdateFlags) {
+ SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
+ SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
+ HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
+ HME.updateAllRanges(MI);
+}
OpenPOWER on IntegriCloud